101
|
Razifard H, Ramos A, Della Valle AL, Bodary C, Goetz E, Manser EJ, Li X, Zhang L, Visa S, Tieman D, van der Knaap E, Caicedo AL. Genomic Evidence for Complex Domestication History of the Cultivated Tomato in Latin America. Mol Biol Evol 2021; 37:1118-1132. [PMID: 31912142 PMCID: PMC7086179 DOI: 10.1093/molbev/msz297] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The process of plant domestication is often protracted, involving underexplored intermediate stages with important implications for the evolutionary trajectories of domestication traits. Previously, tomato domestication history has been thought to involve two major transitions: one from wild Solanum pimpinellifolium L. to a semidomesticated intermediate, S. lycopersicum L. var. cerasiforme (SLC) in South America, and a second transition from SLC to fully domesticated S. lycopersicum L. var. lycopersicum in Mesoamerica. In this study, we employ population genomic methods to reconstruct tomato domestication history, focusing on the evolutionary changes occurring in the intermediate stages. Our results suggest that the origin of SLC may predate domestication, and that many traits considered typical of cultivated tomatoes arose in South American SLC, but were lost or diminished once these partially domesticated forms spread northward. These traits were then likely reselected in a convergent fashion in the common cultivated tomato, prior to its expansion around the world. Based on these findings, we reveal complexities in the intermediate stage of tomato domestication and provide insight on trajectories of genes and phenotypes involved in tomato domestication syndrome. Our results also allow us to identify underexplored germplasm that harbors useful alleles for crop improvement.
Collapse
Affiliation(s)
- Hamid Razifard
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA.,Department of Biology, University of Massachusetts Amherst, Amherst, MA
| | - Alexis Ramos
- Department of Horticulture, University of Georgia, Athens, GA
| | | | - Cooper Bodary
- Department of Mathematics and Computer Science, College of Wooster, Wooster, OH
| | - Erika Goetz
- Department of Mathematics and Computer Science, College of Wooster, Wooster, OH
| | | | - Xiang Li
- Department of Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL
| | - Lei Zhang
- Department of Horticulture, University of Georgia, Athens, GA
| | - Sofia Visa
- Department of Mathematics and Computer Science, College of Wooster, Wooster, OH
| | - Denise Tieman
- Department of Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL
| | | | - Ana L Caicedo
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA.,Department of Biology, University of Massachusetts Amherst, Amherst, MA
| |
Collapse
|
102
|
Hendelman A, Zebell S, Rodriguez-Leal D, Dukler N, Robitaille G, Wu X, Kostyun J, Tal L, Wang P, Bartlett ME, Eshed Y, Efroni I, Lippman ZB. Conserved pleiotropy of an ancient plant homeobox gene uncovered by cis-regulatory dissection. Cell 2021; 184:1724-1739.e16. [PMID: 33667348 DOI: 10.1016/j.cell.2021.02.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/03/2021] [Accepted: 02/01/2021] [Indexed: 01/09/2023]
Abstract
Divergence of gene function is a hallmark of evolution, but assessing functional divergence over deep time is not trivial. The few alleles available for cross-species studies often fail to expose the entire functional spectrum of genes, potentially obscuring deeply conserved pleiotropic roles. Here, we explore the functional divergence of WUSCHEL HOMEOBOX9 (WOX9), suggested to have species-specific roles in embryo and inflorescence development. Using a cis-regulatory editing drive system, we generate a comprehensive allelic series in tomato, which revealed hidden pleiotropic roles for WOX9. Analysis of accessible chromatin and conserved cis-regulatory sequences identifies the regions responsible for this pleiotropic activity, the functions of which are conserved in groundcherry, a tomato relative. Mimicking these alleles in Arabidopsis, distantly related to tomato and groundcherry, reveals new inflorescence phenotypes, exposing a deeply conserved pleiotropy. We suggest that targeted cis-regulatory mutations can uncover conserved gene functions and reduce undesirable effects in crop improvement.
Collapse
Affiliation(s)
- Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Sophia Zebell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Noah Dukler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Gina Robitaille
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xuelin Wu
- The Salk Institute for Biological Research, San Diego, CA, USA
| | - Jamie Kostyun
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Lior Tal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Peipei Wang
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, The Hebrew University, Rehovot, Israel
| | | | - Yuval Eshed
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Efroni
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, The Hebrew University, Rehovot, Israel.
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
103
|
Hussin SH, Wang H, Tang S, Zhi H, Tang C, Zhang W, Jia G, Diao X. SiMADS34, an E-class MADS-box transcription factor, regulates inflorescence architecture and grain yield in Setaria italica. PLANT MOLECULAR BIOLOGY 2021; 105:419-434. [PMID: 33231834 DOI: 10.1007/s11103-020-01097-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/13/2020] [Indexed: 05/20/2023]
Abstract
A novel MADS-box member SiMADS34 is essential for regulating inflorescence architecture and grain yield in Setaria italica. MADS-box transcription factors participate in regulating various developmental processes in plants. Inflorescence architecture is one of the most important agronomic traits and is closely associated with grain yield in most staple crops. Here, we isolated a panicle development mutant simads34 from a foxtail millet (Setaria italica (L.) P. Beauv.) EMS mutant library. The mutant showed significantly altered inflorescence architecture and decreased grain yield. Investigation of agronomic traits revealed increased panicle width by 16.8%, primary branch length by 10%, and number of primary branches by 30.9%, but reduced panicle length by 25.2%, and grain weight by 25.5% in simads34 compared with wild-type plants. Genetic analysis of a simads34 × SSR41 F2 population indicated that the simads34 phenotype was controlled by a recessive gene. Map-based cloning and bulked-segregant analysis sequencing demonstrated that a single G-to-A transition in the fifth intron of SiMADS34 in the mutant led to an alternative splicing event and caused an early termination codon in this causal gene. SiMADS34 mRNA was expressed in all of the tissues tested, with high expression levels at the heading and panicle development stages. Subcellular localization analysis showed that simads34 predominantly accumulated in the nucleus. Transcriptome sequencing identified 241 differentially expressed genes related to inflorescence development, cell expansion, cell division, meristem growth and peroxide stress in simads34. Notably, an SPL14-MADS34-RCN pathway was validated through both RNA-seq and qPCR tests, indicating the putative molecular mechanisms regulating inflorescence development by SiMADS34. Our study identified a novel MADS-box member in foxtail millet and provided a useful genetic resource for inflorescence architecture and grain yield research.
Collapse
Affiliation(s)
- Shareif Hammad Hussin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Geneina Research Station, Agricultural Research Corporation (ARC), P.O. Box 126, Wad Madani, Sudan
| | - Hailong Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sha Tang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chanjuan Tang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanqing Jia
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianmin Diao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
104
|
|
105
|
Zhang X, Ma C, Wang X, Wu M, Shao J, Huang L, Yuan L, Fu Z, Li W, Zhang X, Guo Z, Tang J. Global transcriptional profiling between inbred parents and hybrids provides comprehensive insights into ear-length heterosis of maize (Zea mays). BMC PLANT BIOLOGY 2021; 21:118. [PMID: 33637040 PMCID: PMC7908659 DOI: 10.1186/s12870-021-02890-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Maize (Zea mays) ear length, which is an important yield component, exhibits strong heterosis. Understanding the potential molecular mechanisms of ear-length heterosis is critical for efficient yield-related breeding. RESULTS Here, a joint netted pattern, including six parent-hybrid triplets, was designed on the basis of two maize lines harboring long (T121 line) and short (T126 line) ears. Global transcriptional profiling of young ears (containing meristem) was performed. Multiple comparative analyses revealed that 874 differentially expressed genes are mainly responsible for the ear-length variation between T121 and T126 lines. Among them, four key genes, Zm00001d049958, Zm00001d027359, Zm00001d048502 and Zm00001d052138, were identified as being related to meristem development, which corroborated their roles in the superior additive genetic effects on ear length in T121 line. Non-additive expression patterns were used to identify candidate genes related to ear-length heterosis. A non-additively expressed gene (Zm00001d050649) was associated with the timing of meristematic phase transition and was determined to be the homolog of tomato SELF PRUNING, which assists SINGLE FLOWER TRUSS in driving yield-related heterosis, indicating that Zm00001d050649 is a potential contributor to drive heterotic effect on ear length. CONCLUSION Our results suggest that inbred parents provide genetic and heterotic effects on the ear lengths of their corresponding F1 hybrids through two independent pathways. These findings provide comprehensive insights into the transcriptional regulation of ear length and improve the understanding of ear-length heterosis in maize.
Collapse
Affiliation(s)
- Xiangge Zhang
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Chenchen Ma
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Xiaoqing Wang
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Mingbo Wu
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Jingkuan Shao
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Li Huang
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Liang Yuan
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Weihua Li
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Zhanyong Guo
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China.
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China.
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 433200, China.
| |
Collapse
|
106
|
Hsu HF, Chen WH, Shen YH, Hsu WH, Mao WT, Yang CH. Multifunctional evolution of B and AGL6 MADS box genes in orchids. Nat Commun 2021; 12:902. [PMID: 33568671 PMCID: PMC7876132 DOI: 10.1038/s41467-021-21229-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/13/2021] [Indexed: 01/30/2023] Open
Abstract
We previously found that B and AGL6 proteins form L (OAP3-2/OAGL6-2/OPI) and SP (OAP3-1/OAGL6-1/OPI) complexes to determine lip/sepal/petal identities in orchids. Here, we show that the functional L' (OAP3-1/OAGL6-2/OPI) and SP' (OAP3-2/OAGL6-1/OPI) complexes likely exist and AP3/PI/AGL6 genes have acquired additional functions during evolution. We demonstrate that the presumed L' complex changes the structure of the lower lateral sepals and helps the lips fit properly in the center of the flower. In addition, we find that OAP3-1/OAGL6-1/OPI in SP along with presumed SP' complexes regulate anthocyanin accumulation and pigmentation, whereas presumed L' along with OAP3-2/OAGL6-2/OPI in L complexes promotes red spot formation in the perianth. Furthermore, the B functional proteins OAP3-1/OPI and OAGL6-1 in the SP complex could function separately to suppress sepal/petal senescence and promote pedicel abscission, respectively. These findings expand the current knowledge behind the multifunctional evolution of the B and AGL6 genes in plants.
Collapse
Affiliation(s)
- Hsing-Fun Hsu
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Wei-Han Chen
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Yi-Hsuan Shen
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Wei-Han Hsu
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Wan-Ting Mao
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Chang-Hsien Yang
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC ,grid.260542.70000 0004 0532 3749Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| |
Collapse
|
107
|
Cao Y, Diao Q, Chen Y, Jin H, Zhang Y, Zhang H. Development of KASP Markers and Identification of a QTL Underlying Powdery Mildew Resistance in Melon ( Cucumis melo L.) by Bulked Segregant Analysis and RNA-Seq. FRONTIERS IN PLANT SCIENCE 2021; 11:593207. [PMID: 33613580 PMCID: PMC7893098 DOI: 10.3389/fpls.2020.593207] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/28/2020] [Indexed: 05/27/2023]
Abstract
Powdery mildew (PM), caused by Podosphaera xanthii (Px), is one of the most devastating fungal diseases of melon worldwide. The use of resistant cultivars is considered to be the best and most effective approach to control this disease. In this study, an F2 segregating population derived from a cross between a resistant (wm-6) and a susceptible cultivar (12D-1) of melon was used to map major powdery mildew resistance genes using bulked segregant analysis (BSA), in combination with next-generation sequencing (NGS). A novel quantitative trait locus (QTL) named qCmPMR-12 for resistance to PM on chromosome 12 was identified, which ranged from 22.0 Mb to 22.9 Mb. RNA-Seq analysis indicated that the MELO3C002434 gene encoding an ankyrin repeat-containing protein was considered to be the most likely candidate gene that was associated with resistance to PM. Moreover, 15 polymorphic SNPs around the target area were successfully converted to Kompetitive Allele-Specific PCR (KASP) markers (P < 0.0001). The novel QTL and candidate gene identified from this study provide insights into the genetic mechanism of PM resistance in melon, and the tightly linked KASP markers developed in this research can be used for marker-assisted selection (MAS) to improve powdery mildew resistance in melon breeding programs.
Collapse
|
108
|
McGarry RC, Ayre BG. Cotton architecture: examining the roles of SINGLE FLOWER TRUSS and SELF-PRUNING in regulating growth habits of a woody perennial crop. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101968. [PMID: 33418402 DOI: 10.1016/j.pbi.2020.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/09/2020] [Accepted: 10/01/2020] [Indexed: 06/12/2023]
Abstract
By specifying patterns of determinate and indeterminate growth, FLOWERING LOCUS T/SINGLE FLOWER TRUSS (SFT) and TERMINAL FLOWER 1/SELF-PRUNING (SP) regulate plant architecture. Though well characterized in Arabidopsis, the impacts of these genes on the architectures of diverse crops cultivated in different environments, and their potential to enhance crop productivity and management, are less well addressed. Cotton (Gossypium spp.) is naturally a short-day photoperiodic perennial that is now grown primarily as a day-neutral, annual row crop. Different environments and cultivation practices favor specific growth habits to optimize yield, and in cotton, especially in regions that rely heavily on mechanized harvest, the trend has been to more determinate varieties. Identifying and functionally characterizing SFT and SP homologs in cotton uncovered new aspects of how ratios of indeterminate and determinate growth are balanced, and unraveling their genetic networks emphasized how broadly these gene products affect cotton growth habits.
Collapse
Affiliation(s)
- Roisin C McGarry
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA.
| | - Brian G Ayre
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA
| |
Collapse
|
109
|
Capdeville N, Merker L, Schindele P, Puchta H. Sophisticated CRISPR/Cas tools for fine-tuning plant performance. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153332. [PMID: 33383400 DOI: 10.1016/j.jplph.2020.153332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 05/03/2023]
Abstract
Over the last years, the discovery of various natural and the development of a row of engineered CRISPR/Cas nucleases have made almost every site of plant genomes accessible for the induction of specific changes. Newly developed tools open up a wide range of possibilities for the induction of genetic variability, from changing a single bp to Mbps, and thus to fine-tune plant performance. Whereas early approaches focused on targeted mutagenesis, recently developed tools enable the induction of precise and predefined genomic modifications. The use of base editors allows the substitution of single nucleotides, whereas the use of prime editors and gene targeting methods enables the induction of larger sequence modifications from a few bases to several kbp. Recently, through CRISPR/Cas-mediated chromosome engineering, it became possible to induce heritable inversions and translocations in the Mbp range. Thus, a novel way of breaking and fixing genetic linkages has come into reach for breeders. In addition, sequence-specific recruitment of various factors involved in transcriptional and post-transcriptional regulation has been shown to provide an additional class of methods for the fine tuning of plant performance. In this review, we provide an overview of the most recent progress in the field of CRISPR/Cas-based tool development for plant genome engineering and try to evaluate the importance of these developments for breeding and biotechnological applications.
Collapse
Affiliation(s)
- Niklas Capdeville
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Molecular Biology and Biochemistry, Fritz-Haber-Weg 4, 76135, Karlsruhe, Germany
| | - Laura Merker
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Molecular Biology and Biochemistry, Fritz-Haber-Weg 4, 76135, Karlsruhe, Germany
| | - Patrick Schindele
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Molecular Biology and Biochemistry, Fritz-Haber-Weg 4, 76135, Karlsruhe, Germany
| | - Holger Puchta
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Molecular Biology and Biochemistry, Fritz-Haber-Weg 4, 76135, Karlsruhe, Germany.
| |
Collapse
|
110
|
Identification and Mapping of Tomato Genome Loci Controlling Tolerance and Resistance to Tomato Brown Rugose Fruit Virus. PLANTS 2021; 10:plants10010179. [PMID: 33478073 PMCID: PMC7835962 DOI: 10.3390/plants10010179] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/30/2022]
Abstract
Tomato brown rugose fruit virus (ToBRFV) was identified in Israel during October 2014 in tomato plants (Solanum lycopersicum). These plants, carrying the durable resistance gene against tomato mosaic virus, Tm-22, displayed severe disease symptoms and losses to fruit yield and quality. These plants were found infected with a tobamovirus similar to that discovered earlier in Jordan. This study was designed to screen and identify tomato genotypes resistant or tolerant to ToBRFV. The identified resistance and tolerance traits were further characterized virologically and genetically. Finally, DNA markers linked to genes controlling these traits were developed as tools to expedite resistance breeding. To achieve these objectives, 160 genotypes were screened, resulting in the identification of an unexpectedly high number of tolerant genotypes and a single genotype resistant to the virus. A selected tolerant genotype and the resistant genotype were further analyzed. Analysis of genetic inheritance revealed that a single recessive gene controls tolerance whereas at least two genes control resistance. Allelic test between the tolerant and the resistant genotype revealed that these two genotypes share a locus controlling tolerance, mapped to chromosome 11. This locus displayed a strong association with the tolerance trait, explaining nearly 91% of its variation in segregating populations. This same locus displayed a statistically significant association with symptom levels in segregating populations based on the resistant genotype. However, in these populations, the locus was able to explain only ~41% of the variation in symptom levels, confirming that additional loci are involved in the genetic control of the resistance trait in this genotype. A locus on chromosome 2, at the region of the Tm-1 gene, was finally found to interact with the locus discovered on chromosome 11 to control resistance.
Collapse
|
111
|
Yang L, Qi S, Touqeer A, Li H, Zhang X, Liu X, Wu S. SlGT11 controls floral organ patterning and floral determinacy in tomato. BMC PLANT BIOLOGY 2020; 20:562. [PMID: 33317459 PMCID: PMC7734826 DOI: 10.1186/s12870-020-02760-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/01/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Flower development directly affects fruit production in tomato. Despite the framework mediated by ABC genes have been established in Arabidopsis, the spatiotemporal precision of floral development in tomato has not been well examined. RESULTS Here, we analyzed a novel tomato stamenless like flower (slf) mutant in which the development of stamens and carpels is disturbed, with carpelloid structure formed in the third whorl and ectopic formation of floral and shoot apical meristem in the fourth whorl. Using bulked segregant analysis (BSA), we assigned the causal mutation to the gene Solanum lycopersicum GT11 (SlGT11) that encodes a transcription factor belonging to Trihelix gene family. SlGT11 is expressed in the early stages of the flower and the expression becomes more specific to the primordium position corresponding to stamens and carpels in later stages of the floral development. Further RNAi silencing of SlGT11 verifies the defective phenotypes of the slf mutant. The carpelloid stamen in slf mutant indicates that SlGT11 is required for B-function activity in the third whorl. The failed termination of floral meristem and the occurrence of floral reversion in slf indicate that part of the C-function requires SlGT11 activity in the fourth whorl. Furthermore, we find that at higher temperature, the defects of slf mutant are substantially enhanced, with petals transformed into sepals, all stamens disappeared, and the frequency of ectopic shoot/floral meristem in fourth whorl increased, indicating that SlGT11 functions in the development of the three inner floral whorls. Consistent with the observed phenotypes, it was found that B, C and an E-type MADS-box genes were in part down regulated in slf mutants. CONCLUSIONS Together with the spatiotemporal expression pattern, we suggest that SlGT11 functions in floral organ patterning and maintenance of floral determinacy in tomato.
Collapse
Affiliation(s)
- Liling Yang
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shilian Qi
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Arfa Touqeer
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haiyang Li
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China.
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China.
| | - Shuang Wu
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
112
|
Barros VA, Chandnani R, de Sousa SM, Maciel LS, Tokizawa M, Guimaraes CT, Magalhaes JV, Kochian LV. Root Adaptation via Common Genetic Factors Conditioning Tolerance to Multiple Stresses for Crops Cultivated on Acidic Tropical Soils. FRONTIERS IN PLANT SCIENCE 2020; 11:565339. [PMID: 33281841 PMCID: PMC7688899 DOI: 10.3389/fpls.2020.565339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/20/2020] [Indexed: 06/01/2023]
Abstract
Crop tolerance to multiple abiotic stresses has long been pursued as a Holy Grail in plant breeding efforts that target crop adaptation to tropical soils. On tropical, acidic soils, aluminum (Al) toxicity, low phosphorus (P) availability and drought stress are the major limitations to yield stability. Molecular breeding based on a small suite of pleiotropic genes, particularly those with moderate to major phenotypic effects, could help circumvent the need for complex breeding designs and large population sizes aimed at selecting transgressive progeny accumulating favorable alleles controlling polygenic traits. The underlying question is twofold: do common tolerance mechanisms to Al toxicity, P deficiency and drought exist? And if they do, will they be useful in a plant breeding program that targets stress-prone environments. The selective environments in tropical regions are such that multiple, co-existing regulatory networks may drive the fixation of either distinctly different or a smaller number of pleiotropic abiotic stress tolerance genes. Recent studies suggest that genes contributing to crop adaptation to acidic soils, such as the major Arabidopsis Al tolerance protein, AtALMT1, which encodes an aluminum-activated root malate transporter, may influence both Al tolerance and P acquisition via changes in root system morphology and architecture. However, trans-acting elements such as transcription factors (TFs) may be the best option for pleiotropic control of multiple abiotic stress genes, due to their small and often multiple binding sequences in the genome. One such example is the C2H2-type zinc finger, AtSTOP1, which is a transcriptional regulator of a number of Arabidopsis Al tolerance genes, including AtMATE and AtALMT1, and has been shown to activate AtALMT1, not only in response to Al but also low soil P. The large WRKY family of transcription factors are also known to affect a broad spectrum of phenotypes, some of which are related to acidic soil abiotic stress responses. Hence, we focus here on signaling proteins such as TFs and protein kinases to identify, from the literature, evidence for unifying regulatory networks controlling Al tolerance, P efficiency and, also possibly drought tolerance. Particular emphasis will be given to modification of root system morphology and architecture, which could be an important physiological "hub" leading to crop adaptation to multiple soil-based abiotic stress factors.
Collapse
Affiliation(s)
- Vanessa A. Barros
- Embrapa Maize and Sorghum, Sete Lagoas, Brazil
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rahul Chandnani
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Laiane S. Maciel
- Embrapa Maize and Sorghum, Sete Lagoas, Brazil
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mutsutomo Tokizawa
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Jurandir V. Magalhaes
- Embrapa Maize and Sorghum, Sete Lagoas, Brazil
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leon V. Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
113
|
Roohanitaziani R, de Maagd RA, Lammers M, Molthoff J, Meijer-Dekens F, van Kaauwen MPW, Finkers R, Tikunov Y, Visser RGF, Bovy AG. Exploration of a Resequenced Tomato Core Collection for Phenotypic and Genotypic Variation in Plant Growth and Fruit Quality Traits. Genes (Basel) 2020; 11:genes11111278. [PMID: 33137951 PMCID: PMC7692805 DOI: 10.3390/genes11111278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 02/04/2023] Open
Abstract
A tomato core collection consisting of 122 gene bank accessions, including landraces, old cultivars, and wild relatives, was explored for variation in several plant growth, yield and fruit quality traits. The resequenced accessions were also genotyped with respect to a number of mutations or variations in key genes known to underlie these traits. The yield-related traits fruit number and fruit weight were much higher in cultivated varieties when compared to wild accessions, while, in wild tomato accessions, Brix was higher than in cultivated varieties. Known mutations in fruit size and shape genes could well explain the fruit size variation, and fruit colour variation could be well explained by known mutations in key genes of the carotenoid and flavonoid pathway. The presence and phenotype of several plant architecture affecting mutations, such as self-pruning (sp), compound inflorescence (s), jointless-2 (j-2), and potato leaf (c) were also confirmed. This study provides valuable phenotypic information on important plant growth- and quality-related traits in this collection. The allelic distribution of known genes that underlie these traits provides insight into the role and importance of these genes in tomato domestication and breeding. This resource can be used to support (precision) breeding strategies for tomato crop improvement.
Collapse
Affiliation(s)
- Raana Roohanitaziani
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
- Graduate School Experimental Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ruud A. de Maagd
- Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (R.A.d.M.); (M.L.)
| | - Michiel Lammers
- Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (R.A.d.M.); (M.L.)
| | - Jos Molthoff
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Fien Meijer-Dekens
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Martijn P. W. van Kaauwen
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Richard Finkers
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Richard G. F. Visser
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Arnaud G. Bovy
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
- Correspondence: ; Tel.: +31-317-480762
| |
Collapse
|
114
|
Verma P, Tandon R, Yadav G, Gaur V. Structural Aspects of DNA Repair and Recombination in Crop Improvement. Front Genet 2020; 11:574549. [PMID: 33024442 PMCID: PMC7516265 DOI: 10.3389/fgene.2020.574549] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The adverse effects of global climate change combined with an exponentially increasing human population have put substantial constraints on agriculture, accelerating efforts towards ensuring food security for a sustainable future. Conventional plant breeding and modern technologies have led to the creation of plants with better traits and higher productivity. Most crop improvement approaches (conventional breeding, genome modification, and gene editing) primarily rely on DNA repair and recombination (DRR). Studying plant DRR can provide insights into designing new strategies or improvising the present techniques for crop improvement. Even though plants have evolved specialized DRR mechanisms compared to other eukaryotes, most of our insights about plant-DRRs remain rooted in studies conducted in animals. DRR mechanisms in plants include direct repair, nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), non-homologous end joining (NHEJ) and homologous recombination (HR). Although each DRR pathway acts on specific DNA damage, there is crosstalk between these. Considering the importance of DRR pathways as a tool in crop improvement, this review focuses on a general description of each DRR pathway, emphasizing on the structural aspects of key DRR proteins. The review highlights the gaps in our understanding and the importance of studying plant DRR in the context of crop improvement.
Collapse
Affiliation(s)
- Prabha Verma
- National Institute of Plant Genome Research, New Delhi, India
| | - Reetika Tandon
- National Institute of Plant Genome Research, New Delhi, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
115
|
Molecular and genetic pathways for optimizing spikelet development and grain yield. ABIOTECH 2020; 1:276-292. [PMID: 36304128 PMCID: PMC9590455 DOI: 10.1007/s42994-020-00026-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/11/2020] [Indexed: 01/25/2023]
Abstract
The spikelet is a unique structure of inflorescence in grasses that generates one to many flowers depending on its determinate or indeterminate meristem activity. The growth patterns and number of spikelets, furthermore, define inflorescence architecture and yield. Therefore, understanding the molecular mechanisms underlying spikelet development and evolution are attractive to both biologists and breeders. Based on the progress in rice and maize, along with increasing numbers of genetic mutants and genome sequences from other grass families, the regulatory networks underpinning spikelet development are becoming clearer. This is particularly evident for domesticated traits in agriculture. This review focuses on recent progress on spikelet initiation, and spikelet and floret fertility, by comparing results from Arabidopsis with that of rice, sorghum, maize, barley, wheat, Brachypodium distachyon, and Setaria viridis. This progress may benefit genetic engineering and molecular breeding to enhance grain yield.
Collapse
|
116
|
Analysis of wild tomato introgression lines elucidates the genetic basis of transcriptome and metabolome variation underlying fruit traits and pathogen response. Nat Genet 2020; 52:1111-1121. [PMID: 32989321 DOI: 10.1038/s41588-020-0690-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Wild tomato species represent a rich gene pool for numerous desirable traits lost during domestication. Here, we exploited an introgression population representing wild desert-adapted species and a domesticated cultivar to establish the genetic basis of gene expression and chemical variation accompanying the transfer of wild-species-associated fruit traits. Transcriptome and metabolome analysis of 580 lines coupled to pathogen sensitivity assays resulted in the identification of genomic loci associated with levels of hundreds of transcripts and metabolites. These associations occurred in hotspots representing coordinated perturbation of metabolic pathways and ripening-related processes. Here, we identify components of the Solanum alkaloid pathway, as well as genes and metabolites involved in pathogen defense and linking fungal resistance with changes in the fruit ripening regulatory network. Our results outline a framework for understanding metabolism and pathogen resistance during tomato fruit ripening and provide insights into key fruit quality traits.
Collapse
|
117
|
Soyk S, Benoit M, Lippman ZB. New Horizons for Dissecting Epistasis in Crop Quantitative Trait Variation. Annu Rev Genet 2020; 54:287-307. [PMID: 32870731 DOI: 10.1146/annurev-genet-050720-122916] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uncovering the genes, variants, and interactions underlying crop diversity is a frontier in plant genetics. Phenotypic variation often does not reflect the cumulative effect of individual gene mutations. This deviation is due to epistasis, in which interactions between alleles are often unpredictable and quantitative in effect. Recent advances in genomics and genome-editing technologies are elevating the study of epistasis in crops. Using the traits and developmental pathways that were major targets in domestication and breeding, we highlight how epistasis is central in guiding the behavior of the genetic variation that shapes quantitative trait variation. We outline new strategies that illuminate how quantitative epistasis from modified gene dosage defines background dependencies. Advancing our understanding of epistasis in crops can reveal new principles and approaches to engineering targeted improvements in agriculture.
Collapse
Affiliation(s)
- Sebastian Soyk
- Center for Integrative Genomics, University of Lausanne, CH-1005 Lausanne, Switzerland;
| | - Matthias Benoit
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
118
|
CRISPR/Cas9 Directed Mutagenesis of OsGA20ox2 in High Yielding Basmati Rice ( Oryza sativa L.) Line and Comparative Proteome Profiling of Unveiled Changes Triggered by Mutations. Int J Mol Sci 2020; 21:ijms21176170. [PMID: 32859098 PMCID: PMC7504442 DOI: 10.3390/ijms21176170] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 01/29/2023] Open
Abstract
In rice, semi-dwarfism is among the most required characteristics, as it facilitates better yields and offers lodging resistance. Here, semi-dwarf rice lines lacking any residual transgene-DNA and off-target effects were generated through CRISPR/Cas9-guided mutagenesis of the OsGA20ox2 gene in a high yielding Basmati rice line, and the isobaric tags for relative and absolute quantification (iTRAQ) strategy was utilized to elucidate the proteomic changes in mutants. The results indicated the reduced gibberellins (GA1 and GA4) levels, plant height (28.72%), and flag leaf length, while all the other traits remained unchanged. The OsGA20ox2 expression was highly suppressed, and the mutants exhibited decreased cell length, width, and restored their plant height by exogenous GA3 treatment. Comparative proteomics of the wild-type and homozygous mutant line (GXU43_9) showed an altered level of 588 proteins, 273 upregulated and 315 downregulated, respectively. The identified differentially expressed proteins (DEPs) were mainly enriched in the carbon metabolism and fixation, glycolysis/gluconeogenesis, photosynthesis, and oxidative phosphorylation pathways. The proteins (Q6AWY7, Q6AWY2, Q9FRG8, Q6EPP9, Q6AWX8) associated with growth-regulating factors (GRF2, GRF7, GRF9, GRF10, and GRF11) and GA (Q8RZ73, Q9AS97, Q69VG1, Q8LNJ6, Q0JH50, and Q5MQ85) were downregulated, while the abscisic stress-ripening protein 5 (ASR5) and abscisic acid receptor (PYL5) were upregulated in mutant lines. We integrated CRISPR/Cas9 with proteomic screening as the most reliable strategy for rapid assessment of the CRISPR experiments outcomes.
Collapse
|
119
|
Abstract
Tomatoes come in a multitude of shapes and flavors despite a narrow genetic pool. Here, we leverage whole-genome resequencing data available for 602 cultivated and wild accessions to determine the contribution of transposable elements (TEs) to tomato diversity. We identify 6,906 TE insertions polymorphisms (TIPs), which result from the mobilization of 337 distinct TE families. Most TIPs are low frequency variants and TIPs are disproportionately located within or adjacent to genes involved in environmental responses. In addition, genic TE insertions tend to have strong transcriptional effects and they can notably lead to the generation of multiple transcript isoforms. Using genome-wide association studies (GWAS), we identify at least 40 TIPs robustly associated with extreme variation in major agronomic traits or secondary metabolites and in most cases, no SNP tags the TE insertion allele. Collectively, these findings highlight the unique role of TE mobilization in tomato diversification, with important implications for breeding. Transposable element insertion polymorphisms (TIPs) are a potential source of large effect alleles. Here, the authors use genome resequencing data for 602 tomato accessions together with transcriptomic and extensive phenotypic information to investigate the contribution of TIPs to tomato diversity.
Collapse
|
120
|
Barrera-Redondo J, Piñero D, Eguiarte LE. Genomic, Transcriptomic and Epigenomic Tools to Study the Domestication of Plants and Animals: A Field Guide for Beginners. Front Genet 2020; 11:742. [PMID: 32760427 PMCID: PMC7373799 DOI: 10.3389/fgene.2020.00742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 01/07/2023] Open
Abstract
In the last decade, genomics and the related fields of transcriptomics and epigenomics have revolutionized the study of the domestication process in plants and animals, leading to new discoveries and new unresolved questions. Given that some domesticated taxa have been more studied than others, the extent of genomic data can range from vast to nonexistent, depending on the domesticated taxon of interest. This review is meant as a rough guide for students and academics that want to start a domestication research project using modern genomic tools, as well as for researchers already conducting domestication studies that are interested in following a genomic approach and looking for alternate strategies (cheaper or more efficient) and future directions. We summarize the theoretical and technical background needed to carry out domestication genomics, starting from the acquisition of a reference genome and genome assembly, to the sampling design for population genomics, paleogenomics, transcriptomics, epigenomics and experimental validation of domestication-related genes. We also describe some examples of the aforementioned approaches and the relevant discoveries they made to understand the domestication of the studied taxa.
Collapse
Affiliation(s)
| | | | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
121
|
Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D, Levy Y, Harel TH, Shalev-Schlosser G, Amsellem Z, Razifard H, Caicedo AL, Tieman DM, Klee H, Kirsche M, Aganezov S, Ranallo-Benavidez TR, Lemmon ZH, Kim J, Robitaille G, Kramer M, Goodwin S, McCombie WR, Hutton S, Van Eck J, Gillis J, Eshed Y, Sedlazeck FJ, van der Knaap E, Schatz MC, Lippman ZB. Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato. Cell 2020; 182:145-161.e23. [PMID: 32553272 PMCID: PMC7354227 DOI: 10.1016/j.cell.2020.05.021] [Citation(s) in RCA: 400] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/10/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022]
Abstract
Structural variants (SVs) underlie important crop improvement and domestication traits. However, resolving the extent, diversity, and quantitative impact of SVs has been challenging. We used long-read nanopore sequencing to capture 238,490 SVs in 100 diverse tomato lines. This panSV genome, along with 14 new reference assemblies, revealed large-scale intermixing of diverse genotypes, as well as thousands of SVs intersecting genes and cis-regulatory regions. Hundreds of SV-gene pairs exhibit subtle and significant expression changes, which could broadly influence quantitative trait variation. By combining quantitative genetics with genome editing, we show how multiple SVs that changed gene dosage and expression levels modified fruit flavor, size, and production. In the last example, higher order epistasis among four SVs affecting three related transcription factors allowed introduction of an important harvesting trait in modern tomato. Our findings highlight the underexplored role of SVs in genotype-to-phenotype relationships and their widespread importance and utility in crop improvement.
Collapse
Affiliation(s)
- Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xingang Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Matthias Benoit
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sebastian Soyk
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lara Pereira
- Center for Applied Genetic Technologies, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA
| | - Lei Zhang
- Center for Applied Genetic Technologies, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA
| | - Hamsini Suresh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Florian Maumus
- URGI, INRA, Université Paris-Saclay, 78026 Versailles, France
| | - Danielle Ciren
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yuval Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tom Hai Harel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gili Shalev-Schlosser
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ziva Amsellem
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hamid Razifard
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ana L Caicedo
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Denise M Tieman
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL 32611, USA
| | - Harry Klee
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL 32611, USA
| | - Melanie Kirsche
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sergey Aganezov
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Zachary H Lemmon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jennifer Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Gina Robitaille
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - W Richard McCombie
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Samuel Hutton
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yuval Eshed
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA; Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA; Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
122
|
|
123
|
Generation of High Yielding and Fragrant Rice ( Oryza sativa L.) Lines by CRISPR/Cas9 Targeted Mutagenesis of Three Homoeologs of Cytochrome P450 Gene Family and OsBADH2 and Transcriptome and Proteome Profiling of Revealed Changes Triggered by Mutations. PLANTS 2020; 9:plants9060788. [PMID: 32586052 PMCID: PMC7355857 DOI: 10.3390/plants9060788] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
The significant increase in grain yield and quality are often antagonistic but a constant demand for breeders and consumers. Some genes related to cytochrome P450 family are known for rice organ growth but their role in controlling grain yield is still unknown. Here, we generated new rice mutants with high yield and improved aroma by simultaneously editing three cytochrome P450 homoeologs (Os03g0603100, Os03g0568400, and GL3.2) and OsBADH2 with the CRISPR/Cas9 system, and RNA-sequencing and proteomic analysis were performed to unveil the subsequent changes. High mutation efficiency was achieved in both target sites of each gene and the mutations were predominantly only deletions, while insertions were rare, and no mutations were detected in the five most likely off-target sites against each sgRNA. Mutants exhibited increased grain size, 2-acetyl-1-pyrroline (2AP) content, and grain cell numbers while there was no change in other agronomic traits. Transgene-DNA-free mutant lines appeared with a frequency of 44.44% and homozygous mutations were stably transmitted, and bi-allelic and heterozygous mutations followed Mendelian inheritance, while the inheritance of chimeric mutations was unpredictable. Deep RNA sequencing and proteomic results revealed the regulation of genes and proteins related to cytochrome P450 family, grain size and development, and cell cycle. The KEGG and hub-gene and protein network analysis showed that the gene and proteins related to ribosomal and photosynthesis pathways were mainly enriched, respectively. Our findings provide a broad and detailed basis to understand the role of CRISPR/Cas9 in rice yield and quality improvement.
Collapse
|
124
|
Hao N, Han D, Huang K, Du Y, Yang J, Zhang J, Wen C, Wu T. Genome-based breeding approaches in major vegetable crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1739-1752. [PMID: 31728564 DOI: 10.1007/s00122-019-03477-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/09/2019] [Indexed: 05/09/2023]
Abstract
Vegetable crops are major nutrient sources for humanity and have been well-cultivated since thousands of years of domestication. With the rapid development of next-generation sequencing and high-throughput genotyping technologies, the reference genome of more than 20 vegetables have been well-assembled and published. Resequencing approaches on large-scale germplasm resources have clarified the domestication and improvement of vegetable crops by human selection; its application on genetic mapping and quantitative trait locus analysis has led to the discovery of key genes and molecular markers linked to important traits in vegetables. Moreover, genome-based breeding has been utilized in many vegetable crops, including Solanaceae, Cucurbitaceae, Cruciferae, and other families, thereby promoting molecular breeding at a single-nucleotide level. Thus, genome-wide SNP markers have been widely used, and high-throughput genotyping techniques have become one of the most essential methods in vegetable breeding. With the popularization of gene editing technology research on vegetable crops, breeding efficiency can be rapidly increased, especially by combining the genomic and variomic information of vegetable crops. This review outlines the present genome-based breeding approaches used for major vegetable crops to provide insights into next-generation molecular breeding for the increasing global population.
Collapse
Affiliation(s)
- Ning Hao
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Deguo Han
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Ke Huang
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
| | - Yalin Du
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
| | - Jingjing Yang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, 100097, China
| | - Jian Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, 100097, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, 100097, China.
| | - Tao Wu
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China.
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
125
|
Mata-Nicolás E, Montero-Pau J, Gimeno-Paez E, Garcia-Carpintero V, Ziarsolo P, Menda N, Mueller LA, Blanca J, Cañizares J, van der Knaap E, Díez MJ. Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. HORTICULTURE RESEARCH 2020; 7:66. [PMID: 32377357 PMCID: PMC7192925 DOI: 10.1038/s41438-020-0291-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 05/19/2023]
Abstract
A collection of 163 accessions, including Solanum pimpinellifolium, Solanum lycopersicum var. cerasiforme and Solanum lycopersicum var. lycopersicum, was selected to represent the genetic and morphological variability of tomato at its centers of origin and domestication: Andean regions of Peru and Ecuador and Mesoamerica. The collection is enriched with S. lycopersicum var. cerasiforme from the Amazonian region that has not been analyzed previously nor used extensively. The collection has been morphologically characterized showing diversity for fruit, flower and vegetative traits. Their genomes were sequenced in the Varitome project and are publicly available (solgenomics.net/projects/varitome). The identified SNPs have been annotated with respect to their impact and a total number of 37,974 out of 19,364,146 SNPs have been described as high impact by the SnpEeff analysis. GWAS has shown associations for different traits, demonstrating the potential of this collection for this kind of analysis. We have not only identified known QTLs and genes, but also new regions associated with traits such as fruit color, number of flowers per inflorescence or inflorescence architecture. To speed up and facilitate the use of this information, F2 populations were constructed by crossing the whole collection with three different parents. This F2 collection is useful for testing SNPs identified by GWAs, selection sweeps or any other candidate gene. All data is available on Solanaceae Genomics Network and the accession and F2 seeds are freely available at COMAV and at TGRC genebanks. All these resources together make this collection a good candidate for genetic studies.
Collapse
Affiliation(s)
- Estefanía Mata-Nicolás
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Javier Montero-Pau
- Department of Biochemistry and Molecular Biology, Universitat de València, Valencia, Spain
| | - Esther Gimeno-Paez
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Víctor Garcia-Carpintero
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Peio Ziarsolo
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | | | | | - José Blanca
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Joaquín Cañizares
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Esther van der Knaap
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Georgia, GA USA
- Department of Horticulture, University of Georgia, Georgia, GA USA
| | - María José Díez
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
126
|
Botet R, Keurentjes JJB. The Role of Transcriptional Regulation in Hybrid Vigor. FRONTIERS IN PLANT SCIENCE 2020; 11:410. [PMID: 32351526 PMCID: PMC7174566 DOI: 10.3389/fpls.2020.00410] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/23/2020] [Indexed: 05/19/2023]
Abstract
The genetic basis of hybrid vigor in plants remains largely unsolved but strong evidence suggests that variation in transcriptional regulation can explain many aspects of this phenomenon. Natural variation in transcriptional regulation is highly abundant in virtually all species and thus a potential source of heterotic variability. Allele Specific Expression (ASE), which is tightly linked to parent of origin effects and modulated by complex interactions in cis and in trans, is generally considered to play a key role in explaining the differences between hybrids and parental lines. Here we discuss the recent developments in elucidating the role of transcriptional variation in a number of aspects of hybrid vigor, thereby bridging old paradigms and hypotheses with contemporary research in various species.
Collapse
Affiliation(s)
- Ramon Botet
- Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
| | | |
Collapse
|
127
|
Turner-Hissong SD, Mabry ME, Beissinger TM, Ross-Ibarra J, Pires JC. Evolutionary insights into plant breeding. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:93-100. [PMID: 32325397 DOI: 10.1016/j.pbi.2020.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/20/2020] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Crop domestication is a fascinating area of study, as shown by a multitude of recent reviews. Coupled with the increasing availability of genomic and phenomic resources in numerous crop species, insights from evolutionary biology will enable a deeper understanding of the genetic architecture and short-term evolution of complex traits, which can be used to inform selection strategies. Future advances in crop improvement will rely on the integration of population genetics with plant breeding methodology, and the development of community resources to support research in a variety of crop life histories and reproductive strategies. We highlight recent advances related to the role of selective sweeps and demographic history in shaping genetic architecture, how these breakthroughs can inform selection strategies, and the application of precision gene editing to leverage these connections.
Collapse
Affiliation(s)
- Sarah D Turner-Hissong
- Center for Population Biology, University of California, Davis, CA, USA; Department of Evolution and Ecology, University of California, Davis, CA, USA.
| | - Makenzie E Mabry
- Bond Life Science Center and Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Timothy M Beissinger
- Division of Plant Breeding Methodology, Department of Crop Science, Georg-August-Universtät, Göttingen, Germany; Center for Integrated Breeding Research, Georg-August-Universtät, Göttingen, Germany
| | - Jeffrey Ross-Ibarra
- Center for Population Biology, University of California, Davis, CA, USA; Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - J Chris Pires
- Bond Life Science Center and Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
128
|
Leisner CP. Review: Climate change impacts on food security- focus on perennial cropping systems and nutritional value. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110412. [PMID: 32081261 DOI: 10.1016/j.plantsci.2020.110412] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 05/18/2023]
Abstract
Anthropogenic increases in fossil fuel emissions have been a primary driver of increased concentrations of atmospheric carbon dioxide ([CO2]) and other greenhouse gases resulting in warmer temperatures, alterations in precipitation patterns, and increased occurrence of extreme weather events in terrestrial areas across the globe. In agricultural growing regions, alterations in climate can challenge plant productivity in ways that impact the ability of the world to sustain adequate food production for a growing and increasingly affluent population with shifting access to affordable and nutritious food. While the knowledge gap that exists regarding potential climate change impacts is large across agriculture, it is especially large in specialty cropping systems. This includes fruit and vegetable crops, and perennial cropping systems which also contribute (along with row crops) to our global diet. In order to obtain a comprehensive view of the true impact of climate change on our global food supply, we must expand our narrow focus from improving yield and plant productivity to include the impact of climate change on the nutritional value of these crops. In order to address these questions, we need a multi-faceted approach that integrates physiology and genomics tools and conducts comprehensive experiments under realistic depictions of future projected climate. This review describes gaps in our knowledge in relation to these responses, and future questions and actions that are needed to develop a sustainable future food supply in light of global climate change.
Collapse
Affiliation(s)
- Courtney P Leisner
- Department of Biological Sciences, Auburn University, Auburn AL 36849 USA.
| |
Collapse
|
129
|
Liao N, Hu Z, Li Y, Hao J, Chen S, Xue Q, Ma Y, Zhang K, Mahmoud A, Ali A, Malangisha GK, Lyu X, Yang J, Zhang M. Ethylene-responsive factor 4 is associated with the desirable rind hardness trait conferring cracking resistance in fresh fruits of watermelon. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1066-1077. [PMID: 31610078 PMCID: PMC7061880 DOI: 10.1111/pbi.13276] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/26/2019] [Accepted: 10/06/2019] [Indexed: 05/11/2023]
Abstract
Fruit rind plays a pivotal role in alleviating water loss and disease and particularly in cracking resistance as well as the transportability, storability and shelf-life quality of the fruit. High susceptibility to cracking due to low rind hardness is largely responsible for severe annual yield losses of fresh fruits such as watermelon in the field and during the postharvest process. However, the candidate gene controlling the rind hardness phenotype remains unclear to date. Herein, we report, for the first time, an ethylene-responsive transcription factor 4 (ClERF4) associated with variation in rind hardness via a combinatory genetic map with bulk segregant analysis (BSA). Strikingly, our fine-mapping approach revealed an InDel of 11 bp and a neighbouring SNP in the ClERF4 gene on chromosome 10, conferring cracking resistance in F2 populations with variable rind hardness. Furthermore, the concomitant kompetitive/competitive allele-specific PCR (KASP) genotyping data sets of 104 germplasm accessions strongly supported candidate ClERF4 as a causative gene associated with fruit rind hardness variability. In conclusion, our results provide new insight into the underlying mechanism controlling rind hardness, a desirable trait in fresh fruit. Moreover, the findings will further enable the molecular improvement of fruit cracking resistance in watermelon via precisely targeting the causative gene relevant to rind hardness, ClERF4.
Collapse
Affiliation(s)
- Nanqiao Liao
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
- Key laboratory of Horticultural Plant growthDevelopment and Quality ImprovementMinistry of AgricultureHangzhouChina
| | - Yingying Li
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Junfang Hao
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Shuna Chen
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Qin Xue
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Yuyuan Ma
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Kejia Zhang
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Ahmed Mahmoud
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Abid Ali
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Guy Kateta Malangisha
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
- Key laboratory of Horticultural Plant growthDevelopment and Quality ImprovementMinistry of AgricultureHangzhouChina
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
- Key laboratory of Horticultural Plant growthDevelopment and Quality ImprovementMinistry of AgricultureHangzhouChina
| |
Collapse
|
130
|
Li Q, Sapkota M, van der Knaap E. Perspectives of CRISPR/Cas-mediated cis-engineering in horticulture: unlocking the neglected potential for crop improvement. HORTICULTURE RESEARCH 2020; 7:36. [PMID: 32194972 PMCID: PMC7072075 DOI: 10.1038/s41438-020-0258-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/09/2020] [Accepted: 02/11/2020] [Indexed: 05/14/2023]
Abstract
Directed breeding of horticultural crops is essential for increasing yield, nutritional content, and consumer-valued characteristics such as shape and color of the produce. However, limited genetic diversity restricts the amount of crop improvement that can be achieved through conventional breeding approaches. Natural genetic changes in cis-regulatory regions of genes play important roles in shaping phenotypic diversity by altering their expression. Utilization of CRISPR/Cas editing in crop species can accelerate crop improvement through the introduction of genetic variation in a targeted manner. The advent of CRISPR/Cas-mediated cis-regulatory region engineering (cis-engineering) provides a more refined method for modulating gene expression and creating phenotypic diversity to benefit crop improvement. Here, we focus on the current applications of CRISPR/Cas-mediated cis-engineering in horticultural crops. We describe strategies and limitations for its use in crop improvement, including de novo cis-regulatory element (CRE) discovery, precise genome editing, and transgene-free genome editing. In addition, we discuss the challenges and prospects regarding current technologies and achievements. CRISPR/Cas-mediated cis-engineering is a critical tool for generating horticultural crops that are better able to adapt to climate change and providing food for an increasing world population.
Collapse
Affiliation(s)
- Qiang Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, China
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA USA
| | - Manoj Sapkota
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA USA
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA USA
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA USA
- Department of Horticulture, University of Georgia, Athens, GA USA
| |
Collapse
|
131
|
Bartlett M, Patterson E. Many ways to drop a fruit: the evolution of abscission zones in the grasses. THE NEW PHYTOLOGIST 2020; 225:1407-1409. [PMID: 31693174 DOI: 10.1111/nph.16256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Madelaine Bartlett
- Biology Department, University of Massachusetts Amherst, 611 North Pleasant Street, Amherst, MA, 01003-9297, USA
| | - Erin Patterson
- Biology Department, University of Massachusetts Amherst, 611 North Pleasant Street, Amherst, MA, 01003-9297, USA
| |
Collapse
|
132
|
Liu H, Li G, Yang X, Kuijer HN, Liang W, Zhang D. Transcriptome profiling reveals phase-specific gene expression in the developing barley inflorescence. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2019.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
133
|
Gaston A, Osorio S, Denoyes B, Rothan C. Applying the Solanaceae Strategies to Strawberry Crop Improvement. TRENDS IN PLANT SCIENCE 2020; 25:130-140. [PMID: 31699520 DOI: 10.1016/j.tplants.2019.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 05/24/2023]
Abstract
Strawberry is a fruit crop species of major horticultural importance, for which fruit quality and the control of flowering (for fruit yield), runnering (for vegetative propagation), and the trade-off between the two are main breeding targets. The octoploid cultivated strawberry has a limited genetic basis. This raises the question of how to identify important gene targets and successfully exploit them for strawberry improvement. In this Opinion article we propose to apply to woodland strawberry, a wild diploid species displaying wide diversity, the strategies successfully employed in recent years for the identification of genetic variations underlying fruit quality and fruit yield traits in solanaceous crops (tomato, potato). Next we propose to use gene editing technologies to translate the findings to cultivated strawberry.
Collapse
Affiliation(s)
- Amelia Gaston
- INRA and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Sonia Osorio
- Department of Molecular Biology and Biochemistry, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', University of Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, 29071 Málaga, Spain
| | - Béatrice Denoyes
- INRA and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France.
| | - Christophe Rothan
- INRA and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France.
| |
Collapse
|
134
|
Fernie AR, Bachem CWB, Helariutta Y, Neuhaus HE, Prat S, Ruan YL, Stitt M, Sweetlove LJ, Tegeder M, Wahl V, Sonnewald S, Sonnewald U. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. NATURE PLANTS 2020; 6:55-66. [PMID: 32042154 DOI: 10.1038/s41477-020-0590-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/28/2019] [Indexed: 05/02/2023]
Abstract
Plants have evolved a multitude of strategies to adjust their growth according to external and internal signals. Interconnected metabolic and phytohormonal signalling networks allow adaption to changing environmental and developmental conditions and ensure the survival of species in fluctuating environments. In agricultural ecosystems, many of these adaptive responses are not required or may even limit crop yield, as they prevent plants from realizing their fullest potential. By lifting source and sink activities to their maximum, massive yield increases can be foreseen, potentially closing the future yield gap resulting from an increasing world population and the transition to a carbon-neutral economy. To do so, a better understanding of the interplay between metabolic and developmental processes is required. In the past, these processes have been tackled independently from each other, but coordinated efforts are required to understand the fine mechanics of source-sink relations and thus optimize crop yield. Here, we describe approaches to design high-yielding crop plants utilizing strategies derived from current metabolic concepts and our understanding of the molecular processes determining sink development.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| | | | - Yrjö Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - H Ekkehard Neuhaus
- University of Kaiserslautern Pflanzenphysiologie, Kaiserslautern, Germany
| | - Salomé Prat
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Yong-Ling Ruan
- School of Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
135
|
Liu HJ, Wang X, Xiao Y, Luo J, Qiao F, Yang W, Zhang R, Meng Y, Sun J, Yan S, Peng Y, Niu L, Jian L, Song W, Yan J, Li C, Zhao Y, Liu Y, Warburton ML, Zhao J, Yan J. CUBIC: an atlas of genetic architecture promises directed maize improvement. Genome Biol 2020; 21:20. [PMID: 31980033 PMCID: PMC6979394 DOI: 10.1186/s13059-020-1930-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Identifying genotype-phenotype links and causative genes from quantitative trait loci (QTL) is challenging for complex agronomically important traits. To accelerate maize gene discovery and breeding, we present the Complete-diallel design plus Unbalanced Breeding-like Inter-Cross (CUBIC) population, consisting of 1404 individuals created by extensively inter-crossing 24 widely used Chinese maize founders. RESULTS Hundreds of QTL for 23 agronomic traits are uncovered with 14 million high-quality SNPs and a high-resolution identity-by-descent map, which account for an average of 75% of the heritability for each trait. We find epistasis contributes to phenotypic variance widely. Integrative cross-population analysis and cross-omics mapping allow effective and rapid discovery of underlying genes, validated here with a case study on leaf width. CONCLUSIONS Through the integration of experimental genetics and genomics, our study provides useful resources and gene mining strategies to explore complex quantitative traits.
Collapse
Affiliation(s)
- Hai-Jun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaqing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Qiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Sanming Academy of Agricultural Sciences, Sanming, 365509, Fujian, China
| | - Wenyu Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruyang Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, China
| | - Yijiang Meng
- College of Life Science, Hebei Agricultural University, Baoding, 071001, China
| | - Jiamin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shijuan Yan
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou, 510640, China
| | - Yong Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Luyao Niu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liumei Jian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Song
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, China
| | - Jiali Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunhui Li
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, China
| | - Yanxin Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, China
| | - Ya Liu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, China
| | - Marilyn L Warburton
- Corn Host Plant Resistance Research Unit, United States Department of Agriculture-Agricultural Research Service, Box 9555, Mississippi State, MS, 39762, USA
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
136
|
Zhu Y, Wagner D. Plant Inflorescence Architecture: The Formation, Activity, and Fate of Axillary Meristems. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a034652. [PMID: 31308142 DOI: 10.1101/cshperspect.a034652] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The above-ground plant body in different plant species can have very distinct forms or architectures that arise by recurrent redeployment of a finite set of building blocks-leaves with axillary meristems, stems or branches, and flowers. The unique architectures of plant inflorescences in different plant families and species, on which this review focuses, determine the reproductive success and yield of wild and cultivated plants. Major contributors to the inflorescence architecture are the activity and developmental trajectories adopted by axillary meristems, which determine the degree of branching and the number of flowers formed. Recent advances in genetic and molecular analyses in diverse flowering plants have uncovered both common regulatory principles and unique players and/or regulatory interactions that underlie inflorescence architecture. Modulating activity of these regulators has already led to yield increases in the field. Additional insight into the underlying regulatory interactions and principles will not only uncover how their rewiring resulted in altered plant form, but will also enhance efforts at optimizing plant architecture in desirable ways in crop species.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
137
|
Lee HY, Ro NY, Patil A, Lee JH, Kwon JK, Kang BC. Uncovering Candidate Genes Controlling Major Fruit-Related Traits in Pepper via Genotype-by-Sequencing Based QTL Mapping and Genome-Wide Association Study. FRONTIERS IN PLANT SCIENCE 2020; 11:1100. [PMID: 32793261 PMCID: PMC7390901 DOI: 10.3389/fpls.2020.01100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/03/2020] [Indexed: 05/09/2023]
Abstract
All modern pepper accessions are products of the domestication of wild Capsicum species. However, due to the limited availability of genome-wide association study (GWAS) data and selection signatures for various traits, domestication-related genes have not been identified in pepper. Here, to address this problem, we obtained data for major fruit-related domestication traits (fruit length, width, weight, pericarp thickness, and fruit position) using a highly diverse panel of 351 pepper accessions representing the worldwide Capsicum germplasm. Using a genotype-by-sequencing (GBS) method, we developed 187,966 genome-wide high-quality SNP markers across 230 C. annuum accessions. Linkage disequilibrium (LD) analysis revealed that the average length of the LD blocks was 149 kb. Using GWAS, we identified 111 genes that were linked to 64 significant LD blocks. We cross-validated the GWAS results using 17 fruit-related QTLs and identified 16 causal genes thought to be associated with fruit morphology-related domestication traits, with molecular functions such as cell division and expansion. The significant LD blocks and candidate genes identified in this study provide unique molecular footprints for deciphering the domestication history of Capsicum. Further functional validation of these candidate genes should accelerate the cloning of genes for major fruit-related traits in pepper.
Collapse
Affiliation(s)
- Hea-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Na-Young Ro
- National Academy of Agricultural Science, National Agrobiodiversity Center, Rural Development Administration, Jeonju, South Korea
| | - Abhinandan Patil
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Joung-Ho Lee
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Byoung-Cheorl Kang,
| |
Collapse
|
138
|
Genetic Architecture of Chilling Tolerance in Sorghum Dissected with a Nested Association Mapping Population. G3-GENES GENOMES GENETICS 2019; 9:4045-4057. [PMID: 31611346 PMCID: PMC6893202 DOI: 10.1534/g3.119.400353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dissecting the genetic architecture of stress tolerance in crops is critical to understand and improve adaptation. In temperate climates, early planting of chilling-tolerant varieties could provide longer growing seasons and drought escape, but chilling tolerance (<15°) is generally lacking in tropical-origin crops. Here we developed a nested association mapping (NAM) population to dissect the genetic architecture of early-season chilling tolerance in the tropical-origin cereal sorghum (Sorghum bicolor [L.] Moench). The NAM resource, developed from reference line BTx623 and three chilling-tolerant Chinese lines, is comprised of 771 recombinant inbred lines genotyped by sequencing at 43,320 single nucleotide polymorphisms. We phenotyped the NAM population for emergence, seedling vigor, and agronomic traits (>75,000 data points from ∼16,000 plots) in multi-environment field trials in Kansas under natural chilling stress (sown 30-45 days early) and normal growing conditions. Joint linkage mapping with early-planted field phenotypes revealed an oligogenic architecture, with 5-10 chilling tolerance loci explaining 20-41% of variation. Surprisingly, several of the major chilling tolerance loci co-localize precisely with the classical grain tannin (Tan1 and Tan2) and dwarfing genes (Dw1 and Dw3) that were under strong directional selection in the US during the 20th century. These findings suggest that chilling sensitivity was inadvertently selected due to coinheritance with desired nontannin and dwarfing alleles. The characterization of genetic architecture with NAM reveals why past chilling tolerance breeding was stymied and provides a path for genomics-enabled breeding of chilling tolerance.
Collapse
|
139
|
Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martinez JP, Lutts S. Tomato Fruit Development and Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:1554. [PMID: 31850035 PMCID: PMC6895250 DOI: 10.3389/fpls.2019.01554] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 05/20/2023]
Abstract
Tomato (Solanum lycopersicum L.) belongs to the Solanaceae family and is the second most important fruit or vegetable crop next to potato (Solanum tuberosum L.). It is cultivated for fresh fruit and processed products. Tomatoes contain many health-promoting compounds including vitamins, carotenoids, and phenolic compounds. In addition to its economic and nutritional importance, tomatoes have become the model for the study of fleshy fruit development. Tomato is a climacteric fruit and dramatic metabolic changes occur during its fruit development. In this review, we provide an overview of our current understanding of tomato fruit metabolism. We begin by detailing the genetic and hormonal control of fruit development and ripening, after which we document the primary metabolism of tomato fruits, with a special focus on sugar, organic acid, and amino acid metabolism. Links between primary and secondary metabolic pathways are further highlighted by the importance of pigments, flavonoids, and volatiles for tomato fruit quality. Finally, as tomato plants are sensitive to several abiotic stresses, we briefly summarize the effects of adverse environmental conditions on tomato fruit metabolism and quality.
Collapse
Affiliation(s)
- Muriel Quinet
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Rémi Blanchard-Gros
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Servane Bigot
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
140
|
Lee Y. More than cell wall hydrolysis: orchestration of cellular dynamics for organ separation. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:37-43. [PMID: 31030063 DOI: 10.1016/j.pbi.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 05/22/2023]
Abstract
Plants' ability to cope with the ever-changing environment is one of the hallmarks that distinguishes plants from animals. Plants stationed in one place have evolved to remodel their architecture in response to the environmental factors by continuously creating new organ systems and removing existing organs through abscission. Herein, I provide insights into developmental plasticity of plants, focusing on the exit strategy (abscission). When plants start developing organs, the elimination tactics are also established in the form of abscission zones (AZ), that is, specialized cell layers for organ separation. Herein, recent advances in understanding the spatial regulatory mechanism of AZ in terms of cellular dynamics, coordination, and reconfiguration of the physical barrier of the cell wall to achieve precise abscission are discussed.
Collapse
Affiliation(s)
- Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
141
|
Schindele A, Dorn A, Puchta H. CRISPR/Cas brings plant biology and breeding into the fast lane. Curr Opin Biotechnol 2019; 61:7-14. [PMID: 31557657 DOI: 10.1016/j.copbio.2019.08.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022]
Abstract
CRISPR/Cas is in the process of inducing the biggest transformation of plant breeding since the green revolution. Whereas initial efforts focused mainly on changing single traits by error prone non-homologous end joining, the last two years saw a tremendous technical progress achieving more complex genetic, epigenetic and transcriptional changes. The efficiencies of inducing directed changes by homologous recombination have been improved significantly and strategies to break genetic linkages by inducing chromosomal rearrangements have been developed. Cas13 systems have been applied to degrade viral and mRNA in plants. Most importantly, a historical breakthrough was accomplished: By introducing multiple genomic changes simultaneously, domestication of wild species in a single generation has been demonstrated, speeding up breeding dramatically.
Collapse
Affiliation(s)
- Angelina Schindele
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
142
|
Benoit M, Drost HG, Catoni M, Gouil Q, Lopez-Gomollon S, Baulcombe D, Paszkowski J. Environmental and epigenetic regulation of Rider retrotransposons in tomato. PLoS Genet 2019; 15:e1008370. [PMID: 31525177 PMCID: PMC6762207 DOI: 10.1371/journal.pgen.1008370] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/26/2019] [Accepted: 08/14/2019] [Indexed: 11/18/2022] Open
Abstract
Transposable elements in crop plants are the powerful drivers of phenotypic variation that has been selected during domestication and breeding programs. In tomato, transpositions of the LTR (long terminal repeat) retrotransposon family Rider have contributed to various phenotypes of agronomical interest, such as fruit shape and colour. However, the mechanisms regulating Rider activity are largely unknown. We have developed a bioinformatics pipeline for the functional annotation of retrotransposons containing LTRs and defined all full-length Rider elements in the tomato genome. Subsequently, we showed that accumulation of Rider transcripts and transposition intermediates in the form of extrachromosomal DNA is triggered by drought stress and relies on abscisic acid signalling. We provide evidence that residual activity of Rider is controlled by epigenetic mechanisms involving siRNAs and the RNA-dependent DNA methylation pathway. Finally, we demonstrate the broad distribution of Rider-like elements in other plant species, including crops. Our work identifies Rider as an environment-responsive element and a potential source of genetic and epigenetic variation in plants. Transposons are major constituents of plant genomes and represent a powerful source of internal genetic and epigenetic variation. For example, domestication of maize has been facilitated by a dramatic change in plant architecture, the consequence of a transposition event. Insertion of transposons near genes often confers quantitative phenotypic variation linked to changes in transcriptional patterns, as documented for blood oranges and grapes. In tomato, the most widely grown fruit crop and model for fleshy fruit biology, occurrences of several beneficial traits related to fruit shape and plant architecture are due to the activity of the transposon family Rider. While Rider represents a unique endogenous source of genetic and epigenetic variation, mechanisms regulating Rider activity remain unexplored. By achieving experimentally-controlled activation of the Rider family, we shed light on the regulation of these transposons by drought stress, signalling by phytohormones, as well as epigenetic pathways. Furthermore, we reveal the presence of Rider-like elements in other economically important crops such as rapeseed, beetroot and quinoa. This suggests that drought-inducible Rider activation could be further harnessed to generate genetic and epigenetic variation for crop breeding, and highlights the potential of transposon-directed mutagenesis for crop improvement.
Collapse
Affiliation(s)
- Matthias Benoit
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Hajk-Georg Drost
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Marco Catoni
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Quentin Gouil
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sara Lopez-Gomollon
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - David Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Jerzy Paszkowski
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
143
|
Li X, Lalić J, Baeza-Centurion P, Dhar R, Lehner B. Changes in gene expression predictably shift and switch genetic interactions. Nat Commun 2019; 10:3886. [PMID: 31467279 PMCID: PMC6715729 DOI: 10.1038/s41467-019-11735-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/29/2019] [Indexed: 11/18/2022] Open
Abstract
Non-additive interactions between mutations occur extensively and also change across conditions, making genetic prediction a difficult challenge. To better understand the plasticity of genetic interactions (epistasis), we combine mutations in a single protein performing a single function (a transcriptional repressor inhibiting a target gene). Even in this minimal system, genetic interactions switch from positive (suppressive) to negative (enhancing) as the expression of the gene changes. These seemingly complicated changes can be predicted using a mathematical model that propagates the effects of mutations on protein folding to the cellular phenotype. More generally, changes in gene expression should be expected to alter the effects of mutations and how they interact whenever the relationship between expression and a phenotype is nonlinear, which is the case for most genes. These results have important implications for understanding genotype-phenotype maps and illustrate how changes in genetic interactions can often—but not always—be predicted by hierarchical mechanistic models. Non-additive genetic interactions are plastic and can complicate genetic prediction. Here, using deep mutagenesis of the lambda repressor, Li et al. reveal that changes in gene expression can alter the strength and direction of genetic interactions between mutations in many genes and develop mathematical models for predicting them.
Collapse
Affiliation(s)
- Xianghua Li
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Jasna Lalić
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Pablo Baeza-Centurion
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Riddhiman Dhar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,ICREA, Pg. Luis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
144
|
The flowering hormone florigen accelerates secondary cell wall biogenesis to harmonize vascular maturation with reproductive development. Proc Natl Acad Sci U S A 2019; 116:16127-16136. [PMID: 31324744 DOI: 10.1073/pnas.1906405116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Florigen, a proteinaceous hormone, functions as a universal long-range promoter of flowering and concurrently as a generic growth-attenuating hormone across leaf and stem meristems. In flowering plants, the transition from the vegetative phase to the reproductive phase entails the orchestration of new growth coordinates and a global redistribution of resources, signals, and mechanical loads among organs. However, the ultimate cellular processes governing the adaptation of the shoot system to reproduction remain unknown. We hypothesized that if the mechanism for floral induction is universal, then the cellular metabolic mechanisms underlying the conditioning of the shoot system for reproduction would also be universal and may be best regulated by florigen itself. To understand the cellular basis for the vegetative functions of florigen, we explored the radial expansion of tomato stems. RNA-Seq and complementary genetic and histological studies revealed that florigen of endogenous, mobile, or induced origins accelerates the transcription network navigating secondary cell wall biogenesis as a unit, promoting vascular maturation and thereby adapting the shoot system to the developmental needs of the ensuing reproductive phase it had originally set into motion. We then demonstrated that a remarkably stable and broadly distributed florigen promotes MADS and MIF genes, which in turn regulate the rate of vascular maturation and radial expansion of stems irrespective of flowering or florigen level. The dual acceleration of flowering and vascular maturation by florigen provides a paradigm for coordinated regulation of independent global developmental programs.
Collapse
|
145
|
Two QTLs controlling Clubroot resistance identified from Bulked Segregant Sequencing in Pakchoi (Brassica campestris ssp. chinensis Makino). Sci Rep 2019; 9:9228. [PMID: 31239512 PMCID: PMC6592919 DOI: 10.1038/s41598-019-44724-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/23/2019] [Indexed: 11/16/2022] Open
Abstract
Clubroot, caused by Plasmodiophora Brassicae, is a serious soil-borne disease in worldwide. In recent years, progression of clubroot is rapid and serious in Shanghai, China. In this study, The inheritance of clubroot resistance (CR) were determined in pakchoi using F2 segregation population that were developed by crossing highly resistant line ‘CR38’ and susceptible line ‘CS22’. Two novel QTLs, qBrCR38-1 and qBrCR38-2, was identified by BSA-seq (Bulked Segregant Sequencing) resistant to P. brassicae physiological race 7. Two significant peak qBrCR38-1 and qBrCR38-2 were observed by three statistical methods between interval of 19.7–20.6 Mb in chromosome A07 and 20.0–20.6 Mb in chromosome A08, respectively. In addition, Polymorphic SNPs identified within target regions were converted to kompetitive allele-specific PCR (KASP) assays. In target regions of qBrCR38-1 and qBrCR38-2, there were twenty SNP sites identified, eleven KASP markers of which are significantly associated to CR (P < 0.05). Seven candidate genes were identified and found to be involved in disease resistance (TIR-NBS-LRR proteins), defense responses of bacterium and fungi and biotic/abiotic stress response in the target regions harboring the two QTLs. Two novel QTLs and candidate genes identified from the present study provide insights into the genetic mechanism of CR in B.rapa, and the associated SNPs can be effectively used for marker-assisted breeding.
Collapse
|
146
|
Abstract
Abstract
The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-Cas systems for genome editing has transformed the way life science research is conducted and holds enormous potential for the treatment of disease as well as for many aspects of biotechnology. Here, I provide a personal perspective on the development of CRISPR-Cas9 for genome editing within the broader context of the field and discuss our work to discover novel Cas effectors and develop them into additional molecular tools. The initial demonstration of Cas9-mediated genome editing launched the development of many other technologies, enabled new lines of biological inquiry, and motivated a deeper examination of natural CRISPR-Cas systems, including the discovery of new types of CRISPR-Cas systems. These new discoveries in turn spurred further technological developments. I review these exciting discoveries and technologies as well as provide an overview of the broad array of applications of these technologies in basic research and in the improvement of human health. It is clear that we are only just beginning to unravel the potential within microbial diversity, and it is quite likely that we will continue to discover other exciting phenomena, some of which it may be possible to repurpose as molecular technologies. The transformation of mysterious natural phenomena to powerful tools, however, takes a collective effort to discover, characterize, and engineer them, and it has been a privilege to join the numerous researchers who have contributed to this transformation of CRISPR-Cas systems.
Collapse
|
147
|
Hussain B, Lucas SJ, Budak H. CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement. Brief Funct Genomics 2019; 17:319-328. [PMID: 29912293 DOI: 10.1093/bfgp/ely016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system uses single-guide RNAs for genome editing, making it a simple, robust, powerful tool for targeted gene mutagenesis, knockout and knock-in/replacement, as well as transcriptional regulation. Here, we review the working principles, components and potential modifications of CRISPR/Cas9 for efficient single and multiplex gene editing in plants. We also describe recent work that has used CRISPR/Cas9 to improve economically important traits in crop plants. Although the apparent ease of CRISPR/Cas9-mediated editing may make it appear as though scientists are merely playing with plant genomes, the combined power of CRISPR/Cas9 has enabled vital research to be completed in the battle toward optimization and adaptation of crop species, permitting crucial advances to be achieved in crop improvement.
Collapse
Affiliation(s)
- Babar Hussain
- Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Stuart James Lucas
- SU Nanotechnology Research and Application Centre, Sabanci University, Istanbul, Turkey
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, MT, USA
| |
Collapse
|
148
|
Multiple Auxin-Response Regulators Enable Stability and Variability in Leaf Development. Curr Biol 2019; 29:1746-1759.e5. [DOI: 10.1016/j.cub.2019.04.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
|
149
|
Wolter F, Schindele P, Puchta H. Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC PLANT BIOLOGY 2019; 19:176. [PMID: 31046670 PMCID: PMC6498546 DOI: 10.1186/s12870-019-1775-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/11/2019] [Indexed: 05/21/2023]
Abstract
Classical plant breeding was extremely successful in generating high yielding crop varieties. Yet, in modern crops, the long domestication process has impoverished the genetic diversity available for breeding. This is limiting further improvements of elite germplasm by classical approaches. The CRISPR/Cas system now enables promising new opportunities to create genetic diversity for breeding in an unprecedented way. Due to its multiplexing ability, multiple targets can be modified simultaneously in an efficient way, enabling immediate pyramiding of multiple beneficial traits into an elite background within one generation. By targeting regulatory elements, a selectable range of transcriptional alleles can be generated, enabling precise fine-tuning of desirable traits. In addition, by targeting homologues of so-called domestication genes within one generation, it is now possible to catapult neglected, semi-domesticated and wild plants quickly into the focus of mainstream agriculture. This further enables the use of the enormous genetic diversity present in wild species or uncultured varieties of crops as a source of allele-mining, widely expanding the crop germplasm pool.
Collapse
Affiliation(s)
- Felix Wolter
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76049 Karlsruhe, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76049 Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76049 Karlsruhe, Germany
| |
Collapse
|
150
|
Li J, Manghwar H, Sun L, Wang P, Wang G, Sheng H, Zhang J, Liu H, Qin L, Rui H, Li B, Lindsey K, Daniell H, Jin S, Zhang X. Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:858-868. [PMID: 30291759 PMCID: PMC6587709 DOI: 10.1111/pbi.13020] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 05/19/2023]
Abstract
The CRISPR/Cas9 system has been extensively applied for crop improvement. However, our understanding of Cas9 specificity is very limited in Cas9-edited plants. To identify on- and off-target mutation in an edited crop, we described whole genome sequencing (WGS) of 14 Cas9-edited cotton plants targeted to three genes, and three negative (Ne) control and three wild-type (WT) plants. In total, 4188-6404 unique single-nucleotide polymorphisms (SNPs) and 312-745 insertions/deletions (indels) were detected in 14 Cas9-edited plants compared to WT, negative and cotton reference genome sequences. Since the majority of these variations lack a protospacer-adjacent motif (PAM), we demonstrated that the most variations following Cas9-edited are due either to somaclonal variation or/and pre-existing/inherent variation from maternal plants, but not off-target effects. Of a total of 4413 potential off-target sites (allowing ≤5 mismatches within the 20-bp sgRNA and 3-bp PAM sequences), the WGS data revealed that only four are bona fide off-target indel mutations, validated by Sanger sequencing. Moreover, inherent genetic variation of WT can generate novel off-target sites and destroy PAMs, which suggested great care should be taken to design sgRNA for the minimizing of off-target effect. These findings suggested that CRISPR/Cas9 system is highly specific for cotton plants.
Collapse
Affiliation(s)
- Jianying Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Hakim Manghwar
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Lin Sun
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Guanying Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Hanyan Sheng
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jie Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Hao Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Agricultural Bioinformatics Key Laboratory of Hubei ProvinceCollege of InformaticsHuazhong Agricultural UniversityWuhanHubeiChina
| | - Lei Qin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Hangping Rui
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Bo Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | | | - Henry Daniell
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|