101
|
Hill CA, Casterline BW, Valguarnera E, Hecht AL, Shepherd ES, Sonnenburg JL, Bubeck Wardenburg J. Bacteroides fragilis toxin expression enables lamina propria niche acquisition in the developing mouse gut. Nat Microbiol 2024; 9:85-94. [PMID: 38168616 PMCID: PMC11214347 DOI: 10.1038/s41564-023-01559-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Bacterial toxins are well-studied virulence factors; however, recent studies have revealed their importance in bacterial niche adaptation. Enterotoxigenic Bacteroides fragilis (ETBF) expresses B. fragilis toxin (BFT) that we hypothesized may contribute to both colonic epithelial injury and niche acquisition. We developed a vertical transmission model for ETBF in mice that showed that BFT enabled ETBF to access a lamina propria (LP) niche during colonic microbiome development that was inaccessible to non-toxigenic B. fragilis. LP entry by ETBF required BFT metalloprotease activity, and showed temporal restriction to the pre-weaning period, dependent on goblet-cell-associated passages. In situ single-cell analysis showed bft expression at the apical epithelial surface and within the LP. BFT expression increased goblet cell number and goblet-cell-associated passage formation. These findings define a paradigm by which bacterial toxin expression specifies developmental niche acquisition, suggesting that a selective advantage conferred by a toxin may impact long-term host health.
Collapse
Affiliation(s)
- Craig A Hill
- Department of Pediatrics, Washington University, St. Louis, MO, USA
| | - Benjamin W Casterline
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
- Department of Dermatology, University of Missouri School of Medicine, Columbia, MO, USA
| | | | - Aaron L Hecht
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | |
Collapse
|
102
|
Hor JW, Toh TS, Lim SY, Tan AH. Advice to People with Parkinson's in My Clinic: Probiotics and Prebiotics. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1507-1518. [PMID: 39213091 PMCID: PMC11492197 DOI: 10.3233/jpd-240172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
There is increasing evidence that microbial-based therapies can be useful in people with Parkinson's disease (PD). In this viewpoint, we provide a state-of-the-art review of the clinical and pre-clinical evidence for probiotics and prebiotics in PD. Currently, short-term clinical studies, including double-blind placebo-controlled randomized clinical trials, have demonstrated safety, and efficacy primarily in improving constipation-related symptoms. Pre-clinical studies consistently reported improvements in a range of biological markers and outcomes, including evidence for attenuation of gut dysfunction and neuroprotection. Bacteria from the genus Lactobacillus and Bifidobacterium have been the most frequently studied both in clinical and pre-clinical probiotics studies, while research into prebiotics is still limited and primarily involved resistant starch and fructooligosaccharides. We provide practical suggestions for clinicians on how to advise patients in the clinic regarding these popular treatments, and important caveats to be aware of. Finally, areas for further advancements are highlighted. It is envisaged that in the future, microbial-based therapies may benefit from personalization based on an enhanced understanding of a whole range of host factors and host-microbiome interactions.
Collapse
Affiliation(s)
- Jia Wei Hor
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Tzi Shin Toh
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shen-Yang Lim
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ai Huey Tan
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
103
|
Alvarez-Zapata M, Franco-Vega A, Rondero AG, Guerra RS, Flores BIJ, Comas-García M, Ovalle CO, Schneider B, Ratering S, Schnell S, Martinez-Gutierrez F. Modulation of the Altered Intestinal Microbiota by Use of Antibiotics with a Novel Synbiotic on Wistar Rats. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10204-0. [PMID: 38127241 DOI: 10.1007/s12602-023-10204-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
The use of antibiotics unbalances the intestinal microbiota. Probiotics, prebiotics, and synbiotics are alternatives for these unbalances. The effects of a new synbiotic composed of probiotic Saccharomyces boulardii CNCM I-745 and fructans from Agave salmiana (fAs) as prebiotics were assessed to modulate the intestinal microbiota. Two probiotic presentations, the commercial probiotic (CP) and the microencapsulated probiotic (MP) to improve those effects, were used to prepare the synbiotics and feed Wistar rats subjected to antibiotics (AB). Eight groups were studied, including five controls and three groups to modulate the microbiota after the use of antibiotics: G5: AB + MP-synbiotic, G6: AB + CP-synbiotic, and G8: AB + fAs. All treatments were administered daily for 7 days. On days 7 and 21, euthanasia was performed, cecum tissue was recovered and used to evaluate histological analysis and to study microphotograph by TEM, and finally, bacterial DNA was extracted and 16S rRNA gene metabarcode sequencing was performed. Histological analysis showed less epithelial damage and more abundance of the intestinal microbiota in the groups G5, G6, and G8 in comparison with the AB control group after 7 days. Microphotograph of the cecum at 2 weeks post treatment showed that G5 and G6 presented beneficial effects in epithelial reconstruction. Interestingly, in the groups that used the synbiotic without AB (G3 and G4) in addition to contributing to the recovery of the autochthonous microbiota, it promotes the development of beneficial microorganisms; those results were also achieved in the groups that used the synbiotic with AB enhancing the bacterial diversity and regulating the impact of AB.
Collapse
Affiliation(s)
- Miguel Alvarez-Zapata
- Laboratorio de Antimicrobianos, Biopelículas y Microbiota, Facultad de Ciencias Químicas, U.A.S.L.P., Av. Dr. Manuel Nava No. 6 Zona Universitaria, CP 78210, San Luis Potosí, S.L.P., México
| | - Avelina Franco-Vega
- Laboratorio de Tecnologías Emergentes, Facultad de Ciencias Químicas, U.A.S.L.P., San Luis Potosí, México
| | - Adriana Ganem Rondero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica (L-322), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Estado de México, México
| | - Ruth Soria Guerra
- Laboratorio de Biotecnología de plantas, Facultad de Ciencias Químicas, U.A.S.L.P., San Luis Potosí, México
| | | | - Mauricio Comas-García
- Sección de Genómica Médica, Centro de Investigación en Biomedicina y Salud, U.A.S.L.P., San Luis Potosí, México
- Sección de Microscopía de Alta Resolución, Centro de Investigación en Biomedicina y Salud, U.A.S.L.P., San Luis Potosí, Mexico
- Facultad de Ciencias, U.A.S.L.P., San Luis Potosi, Mexico
| | | | - Belinda Schneider
- Institute of Applied Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Fidel Martinez-Gutierrez
- Laboratorio de Antimicrobianos, Biopelículas y Microbiota, Facultad de Ciencias Químicas, U.A.S.L.P., Av. Dr. Manuel Nava No. 6 Zona Universitaria, CP 78210, San Luis Potosí, S.L.P., México.
- Sección de Genómica Médica, Centro de Investigación en Biomedicina y Salud, U.A.S.L.P., San Luis Potosí, México.
| |
Collapse
|
104
|
Goldman DA, Xue KS, Parrott AB, Jeeda RR, Franzese LR, Lopez JG, Vila JCC, Petrov DA, Good BH, Relman DA, Huang KC. Competition for shared resources increases dependence on initial population size during coalescence of gut microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569120. [PMID: 38076867 PMCID: PMC10705444 DOI: 10.1101/2023.11.29.569120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The long-term success of introduced populations depends on their initial size and ability to compete against existing residents, but it remains unclear how these factors collectively shape colonization. Here, we investigate how initial population (propagule) size and resource competition interact during community coalescence by systematically mixing eight pairs of in vitro microbial communities at ratios that vary over six orders of magnitude, and we compare our results to a neutral ecological model. Although the composition of the resulting co-cultures deviated substantially from neutral expectations, each co-culture contained species whose relative abundance depended on propagule size even after ~40 generations of growth. Using a consumer-resource model, we show that this dose-dependent colonization can arise when resident and introduced species have high niche overlap and consume shared resources at similar rates. This model predicts that propagule size will have larger, longer-lasting effects in diverse communities in which niche overlap is higher, and we experimentally confirm that strain isolates show stronger dose dependence when introduced into diverse communities than in pairwise co-culture. This work shows how neutral-like colonization dynamics can emerge from non-neutral resource competition and have lasting effects on the outcomes of community coalescence.
Collapse
Affiliation(s)
- Doran A. Goldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katherine S. Xue
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Autumn B. Parrott
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Rashi R. Jeeda
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lauryn R. Franzese
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jaime G. Lopez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jean C. C. Vila
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Benjamin H. Good
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - David A. Relman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
105
|
Eriksen C, Moll JM, Myers PN, Pinto ARA, Danneskiold-Samsøe NB, Dehli RI, Rosholm LB, Dalgaard MD, Penders J, Jonkers DM, Pan-Hammarström Q, Hammarström L, Kristiansen K, Brix S. IgG and IgM cooperate in coating of intestinal bacteria in IgA deficiency. Nat Commun 2023; 14:8124. [PMID: 38065985 PMCID: PMC10709418 DOI: 10.1038/s41467-023-44007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Immunoglobulin A (IgA) is acknowledged to play a role in the defence of the mucosal barrier by coating microorganisms. Surprisingly, IgA-deficient humans exhibit few infection-related complications, raising the question if the more specific IgG may help IgM in compensating for the lack of IgA. Here we employ a cohort of IgA-deficient humans, each paired with IgA-sufficient household members, to investigate multi-Ig bacterial coating. In IgA-deficient humans, IgM alone, and together with IgG, recapitulate coating of most bacterial families, despite an overall 3.6-fold lower Ig-coating. Bacterial IgG coating is dominated by IgG1 and IgG4. Single-IgG2 bacterial coating is sparse and linked to enhanced Escherichia coli load and TNF-α. Although single-IgG2 coating is 1.6-fold more prevalent in IgA deficiency than in healthy controls, it is 2-fold less prevalent than in inflammatory bowel disease. Altogether we demonstrate that IgG assists IgM in coating of most bacterial families in the absence of IgA and identify single-IgG2 bacterial coating as an inflammatory marker.
Collapse
Affiliation(s)
- Carsten Eriksen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Janne Marie Moll
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pernille Neve Myers
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ana Rosa Almeida Pinto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Rasmus Ibsen Dehli
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lisbeth Buus Rosholm
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School for Nutrition and Translational Research in Metabolism & Care and Public Health Research Institute CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Daisy Mae Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translation Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karsten Kristiansen
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, Shandong, China
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark.
| |
Collapse
|
106
|
Lagoumintzis G, Patrinos GP. Triangulating nutrigenomics, metabolomics and microbiomics toward personalized nutrition and healthy living. Hum Genomics 2023; 17:109. [PMID: 38062537 PMCID: PMC10704648 DOI: 10.1186/s40246-023-00561-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The unique physiological and genetic characteristics of individuals influence their reactions to different dietary constituents and nutrients. This notion is the foundation of personalized nutrition. The field of nutrigenetics has witnessed significant progress in understanding the impact of genetic variants on macronutrient and micronutrient levels and the individual's responsiveness to dietary intake. These variants hold significant value in facilitating the development of personalized nutritional interventions, thereby enabling the effective translation from conventional dietary guidelines to genome-guided nutrition. Nevertheless, certain obstacles could impede the extensive implementation of individualized nutrition, which is still in its infancy, such as the polygenic nature of nutrition-related pathologies. Consequently, many disorders are susceptible to the collective influence of multiple genes and environmental interplay, wherein each gene exerts a moderate to modest effect. Furthermore, it is widely accepted that diseases emerge because of the intricate interplay between genetic predisposition and external environmental influences. In the context of this specific paradigm, the utilization of advanced "omic" technologies, including epigenomics, transcriptomics, proteomics, metabolomics, and microbiome analysis, in conjunction with comprehensive phenotyping, has the potential to unveil hitherto undisclosed hereditary elements and interactions between genes and the environment. This review aims to provide up-to-date information regarding the fundamentals of personalized nutrition, specifically emphasizing the complex triangulation interplay among microbiota, dietary metabolites, and genes. Furthermore, it highlights the intestinal microbiota's unique makeup, its influence on nutrigenomics, and the tailoring of dietary suggestions. Finally, this article provides an overview of genotyping versus microbiomics, focusing on investigating the potential applications of this knowledge in the context of tailored dietary plans that aim to improve human well-being and overall health.
Collapse
Affiliation(s)
- George Lagoumintzis
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
| | - George P Patrinos
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
| |
Collapse
|
107
|
He X, Zhang W, Feng P, Mai Z, Gong X, Zhang G. Role of Surface Coverage of Sessile Probiotics in Their Interplay with Pathogen Bacteria Investigated by Digital Holographic Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17308-17317. [PMID: 37974298 DOI: 10.1021/acs.langmuir.3c02436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The adhesion of probiotics plays an important role in the gastrointestinal tract. Understanding the effect of the coverage of colonized probiotics on enteric pathogens is critical for the design of effective probiotic therapies. In the present work, we have investigated the adaptive behaviors of the intestinal pathogenic bacteria Enterobacter sakazakii (ES) near the surfaces coated with a probiotic─Lactobacillus rhamnosus GG (LGG) as a function of surface coverage ratio (CRLGG) by using a home-setup digital holographic microscopy. It shows that ES cells can adaptively sense LGG within a distance of 4.2 μm, even at CRLGG values as low as 0.05%. The growth inhibition of ES cells slightly varies with CRLGG, but the near-surface acceleration and accumulation of ES cells have much dependence on CRLGG. As CRLGG increases from 0.05 to 24.6%, the percentage of actively swimming ES, the motion bias, the acceleration, and the interplay duration do not linearly vary with CRLGG. Instead, each of them shows an extreme at CRLGG of 13.4%, corresponding to the chemotaxis behaviors of ES cells induced by diffusing stimuli (organic acids, bacteriocins, etc.) released from LGG, which showed an extreme concentration gradient at CRLGG = 13.4% by simulations. Our study clearly demonstrates that surface coverage of sessile probiotics profoundly influences their interplay with pathogen bacteria, which should be taken into account in designing probiotic therapies.
Collapse
Affiliation(s)
- Xintong He
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Weixiong Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Pu Feng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, P. R. China
| | - Zhihui Mai
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, P. R. China
| | - Xiangjun Gong
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
108
|
Lakshmanan AP, Deola S, Terranegra A. The Promise of Precision Nutrition for Modulation of the Gut Microbiota as a Novel Therapeutic Approach to Acute Graft-versus-host Disease. Transplantation 2023; 107:2497-2509. [PMID: 37189240 PMCID: PMC10664798 DOI: 10.1097/tp.0000000000004629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 05/17/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a severe side effect of allogeneic hematopoietic stem cell transplantation (aHSCT) that has complex phenotypes and often unpredictable outcomes. The current management is not always able to prevent aGVHD. A neglected actor in the management of aGVHD is the gut microbiota. Gut microbiota dysbiosis after aHSCT is caused by many factors and may contribute to the development of aGVHD. Diet and nutritional status modify the gut microbiota and a wide range of products are now available to manipulate the gut microbiota (pro-, pre-, and postbiotics). New investigations are testing the effect of probiotics and nutritional supplements in both animal models and human studies, with encouraging results. In this review, we summarize the most recent literature about the probiotics and nutritional factors able to modulate the gut microbiota and we discuss the future perspective in developing new integrative therapeutic approaches to reducing the risk of graft-versus-host disease in patients undergoing aHSCT.
Collapse
Affiliation(s)
| | - Sara Deola
- Advanced Cell Therapy Core, Research Branch, Sidra Medicine, Qatar
| | | |
Collapse
|
109
|
Song WS, Jo SH, Lee JS, Kwon JE, Park JH, Kim YR, Baek JH, Kim MG, Kwon SY, Kim YG. Multiomics analysis reveals the biological effects of live Roseburia intestinalis as a high-butyrate-producing bacterium in human intestinal epithelial cells. Biotechnol J 2023; 18:e2300180. [PMID: 37596881 DOI: 10.1002/biot.202300180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Butyrate-producing bacteria play a key role in human health, and recent studies have triggered interest in their development as next-generation probiotics. However, there remains limited knowledge not only on the identification of high-butyrate-producing bacteria in the human gut but also in the metabolic capacities for prebiotic carbohydrates and their interaction with the host. Herein, it was discovered that Roseburia intestinalis produces higher levels of butyrate and digests a wider variety of prebiotic polysaccharide structures compared with other human major butyrate-producing bacteria (Eubacterium rectale, Faecalibacterium prausnitzii, and Roseburia hominis). Moreover, R. intestinalis extracts upregulated the mRNA expression of tight junction proteins (TJP1, OCLN, and CLDN3) in human intestinal epithelial cells more than other butyrate-producing bacteria. R. intestinalis was cultured with human intestinal epithelial cells in the mimetic intestinal host-microbe interaction coculture system to explore the health-promoting effects using multiomics approaches. Consequently, it was discovered that live R. intestinalis only enhances purine metabolism and the oxidative pathway, increasing adenosine triphosphate levels in human intestinal epithelial cells, but that heat-killed bacteria had no effect. Therefore, this study proposes that R. intestinalis has potentially high value as a next-generation probiotic to promote host intestinal health.
Collapse
Affiliation(s)
- Won-Suk Song
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Jae-Seung Lee
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ji-Eun Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ji-Hyeon Park
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ye-Rim Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ji-Hyun Baek
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Min-Gyu Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Seo-Young Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| |
Collapse
|
110
|
Lim MY, Nam YD. Gut microbiome in healthy aging versus those associated with frailty. Gut Microbes 2023; 15:2278225. [PMID: 37968837 PMCID: PMC10730223 DOI: 10.1080/19490976.2023.2278225] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
As the proportion of older people in the world's population steadily increases, there is an urgent need to identify ways to support healthy aging. The gut microbiome has been proposed to be involved in aging-related diseases and has become an attractive target for improving health in older people. Herein, we cover the relationship between the gut microbiome and chronological age in adults, and then, we discuss the gut microbiome features associated with frailty, as a hallmark of unhealthy aging in older people. Furthermore, we describe the effects of microbiome-targeted interventions, such as dietary patterns and consumption of probiotics, prebiotics, and synbiotics, on modulating the gut microbiome composition and further promoting healthy aging. Further studies are needed to explore the underlying mechanisms of gut microbiome-induced aging complications and to develop personalized microbiome-based strategies for reducing the severity of frailty or preventing the onset of frailty in older adults.
Collapse
Affiliation(s)
- Mi Young Lim
- Personalized Diet Research Group, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| | - Young-Do Nam
- Personalized Diet Research Group, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| |
Collapse
|
111
|
Huang G, Khan R, Zheng Y, Lee PC, Li Q, Khan I. Exploring the role of gut microbiota in advancing personalized medicine. Front Microbiol 2023; 14:1274925. [PMID: 38098666 PMCID: PMC10720646 DOI: 10.3389/fmicb.2023.1274925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Ongoing extensive research in the field of gut microbiota (GM) has highlighted the crucial role of gut-dwelling microbes in human health. These microbes possess 100 times more genes than the human genome and offer significant biochemical advantages to the host in nutrient and drug absorption, metabolism, and excretion. It is increasingly clear that GM modulates the efficacy and toxicity of drugs, especially those taken orally. In addition, intra-individual variability of GM has been shown to contribute to drug response biases for certain therapeutics. For instance, the efficacy of cyclophosphamide depends on the presence of Enterococcus hirae and Barnesiella intestinihominis in the host intestine. Conversely, the presence of inappropriate or unwanted gut bacteria can inactivate a drug. For example, dehydroxylase of Enterococcus faecalis and Eggerthella lenta A2 can metabolize L-dopa before it converts into the active form (dopamine) and crosses the blood-brain barrier to treat Parkinson's disease patients. Moreover, GM is emerging as a new player in personalized medicine, and various methods are being developed to treat diseases by remodeling patients' GM composition, such as prebiotic and probiotic interventions, microbiota transplants, and the introduction of synthetic GM. This review aims to highlight how the host's GM can improve drug efficacy and discuss how an unwanted bug can cause the inactivation of medicine.
Collapse
Affiliation(s)
- Gouxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Ping-Chin Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Qingnan Li
- Clinical Research Center, Shantou Central Hospital, Shantou, China
- Department of Pharmacy, Shantou Central Hospital, Shantou, China
| | - Imran Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
112
|
Zhang Y, Wang X, Li W, Yang Y, Wu Z, Lyu Y, Yue C. Intestinal microbiota: a new perspective on delaying aging? Front Microbiol 2023; 14:1268142. [PMID: 38098677 PMCID: PMC10720643 DOI: 10.3389/fmicb.2023.1268142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
The global aging situation is severe, and the medical pressures associated with aging issues should not be underestimated. The need and feasibility of studying aging and intervening in aging have been confirmed. Aging is a complex natural physiological progression, which involves the irreversible deterioration of body cells, tissues, and organs with age, leading to enhanced risk of disease and ultimately death. The intestinal microbiota has a significant role in sustaining host dynamic balance, and the study of bidirectional communication networks such as the brain-gut axis provides important directions for human disease research. Moreover, the intestinal microbiota is intimately linked to aging. This review describes the intestinal microbiota changes in human aging and analyzes the causal controversy between gut microbiota changes and aging, which are believed to be mutually causal, mutually reinforcing, and inextricably linked. Finally, from an anti-aging perspective, this study summarizes how to achieve delayed aging by targeting the intestinal microbiota. Accordingly, the study aims to provide guidance for further research on the intestinal microbiota and aging.
Collapse
Affiliation(s)
- Yuemeng Zhang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Xiaomei Wang
- Yan’an University of Physical Education, Yan’an University, Yan’an, Shaanxi, China
| | - Wujuan Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yi Yang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Zhuoxuan Wu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yuhong Lyu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
113
|
Kerlikowsky F, Müller M, Greupner T, Amend L, Strowig T, Hahn A. Distinct Microbial Taxa Are Associated with LDL-Cholesterol Reduction after 12 Weeks of Lactobacillus plantarum Intake in Mild Hypercholesterolemia: Results of a Randomized Controlled Study. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10191-2. [PMID: 38015360 DOI: 10.1007/s12602-023-10191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Probiotic microbes such as Lactobacillus may reduce serum total cholesterol (TC) and low-density lipoprotein (LDL) cholesterol. The objective of this study was to assess the effect of Lactobacillus plantarum strains CECT7527, CECT7528, and CECT7529 (LP) on the serum lipids, cardiovascular parameters, and fecal gut microbiota composition in patients with mild hypercholesterolemia. A randomized, double-blinded, placebo-controlled clinical trial with 86 healthy adult participants with untreated elevated LDL cholesterol ≥ 160 mg/dl was conducted. Participants were randomly allocated to either placebo or LP (1.2 × 109 CFU/d) for 12 weeks. LDL, HDL, TC, and triglycerides (TG), cardiovascular parameters (blood pressure, arterial stiffness), and fecal gut microbiota composition (16S rRNA gene sequencing) were assessed at baseline and after 12 weeks. Both groups were comparable regarding age, sex, and LDL-C at baseline. LDL-C decreased (mean decrease - 6.6 mg/dl ± - 14.0 mg/dl, Ptime*group = 0.006) in the LP group but not in the placebo group. No effects were observed on HDL, TG, or cardiovascular parameters or overall gut microbiota composition. Responders to LP intervention (> 5% LDL-C reduction) were characterized by higher BMI, pronounced TC reduction, higher abundance of fecal Roseburia, and lower abundance of Oscillibacter. In conclusion, 12 weeks of L. plantarum intake moderately reduced LDL-C and TC as compared to placebo. LDL-C-lowering efficacy of L. plantarum strains may potentially be dependent on individual difference in the gut microbiota. Trial registration: DRKS00020384, dated 07/01/2020.
Collapse
Affiliation(s)
- Felix Kerlikowsky
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, 30167, Hannover, Germany.
| | - Mattea Müller
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, 30167, Hannover, Germany
| | - Theresa Greupner
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, 30167, Hannover, Germany
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Brunswick, Germany
- Cluster of Excellence RESIST (EXC 2155, Hannover Medical School, Hannover, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Brunswick, Germany
- Cluster of Excellence RESIST (EXC 2155, Hannover Medical School, Hannover, Germany
- Center for Individualized Infection Medicine, Hannover, Germany
| | - Andreas Hahn
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, 30167, Hannover, Germany
| |
Collapse
|
114
|
Das A, Behera RN, Kapoor A, Ambatipudi K. The Potential of Meta-Proteomics and Artificial Intelligence to Establish the Next Generation of Probiotics for Personalized Healthcare. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17528-17542. [PMID: 37955263 DOI: 10.1021/acs.jafc.3c03834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The symbiosis of probiotic bacteria with humans has rendered various health benefits while providing nutrition and a suitable environment for their survival. However, the probiotics must survive unfavorable gut conditions to exert beneficial effects. The intrinsic resistance of probiotics to survive harsh conditions results from a myriad of proteins. Interaction of microbial proteins with the host is indispensable for modulating the gut microbiome, such as interaction with cell receptors and protective action against pathogens. The complex interplay of proteins should be unraveled by utilizing metaproteomic strategies. The contribution of probiotics to health is now widely accepted. However, due to the inconsistency of generalized probiotics, contemporary research toward precision probiotics has gained momentum for customized treatment. This review explores the application of metaproteomics and AI/ML algorithms in resolving multiomics data analysis and in silico prediction of microbial features for screening specific beneficial probiotic organisms. Implementing these integrative strategies could augment the potential of precision probiotics for personalized healthcare.
Collapse
Affiliation(s)
- Arpita Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rama N Behera
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ayushi Kapoor
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
115
|
Wallen-Russell C, Pearlman N, Wallen-Russell S, Cretoiu D, Thompson DC, Voinea SC. A Catastrophic Biodiversity Loss in the Environment Is Being Replicated on the Skin Microbiome: Is This a Major Contributor to the Chronic Disease Epidemic? Microorganisms 2023; 11:2784. [PMID: 38004795 PMCID: PMC10672968 DOI: 10.3390/microorganisms11112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
There has been a catastrophic loss of biodiversity in ecosystems across the world. A similar crisis has been observed in the human gut microbiome, which has been linked to "all human diseases affecting westernized countries". This is of great importance because chronic diseases are the leading cause of death worldwide and make up 90% of America's healthcare costs. Disease development is complex and multifactorial, but there is one part of the body's interlinked ecosystem that is often overlooked in discussions about whole-body health, and that is the skin microbiome. This is despite it being a crucial part of the immune, endocrine, and nervous systems and being continuously exposed to environmental stressors. Here we show that a parallel biodiversity loss of 30-84% has occurred on the skin of people in the developed world compared to our ancestors. Research has shown that dysbiosis of the skin microbiome has been linked to many common skin diseases and, more recently, that it could even play an active role in the development of a growing number of whole-body health problems, such as food allergies, asthma, cardiovascular diseases, and Parkinson's, traditionally thought unrelated to the skin. Damaged skin is now known to induce systemic inflammation, which is involved in many chronic diseases. We highlight that biodiversity loss is not only a common finding in dysbiotic ecosystems but also a type of dysbiosis. As a result, we make the case that biodiversity loss in the skin microbiome is a major contributor to the chronic disease epidemic. The link between biodiversity loss and dysbiosis forms the basis of this paper's focus on the subject. The key to understanding why biodiversity loss creates an unhealthy system could be highlighted by complex physics. We introduce entropy to help understand why biodiversity has been linked with ecosystem health and stability. Meanwhile, we also introduce ecosystems as being governed by "non-linear physics" principles-including chaos theory-which suggests that every individual part of any system is intrinsically linked and implies any disruption to a small part of the system (skin) could have a significant and unknown effect on overall system health (whole-body health). Recognizing the link between ecosystem health and human health allows us to understand how crucial it could be to maintain biodiversity across systems everywhere, from the macro-environment we inhabit right down to our body's microbiome. Further, in-depth research is needed so we can aid in the treatment of chronic diseases and potentially change how we think about our health. With millions of people currently suffering, research to help mitigate the crisis is of vital importance.
Collapse
Affiliation(s)
| | - Nancy Pearlman
- Ecology Center of Southern California, Los Angeles, CA 90035, USA;
| | | | - Dragos Cretoiu
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 011062 Bucharest, Romania
| | - Dana Claudia Thompson
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 011062 Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Al. Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 022328 Bucharest, Romania
| |
Collapse
|
116
|
Gao S, Wang J. Maternal and infant microbiome: next-generation indicators and targets for intergenerational health and nutrition care. Protein Cell 2023; 14:807-823. [PMID: 37184065 PMCID: PMC10636639 DOI: 10.1093/procel/pwad029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023] Open
Abstract
Microbes are commonly sensitive to shifts in the physiological and pathological state of their hosts, including mothers and babies. From this perspective, the microbiome may be a good indicator for diseases during pregnancy and has the potential to be used for perinatal health monitoring. This is embodied in the application of microbiome from multi body sites for auxiliary diagnosis, early prediction, prolonged monitoring, and retrospective diagnosis of pregnancy and infant complications, as well as nutrition management and health products developments of mothers and babies. Here we summarized the progress in these areas and explained that the microbiome of different body sites is sensitive to different diseases and their microbial biomarkers may overlap between each other, thus we need to make a diagnosis prudently for those diseases. Based on the microbiome variances and additional anthropometric and physical data, individualized responses of mothers and neonates to meals and probiotics/prebiotics were predictable, which is of importance for precise nutrition and probiotics/prebiotics managements and developments. Although a great deal of encouraging performance was manifested in previous studies, the efficacy could be further improved by combining multi-aspect data such as multi-omics and time series analysis in the future. This review reconceptualizes maternal and infant health from a microbiome perspective, and the knowledge in it may inspire the development of new options for the prevention and treatment of adverse pregnancy outcomes and bring a leap forward in perinatal health care.
Collapse
Affiliation(s)
- Shengtao Gao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinfeng Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
117
|
Zhang Y, Lu M, Zhang Y, Yuan X, Zhou M, Xu X, Zhang T, Song J. Clostridium butyricum MIYAIRI 588 alleviates periodontal bone loss in mice with diabetes mellitus. Ann N Y Acad Sci 2023; 1529:84-100. [PMID: 37658670 DOI: 10.1111/nyas.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
The gut microbiota is a bridge linking periodontitis and systemic diseases, such as diabetes mellitus (DM). The probiotic Clostridium butyricum MIYAIRI 588 (CBM588) is reportedly an effective therapeutic approach for gut dysbiosis. Here, in a mouse model, we explored the therapeutic effect of CBM588 on periodontal bone destruction in DM and DM-associated periodontitis (DMP), as well as the underlying mechanism. Micro-computed tomography revealed that DM and DMP both aggravated periodontal bone destruction, which was alleviated by intragastric supplementation with CBM588. Moreover, 16S rRNA sequencing and untargeted metabolite analysis indicated that CBM588 ameliorated DMP-triggered dysbiosis and led to reduced oxidative stress associated with elevated 4-hydroxybenzenemethanol (4-HBA) in serum. Furthermore, in vitro and in vivo experiments found that the metabolite 4-HBA promoted nuclear factor erythroid 2-related factor 2 (Nrf2) signaling activation and modulated the polarization of macrophages, thus ameliorating inflammatory bone destruction in DMP. Our study demonstrates the protective effects of CBM588 in DM-induced mice, with and without ligature-induced periodontitis. The mechanism involves regulation of the gut microbiota and restoration of the integrity of the gut barrier to alleviate oxidative damage by elevating serum 4-HBA. This study suggests the possibility of CBM588 as a therapeutic adjuvant for periodontal treatment in diabetes patients.
Collapse
Affiliation(s)
- Yanan Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Miao Lu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xulei Yuan
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Mengjiao Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohui Xu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Tingwei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
118
|
Diaz-Marugan L, Kantsjö JB, Rutsch A, Ronchi F. Microbiota, diet, and the gut-brain axis in multiple sclerosis and stroke. Eur J Immunol 2023; 53:e2250229. [PMID: 37470461 DOI: 10.1002/eji.202250229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Intestinal microbiota can influence the phenotype and function of immune cell responses through the dissemination of bacterial antigens or metabolites. Diet is one of the major forces shaping the microbiota composition and metabolism, contributing to host homeostasis and disease susceptibility. Currently, nutrition is a complementary and alternative approach to the management of metabolic and neurological diseases and cancer. However, the knowledge of the exact mechanism of action of diet and microbiota on the gut-brain communication is only developing in recent years. Here, we reviewed the current knowledge on the effect of diet and microbiota on the gut-brain axis in patients with two different central nervous system diseases, multiple sclerosis and stroke. We have also highlighted the open questions in the field that we believe are important to address to gain a deeper understanding of the mechanisms by which diet can directly or indirectly affect the host via the microbiota. We think this will open up new approaches to the treatment, diagnosis, and monitoring of various diseases.
Collapse
Affiliation(s)
- Laura Diaz-Marugan
- Charité - Universitaetsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH): Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Berlin, Germany
- Departamento de Medicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Johan B Kantsjö
- Charité - Universitaetsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH): Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Berlin, Germany
| | - Andrina Rutsch
- Charité - Universitaetsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH): Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Berlin, Germany
| | - Francesca Ronchi
- Charité - Universitaetsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH): Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Berlin, Germany
| |
Collapse
|
119
|
Yang X, Wang C, Wang Q, Zhang Z, Nie W, Shang L. Armored probiotics for oral delivery. SMART MEDICINE 2023; 2:e20230019. [PMID: 39188298 PMCID: PMC11235677 DOI: 10.1002/smmd.20230019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 08/28/2024]
Abstract
As a kind of intestinal flora regulator, probiotics show great potential in the treatment of many diseases. However, orally delivered probiotics are often vulnerable to unfriendly gastrointestinal environments, resulting in a low survival rate and decreased therapeutic efficacy. Decorating or encapsulating probiotics with functional biomaterials has become a facile yet useful strategy, and probiotics can be given different functions by wearing different armors. This review systematically discusses the challenges faced by oral probiotics and the research progress of armored probiotics delivery systems. We focus on how various functional armors help probiotics overcome different obstacles and achieve efficient delivery. We also introduce the applications of armor probiotics in disease treatment and analyze the future trends of developing advanced probiotics-based therapies.
Collapse
Affiliation(s)
- Xinyuan Yang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chong Wang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Qiao Wang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhuohao Zhang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Weimin Nie
- Key Laboratory of Smart Drug DeliverySchool of PharmacyFudan UniversityShanghaiChina
| | - Luoran Shang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
120
|
Arenas-Gómez CM, Garcia-Gutierrez E, Escobar JS, Cotter PD. Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites. Crit Rev Microbiol 2023; 49:764-785. [PMID: 36369718 DOI: 10.1080/1040841x.2022.2142088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.
Collapse
Affiliation(s)
- Claudia Marcela Arenas-Gómez
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Enriqueta Garcia-Gutierrez
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Paul D Cotter
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
121
|
Luo Y, Zhang Y, Yang Y, Wu S, Zhao J, Li Y, Kang X, Li Z, Chen J, Shen X, He F, Cheng R. Bifidobacterium infantis and 2'-fucosyllactose supplementation in early life may have potential long-term benefits on gut microbiota, intestinal development, and immune function in mice. J Dairy Sci 2023; 106:7461-7476. [PMID: 37641283 DOI: 10.3168/jds.2023-23367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/10/2023] [Indexed: 08/31/2023]
Abstract
The health benefits of nutritional interventions targeting the gut microbiota in early life are transient, such as probiotics, prebiotics, and synbiotics. This study sought to determine whether supplementation with Bifidobacterium infantis 79 (B79), 2'-fucosyllactose (2'-FL), or both (B79+2'FL) would lead to persistent health benefits in neonatal BALB/c mice. We found that at postnatal day (PND) 21, Ki67 and MUC2 expression increased, while total serum IgE content decreased in the B79, 2'-FL, and B79+2'-FL groups. The gut microbiota structure and composition altered as well. The levels of propionic acid, sIgA, and IL-10 increased in the 2'-FL group. Moreover, butyric acid content increased, while IL-6, IL-12p40, and tumor necrosis factor-α decreased in the B79+2'-FL group. At PND 56, Ki67 and MUC2 expression increased, whereas the gut microbiota remained altered in all 3 groups. The serum total IgG level increased only in the B79+2'-FL group. In conclusion, our study suggests that early-life supplementation with B79, 2'-FL, or their combination persistently alters the gut microbiome and promotes intestinal development; the immunomodulatory capacity of B79 and 2'-FL occurs during weaning, and their combination may persist into adulthood.
Collapse
Affiliation(s)
- Yating Luo
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yujie Zhang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yang Yang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Simou Wu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Jincheng Zhao
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yun Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Xiaohong Kang
- R&D Center, Inner Mongolia Meng Niu Dairy Industry (Group) Co. Ltd., 011500 Hohhot, Inner Mongolia, China
| | - Zhouyong Li
- R&D Center, Inner Mongolia Meng Niu Dairy Industry (Group) Co. Ltd., 011500 Hohhot, Inner Mongolia, China
| | - Jianguo Chen
- R&D Center, Inner Mongolia Meng Niu Dairy Industry (Group) Co. Ltd., 011500 Hohhot, Inner Mongolia, China; Beijing YuGen Pharmaceutical Co. Ltd., 102600 Beijing, China
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China.
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China.
| |
Collapse
|
122
|
Xue KS, Walton SJ, Goldman DA, Morrison ML, Verster AJ, Parrott AB, Yu FB, Neff NF, Rosenberg NA, Ross BD, Petrov DA, Huang KC, Good BH, Relman DA. Prolonged delays in human microbiota transmission after a controlled antibiotic perturbation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559480. [PMID: 37808827 PMCID: PMC10557656 DOI: 10.1101/2023.09.26.559480] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Humans constantly encounter new microbes, but few become long-term residents of the adult gut microbiome. Classical theories predict that colonization is determined by the availability of open niches, but it remains unclear whether other ecological barriers limit commensal colonization in natural settings. To disentangle these effects, we used a controlled perturbation with the antibiotic ciprofloxacin to investigate the dynamics of gut microbiome transmission in 22 households of healthy, cohabiting adults. Colonization was rare in three-quarters of antibiotic-taking subjects, whose resident strains rapidly recovered in the week after antibiotics ended. In contrast, the remaining antibiotic-taking subjects exhibited lasting responses, with extensive species losses and transient expansions of potential opportunistic pathogens. These subjects experienced elevated rates of commensal colonization, but only after long delays: many new colonizers underwent sudden, correlated expansions months after the antibiotic perturbation. Furthermore, strains that had previously transmitted between cohabiting partners rarely recolonized after antibiotic disruptions, showing that colonization displays substantial historical contingency. This work demonstrates that there remain substantial ecological barriers to colonization even after major microbiome disruptions, suggesting that dispersal interactions and priority effects limit the pace of community change.
Collapse
Affiliation(s)
- Katherine S Xue
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sophie Jean Walton
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Biophysics Training Program, Stanford, CA 94305, USA
| | - Doran A Goldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Maike L Morrison
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Adrian J Verster
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | | | | | - Norma F Neff
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Noah A Rosenberg
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Benjamin D Ross
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Benjamin H Good
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Applied Physics, Stanford, CA 94305, USA
| | - David A Relman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
123
|
Jansma J, Chatziioannou AC, Castricum K, van Hemert S, El Aidy S. Metabolic network construction reveals probiotic-specific alterations in the metabolic activity of a synthetic small intestinal community. mSystems 2023; 8:e0033223. [PMID: 37668401 PMCID: PMC10654062 DOI: 10.1128/msystems.00332-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/13/2023] [Indexed: 09/06/2023] Open
Abstract
IMPORTANCE The development of probiotic therapies targeted at the small intestinal microbiota represents a significant advancement in the field of probiotic interventions. This region poses unique opportunities due to its low number of gut microbiota, along with the presence of heightened immune and metabolic host responses. However, progress in this area has been hindered by a lack of detailed understanding regarding the molecular mechanisms through which probiotics exert their effects in the small intestine. Our study, utilizing a synthetic community of three small intestinal bacterial strains and the addition of two different probiotic species, and kynurenine as a representative dietary or endogenously produced compound, highlights the importance of selecting probiotic species with diverse genetic capabilities that complement the functional capacity of the resident microbiota, or alternatively, constructing a multispecies formula. This approach holds great promise for the development of effective probiotic therapies and underscores the need to consider the functional capacity of probiotic species when designing interventions.
Collapse
Affiliation(s)
- Jack Jansma
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | | | | | | | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| |
Collapse
|
124
|
Kim K, Kang M, Cho BK. Systems and synthetic biology-driven engineering of live bacterial therapeutics. Front Bioeng Biotechnol 2023; 11:1267378. [PMID: 37929193 PMCID: PMC10620806 DOI: 10.3389/fbioe.2023.1267378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
The past decade has seen growing interest in bacterial engineering for therapeutically relevant applications. While early efforts focused on repurposing genetically tractable model strains, such as Escherichia coli, engineering gut commensals is gaining traction owing to their innate capacity to survive and stably propagate in the intestine for an extended duration. Although limited genetic tractability has been a major roadblock, recent advances in systems and synthetic biology have unlocked our ability to effectively harness native gut commensals for therapeutic and diagnostic purposes, ranging from the rational design of synthetic microbial consortia to the construction of synthetic cells that execute "sense-and-respond" logic operations that allow real-time detection and therapeutic payload delivery in response to specific signals in the intestine. In this review, we outline the current progress and latest updates on microbial therapeutics, with particular emphasis on gut commensal engineering driven by synthetic biology and systems understanding of their molecular phenotypes. Finally, the challenges and prospects of engineering gut commensals for therapeutic applications are discussed.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
125
|
Abuqwider J, Di Porzio A, Barrella V, Gatto C, Sequino G, De Filippis F, Crescenzo R, Spagnuolo MS, Cigliano L, Mauriello G, Iossa S, Mazzoli A. Limosilactobacillus reuteri DSM 17938 reverses gut metabolic dysfunction induced by Western diet in adult rats. Front Nutr 2023; 10:1236417. [PMID: 37908302 PMCID: PMC10613642 DOI: 10.3389/fnut.2023.1236417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Microencapsulation of probiotic bacteria is an efficient and innovative new technique aimed at preserving bacterial survival in the hostile conditions of the gastrointestinal tract. However, understanding whether a microcapsule preserves the effectiveness of the bacterium contained within it is of fundamental importance. Methods Male Wistar rats aged 90 days were fed a control diet or a Western diet for 8 weeks, with rats fed the Western diet divided into three groups: one receiving the diet only (W), the second group receiving the Western diet and free L. reuteri DSM 17938 (WR), and the third group receiving the Western diet and microencapsulated L. reuteri DSM 17938 (WRM). After 8 weeks of treatment, gut microbiota composition was evaluated, together with occludin, one of the tight junction proteins, in the ileum and the colon. Markers of inflammation were also quantified in the portal plasma, ileum, and colon, as well as markers for gut redox homeostasis. Results The Western diet negatively influenced the intestinal microbiota, with no significant effect caused by supplementation with free and microencapsulated L. reuteri. However, L. reuteri, in both forms, effectively preserved the integrity of the intestinal barrier, thus protecting enterocytes from the development of inflammation and oxidative stress. Conclusion From these whole data, it emerges that L. reuteri DSM 17938 can be an effective probiotic in preventing the unhealthy consequences of the Western diet, especially in the gut, and that microencapsulation preserves the probiotic effects, thus opening the formulation of new preparations to be able to improve gut function independent of dietary habits.
Collapse
Affiliation(s)
- Jumana Abuqwider
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Di Porzio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Valentina Barrella
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Cristina Gatto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | | | - Maria Stefania Spagnuolo
- Department of Bio-Agrofood Science, Institute for the Animal Production System in the Mediterranean Environment, National Research Council Naples (CNR-ISPAAM), Naples, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
126
|
Antony MA, Chowdhury A, Edem D, Raj R, Nain P, Joglekar M, Verma V, Kant R. Gut microbiome supplementation as therapy for metabolic syndrome. World J Diabetes 2023; 14:1502-1513. [PMID: 37970133 PMCID: PMC10642415 DOI: 10.4239/wjd.v14.i10.1502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 10/09/2023] Open
Abstract
The gut microbiome is defined as an ecological community of commensal symbiotic and pathogenic microorganisms that exist in our body. Gut microbiome dysbiosis is a condition of dysregulated and disrupted intestinal bacterial homeostasis, and recent evidence has shown that dysbiosis is related to chronic inflammation, insulin resistance, cardiovascular diseases (CVD), type 2 diabetes mellitus (T2DM), and obesity. It is well known that obesity, T2DM and CVD are caused or worsened by multiple factors like genetic predisposition, environmental factors, unhealthy high calorie diets, and sedentary lifestyle. However, recent evidence from human and mouse models suggest that the gut microbiome is also an active player in the modulation of metabolic syndrome, a set of risk factors including obesity, hyperglycemia, and dyslipidemia that increase the risk for CVD, T2DM, and other diseases. Current research aims to identify treatments to increase the number of beneficial microbiota in the gut microbiome in order to modulate metabolic syndrome by reducing chronic inflammation and insulin resistance. There is increasing interest in supplements, classified as prebiotics, probiotics, synbiotics, or postbiotics, and their effect on the gut microbiome and metabolic syndrome. In this review article, we have summarized current research on these supplements that are available to improve the abundance of beneficial gut microbiota and to reduce the harmful ones in patients with metabolic syndrome.
Collapse
Affiliation(s)
- Mc Anto Antony
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina/AnMed Campus, Anderson, SC 29621, United States
| | - Aniqa Chowdhury
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina/AnMed Campus, Anderson, SC 29621, United States
| | - Dinesh Edem
- Department of Endocrinology, Diabetes and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AK 72205, United States
| | - Rishi Raj
- Department of Endocrinology, Diabetes and Metabolism, Pikeville Medical Center, Pikeville, KY 41501, United States
| | - Priyanshu Nain
- Department of Graduate Medical Education, Maulana Azad Medical College, Delhi 110002, India
| | - Mansi Joglekar
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina/AnMed Campus, Anderson, SC 29621, United States
| | - Vipin Verma
- Department of Internal Medicine, Medical University of South Carolina/AnMed Campus, Anderson, SC 29621, United States
| | - Ravi Kant
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina/AnMed Campus, Anderson, SC 29621, United States
| |
Collapse
|
127
|
Kiousi DE, Karadedos DM, Sykoudi A, Repanas P, Kamarinou CS, Argyri AA, Galanis A. Development of a Multiplex PCR Assay for Efficient Detection of Two Potential Probiotic Strains Using Whole Genome-Based Primers. Microorganisms 2023; 11:2553. [PMID: 37894211 PMCID: PMC10609308 DOI: 10.3390/microorganisms11102553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Probiotics are microorganisms that exert strain-specific health-promoting effects on the host. Τhey are employed in the production of functional dairy or non-dairy food products; still, their detection in these complex matrices is a challenging task. Several culture-dependent and culture-independent methods have been developed in this direction; however, they present low discrimination at the strain level. Here, we developed a multiplex PCR assay for the detection of two potential probiotic lactic acid bacteria (LAB) strains, Lactiplantibacillus plantarum L125 and Lp. pentosus L33, in monocultures and yogurt samples. Unique genomic regions were identified via comparative genomic analysis and were used to produce strain-specific primers. Then, primer sets were selected that produced distinct electrophoretic DNA banding patterns in multiplex PCR for each target strain. This method was further implemented for the detection of the two strains in yogurt samples, highlighting its biotechnological applicability. Moreover, it can be applied with appropriate modifications to detect any bacterial strain with available WGS.
Collapse
Affiliation(s)
- Despoina E. Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
| | - Dimitrios M. Karadedos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
| | - Anastasia Sykoudi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
| | - Panagiotis Repanas
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
| | - Christina S. Kamarinou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece;
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece;
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
| |
Collapse
|
128
|
Yakou MH, Ghilas S, Tran K, Liao Y, Afshar-Sterle S, Kumari A, Schmid K, Dijkstra C, Inguanti C, Ostrouska S, Wilcox J, Smith M, Parathan P, Allam A, Xue HH, Belz GT, Mariadason JM, Behren A, Drummond GR, Ruscher R, Williams DS, Pal B, Shi W, Ernst M, Raghu D, Mielke LA. TCF-1 limits intraepithelial lymphocyte antitumor immunity in colorectal carcinoma. Sci Immunol 2023; 8:eadf2163. [PMID: 37801516 DOI: 10.1126/sciimmunol.adf2163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 08/07/2023] [Indexed: 10/08/2023]
Abstract
Intraepithelial lymphocytes (IELs), including αβ and γδ T cells (T-IELs), constantly survey and play a critical role in maintaining the gastrointestinal epithelium. We show that cytotoxic molecules important for defense against cancer were highly expressed by T-IELs in the small intestine. In contrast, abundance of colonic T-IELs was dependent on the microbiome and displayed higher expression of TCF-1/TCF7 and a reduced effector and cytotoxic profile, including low expression of granzymes. Targeted deletion of TCF-1 in γδ T-IELs induced a distinct effector profile and reduced colon tumor formation in mice. In addition, TCF-1 expression was significantly reduced in γδ T-IELs present in human colorectal cancers (CRCs) compared with normal healthy colon, which strongly correlated with an enhanced γδ T-IEL effector phenotype and improved patient survival. Our work identifies TCF-1 as a colon-specific T-IEL transcriptional regulator that could inform new immunotherapy strategies to treat CRC.
Collapse
Affiliation(s)
- Marina H Yakou
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Sonia Ghilas
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Kelly Tran
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Shoukat Afshar-Sterle
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Anita Kumari
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Kevin Schmid
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Christine Dijkstra
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Chantelle Inguanti
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Jordan Wilcox
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Maxine Smith
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Pavitha Parathan
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Amr Allam
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
- New Jersey Veterans Affairs Health Care System, East Orange, NJ, USA
| | - Gabrielle T Belz
- University of Queensland Frazer Institute, Faculty of Medicine, University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research; Department of Microbiology, Anatomy, Physiology and Pharmacology; and School of Agriculture, Biomedicine, and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Roland Ruscher
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
- Department of Anatomical Pathology, Austin Health, Heidelberg, Victoria, Australia
| | - Bhupinder Pal
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Dinesh Raghu
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Lisa A Mielke
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
129
|
Guo C, Kong L, Xiao L, Liu K, Cui H, Xin Q, Gu X, Jiang C, Wu J. The impact of the gut microbiome on tumor immunotherapy: from mechanism to application strategies. Cell Biosci 2023; 13:188. [PMID: 37828613 PMCID: PMC10571290 DOI: 10.1186/s13578-023-01135-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapy is one of the fastest developing areas in the field of oncology. Many immunological treatment strategies for refractory tumors have been approved and marketed. Nevertheless, much clinical and preclinical experimental evidence has shown that the efficacy of immunotherapy in tumor treatment varies markedly among individuals. The commensal microbiome mainly colonizes the intestinal lumen in humans, is affected by a variety of factors and exhibits individual variation. Moreover, the gut is considered the largest immune organ of the body due to its influence on the immune system. In the last few decades, with the development of next-generation sequencing (NGS) techniques and in-depth research, the view that the gut microbiota intervenes in antitumor immunotherapy through the immune system has been gradually confirmed. Here, we review important studies published in recent years focusing on the influences of microbiota on immune system and the progression of malignancy. Furthermore, we discuss the mechanism by which microbiota affect tumor immunotherapy, including immune checkpoint blockade (ICB) and adoptive T-cell therapy (ACT), and strategies for modulating the microbial composition to facilitate the antitumor immune response. Finally, opportunity and some challenges are mentioned to enable a more systematic understanding of tumor treatment in the future and promote basic research and clinical application in related fields.
Collapse
Affiliation(s)
- Ciliang Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingjun Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Huawei Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Xiaosong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| |
Collapse
|
130
|
Arriaga-Morales JJ, Ordaz-Pichardo C, Castro-Muñoz R, Durán-Páramo E. Attenuation of Hyperglycemia in Diabetic Rats Assisted by Immobilized Probiotic in Sodium Alginate. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10166-3. [PMID: 37816987 DOI: 10.1007/s12602-023-10166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
Diabetes mellitus type 2 (DM2) is the most common chronic disease worldwide, characterized mainly by increased glucose concentration in the blood and affecting several organs' functionality. The daily consumption of probiotic bacteria can help control diabetes and reduce the damage caused. Cell immobilization techniques are a powerful tool that provides physical cell protection to such probiotic bacteria against gastrointestinal conditions. We suggest that cell immobilization could be a significant vector for delivering a high quantity of viable probiotics to the gut, helping attenuate hyperglycemia in diabetic rats. Seventy male Wistar rats were used in this work. Nicotinamide was administrated via intraperitoneal injection 15 minutes before inducing type 2 diabetes (DM2), followed by a second intraperitoneal injection of streptozotocin to induce DM2. Rats were divided into seven groups. For 45 days, a specific treatment was applied to each group. The group of rats, supplied with immobilized Lactobacillus casei, showed a serum glucose concentration of 137 mg/dL, which was close to the one observed in the groups of healthy rats (117 mg/dL) and rats treated with metformin (155 mg/dL). The diabetic rats without treatment presented a higher serum glucose concentration (461 mg/dL). In the rats treated with immobilized L. casei, there was no biochemical parameter alteration, and the cell morphology of the analyzed tissues was similar to those of the healthy group. The consumption of immobilized L. casei could allow a high quantity of viable probiotics to be delivered to the gut, reducing serum glucose concentration by up to 70% compared to diabetic rats and reducing organ damage caused by diabetes.
Collapse
Affiliation(s)
- José J Arriaga-Morales
- Laboratorio de Bioconversiones, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. La Laguna, Gustavo A. Madero, 07340, CDMX, Mexico
| | - Cynthia Ordaz-Pichardo
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Col. La Escalera, Gustavo A. Madero, 07320, CDMX, Mexico
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca. Av. Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico.
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80 - 233, Gdansk, Poland.
| | - Enrique Durán-Páramo
- Laboratorio de Bioconversiones, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. La Laguna, Gustavo A. Madero, 07340, CDMX, Mexico.
| |
Collapse
|
131
|
Wu L, Hu J, Yi X, Lv J, Yao J, Tang W, Zhang S, Wan M. Gut microbiota interacts with inflammatory responses in acute pancreatitis. Therap Adv Gastroenterol 2023; 16:17562848231202133. [PMID: 37829561 PMCID: PMC10566291 DOI: 10.1177/17562848231202133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common acute abdominal conditions, and its incidence has been increasing for years. Approximately 15-20% of patients develop severe AP (SAP), which is complicated by critical inflammatory injury and intestinal dysfunction. AP-associated inflammation can lead to the gut barrier and function damage, causing dysbacteriosis and facilitating intestinal microbiota migration. Pancreatic exocrine deficiency and decreased levels of antimicrobial peptides in AP can also lead to abnormal growth of intestinal bacteria. Meanwhile, intestinal microbiota migration influences the pancreatic microenvironment and affects the severity of AP, which, in turn, exacerbates the systemic inflammatory response. Thus, the interaction between the gut microbiota (GM) and the inflammatory response may be a key pathogenic feature of SAP. Treating either of these factors or breaking their interaction may offer some benefits for SAP treatment. In this review, we discuss the mechanisms of interaction of the GM and inflammation in AP and factors that can deteriorate or even cure both, including some traditional Chinese medicine treatments, to provide new methods for studying AP pathogenesis and developing therapies.
Collapse
Affiliation(s)
- Linjun Wu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Jing Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Xiaolin Yi
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Intensive Care Unit, Suining Municipal Hospital of TCM, Suining, China
| | - Jianqin Lv
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Shu Zhang
- Department of Emergency Medicine, Emergency Medical Laboratory, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, Sichuan, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, China
| |
Collapse
|
132
|
Ghosh TS, Valdes AM. Evidence for clinical interventions targeting the gut microbiome in cardiometabolic disease. BMJ 2023; 383:e075180. [PMID: 37813434 PMCID: PMC10561016 DOI: 10.1136/bmj-2023-075180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Affiliation(s)
- Tarini Shankar Ghosh
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, Okhla, Phase III, New Delhi, Delhi 110020, India
| | - Ana Maria Valdes
- School of Medicine, University of Nottingham, City Hospital, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham
| |
Collapse
|
133
|
Zhou R, Ng SK, Sung JJY, Goh WWB, Wong SH. Data pre-processing for analyzing microbiome data - A mini review. Comput Struct Biotechnol J 2023; 21:4804-4815. [PMID: 37841330 PMCID: PMC10569954 DOI: 10.1016/j.csbj.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/01/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023] Open
Abstract
The human microbiome is an emerging research frontier due to its profound impacts on health. High-throughput microbiome sequencing enables studying microbial communities but suffers from analytical challenges. In particular, the lack of dedicated preprocessing methods to improve data quality impedes effective minimization of biases prior to downstream analysis. This review aims to address this gap by providing a comprehensive overview of preprocessing techniques relevant to microbiome research. We outline a typical workflow for microbiome data analysis. Preprocessing methods discussed include quality filtering, batch effect correction, imputation of missing values, normalization, and data transformation. We highlight strengths and limitations of each technique to serve as a practical guide for researchers and identify areas needing further methodological development. Establishing robust, standardized preprocessing will be essential for drawing valid biological conclusions from microbiome studies.
Collapse
Affiliation(s)
- Ruwen Zhou
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
| | - Siu Kin Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
| | - Joseph Jao Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, 11 Jalan Tan Tock Seng, 308433, Singapore
| | - Wilson Wen Bin Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Center for Biomedical Informatics, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, 11 Jalan Tan Tock Seng, 308433, Singapore
| |
Collapse
|
134
|
Duan X, Ma G, Lin Y, Xu J, Yang P, Xiao X. Effect of a High-Fat Diet and Probiotic Supplementation on the Gut Microbiota of Maternal Mice at Term Pregnancy and Offspring at Three-Week Postpartum. Curr Microbiol 2023; 80:358. [PMID: 37787786 DOI: 10.1007/s00284-023-03465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/31/2023] [Indexed: 10/04/2023]
Abstract
The effects of probiotics on the gut microbiota in maternal mice-fed high-fat diet (HFD) during pregnancy and offspring are still unknown. We aimed to evaluate the effect of high-fat diet and probiotic supplementation on the gut microbiota of maternal mice at term pregnancy and offspring at three-week postpartum. Female pregnant Kunming mice were randomly divided into four groups: mice on a control diet (MC), mice on HFD (MHF), mice on a control diet and probiotics (MCP), and mice on HFD and probiotics (MHFP). The result showed that MHF had significantly reduced Bacteroidetes and Muribaculaceae (P < 0.05) and increased Firmicutes/Bacteroidetes ratio vs. MC. Lachnospiraceae_NK4A136_group and Alistipes reduced (P < 0.05), and Firmicutes/Bacteroidetes ratio significantly increased in MCP vs. MC. There was no significant difference between MHF and MHFP. Higher levels of Prevotella, Prevotellaceae, and Streptococcaceae were found in mice offspring on HFD (OHF) vs. mice offspring on a control diet (OC) (P < 0.05, respectively). Bacteroidia, Bacteroidota, Bacteroidales, and Muribaculaceae decreased markedly in mice offspring on a control diet and probiotics (OCP) vs. OC (P < 0.05, respectively), while Firmicutes, Lactobacillales, Lactobacillaceae, and Lactobacillus significantly increased in OCP (P < 0.05, respectively). There was no significant difference between the OHF and mice offspring on HFD and probiotics (OHFP). The findings suggest that the gut microbial composition of pregnant mice and offspring were altered to some extent due to HFD or probiotic intervention. Further, maternal mice on HFD and offspring were less affected by probiotic supplementation.
Collapse
Affiliation(s)
- Xia Duan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue, Guangzhou, 510630, China
| | - Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue, Guangzhou, 510630, China
| | - Yongchuang Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue, Guangzhou, 510630, China
- Department of Obstetrics and Gynecology, Dongguan Maternal and Child Health Care Hospital, Dongguan, China
| | - Jingjing Xu
- Department of Obstetrics, Zhuhai Women and Children's Hospital, Zhuhai, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue, Guangzhou, 510630, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue, Guangzhou, 510630, China.
| |
Collapse
|
135
|
Guo P, Lin S, Lin Q, Wei S, Ye D, Liu J. The digestive tract histology and geographical distribution of gastrointestinal microbiota in yellow-feather broilers. Poult Sci 2023; 102:102844. [PMID: 37579647 PMCID: PMC10448343 DOI: 10.1016/j.psj.2023.102844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 08/16/2023] Open
Abstract
Exhaustive understanding of intestinal physiological characteristics is the critical precondition for the improvement of intestinal health and growth performance of yellow-feather broilers (YFB). As a vital part of gastrointestinal tract, the symbiotic, complex, and variable microbiota have a profound effect on the nutrition, immunity, health, and production of broilers. Hence, the development status of proventriculus, jejunum, and cecum, and spatial heterogeneity of bacterial community in crop, proventriculus, gizzard, jejunum, cecum, and rectum of adult YFB were detected in our study. The results revealed that proventriculus, jejunum, and cecum of broilers are well-developed based on morphological observation. The Chao and Shannon indexes in cecum and rectum are notably higher than other sections and their microbiota structure is also distinct from foregut. Firmicutes and Lactobacillus are the predominant phylum and genus in all gastrointestinal sections, respectively. As feature species of crop, Lactobacillus spp. mainly settle in foregut, whereas some Clostridia species (unclassified Lachnospiraceae, Faecalibacterium, Romboutsia and so on) are characteristic and more abundant in cecum and rectum. Interestingly, there are 2 Ruminococcus torques strains positively and negatively correlated with cecum development, respectively. In a whole, our findings reveal the specialized digestive physiology and regional distribution of intestinal microbiota in YFB, which provides a reference for the future study on the improvement of growth performance and intestinal development through microbiota manipulation in yellow-feather broilers.
Collapse
Affiliation(s)
- Pingting Guo
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiying Lin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingjie Lin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Suhong Wei
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingcheng Ye
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| |
Collapse
|
136
|
Amieva-Balmori M, García-Mazcorro JF, Martínez-Conejo A, Hernández-Ramírez GA, García-Zermeño KR, Rodríguez-Aguilera O, Aja-Cadena M, Barradas-Cortés M, Quigley EMM, Remes-Troche JM. Fecal bacterial microbiota in constipated patients before and after eight weeks of daily Bifidobacterium infantis 35624 administration. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2023; 88:369-380. [PMID: 35810091 DOI: 10.1016/j.rgmxen.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION AND AIM In recent years, probiotics have been used in functional gastrointestinal disorders, including chronic constipation (CC). The effect of Bifidobacterium infantis strain 35624 on the gut microbiota of CC patients has not been previously studied. Our aim was to analyze the fecal microbiota of constipated patients, before and after consuming a single-strain probiotic (B. infantis strain 35624). MATERIALS AND METHODS We used 16S rRNA gene high-throughput sequencing to analyze the fecal microbiota of female patients (n=13) with CC. Patients were instructed to ingest one capsule of Alflorex® (containing 1×109 CFUs/g B. infantis strain 35624) daily for eight weeks. Fecal samples were obtained at the baseline and end (final) of probiotic administration. RESULTS Alpha diversity metrics did not differ between the baseline and final periods. The butyrate producer, Oscillospira, was the taxon most strongly correlated with amplicon sequence variants (R2=0.55, p<0.0001). Except for a few bacterial taxa, there were no significant differences in relative abundance between the baseline and final periods. Beta-diversity measures also showed limited evidence for the differences between the two time periods. CONCLUSIONS The results suggest that the fecal bacterial microbiota remains stable in constipated women consuming a single-strain probiotic. Those findings may be helpful in better understanding probiotic functioning in patients with digestive disorders.
Collapse
Affiliation(s)
- M Amieva-Balmori
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - J F García-Mazcorro
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - A Martínez-Conejo
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - G A Hernández-Ramírez
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - K R García-Zermeño
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - O Rodríguez-Aguilera
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - M Aja-Cadena
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - M Barradas-Cortés
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - E M M Quigley
- Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA
| | - J M Remes-Troche
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México.
| |
Collapse
|
137
|
Simpson RC, Shanahan ER, Scolyer RA, Long GV. Towards modulating the gut microbiota to enhance the efficacy of immune-checkpoint inhibitors. Nat Rev Clin Oncol 2023; 20:697-715. [PMID: 37488231 DOI: 10.1038/s41571-023-00803-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
The gut microbiota modulates immune processes both locally and systemically. This includes whether and how the immune system reacts to emerging tumours, whether antitumour immune responses are reactivated during treatment with immune-checkpoint inhibitors (ICIs), and whether unintended destructive immune pathologies accompany such treatment. Advances over the past decade have established that the gut microbiota is a promising target and that modulation of the microbiota might overcome resistance to ICIs and/or improve the safety of treatment. However, the specific mechanisms through which the microbiota modulates antitumour immunity remain unclear. Understanding the biology underpinning microbial associations with clinical outcomes in patients receiving ICIs, as well as the landscape of a 'healthy' microbiota would provide a critical foundation to facilitate opportunities to effectively manipulate the microbiota and thus improve patient outcomes. In this Review, we explore the role of diet and the gut microbiota in shaping immune responses during treatment with ICIs and highlight the key challenges in attempting to leverage the gut microbiome as a practical tool for the clinical management of patients with cancer.
Collapse
Affiliation(s)
- Rebecca C Simpson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Erin R Shanahan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.
- Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia.
| |
Collapse
|
138
|
Poto R, Laniro G, de Paulis A, Spadaro G, Marone G, Gasbarrini A, Varricchi G. Is there a role for microbiome-based approach in common variable immunodeficiency? Clin Exp Med 2023; 23:1981-1998. [PMID: 36737487 PMCID: PMC9897624 DOI: 10.1007/s10238-023-01006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by low levels of serum immunoglobulins and increased susceptibility to infections, autoimmune disorders and cancer. CVID embraces a plethora of heterogeneous manifestations linked to complex immune dysregulation. While CVID is thought to be due to genetic defects, the exact cause of this immune disorder is unknown in the large majority of cases. Compelling evidences support a linkage between the gut microbiome and the CVID pathogenesis, therefore a potential for microbiome-based treatments to be a therapeutic pathway for this disorder. Here we discuss the potential of treating CVID patients by developing a gut microbiome-based personalized approach, including diet, prebiotics, probiotics, postbiotics and fecal microbiota transplantation. We also highlight the need for a better understanding of microbiota-host interactions in CVID patients to prime the development of improved preventive strategies and specific therapeutic targets.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità (ISS), Rome, Italy
| | - Gianluca Laniro
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
139
|
Lim JJ, Diener C, Wilson J, Valenzuela JJ, Baliga NS, Gibbons SM. Growth phase estimation for abundant bacterial populations sampled longitudinally from human stool metagenomes. Nat Commun 2023; 14:5682. [PMID: 37709733 PMCID: PMC10502120 DOI: 10.1038/s41467-023-41424-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
Longitudinal sampling of the stool has yielded important insights into the ecological dynamics of the human gut microbiome. However, human stool samples are available approximately once per day, while commensal population doubling times are likely on the order of minutes-to-hours. Despite this mismatch in timescales, much of the prior work on human gut microbiome time series modeling has assumed that day-to-day fluctuations in taxon abundances are related to population growth or death rates, which is likely not the case. Here, we propose an alternative model of the human gut as a stationary system, where population dynamics occur internally and the bacterial population sizes measured in a bolus of stool represent a steady-state endpoint of these dynamics. We formalize this idea as stochastic logistic growth. We show how this model provides a path toward estimating the growth phases of gut bacterial populations in situ. We validate our model predictions using an in vitro Escherichia coli growth experiment. Finally, we show how this method can be applied to densely-sampled human stool metagenomic time series data. We discuss how these growth phase estimates may be used to better inform metabolic modeling in flow-through ecosystems, like animal guts or industrial bioreactors.
Collapse
Affiliation(s)
- Joe J Lim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, 98105, USA
| | | | - James Wilson
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Departments of Biology and Microbiology, University of Washington, Seattle, WA, 98105, USA
- Lawrence Berkeley National Laboratory, CA, 94720, Berkeley, USA
- Molecular and Cellular Biology Program, University of Washington, WA, 98105, Seattle, USA
- Molecular Engineering Graduate Program, University of Washington, WA, 98105, Seattle, USA
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, 98109, USA.
- Molecular Engineering Graduate Program, University of Washington, WA, 98105, Seattle, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, 98105, USA.
- eScience Institute, University of Washington, Seattle, WA, 98105, USA.
| |
Collapse
|
140
|
Button JE, Cosetta CM, Reens AL, Brooker SL, Rowan-Nash AD, Lavin RC, Saur R, Zheng S, Autran CA, Lee ML, Sun AK, Alousi AM, Peterson CB, Koh AY, Rechtman DJ, Jenq RR, McKenzie GJ. Precision modulation of dysbiotic adult microbiomes with a human-milk-derived synbiotic reshapes gut microbial composition and metabolites. Cell Host Microbe 2023; 31:1523-1538.e10. [PMID: 37657443 DOI: 10.1016/j.chom.2023.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/13/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Manipulation of the gut microbiome using live biotherapeutic products shows promise for clinical applications but remains challenging to achieve. Here, we induced dysbiosis in 56 healthy volunteers using antibiotics to test a synbiotic comprising the infant gut microbe, Bifidobacterium longum subspecies infantis (B. infantis), and human milk oligosaccharides (HMOs). B. infantis engrafted in 76% of subjects in an HMO-dependent manner, reaching a relative abundance of up to 81%. Changes in microbiome composition and gut metabolites reflect altered recovery of engrafted subjects compared with controls. Engraftment associates with increases in lactate-consuming Veillonella, faster acetate recovery, and changes in indolelactate and p-cresol sulfate, metabolites that impact host inflammatory status. Furthermore, Veillonella co-cultured in vitro and in vivo with B. infantis and HMO converts lactate produced by B. infantis to propionate, an important mediator of host physiology. These results suggest that the synbiotic reproducibly and predictably modulates recovery of a dysbiotic microbiome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Martin L Lee
- Prolacta Bioscience, Duarte, CA 91010, USA; Department of Biostatistics, University of California Los Angeles, Fielding School of Public Health, Los Angeles, CA 90095, USA
| | - Adam K Sun
- Prolacta Bioscience, Duarte, CA 91010, USA
| | - Amin M Alousi
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Y Koh
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Robert R Jenq
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
141
|
Wu Y, Pei S, Wu J, Tu X, Ren L, Ji Y, Yao Y, Liu Y. The Abnormal Accumulation of Lipopolysaccharide Secreted by Enriched Gram-Negative Bacteria Increases the Risk of Rotavirus Colonization in Young Adults. Microorganisms 2023; 11:2280. [PMID: 37764124 PMCID: PMC10535061 DOI: 10.3390/microorganisms11092280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Human rotavirus (HRV) is an enteric virus that causes infantile diarrhea. However, the risk factors contributing to HRV colonization in young adults have not been thoroughly investigated. Here, we compared the differences in dietary habits and composition of gut microbiota between asymptomatic HRV-infected young adults and their healthy counterparts and investigated potential risk factors contributing to HRV colonization. Our results indicated that asymptomatic HRV-infected adults had an excessive intake of milk and dairy and high levels of veterinary antibiotics (VAs) and preferred veterinary antibiotic (PVAs) residues in urine samples. Their gut microbiota is characterized by abundant Gram-negative (G-) bacteria and high concentrations of lipopolysaccharide (LPS). Several opportunistic pathogens provide discriminatory power to asymptomatic, HRV-infected adults. Finally, we observed an association between HRV colonization and disrupted gut microbiota caused by the exposure to VAs and PVAs. Our study reveals the traits of disrupted gut microbiota in asymptomatic HRV-infected adults and provides a potential avenue for gut microbiota-based prevention strategies for HRV colonization.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230000, China
| | - Shuang Pei
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230000, China
| | - Jie Wu
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230000, China
| | - Xinru Tu
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230000, China
| | - Lingling Ren
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230000, China
| | - Yanli Ji
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230000, China
| | - Yuyou Yao
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230000, China
| | - Yehao Liu
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230000, China
| |
Collapse
|
142
|
Kubota S, Sugiura S, Takahashi M, Kadota Y, Takasato Y, Matsui T, Kitamura K, Tochio T, Ito K. Kestose Increases the Relative Abundance of Faecalibacterium spp. and Nominally Increases Cow Milk Tolerant Dose in Children with Cow's Milk Allergy - Preliminary Results. Pol J Microbiol 2023; 72:299-306. [PMID: 37725897 PMCID: PMC10508972 DOI: 10.33073/pjm-2023-030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 09/21/2023] Open
Abstract
A single-arm study was conducted with 10 children aged 2-12 years with severe cow's milk allergy (CMA) requiring complete allergen elimination. Subjects were administered kestose, a prebiotic, at 1 or 2 g/day for 12 weeks. Results of a subsequent oral food challenge (OFC) showed a statistically significant increase in the total dose of cow's milk ingestion (1.6 ml vs. 2.7 ml, p = 0.041). However, the overall evaluation of the OFC results, TS/Pro (total score of Anaphylaxis Scoring Aichi (ASCA)/cumulative dose of protein), showed no statistically significant improvement, although the values were nominally improved in seven out of 10 subjects. The 16S rDNA analysis of fecal samples collected from the subjects revealed a statistically significant increase in the proportion of Faecalibacterium spp. (3.8 % vs. 6.8%, p = 0.013), a type of intestinal bacterium that has been reported to be associated with food allergy. However, no statistically significant correlation was found between Faecalibacterium spp. abundance and the results of the OFC.
Collapse
Affiliation(s)
- Shohei Kubota
- Aichi Children's Health and Medical Center, Obu-shi, Japan
- Saiseikai Yokohamashi Tobu Hospital, Yokohama-shi, Japan
| | - Shiro Sugiura
- Aichi Children's Health and Medical Center, Obu-shi, Japan
| | | | | | | | - Teruaki Matsui
- Aichi Children's Health and Medical Center, Obu-shi, Japan
| | | | - Takumi Tochio
- B Food Science Co., Ltd., Chita-shi, Japan
- Fujita Health University, Toyoake-shi, Japan
| | - Komei Ito
- Aichi Children's Health and Medical Center, Obu-shi, Japan
- Nagoya University Graduate School of Medicine, Nagoya-shi, Japan
| |
Collapse
|
143
|
Zhuang YP, Zhou HL, Chen HB, Zheng MY, Liang YW, Gu YT, Li WT, Qiu WL, Zhou HG. Gut microbiota interactions with antitumor immunity in colorectal cancer: From understanding to application. Biomed Pharmacother 2023; 165:115040. [PMID: 37364479 DOI: 10.1016/j.biopha.2023.115040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Colorectal cancer (CRC) is one of highly prevalent cancer. Immunotherapy with immune checkpoint inhibitors (ICIs) has dramatically changed the landscape of treatment for many advanced cancers, but CRC still exhibits suboptimal response to immunotherapy. The gut microbiota can affect both anti-tumor and pro-tumor immune responses, and further modulate the efficacy of cancer immunotherapy, particularly in the context of therapy with ICIs. Therefore, a deeper understanding of how the gut microbiota modulates immune responses is crucial to improve the outcomes of CRC patients receiving immunotherapy and to overcome resistance in nonresponders. The present review aims to describe the relationship between the gut microbiota, CRC, and antitumor immune responses, with a particular focus on key studies and recent findings on the effect of the gut microbiota on the antitumor immune activity. We also discuss the potential mechanisms by which the gut microbiota influences host antitumor immune responses as well as the prospective role of intestinal flora in CRC treatment. Furthermore, the therapeutic potential and limitations of different modulation strategies for the gut microbiota are also discussed. These insights may facilitate to better comprehend the interplay between the gut microbiota and the antitumor immune responses of CRC patients and provide new research pathways to enhance immunotherapy efficacy and expand the patient population that could be benefited by immunotherapy.
Collapse
Affiliation(s)
- Yu-Pei Zhuang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-Li Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai-Bin Chen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming-Yue Zheng
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Wei Liang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Tian Gu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen-Ting Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wen-Li Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hong-Guang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
144
|
Hatami S, Yavarmanesh M, Sankian M. Comparison of the effects of probiotic strains (Lactobacillus gasseri, Lactiplantibacillus plantarum, Lactobacillus acidophilus, and Limosilactobacillus fermentum) isolated from human and food products on the immune response of CT26 tumor-bearing mice. Braz J Microbiol 2023; 54:2047-2062. [PMID: 37430135 PMCID: PMC10485204 DOI: 10.1007/s42770-023-01060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023] Open
Abstract
This study aimed to compare the effects of the probiotic bacteria, L. gasseri (52b), L. plantarum (M11), L. acidophilus (AC2), and L. fermentum (19SH), isolated from human source and traditional food products on the modulation of the immune system and inflammatory response on BALB/c mouse model bearing CT26 tumor. Five groups of female inbred BALB/c mice were orally administered with the probiotics and their mixes (MIX, at a 1:1 ratio) at varying dosages (1.5 × 108 cfu/ml and 1.2 × 109 cfu/ml) before and after the injection of a subcutaneous CT26 tumor over the course of 38 days via gavage. Finally, their effects on the tumor apoptosis and the cytokine levels in spleen cell cultures were analyzed and compared. M11, MIX, and 52b groups had the greatest levels of interleukin-12 (IL-12) and interferon gamma (IFN-γ) production. The highest production level of granzyme B (GrB) was related to the MIX and 52b groups. Moreover, these groups showed the lowest production level of (IL-4) and transforming growth factor beta (TGF-β). Furthermore, the groups of MIX and 52b demonstrated the greatest amount of lymphocyte proliferation of spleen cells in response to the tumor antigen. The delayed-type hypersensitivity (DTH) response significantly increased in the groups of MIX and 52b compared with the control (p < 0.05). The findings demonstrated that the oral treatment of the human strain (52b) and the combination of these bacteria generated strong T helper type 1 (Th1) immune responses in the tumor tissue of the tumor-bearing mice, which led to the suppression of the tumor development.
Collapse
Affiliation(s)
- Samaneh Hatami
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Masoud Yavarmanesh
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mojtaba Sankian
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
145
|
Guan L, Liu R. The Role of Diet and Gut Microbiota Interactions in Metabolic Homeostasis. Adv Biol (Weinh) 2023; 7:e2300100. [PMID: 37142556 DOI: 10.1002/adbi.202300100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Indexed: 05/06/2023]
Abstract
Diet is a pivotal determinant in shaping the structure and function of resident microorganisms in the gut through different food components, nutritive proportion, and calories. The effects of diet on host metabolism and physiology can be mediated through the gut microbiota. Gut microbiota-derived metabolites have been shown to regulate glucose and lipid metabolism, energy consumption, and the immune system. On the other hand, emerging evidence indicates that baseline gut microbiota could predict the efficacy of diet intervention, highlighting gut microbiota can be harnessed as a biomarker in personalized nutrition. In this review, the alterations of gut microbiota in different dietary components and dietary patterns, and the potential mechanisms in the diet-microbiota crosstalk are summarized to understand the interactions of diet and gut microbiota on the impact of metabolic homeostasis.
Collapse
Affiliation(s)
- Lizhi Guan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the P. R. China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the P. R. China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
146
|
Al-Madboly LA, Yagi A, Kabbash A, El-Aasr MA, El-Morsi RM. Microbiota-derived short chain fatty acids in fermented Kidachi Aloe promote antimicrobial, anticancer, and immunomodulatory activities. BMC Microbiol 2023; 23:240. [PMID: 37644400 PMCID: PMC10464184 DOI: 10.1186/s12866-023-02981-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Fermented Aloe leaf juice is a commonly used food supplement in Japan. In a previous study, fermentation of A. arborescence juice was performed and the presence of short-chain fatty acids (SCFAs) was confirmed and quantified. Samples were collected before and after the fermentation process to be subjected, in the present study, to DNA extraction, 16S rRNA gene (V3-V4 regions) amplification, and sequencing by the next-generation Illumina MiSeq sequencer. Our work aims to analyze the sequences to assess the bacterial diversity in the juice before and after fermentation, identify the beneficial microbes responsible for the production of SCFAs, and evaluate some of the biological activities of the fermented juice. RESULTS Data revealed the richness and diversity of the bacterial community in the fermented juice compared to the unfermented control. Relative abundance of bacterial phyla showed that the majority of the microbial community in the test samples corresponded to Pseudomonadota (unfermented; 10.4%, fermented; 76.36%), followed by Bacillota (unfermented; 4.71%, fermented; 17.13%) and then Bacteroidota (unfermented; 0.57%, fermented; 1.64%). For the fermented sample, 84% of Bacillota were lactobacilli. A hierarchically clustered heatmap revealed that Lactobacillus was the most abundant genus in both samples suggesting its involvement in the production of SCFAs. To assess potential health benefits, the anticancer efficacy of the fermented product of A. arborescens was investigated against colorectal cancer (IC50 = 3.5 µg/ml) and liver cancer (IC50 = 6.367 µg/ml) compared to the normal peripheral blood mononuclear cells (PBMCs). Flow cytometric analysis of the cell cycle pattern revealed remarkable population arrest in G0 and G1, however, the highest percentages were mainly in the G1 phase for Hep-G2 (40.1%) and HCT-116 (53.2%) cell lines. This effect was accompanied by early apoptotic profiles of HCT-116 (36.9%) and late apoptosis for Hep-G2 (17.3%). Furthermore, immunomodulatory properties demonstrated a significantly (p < 0.001) reduced percentage of induced TNF-α while enhancing IFN-γ dramatically. For antimicrobial activities, marked broad-spectrum activities were recorded against some bacterial and fungal pathogens (17-37 mm inhibition zone diameter range). CONCLUSION Therefore, this study affords the basis of bacterial community composition in fermented A. arborescens juice as well as its potential biological benefits.
Collapse
Affiliation(s)
- Lamiaa A Al-Madboly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Akira Yagi
- Department of Pharmaceutical Science, Fukuyama University, Hiroshima, Japan
| | - Amal Kabbash
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mona A El-Aasr
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rasha M El-Morsi
- Department of Microbiology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt.
| |
Collapse
|
147
|
Choy CT, Siu PLK, Zhou J, Wong CH, Lee YW, Chan HW, Tsui JCC, Lo CJY, Loo SKF, Tsui SKW. Improvements in Gut Microbiome Composition Predict the Clinical Efficacy of a Novel Synbiotics Formula in Children with Mild to Moderate Atopic Dermatitis. Microorganisms 2023; 11:2175. [PMID: 37764019 PMCID: PMC10536305 DOI: 10.3390/microorganisms11092175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease with a significant association with various type-2 inflammation-related comorbidities. Ongoing research suggests the crucial involvement of gut microbiome, especially in childhood onset AD, and hence, probiotics have emerged as a potential non-steroid-based therapeutics option to complement existing AD management plans. In order to delineate the impact of probiotics in the gut microbiome of pediatric AD patients from southern China, targeted 16S rRNA sequencing and thorough bioinformatic analysis were performed to analyze the gut microbiome profiles of 24 AD children after taking an orally administered novel synbiotics formula with triple prebiotics for 8 weeks. A notable improvement in Eczema Area and Severity Index (EASI) (p = 0.008) was observed after taking an 8-week course of probiotics, with no adverse effects observed. The relative abundances of key microbial drivers including Bacteroides fragilis and Lactobacillus acidophilus were significantly increased at week 8. We also found that the positive responsiveness towards an 8-week course of probiotics was associated with improvements in the gut microbiome profile with a higher relative abundance of probiotic species. Over-represented functional abundance pathways related to vitamin B synthesis and peptidoglycan recycling may imply the underlying mechanism. In summary, our study suggests how the gut microbial landscape shifts upon probiotic supplementation in AD children, and provides preliminary evidence to support targeted probiotic supplementation for the management of childhood AD.
Collapse
Affiliation(s)
- Chi Tung Choy
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Pui Ling Kella Siu
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Junwei Zhou
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Chi Ho Wong
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Yuk Wai Lee
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Ho Wang Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | | | - Claudia Jun Yi Lo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Steven King Fan Loo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Dermatology Centre, CUHK Medical Centre, The Chinese University of Hong Kong, Hong Kong
| | - Stephen Kwok Wing Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
148
|
Lan J, Greter G, Streckenbach B, Wanner B, Arnoldini M, Zenobi R, Slack E. Non-invasive monitoring of microbiota and host metabolism using secondary electrospray ionization-mass spectrometry. CELL REPORTS METHODS 2023; 3:100539. [PMID: 37671025 PMCID: PMC10475793 DOI: 10.1016/j.crmeth.2023.100539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 09/07/2023]
Abstract
The metabolic "handshake" between the microbiota and its mammalian host is a complex, dynamic process with major influences on health. Dissecting the interaction between microbial species and metabolites found in host tissues has been a challenge due to the requirement for invasive sampling. Here, we demonstrate that secondary electrospray ionization-mass spectrometry (SESI-MS) can be used to non-invasively monitor metabolic activity of the intestinal microbiome of a live, awake mouse. By comparing the headspace metabolome of individual gut bacterial culture with the "volatilome" (metabolites released to the atmosphere) of gnotobiotic mice, we demonstrate that the volatilome is characteristic of the dominant colonizing bacteria. Combining SESI-MS with feeding heavy-isotope-labeled microbiota-accessible sugars reveals the presence of microbial cross-feeding within the animal intestine. The microbiota is, therefore, a major contributor to the volatilome of a living animal, and it is possible to capture inter-species interaction within the gut microbiota using volatilome monitoring.
Collapse
Affiliation(s)
- Jiayi Lan
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Giorgia Greter
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Bettina Streckenbach
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Markus Arnoldini
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Emma Slack
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
149
|
Larke JA, Heiss BE, Ehrlich AM, Taft DH, Raybould HE, Mills DA, Slupsky CM. Milk oligosaccharide-driven persistence of Bifidobacterium pseudocatenulatum modulates local and systemic microbial metabolites upon synbiotic treatment in conventionally colonized mice. MICROBIOME 2023; 11:194. [PMID: 37635250 PMCID: PMC10463478 DOI: 10.1186/s40168-023-01624-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/14/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Bifidobacteria represent an important gut commensal in humans, particularly during initial microbiome assembly in the first year of life. Enrichment of Bifidobacterium is mediated though the utilization of human milk oligosaccharides (HMOs), as several human-adapted species have dedicated genomic loci for transport and metabolism of these glycans. This results in the release of fermentation products into the gut lumen which may offer physiological benefits to the host. Synbiotic pairing of probiotic species with a cognate prebiotic delivers a competitive advantage, as the prebiotic provides a nutrient niche. METHODS To determine the fitness advantage and metabolic characteristics of an HMO-catabolizing Bifidobacterium strain in the presence or absence of 2'-fucosyllactose (2'-FL), conventionally colonized mice were gavaged with either Bifidobacterium pseudocatenulatum MP80 (B.p. MP80) (as the probiotic) or saline during the first 3 days of the experiment and received water or water containing 2'-FL (as the prebiotic) throughout the study. RESULTS 16S rRNA gene sequencing revealed that mice provided only B.p. MP80 were observed to have a similar microbiota composition as control mice throughout the experiment with a consistently low proportion of Bifidobacteriaceae present. Using 1H NMR spectroscopy, similar metabolic profiles of gut luminal contents and serum were observed between the control and B.p. MP80 group. Conversely, synbiotic supplemented mice exhibited dramatic shifts in their community structure across time with an overall increased, yet variable, proportion of Bifidobacteriaceae following oral inoculation. Parsing the synbiotic group into high and moderate bifidobacterial persistence based on the median proportion of Bifidobacteriaceae, significant differences in gut microbial diversity and metabolite profiles were observed. Notably, metabolites associated with the fermentation of 2'-FL by bifidobacteria were significantly greater in mice with a high proportion of Bifidobacteriaceae in the gut suggesting metabolite production scales with population density. Moreover, 1,2-propanediol, a fucose fermentation product, was only observed in the liver and brain of mice harboring high proportions of Bifidobacteriaceae. CONCLUSIONS This study reinforces that the colonization of the gut with a commensal microorganism does not guarantee a specific functional output. Video Abstract.
Collapse
Affiliation(s)
- Jules A Larke
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Britta E Heiss
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Amy M Ehrlich
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, , Davis, CA, USA
| | - Diana H Taft
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Helen E Raybould
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, , Davis, CA, USA
| | - David A Mills
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
150
|
Xu W, Lv Z, Guo Q, Deng Z, Yang C, Cao Z, Li Y, Huang C, Wu Z, Chen S, He Y, Sun J, Liu Y, Gan L. Selective Antagonism of Lactiplantibacillus plantarum and Pediococcus acidilactici against Vibrio and Aeromonas in the Bacterial Community of Artemia nauplii. Microbiol Spectr 2023; 11:e0053323. [PMID: 37428079 PMCID: PMC10434253 DOI: 10.1128/spectrum.00533-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Abstract
Empiric probiotics are commonly consumed by healthy individuals as a means of disease prevention, pathogen control, etc. However, controversy has existed for a long time regarding the safety and benefits of probiotics. Here, two candidate probiotics, Lactiplantibacillus plantarum and Pediococcus acidilactici, which are antagonistic to Vibrio and Aeromonas species in vitro, were tested on Artemia under in vivo conditions. In the bacterial community of Artemia nauplii, L. plantarum reduced the abundance of the genera Vibrio and Aeromonas and P. acidilactici significantly increased the abundance of Vibrio species in a positive dosage-dependent manner, while higher and lower dosages of P. acidilactici increased and decreased the abundance of the genus Aeromonas, respectively. Based on the liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analyses of the metabolite of L. plantarum and P. acidilactici, pyruvic acid was used in an in vitro test to explain such selective antagonism; the results showed that pyruvic acid was conducive or suppressive to V. parahaemolyticus and beneficial to A. hydrophila. Collectively, the results of this study demonstrate the selective antagonism of probiotics on the bacterial community composition of aquatic organisms and the associated pathogens. IMPORTANCE Over the last decade, the common preventive method for controlling potential pathogens in aquaculture has been the use of probiotics. However, the mechanisms of probiotics are complicated and mostly undefined. At present, less attention has been paid to the potential risks of probiotic use in aquaculture. Here, we investigated the effects of two candidate probiotics, L. plantarum and P. acidilactici, on the bacterial community of Artemia nauplii and the in vitro interactions between these two candidate probiotics and two pathogens, Vibrio and Aeromonas species. The results demonstrated the selective antagonism of probiotics on the bacterial community composition of an aquatic organism and its associated pathogens. This research contributes to providing a basis and reference for the long-term rational use of probiotics and to reducing the inappropriate use of probiotics in aquaculture.
Collapse
Affiliation(s)
- Weihua Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaolin Lv
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Qingqi Guo
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaojie Deng
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Canmin Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaozhao Cao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yi Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Cuifen Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zizhan Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Shijun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yuhui He
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Jijia Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yiying Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Lian Gan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
| |
Collapse
|