101
|
IKZF1 deletions in pediatric acute lymphoblastic leukemia: still a poor prognostic marker? Blood 2020; 135:252-260. [PMID: 31821407 DOI: 10.1182/blood.2019000813] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022] Open
Abstract
Improved personalized adjustment of primary therapy to the perceived risk of relapse by using new prognostic markers for treatment stratification may be beneficial to patients with acute lymphoblastic leukemia (ALL). Here, we review the advances that have shed light on the role of IKZF1 aberration as prognostic factor in pediatric ALL and summarize emerging concepts in this field. Continued research on the interplay of disease biology with exposure and response to treatment will be key to further improve treatment strategies.
Collapse
|
102
|
Lupo PJ, Spector LG. Cancer Progress and Priorities: Childhood Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:1081-1094. [DOI: 10.1158/1055-9965.epi-19-0941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 11/16/2022] Open
|
103
|
Alomairi J, Molitor AM, Sadouni N, Hussain S, Torres M, Saadi W, Dao LTM, Charbonnier G, Santiago-Algarra D, Andrau JC, Puthier D, Sexton T, Spicuglia S. Integration of high-throughput reporter assays identify a critical enhancer of the Ikzf1 gene. PLoS One 2020; 15:e0233191. [PMID: 32453736 PMCID: PMC7250416 DOI: 10.1371/journal.pone.0233191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/29/2020] [Indexed: 01/08/2023] Open
Abstract
The Ikzf1 locus encodes the lymphoid specific transcription factor Ikaros, which plays an essential role in both T and B cell differentiation, while deregulation or mutation of IKZF1/Ikzf1 is involved in leukemia. Tissue-specific and cell identity genes are usually associated with clusters of enhancers, also called super-enhancers, which are believed to ensure proper regulation of gene expression throughout cell development and differentiation. Several potential regulatory regions have been identified in close proximity of Ikzf1, however, the full extent of the regulatory landscape of the Ikzf1 locus is not yet established. In this study, we combined epigenomics and transcription factor binding along with high-throughput enhancer assay and 4C-seq to prioritize an enhancer element located 120 kb upstream of the Ikzf1 gene. We found that deletion of the E120 enhancer resulted in a significant reduction of Ikzf1 mRNA. However, the epigenetic landscape and 3D topology of the locus were only slightly affected, highlighting the complexity of the regulatory landscape regulating the Ikzf1 locus.
Collapse
Affiliation(s)
- Jaafar Alomairi
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Anne M. Molitor
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Nori Sadouni
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Saadat Hussain
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Magali Torres
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Wiam Saadi
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Lan T. M. Dao
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Guillaume Charbonnier
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - David Santiago-Algarra
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Jean Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Denis Puthier
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| |
Collapse
|
104
|
Leinoe E, Kjaersgaard M, Zetterberg E, Ostrowski S, Greinacher A, Rossing M. Highly impaired platelet ultrastructure in two families with novel IKZF5 variants. Platelets 2020; 32:492-497. [PMID: 32419556 DOI: 10.1080/09537104.2020.1764921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Heterozygous variants in the IKZF5 gene, encoding transcription factor Pegasus, were recently discovered to be causal of inherited thrombocytopenia (IT). We screened 90 patients suspected of inherited thrombocytopenia for variants in 101 genes associated with inherited bleeding disorders and report the clinical presentation of two Danish families with novel variants in IKZF5. Platelet ultrastructure and cytoskeleton were evaluated by immunofluorescent microscopy (IF) and found to be highly abnormal, demonstrating severe disturbances of distribution and expression of non-muscular myosin, filamin, β-tubulin and α tubulin. Number of alpha granules were reduced, and platelets elongated when evaluated by TEM. In both families a child carrying a rare IKZF5 variant was affected by developmental delay. The proband of family A presented with recurrent infections and was examined for an immunodeficiency. The concentration of naive B-cells was found moderately reduced by leucocyte subpopulation examination, indicating an impaired cellular immunity. T-cells were marginally low with reduced share and concentration of CD45RApos, CD31pos, CD4pos recent thymic immigrants as signs of reduced thymic output. The novel IKZF5 variants co-segregated with thrombocytopenia in both families and both probands had significant bleeding tendency. Through comprehensive characterizations of the platelet morphology and function linked to the specific phenotypes we add novel insight to IKZF5-associated thrombocytopenia, which may help to identify and classify more cases with IKZF5 associated IT.
Collapse
Affiliation(s)
- Eva Leinoe
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mimi Kjaersgaard
- Department of Pediatrics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Eva Zetterberg
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Sisse Ostrowski
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Andreas Greinacher
- Department of Immunology and Transfusion Medicine, Greifswald University Hospital, Greifswald, Germany
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
105
|
Groth DJ, Lakkaraja MM, Ferreira JO, Feuille EJ, Bassetti JA, Kaicker SM. Management of Chronic Immune Thrombocytopenia and Presumed Autoimmune Hepatitis in a Child with IKAROS Haploinsufficiency. J Clin Immunol 2020; 40:653-657. [PMID: 32319000 DOI: 10.1007/s10875-020-00781-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/01/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Daniel J Groth
- Department of Pediatrics, New York Presbyterian Hospital/Weill Cornell Medical College, 525 E 68th St, New York, NY, 10065, USA
| | - Madhavi M Lakkaraja
- Division of Pediatric Hematology and Oncology, New York Presbyterian Hospital/Weill Cornell Medical College, 525 East 68th Street, Payson-695, New York, NY, 10065, USA.,Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Johanna O Ferreira
- Division of Pediatric Gastroenterology and Nutrition, New York Presbyterian Hospital/Weill Cornell Medical College, 505 East 70th Street, Helmsley Tower, 3rd Floor, New York, NY, 10021, USA
| | - Elizabeth J Feuille
- Division of Pediatric Pulmonology, Allergy & Immunology, New York Presbyterian Hospital/Weill Cornell Medical College, 505 East 70th Street, Helmsley Tower, 3rd Floor, New York, NY, 10021, USA
| | - Jennifer A Bassetti
- Division of Clinical Genetics, New York Presbyterian Hospital/Weill Cornell Medical College, 505 East 70th Street, Helmsley Tower, 3rd Floor, New York, NY, 10021, USA
| | - Shipra M Kaicker
- Division of Pediatric Hematology and Oncology, New York Presbyterian Hospital/Weill Cornell Medical College, 525 East 68th Street, Payson-695, New York, NY, 10065, USA.
| |
Collapse
|
106
|
Vairy S, Tran TH. IKZF1 alterations in acute lymphoblastic leukemia: The good, the bad and the ugly. Blood Rev 2020; 44:100677. [PMID: 32245541 DOI: 10.1016/j.blre.2020.100677] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022]
Abstract
Advances in genomics have deepened our understanding of the biology of acute lymphoblastic leukemia (ALL), defined novel molecular leukemia subtypes, discovered new prognostic biomarkers and paved the way to emerging molecularly targeted therapeutic avenues. Since its discovery, IKZF1 has generated significant interest within the leukemia scientific community.IKZF1 plays a critical role in lymphoid development and its alterations cooperate to mediate leukemogenesis. IKZF1 alterations are present in approximately 15% of childhood ALL, rise in prevalence among adults with ALL and become highly enriched within kinase-driven ALL. A cumulating body of literature has highlighted the adverse prognostic impact of IKZF1 alterations in both Philadelphia chromosome (Ph)-negative and Ph-driven ALL. IKZF1 alterations thus emerge as an important prognostic biomarker in ALL. This article aims to provide a state-of-the-art review focusing on the prognostic clinical relevance of IKZF1 alterations in ALL, as well as current and future therapeutic strategies targeting IKZF1-altered ALL.
Collapse
Affiliation(s)
- Stephanie Vairy
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montréal, Québec, Canada.
| |
Collapse
|
107
|
Evidence-based review of genomic aberrations in B-lymphoblastic leukemia/lymphoma: Report from the cancer genomics consortium working group for lymphoblastic leukemia. Cancer Genet 2020; 243:52-72. [PMID: 32302940 DOI: 10.1016/j.cancergen.2020.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Clinical management and risk stratification of B-lymphoblastic leukemia/ lymphoma (B-ALL/LBL) depend largely on identification of chromosomal abnormalities obtained using conventional cytogenetics and Fluorescence In Situ Hybridization (FISH) testing. In the last few decades, testing algorithms have been implemented to support an optimal risk-oriented therapy, leading to a large improvement in overall survival. In addition, large scale genomic studies have identified multiple aberrations of prognostic significance that are not routinely tested by existing modalities. However, as chromosomal microarray analysis (CMA) and next-generation sequencing (NGS) technologies are increasingly used in clinical management of hematologic malignancies, these abnormalities may be more readily detected. In this article, we have compiled a comprehensive, evidence-based review of the current B-ALL literature, focusing on known and published subtypes described to date. More specifically, we describe the role of various testing modalities in the diagnosis, prognosis, and therapeutic relevance. In addition, we propose a testing algorithm aimed at assisting laboratories in the most effective detection of the underlying genomic abnormalities.
Collapse
|
108
|
Winer P, Muskens IS, Walsh KM, Vora A, Moorman AV, Wiemels JL, Roberts I, Roy A, de Smith AJ. Germline variants in predisposition genes in children with Down syndrome and acute lymphoblastic leukemia. Blood Adv 2020; 4:672-675. [PMID: 32084258 PMCID: PMC7042982 DOI: 10.1182/bloodadvances.2019001216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/27/2020] [Indexed: 11/20/2022] Open
Abstract
Rare and pathogenic germline variants, including in IKZF1 , contribute to acute lymphoblastic leukemia in children with Down syndrome.
Collapse
Affiliation(s)
- Peleg Winer
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA
| | - Ivo S Muskens
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University, Durham, NC
| | - Ajay Vora
- Great Ormond Street Hospital for Children National Health Service Trust, London, United Kingdom
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA
| | - Irene Roberts
- Department of Paediatrics and
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, United Kingdom; and
- Biomedical Research Centre Blood Theme, National Institute for Health Research Oxford Biomedical Centre, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics and
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, United Kingdom; and
- Biomedical Research Centre Blood Theme, National Institute for Health Research Oxford Biomedical Centre, Oxford, United Kingdom
| | - Adam J de Smith
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA
| |
Collapse
|
109
|
Bloom M, Maciaszek JL, Clark ME, Pui CH, Nichols KE. Recent advances in genetic predisposition to pediatric acute lymphoblastic leukemia. Expert Rev Hematol 2020; 13:55-70. [PMID: 31657974 PMCID: PMC10576863 DOI: 10.1080/17474086.2020.1685866] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
Introduction: Historically, the majority of childhood cancers, including acute lymphoblastic leukemia (ALL), were not thought to have a hereditary basis. However, recent germline genomic studies have revealed that at least 5 - 10% of children with cancer (and approximately 3 - 4% of children with ALL) develop the disease due to an underlying genetic predisposition.Areas covered: This review discusses several recently identified ALL predisposing conditions and provides updates on other more well-established syndromes. It also covers topics related to the evaluation and management of children and family members at increased ALL risk.Expert opinion: Germline predisposition is gaining recognition as an important risk factor underlying the development of pediatric ALL. The challenge now lies in how best to capitalize on germline genetic information to improve ALL diagnosis, treatment, and perhaps even prevention.
Collapse
Affiliation(s)
- Mackenzie Bloom
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jamie L. Maciaszek
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mary Egan Clark
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
110
|
Movafagh A, Naji P, Sheikhpour M. Gene mutation of childhood B-acute lymphoblastic leukemia: A systematic review. CLINICAL CANCER INVESTIGATION JOURNAL 2020. [DOI: 10.4103/ccij.ccij_48_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
111
|
Bastidas Torres AN, Cats D, Mei H, Fanoni D, Gliozzo J, Corti L, Paulli M, Vermeer MH, Willemze R, Berti E, Tensen CP. Whole-genome analysis uncovers recurrent IKZF1 inactivation and aberrant cell adhesion in blastic plasmacytoid dendritic cell neoplasm. Genes Chromosomes Cancer 2019; 59:295-308. [PMID: 31846142 PMCID: PMC7079160 DOI: 10.1002/gcc.22831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 01/29/2023] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and highly aggressive hematological malignancy with a poorly understood pathobiology and no effective therapeutic options. Despite a few recurrent genetic defects (eg, single nucleotide changes, indels, large chromosomal aberrations) have been identified in BPDCN, none are disease‐specific, and more importantly, none explain its genesis or clinical behavior. In this study, we performed the first high resolution whole‐genome analysis of BPDCN with a special focus on structural genomic alterations by using whole‐genome sequencing and RNA sequencing. Our study, the first to characterize the landscape of genomic rearrangements and copy number alterations of BPDCN at nucleotide‐level resolution, revealed that IKZF1, a gene encoding a transcription factor required for the differentiation of plasmacytoid dendritic cell precursors, is focally inactivated through recurrent structural alterations in this neoplasm. In concordance with the genomic data, transcriptome analysis revealed that conserved IKZF1 target genes display a loss‐of‐IKZF1 expression pattern. Furthermore, up‐regulation of cellular processes responsible for cell‐cell and cell‐ECM interactions, which is a hallmark of IKZF1 deficiency, was prominent in BPDCN. Our findings suggest that IKZF1 inactivation plays a central role in the pathobiology of the disease, and consequently, therapeutic approaches directed at reestablishing the function of this gene might be beneficial for patients.
Collapse
Affiliation(s)
| | - Davy Cats
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniele Fanoni
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Jessica Gliozzo
- Department of Dermatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Corti
- Department of Dermatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Paulli
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rein Willemze
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emilio Berti
- Department of Dermatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cornelis P Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
112
|
Qian M, Zhao X, Devidas M, Yang W, Gocho Y, Smith C, Gastier-Foster JM, Li Y, Xu H, Zhang S, Jeha S, Zhai X, Sanda T, Winter SS, Dunsmore KP, Raetz EA, Carroll WL, Winick NJ, Rabin KR, Zweidler-Mckay PA, Wood B, Pui CH, Evans WE, Hunger SP, Mullighan CG, Relling MV, Loh ML, Yang JJ. Genome-Wide Association Study of Susceptibility Loci for T-Cell Acute Lymphoblastic Leukemia in Children. J Natl Cancer Inst 2019; 111:1350-1357. [PMID: 30938820 PMCID: PMC6910193 DOI: 10.1093/jnci/djz043] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/04/2019] [Accepted: 03/25/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is the most common cancer in children and can arise in B or T lymphoid lineages. Although risk loci have been identified for B-ALL, the inherited basis of T-ALL is mostly unknown, with a particular paucity of genome-wide investigation of susceptibility variants in large patient cohorts. METHODS We performed a genome-wide association study (GWAS) in 1191 children with T-ALL and 12 178 controls, with independent replication using 117 cases and 5518 controls. The associations were tested using an additive logistic regression model. Top risk variants were tested for effects on enhancer activity using luciferase assay. All statistical tests were two sided. RESULTS A novel risk locus in the USP7 gene (rs74010351, odds ratio [OR] = 1.44, 95% confidence interval [CI] = 1.27 to 1.65, P = 4.51 × 10-8) reached genome-wide significance in the discovery cohort, with independent validation (OR = 1.51, 95% CI = 1.03 to 2.22, P = .04). The USP7 risk allele was overrepresented in individuals of African descent, thus contributing to the higher incidence of T-ALL in this race/ethnic group. Genetic changes in USP7 (germline variants or somatic mutations) were observed in 56.4% of T-ALL with TAL1 overexpression, statistically significantly higher than in any other subtypes. Functional analyses suggested this T-ALL risk allele is located in a putative cis-regulatory DNA element with negative effects on USP7 transcription. Finally, comprehensive comparison of 14 susceptibility loci in T- vs B-ALL pointed to distinctive etiology of these leukemias. CONCLUSIONS These findings indicate strong associations between inherited genetic variation and T-ALL susceptibility in children and shed new light on the molecular etiology of ALL, particularly commonalities and differences in the biology of the two major subtypes (B- vs T-ALL).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jun J Yang
- Correspondence to: Jun J. Yang, PhD, Hematologic Malignancies Program, Comprehensive Cancer Center, St. Jude Children’s Research Hospital, 262 Danny Thomas Pl, MS313, Memphis, TN 38105 (e-mail: )
| |
Collapse
|
113
|
Hansen MC, Haferlach T, Nyvold CG. A decade with whole exome sequencing in haematology. Br J Haematol 2019; 188:367-382. [DOI: 10.1111/bjh.16249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Marcus C. Hansen
- Hematology Pathology Research Laboratory Research Unit for Hematology and Research Unit for Pathology Odense University Hospital University of Southern Denmark Odense Denmark
| | | | - Charlotte G. Nyvold
- Hematology Pathology Research Laboratory Research Unit for Hematology and Research Unit for Pathology Odense University Hospital University of Southern Denmark Odense Denmark
| |
Collapse
|
114
|
Gowda C, Song C, Ding Y, Iyer S, Dhanyamraju PK, McGrath M, Bamme Y, Soliman M, Kane S, Payne JL, Dovat S. Cellular signaling and epigenetic regulation of gene expression in leukemia. Adv Biol Regul 2019; 75:100665. [PMID: 31623972 PMCID: PMC7239353 DOI: 10.1016/j.jbior.2019.100665] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
Alterations in normal regulation of gene expression is one of the key features of hematopoietic malignancies. In order to gain insight into the mechanisms that regulate gene expression in these diseases, we dissected the role of the Ikaros protein in leukemia. Ikaros is a DNA-binding, zinc finger protein that functions as a transcriptional regulator and a tumor suppressor in leukemia. The use of ChIP-seq, RNA-seq, and ATAC-seq—coupled with functional experiments—revealed that Ikaros regulates both the global epigenomic landscape and epigenetic signature at promoter regions of its target genes. Casein kinase II (CK2), an oncogenic kinase that is overexpressed in leukemia, directly phosphorylates Ikaros at multiple, evolutionarily-conserved residues. Phosphorylation of Ikaros impairs the protein's ability to regulate both the transcription of its target genes and global epigenetic landscape in leukemia. Treatment of leukemia cells with a specific inhibitor of CK2 restores Ikaros function, resulting in cytotoxicity of leukemia cells. Here, we review the mechanisms through which the CK2-Ikaros signaling axis regulates the global epigenomic landscape and expression of genes that control cellular proliferation in leukemia.
Collapse
Affiliation(s)
- Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Soumya Iyer
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Pavan K Dhanyamraju
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mary McGrath
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yevgeniya Bamme
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mario Soliman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Shriya Kane
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jonathon L Payne
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
115
|
Järviaho T, Bang B, Zachariadis V, Taylan F, Moilanen J, Möttönen M, Smith CIE, Harila-Saari A, Niinimäki R, Nordgren A. Predisposition to childhood acute lymphoblastic leukemia caused by a constitutional translocation disrupting ETV6. Blood Adv 2019; 3:2722-2731. [PMID: 31519648 PMCID: PMC6759729 DOI: 10.1182/bloodadvances.2018028795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/17/2019] [Indexed: 12/31/2022] Open
Abstract
Pathogenic germline variants in ETV6 have been associated with familial predisposition to thrombocytopenia and hematological malignancies, predominantly childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In addition, overrepresentation of a high hyperdiploid subtype and older age at diagnosis have been reported among sporadic BCP-ALL cases with germline variants in ETV6 We studied a family with 2 second-degree relatives who developed childhood high hyperdiploid BCP-ALL at ages 8 and 12 years, respectively. A constitutional balanced reciprocal translocation t(12;14)(p13.2;q23.1) was discovered in both patients by routine karyotyping at diagnosis and, subsequently, in 7 healthy family members who had not experienced hematological malignancies. No carriers had thrombocytopenia. Whole-genome sequencing confirmed the translocation, resulting in 2 actively transcribed but nonfunctional fusion genes, causing heterozygous loss and consequently monoallelic expression of ETV6 Whole-genome sequencing analysis of the affected female subjects' leukemia excluded additional somatic aberrations in ETV6 and RTN1 as well as shared somatic variants in other genes. Expression studies, performed to confirm decreased expression of ETV6, were not conclusive. We suggest that germline aberrations resulting in monoallelic expression of ETV6 contribute to leukemia susceptibility, whereas more severe functional deficiency of ETV6 is required for developing THC5. To our knowledge, this report is the first of a constitutional translocation disrupting ETV6 causing predisposition to childhood ALL.
Collapse
Affiliation(s)
- Tekla Järviaho
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Benedicte Bang
- Department of Molecular Medicine and Surgery, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jukka Moilanen
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Clinical Genetics and
| | - Merja Möttönen
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - C I Edvard Smith
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and
| | - Arja Harila-Saari
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Riitta Niinimäki
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
116
|
Sud A, Chattopadhyay S, Thomsen H, Sundquist K, Sundquist J, Houlston RS, Hemminki K. Analysis of 153 115 patients with hematological malignancies refines the spectrum of familial risk. Blood 2019; 134:960-969. [PMID: 31395603 PMCID: PMC6789511 DOI: 10.1182/blood.2019001362] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/26/2019] [Indexed: 02/08/2023] Open
Abstract
Estimating familial cancer risks is clinically important in being able to discriminate between individuals in the population at differing risk for malignancy. To gain insight into the familial risk for the different hematological malignancies and their possible inter-relationship, we analyzed data on more than 16 million individuals from the Swedish Family-Cancer Database. After identifying 153 115 patients diagnosed with a primary hematological malignancy, we quantified familial relative risks (FRRs) by calculating standardized incident ratios (SIRs) in 391 131 of their first-degree relatives. The majority of hematological malignancies showed increased FRRs for the same tumor type, with the highest FRRs being observed for mixed cellularity Hodgkin lymphoma (SIR, 16.7), lymphoplasmacytic lymphoma (SIR, 15.8), and mantle cell lymphoma (SIR, 13.3). There was evidence for pleiotropic relationships; notably, chronic lymphocytic leukemia was associated with an elevated familial risk for other B-cell tumors and myeloproliferative neoplasms. Collectively, these data provide evidence for shared etiological factors for many hematological malignancies and provide information for identifying individuals at increased risk, as well as informing future gene discovery initiatives.
Collapse
Affiliation(s)
- Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, Germany
| | - Subhayan Chattopadhyay
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, Germany
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
- Center for Community-based Healthcare Research and Education, Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan; and
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
- Center for Community-based Healthcare Research and Education, Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan; and
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| |
Collapse
|
117
|
Edmonson MN, Patel AN, Hedges DJ, Wang Z, Rampersaud E, Kesserwan CA, Zhou X, Liu Y, Newman S, Rusch MC, McLeod CL, Wilkinson MR, Rice SV, Soussi T, Taylor JP, Benatar M, Becksfort JB, Nichols KE, Robison LL, Downing JR, Zhang J. Pediatric Cancer Variant Pathogenicity Information Exchange (PeCanPIE): a cloud-based platform for curating and classifying germline variants. Genome Res 2019; 29:1555-1565. [PMID: 31439692 PMCID: PMC6724669 DOI: 10.1101/gr.250357.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/23/2019] [Indexed: 01/06/2023]
Abstract
Variant interpretation in the era of massively parallel sequencing is challenging. Although many resources and guidelines are available to assist with this task, few integrated end-to-end tools exist. Here, we present the Pediatric Cancer Variant Pathogenicity Information Exchange (PeCanPIE), a web- and cloud-based platform for annotation, identification, and classification of variations in known or putative disease genes. Starting from a set of variants in variant call format (VCF), variants are annotated, ranked by putative pathogenicity, and presented for formal classification using a decision-support interface based on published guidelines from the American College of Medical Genetics and Genomics (ACMG). The system can accept files containing millions of variants and handle single-nucleotide variants (SNVs), simple insertions/deletions (indels), multiple-nucleotide variants (MNVs), and complex substitutions. PeCanPIE has been applied to classify variant pathogenicity in cancer predisposition genes in two large-scale investigations involving >4000 pediatric cancer patients and serves as a repository for the expert-reviewed results. PeCanPIE was originally developed for pediatric cancer but can be easily extended for use for nonpediatric cancers and noncancer genetic diseases. Although PeCanPIE's web-based interface was designed to be accessible to non-bioinformaticians, its back-end pipelines may also be run independently on the cloud, facilitating direct integration and broader adoption. PeCanPIE is publicly available and free for research use.
Collapse
Affiliation(s)
- Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Aman N Patel
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Dale J Hedges
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Evadnie Rampersaud
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Chimene A Kesserwan
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Michael C Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Clay L McLeod
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Mark R Wilkinson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Stephen V Rice
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Thierry Soussi
- Sorbonne Université, UPMC Univ Paris 06, F-75005 Paris, France
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, 171 64 Stockholm, Sweden
- INSERM, U1138, Équipe 11, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - J Paul Taylor
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, Florida 33136, USA
| | - Jared B Becksfort
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
118
|
Abstract
Developments over the past five years have significantly advanced our ability to use genome-scale analyses—including high-density genotyping, transcriptome sequencing, exome sequencing, and genome sequencing—to identify the genetic basis of childhood cancer. This article reviews several key results from an expanding number of genomic studies of pediatric cancer: ( a) Histopathologic subtypes of cancers can be associated with a high incidence of germline predisposition, ( b) neurodevelopmental disorders or highly penetrant cancer predisposition syndromes can result from specific patterns of variation in genes encoding the SMARC family of chromatin remodelers, ( c) genome-wide association studies with relatively small pediatric cancer cohorts have successfully identified single-nucleotide polymorphisms with large effect sizes and provided insight into population differences in cancer risk, and ( d) multiple exome or genome analyses of unselected childhood cancer cohorts have yielded a 7–10% incidence of pathogenic variants in cancer predisposition genes. This work supports the increasing use of genomic sequencing in the care of pediatric cancer patients and at-risk family members.
Collapse
Affiliation(s)
- Sharon E. Plon
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Philip J. Lupo
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
119
|
Di Paola J, Porter CC. ETV6-related thrombocytopenia and leukemia predisposition. Blood 2019; 134:663-667. [PMID: 31248877 PMCID: PMC6706811 DOI: 10.1182/blood.2019852418] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022] Open
Abstract
Germ line mutations in ETV6 are responsible for a familial thrombocytopenia and leukemia predisposition syndrome. Thrombocytopenia is almost completely penetrant and is usually mild. Leukemia is reported in ∼30% of carriers and is most often B-cell acute lymphoblastic leukemia. The mechanisms by which ETV6 dysfunction promotes thrombocytopenia and leukemia remain unclear. Care for individuals with ETV6-related thrombocytopenia and leukemia predisposition includes genetic counseling, treatment or prevention of excessive bleeding and surveillance for the development of hematologic malignancy.
Collapse
Affiliation(s)
- Jorge Di Paola
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO; and
| | | |
Collapse
|
120
|
Abstract
Tackling the topic of genetic predisposition to childhood cancer requires close co-operation between pathologists, pediatric oncologists, and human geneticists. It is not just about the precise diagnosis and the most effective treatment of the cancer, but also to prevent further cancerous diseases for those affected and also their family members. On the basis of examples such as Li-Fraumeni syndrome, constitutional mismatch repair deficiency (CMMRD), medullo- and neuroblastoma, as well as hematological neoplasias, we will discuss the criteria for tumor predisposition genetic syndromes, the relationship between somatic and germline variants, and the immediate clinical consequences. In some cases, the diagnosis of a genetic tumor predisposition syndrome has immediate consequences for the treatment, e. g. to avoid radiotherapy for Li-Fraumeni syndrome, which would otherwise significantly increase the probability of secondary, independent tumors. Predictive diagnostics can be offered to identify the family members who carry the pathogenic variant. Because of their increased tumor risk, they should be integrated into cancer surveillance programs. Evidence-based data show that this significantly improves overall survival.
Collapse
|
121
|
Abstract
OBJECTIVES The 2017 Workshop of the Society for Hematopathology/European Association for Haematopathology aimed to review clinical cases with germline predisposition to hematolymphoid neoplasms. METHODS The Workshop Panel reviewed 51 cases with germline mutations and rendered consensus diagnoses. Of these, six cases were presented at the meeting by the submitting pathologists. RESULTS The cases submitted to the session covering germline predisposition included 16 cases with germline GATA2 mutations, 10 cases with germline RUNX1 mutations, two cases with germline CEBPA mutations, two germline TP53 mutations, and one case of germline DDX41 mutation. The most common diagnoses were acute myeloid leukemia (15 cases) and myelodysplastic syndrome (MDS, 14 cases). CONCLUSIONS The majority of the submitted neoplasms occurring in patients with germline predisposition were myeloid neoplasms with germline mutations in GATA2 and RUNX1. The presence of a germline predisposition mutation is not sufficient for a diagnosis of a neoplasm until the appearance of standard diagnostic features of a hematolymphoid malignancy manifest: in general, the diagnostic criteria for neoplasms associated with germline predisposition disorders are the same as those for sporadic cases.
Collapse
Affiliation(s)
- Olga K Weinberg
- Department of Pathology, Boston Children’s Hospital, Boston, MA
| | - Frank Kuo
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
- University of California Los Angeles, Los Angeles
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
122
|
Raboso-Gallego J, Casado-García A, Isidro-Hernández M, Vicente-Dueñas C. Epigenetic Priming in Childhood Acute Lymphoblastic Leukemia. Front Cell Dev Biol 2019; 7:137. [PMID: 31380372 PMCID: PMC6652134 DOI: 10.3389/fcell.2019.00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/05/2019] [Indexed: 01/28/2023] Open
Abstract
Leukemogenesis is considered to be a process by which a normal cell acquires new but aberrant identity in order to disseminate a malignant clonal population. Under this setting, the phenotype of the leukemic cells is identical to the leukemia-initiating cell in which the genetic insult is taking place. Thus, with some exceptions, B-cell and T-cell childhood leukemias are supposed to arise from B- or T-committed cells. In contrast, several recent studies have revealed that genetic alterations may act in a “hit-and-run” way in the cell-of-origin by imposing the tumor cell identity giving rise to either B-cell or T-cell leukemias. This novel mechanism of cell transformation is mediated by an epigenetic priming mechanism that is established by the initial genetic lesion. This initial hit might be unnecessary for the subsequent tumor evolution and conservation, being the epigenetic priming the engine for the tumor evolution.
Collapse
Affiliation(s)
- Javier Raboso-Gallego
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Ana Casado-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Marta Isidro-Hernández
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | |
Collapse
|
123
|
Genetic defects in hematopoietic transcription factors and predisposition to acute lymphoblastic leukemia. Blood 2019; 134:793-797. [PMID: 31311817 DOI: 10.1182/blood.2018852400] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/10/2019] [Indexed: 01/01/2023] Open
Abstract
Recent genome-wide studies have revealed a plethora of germline variants that significantly influence the susceptibility to acute lymphoblastic leukemia (ALL), thus providing compelling evidence for genetic inheritance of this blood cancer. In particular, hematopoietic transcription factors (eg, ETV6, PAX5, IKZF1) are most frequently implicated in familial ALL, and germline variants in these genes confer strong predisposition (albeit with incomplete penetrance). Studies of germline risk factors for ALL provide unique insights into the molecular etiology of this leukemia.
Collapse
|
124
|
Abstract
Advances in genomic research and risk-directed therapy have led to improvements in the long-term survival and quality of life outcomes of patients with childhood acute lymphoblastic leukaemia (ALL). The application of next-generation sequencing technologies, especially transcriptome sequencing, has resulted in the identification of novel molecular subtypes of ALL with prognostic and therapeutic implications, as well as cooperative mutations that account for much of the heterogeneity in clinical responses observed among patients with specific ALL subtypes. In addition, germline genetic variants have been shown to influence the risk of developing ALL and/or the responses of non-malignant and leukaemia cells to therapy; shared pathways for drug activation and metabolism are implicated in treatment-related toxicity and drug sensitivity or resistance, depending on whether the genetic changes are germline, somatic or both. Indeed, although once considered a non-hereditary disease, genomic investigations of familial and sporadic ALL have revealed a growing number of genetic alterations or conditions that predispose individuals to the development of ALL and treatment-related second cancers. The identification of these genetic alterations holds the potential to direct genetic counselling, testing and possibly monitoring for the early detection of ALL and other cancers. Herein, we review these advances in our understanding of the genomic landscape of childhood ALL and their clinical implications.
Collapse
|
125
|
Kellner ES, Krupski C, Kuehn HS, Rosenzweig SD, Yoshida N, Kojima S, Boutboul D, Latour S, Barlogis V, Galambrun C, Stray-Pedersen A, Erichsen HC, Marsh RA. Allogeneic hematopoietic stem cell transplant outcomes for patients with dominant negative IKZF1/IKAROS mutations. J Allergy Clin Immunol 2019; 144:339-342. [DOI: 10.1016/j.jaci.2019.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 01/14/2023]
|
126
|
Milan T, Canaj H, Villeneuve C, Ghosh A, Barabé F, Cellot S, Wilhelm BT. Pediatric leukemia: Moving toward more accurate models. Exp Hematol 2019; 74:1-12. [PMID: 31154068 DOI: 10.1016/j.exphem.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
Leukemia is a complex genetic disease caused by errors in differentiation, growth, and apoptosis of hematopoietic cells in either lymphoid or myeloid lineages. Large-scale genomic characterization of thousands of leukemia patients has produced a tremendous amount of data that have enabled a better understanding of the differences between adult and pediatric patients. For instance, although phenotypically similar, pediatric and adult myeloid leukemia patients differ in their mutational profiles, typically involving either chromosomal translocations or recurrent single-base-pair mutations, respectively. To elucidate the molecular mechanisms underlying the biology of this cancer, continual efforts have been made to develop more contextually and biologically relevant experimental models. Leukemic cell lines, for example, provide an inexpensive and tractable model but often fail to recapitulate critical aspects of tumor biology. Likewise, murine leukemia models of leukemia have been highly informative but also do not entirely reproduce the human disease. More recent advances in the development of patient-derived xenografts (PDXs) or human models of leukemias are poised to provide a more comprehensive, and biologically relevant, approach to directly assess the impact of the in vivo environment on human samples. In this review, the advantages and limitations of the various current models used to functionally define the genetic requirements of leukemogenesis are discussed.
Collapse
MESH Headings
- Adolescent
- Animals
- Cell Differentiation
- Child
- Child, Preschool
- Female
- Heterografts
- Humans
- Infant
- Infant, Newborn
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/therapy
- Male
- Mice
- Neoplasm Transplantation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Translocation, Genetic
Collapse
Affiliation(s)
- Thomas Milan
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Hera Canaj
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Chloe Villeneuve
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Aditi Ghosh
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Frédéric Barabé
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec, Quebec City, QC, Canada; CHU de Québec Hôpital Enfant-Jésus, Quebec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sonia Cellot
- Division of Hematology, Department of Pediatrics, Ste-Justine Hospital, Montréal, Université de Montréal, Montréal, QC, Canada
| | - Brian T Wilhelm
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
127
|
Williams LA, Yang JJ, Hirsch BA, Marcotte EL, Spector LG. Is There Etiologic Heterogeneity between Subtypes of Childhood Acute Lymphoblastic Leukemia? A Review of Variation in Risk by Subtype. Cancer Epidemiol Biomarkers Prev 2019; 28:846-856. [PMID: 30770347 PMCID: PMC6500468 DOI: 10.1158/1055-9965.epi-18-0801] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/19/2018] [Accepted: 02/05/2019] [Indexed: 02/07/2023] Open
Abstract
Although substantial advances in the identification of cytogenomic subtypes of childhood acute lymphoblastic leukemia (ALL) have been made in recent decades, epidemiologic research characterizing the etiologic heterogeneity of ALL by subtype has not kept pace. The purpose of this review is to summarize the current literature concerning subtype-specific epidemiologic risk factor associations with ALL subtype defined by immunophenotype (e.g., B-cell vs. T-cell) and cytogenomics (including gross chromosomal events characterized by recurring numerical and structural abnormalities, along with cryptic balanced rearrangements, and focal gene deletions). In case-control analyses investigating nongenetic risk factors, home paint exposure is associated with hyperdiploid, MLL-rearranged, and ETV6-RUNX1 subtypes, yet there are few differences in risk factor associations between T- and B-ALL. Although the association between maternal smoking and ALL overall has been null, maternal smoking is associated with an increasing number of gene deletions among cases. GWAS-identified variants in ARID5B have been the most extensively studied and are strongly associated with hyperdiploid B-ALL. GATA3 single nucleotide variant rs3824662 shows a strong association with Ph-like ALL (OR = 3.14). However, there have been relatively few population-based studies of adequate sample size to uncover risk factors that may define etiologic heterogeneity between and within the currently defined cytogenomic ALL subtypes.
Collapse
Affiliation(s)
- Lindsay A Williams
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Betsy A Hirsch
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Erin L Marcotte
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Logan G Spector
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
128
|
Sriaroon P, Chang Y, Ujhazi B, Csomos K, Joshi HR, Zhou Q, Close DW, Walter JE, Kumánovics A. Familial Immune Thrombocytopenia Associated With a Novel Variant in IKZF1. Front Pediatr 2019; 7:139. [PMID: 31069201 PMCID: PMC6491668 DOI: 10.3389/fped.2019.00139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/25/2019] [Indexed: 01/19/2023] Open
Abstract
We report a novel variant in IKZF1 associated with IKAROS haploinsufficiency in a patient with familial immune thrombocytopenia (ITP). IKAROS, encoded by the IKZF1 gene, is a hematopoietic zinc-finger transcription factor that can directly bind to DNA. We show that the identified IKZF1 variant (p.His195Arg) alters a completely conserved histidine residue required for the folding of the third zinc-finger of IKAROS protein, leading to a loss of characteristic immunofluorescence nuclear staining pattern. In our case, genetic testing was essential for the diagnosis of IKAROS haploinsufficiency, of which known presentations include infections, aberrant hematopoiesis, leukemia, and age-related decrease in humoral immunity. Our family study underscores that, after infections, ITP is the second most common clinical manifestation of IKAROS haploinsufficiency.
Collapse
Affiliation(s)
- Panida Sriaroon
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, FL, United States
| | - Yenhui Chang
- Pathology and Laboratory Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Boglarka Ujhazi
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, FL, United States
| | - Krisztian Csomos
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, FL, United States
| | - Hemant R Joshi
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Qin Zhou
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Devin W Close
- ARUP Laboratories, Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Jolan E Walter
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, FL, United States
- Division of Allergy/Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Attila Kumánovics
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
- ARUP Laboratories, Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
129
|
JAK2 p.G571S in B-cell precursor acute lymphoblastic leukemia: a synergizing germline susceptibility. Leukemia 2019; 33:2331-2335. [PMID: 30967616 PMCID: PMC6756027 DOI: 10.1038/s41375-019-0459-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/04/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023]
|
130
|
Rampersaud E, Ziegler DS, Iacobucci I, Payne-Turner D, Churchman ML, Schrader KA, Joseph V, Offit K, Tucker K, Sutton R, Warby M, Chenevix-Trench G, Huntsman DG, Tsoli M, Mead RS, Qu C, Leventaki V, Wu G, Mullighan CG. Germline deletion of ETV6 in familial acute lymphoblastic leukemia. Blood Adv 2019; 3:1039-1046. [PMID: 30940639 PMCID: PMC6457220 DOI: 10.1182/bloodadvances.2018030635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/23/2019] [Indexed: 01/24/2023] Open
Abstract
Recent studies have identified germline mutations in TP53, PAX5, ETV6, and IKZF1 in kindreds with familial acute lymphoblastic leukemia (ALL), but the genetic basis of ALL in many kindreds is unknown despite mutational analysis of the exome. Here, we report a germline deletion of ETV6 identified by linkage and structural variant analysis of whole-genome sequencing data segregating in a kindred with thrombocytopenia, B-progenitor acute lymphoblastic leukemia, and diffuse large B-cell lymphoma. The 75-nt deletion removed the ETV6 exon 7 splice acceptor, resulting in exon skipping and protein truncation. The ETV6 deletion was also identified by optimal structural variant analysis of exome sequencing data. These findings identify a new mechanism of germline predisposition in ALL and implicate ETV6 germline variation in predisposition to lymphoma. Importantly, these data highlight the importance of germline structural variant analysis in the search for germline variants predisposing to familial leukemia.
Collapse
Affiliation(s)
- Evadnie Rampersaud
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
- Childrens Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis TN
| | | | | | - Kasmintan A Schrader
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Vijai Joseph
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, New York, NY
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Katherine Tucker
- Hereditary Cancer Centre, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Rosemary Sutton
- Childrens Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Meera Warby
- Hereditary Cancer Centre, Prince of Wales Hospital, Sydney, NSW, Australia
- Prince of Wales Clinical School University of NSW Australia, Sydney, NSW, Australia
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David G Huntsman
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; and
| | - Maria Tsoli
- Childrens Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - R Scott Mead
- South Eastern Area Laboratory Service, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis TN
| | - Vasiliki Leventaki
- Department of Pathology, St. Jude Children's Research Hospital, Memphis TN
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
131
|
Haas OA. Primary Immunodeficiency and Cancer Predisposition Revisited: Embedding Two Closely Related Concepts Into an Integrative Conceptual Framework. Front Immunol 2019; 9:3136. [PMID: 30809233 PMCID: PMC6379258 DOI: 10.3389/fimmu.2018.03136] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Common understanding suggests that the normal function of a "healthy" immune system safe-guards and protects against the development of malignancies, whereas a genetically impaired one might increase the likelihood of their manifestation. This view is primarily based on and apparently supported by an increased incidence of such diseases in patients with specific forms of immunodeficiencies that are caused by high penetrant gene defects. As I will review and discuss herein, such constellations merely represent the tip of an iceberg. The overall situation is by far more varied and complex, especially if one takes into account the growing difficulties to define what actually constitutes an immunodeficiency and what defines a cancer predisposition. The enormous advances in genome sequencing, in bioinformatic analyses and in the functional in vitro and in vivo assessment of novel findings together with the availability of large databases provide us with a wealth of information that steadily increases the number of sequence variants that concur with clinically more or less recognizable immunological problems and their consequences. Since many of the newly identified hard-core defects are exceedingly rare, their tumor predisposing effect is difficult to ascertain. The analyses of large data sets, on the other hand, continuously supply us with low penetrant variants that, at least in statistical terms, are clearly tumor predisposing, although their specific relevance for the respective carriers still needs to be carefully assessed on an individual basis. Finally, defects and variants that affect the same gene families and pathways in both a constitutional and somatic setting underscore the fact that immunodeficiencies and cancer predisposition can be viewed as two closely related errors of development. Depending on the particular genetic and/or environmental context as well as the respective stage of development, the same changes can have either a neutral, predisposing and, in some instances, even a protective effect. To understand the interaction between the immune system, be it "normal" or "deficient" and tumor predisposition and development on a systemic level, one therefore needs to focus on the structure and dynamic functional organization of the entire immune system rather than on its isolated individual components alone.
Collapse
Affiliation(s)
- Oskar A. Haas
- Department of Clinical Genetics, Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
132
|
Chen Q, Shi Y, Chen Y, Ji T, Li Y, Yu L. Multiple functions of Ikaros in hematological malignancies, solid tumor and autoimmune diseases. Gene 2019; 684:47-52. [DOI: 10.1016/j.gene.2018.10.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
|
133
|
Churpek JE, Bresnick EH. Transcription factor mutations as a cause of familial myeloid neoplasms. J Clin Invest 2019; 129:476-488. [PMID: 30707109 DOI: 10.1172/jci120854] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The initiation and evolution of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are driven by genomic events that disrupt multiple genes controlling hematopoiesis. Human genetic studies have discovered germline mutations in single genes that instigate familial MDS/AML. The best understood of these genes encode transcription factors, such as GATA-2, RUNX1, ETV6, and C/EBPα, which establish and maintain genetic networks governing the genesis and function of blood stem and progenitor cells. Many questions remain unanswered regarding how genes and circuits within these networks function in physiology and disease and whether network integrity is exquisitely sensitive to or efficiently buffered from perturbations. In familial MDS/AML, mutations change the coding sequence of a gene to generate a mutant protein with altered activity or introduce frameshifts or stop codons or disrupt regulatory elements to alter protein expression. Each mutation has the potential to exert quantitatively and qualitatively distinct influences on networks. Consistent with this mechanistic diversity, disease onset is unpredictable and phenotypic variability can be considerable. Efforts to elucidate mechanisms and forge prognostic and therapeutic strategies must therefore contend with a spectrum of patient-specific leukemogenic scenarios. Here we illustrate mechanistic advances in our understanding of familial MDS/AML syndromes caused by germline mutations of hematopoietic transcription factors.
Collapse
Affiliation(s)
- Jane E Churpek
- Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
134
|
Heikamp EB, Pui CH. Next-Generation Evaluation and Treatment of Pediatric Acute Lymphoblastic Leukemia. J Pediatr 2018; 203:14-24.e2. [PMID: 30213460 PMCID: PMC6261438 DOI: 10.1016/j.jpeds.2018.07.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/25/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Emily B Heikamp
- Department of Pediatrics, Section of Pediatric Hematology-Oncology, Baylor College of Medicine, Houston, TX; Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Houston, TX.
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN; Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
135
|
Rotz SJ, Kodish E. Ethical conundrums in pediatric genomics. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:301-306. [PMID: 30504324 PMCID: PMC6245967 DOI: 10.1182/asheducation-2018.1.301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent genomic discoveries have improved our understanding of many hematologic diseases and led to novel therapeutic options for many patients. The rapid decrease in the cost of genomic testing has enabled widespread use of clinical genomic testing. However, these advances are accompanied by concomitant challenging ethical concerns. In pediatrics, issues of informed consent for genomic testing, assent, and permission vary significantly by patient age and comprehension. Broader testing strategies, such as whole-exome or whole-genome sequencing, are more likely to yield incidental findings unrelated to the reason for the initial test, and plans to deal with these results when they occur are increasingly important. The lines of clinical care and research are becoming more blurry in the era of precision medicine in which approaches to individual genetic mutations (as opposed to disease phenotypes) occur with increased frequency. Finally, because justice is a fundamental ethical consideration, access to genomic testing and a rigorous approach to utility are critical to individual patients and the field of hematology. In this review, we use 3 cases of genomic testing in pediatric hematology to illustrate core ethical concerns and explore potential solutions.
Collapse
Affiliation(s)
- Seth J Rotz
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Cleveland Clinic Children's Hospital, Cleveland, OH
| | - Eric Kodish
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Cleveland Clinic Children's Hospital, Cleveland, OH
| |
Collapse
|
136
|
Roberts KG. Genetics and prognosis of ALL in children vs adults. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:137-145. [PMID: 30504302 PMCID: PMC6245970 DOI: 10.1182/asheducation-2018.1.137] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is characterized by genetic alterations that block differentiation, promote proliferation of lymphoid precursor cells, and are important for risk stratification. Although ALL is less common in adolescents and young adults (AYAs) and adults than children, survival rates are inferior, and long-term prognosis for adults is poor. Thus, ALL remains a challenging disease to treat in the AYA and adult populations. A major contributing factor that influences prognosis in this population is the reduced prevalence of genetic subtypes associated with favorable outcome and a concomitant increase in subtypes associated with poor outcome. Recent advances in genomic profiling across the age spectrum continue to enhance our knowledge of the differences in disease biology between children and adults and are providing important insights into novel therapeutic targets. Philadelphia chromosome-like (Ph-like) ALL is one such subtype characterized by alterations that deregulate cytokine receptor or tyrosine kinase signaling and are amenable to inhibition with approved tyrosine kinase inhibitors. One of the greatest challenges now remaining is determining how to implement this breadth of genomic information into rapid and accurate diagnostic testing to facilitate the development of novel clinical trials that improve the outcome of AYAs and adults with ALL.
Collapse
Affiliation(s)
- Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
137
|
Rau RE, Loh ML. Using genomics to define pediatric blood cancers and inform practice. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:286-300. [PMID: 30504323 PMCID: PMC6245969 DOI: 10.1182/asheducation-2018.1.286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Over the past decade, there has been exponential growth in the number of genome sequencing studies performed across a spectrum of human diseases as sequencing technologies and analytic pipelines improve and costs decline. Pediatric hematologic malignancies have been no exception, with a multitude of next generation sequencing studies conducted on large cohorts of patients in recent years. These efforts have defined the mutational landscape of a number of leukemia subtypes and also identified germ-line genetic variants biologically and clinically relevant to pediatric leukemias. The findings have deepened our understanding of the biology of many childhood leukemias. Additionally, a number of recent discoveries may positively impact the care of pediatric leukemia patients through refinement of risk stratification, identification of targetable genetic lesions, and determination of risk for therapy-related toxicity. Although incredibly promising, many questions remain, including the biologic significance of identified genetic lesions and their clinical implications in the context of contemporary therapy. Importantly, the identification of germ-line mutations and variants with possible implications for members of the patient's family raises challenging ethical questions. Here, we review emerging genomic data germane to pediatric hematologic malignancies.
Collapse
Affiliation(s)
- Rachel E. Rau
- Department of Pediatrics, Baylor College of Medicine, Houston, TX; and
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children’s Hospital and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| |
Collapse
|
138
|
Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases. Proc Natl Acad Sci U S A 2018; 115:E11711-E11720. [PMID: 30487223 DOI: 10.1073/pnas.1814397115] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Most B cell precursor acute lymphoblastic leukemia (BCP ALL) can be classified into known major genetic subtypes, while a substantial proportion of BCP ALL remains poorly characterized in relation to its underlying genomic abnormalities. We therefore initiated a large-scale international study to reanalyze and delineate the transcriptome landscape of 1,223 BCP ALL cases using RNA sequencing. Fourteen BCP ALL gene expression subgroups (G1 to G14) were identified. Apart from extending eight previously described subgroups (G1 to G8 associated with MEF2D fusions, TCF3-PBX1 fusions, ETV6-RUNX1-positive/ETV6-RUNX1-like, DUX4 fusions, ZNF384 fusions, BCR-ABL1/Ph-like, high hyperdiploidy, and KMT2A fusions), we defined six additional gene expression subgroups: G9 was associated with both PAX5 and CRLF2 fusions; G10 and G11 with mutations in PAX5 (p.P80R) and IKZF1 (p.N159Y), respectively; G12 with IGH-CEBPE fusion and mutations in ZEB2 (p.H1038R); and G13 and G14 with TCF3/4-HLF and NUTM1 fusions, respectively. In pediatric BCP ALL, subgroups G2 to G5 and G7 (51 to 65/67 chromosomes) were associated with low-risk, G7 (with ≤50 chromosomes) and G9 were intermediate-risk, whereas G1, G6, and G8 were defined as high-risk subgroups. In adult BCP ALL, G1, G2, G6, and G8 were associated with high risk, while G4, G5, and G7 had relatively favorable outcomes. This large-scale transcriptome sequence analysis of BCP ALL revealed distinct molecular subgroups that reflect discrete pathways of BCP ALL, informing disease classification and prognostic stratification. The combined results strongly advocate that RNA sequencing be introduced into the clinical diagnostic workup of BCP ALL.
Collapse
|
139
|
Derpoorter C, Bordon V, Laureys G, Haerynck F, Lammens T. Genes at the Crossroad of Primary Immunodeficiencies and Cancer. Front Immunol 2018; 9:2544. [PMID: 30443258 PMCID: PMC6221943 DOI: 10.3389/fimmu.2018.02544] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are a heterogeneous group of inherited disorders affecting one or multiple components of the innate and/or adaptive immune system. Currently, over 300 underlying genetic defects have been discovered. The most common clinical findings in patients with PIDs are infections, autoimmunity, and malignancies. Despite international efforts, the cancer risk associated with PIDs, given the heterogeneous character of this group of diseases, is difficult to estimate. The diverse underlying mechanisms of cancer in PID add another layer of complexity. Treatment of cancer within a context of PID is complicated by serious toxicities and long-term effects, including second malignancies. This review will focus on the little-known crossroad between PID and cancer genes and the value thereof for directing future research on our understanding of cancer in PID and for the identification of early cancer biomarkers in PID patients.
Collapse
Affiliation(s)
- Charlotte Derpoorter
- Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Victoria Bordon
- Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Geneviève Laureys
- Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Center for Primary Immune Deficiency Ghent, Ghent University Hospital, Ghent, Belgium.,PID Research Laboratory, Ghent University, Ghent, Belgium
| | - Tim Lammens
- Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
140
|
Järviaho T, Zachariadis V, Tesi B, Chiang S, Bryceson YT, Möttönen M, Niinimäki R, Bang B, Rahikkala E, Taylan F, Uusimaa J, Harila-Saari A, Nordgren A. Microdeletion of 7p12.1p13, including IKZF1, causes intellectual impairment, overgrowth, and susceptibility to leukaemia. Br J Haematol 2018; 185:354-357. [PMID: 30004112 DOI: 10.1111/bjh.15494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tekla Järviaho
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Samuel Chiang
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Merja Möttönen
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Riitta Niinimäki
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Benedicte Bang
- Department of Molecular Medicine and Surgery, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Rahikkala
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Arja Harila-Saari
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
141
|
Abstract
IKZF1 plays an essential role in lymphopoiesis, and somatic IKZF1 variants in acute lymphoblastic leukemia (ALL) are associated with poor prognosis. In this issue of Cancer Cell, Churchman et al. add to the list of leukemia predisposition genes with the identification and characterization of germline IKZF1 variants in childhood ALL.
Collapse
Affiliation(s)
- Junne Kamihara
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Akiko Shimamura
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|