101
|
Rodrigues de Almeida EJ, Christofoletti Mazzeo DE, Deroldo Sommaggio LR, Marin-Morales MA, Rodrigues de Andrade A, Corso CR. Azo dyes degradation and mutagenicity evaluation with a combination of microbiological and oxidative discoloration treatments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109484. [PMID: 31398583 DOI: 10.1016/j.ecoenv.2019.109484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
This work evaluated the degradation of the Acid Blue 161 and Procion Red MX-5B dyes in a binary solution by the filamentous fungus Aspergillus terreus and the yeast Saccharomyces cerevisiae in systems with and without electrochemical oxidation as the pretreatment process. UV-Vis spectrophotometry, high-performance liquid chromatography with (HPLC), Fourier transform infrared (FT-IR) spectroscopy and Salmonella/microsome assay (Ames test) were applied towards the degradation analysis of the dyes. Adsorption tests with white clay immobilized on alginate were also conducted after the discoloration treatments to remove intermediate metabolites formed during the degradation of the dye molecules. The discoloration treatments led to the complete color removal of the solutions in all the systems tested. The clay demonstrated affinity for the metabolites formed after discoloration treatments, the removal rates were variable, but the all systems has proved efficient. The Salmonella/microsome assay (Ames test) with strains TA98 and TA100 in the absence and presence of exogenous metabolism (S9 microsomal system, Moltox) revealed that the initial molecules and by-products of the metabolism of the dyes were direct mutagens. The electrochemical/A. terreus/clay system was able to discolor the solutions and transform the direct mutagens into non-mutagenic compounds in addition to reducing the mutagenic potency of the pro-mutagens to the Salmonella strain TA100/S9, which demonstrates the high efficiency of this system with regard to discoloring and degrading azo dye molecules and their by-products. Therefore, this study showed that although not having standard treatment system for this type of pollutant, the combination of treatments can be considered promising. The use of electrochemical oxidation along with microbiological treatment may lead to the degradation and mineralization of these compounds, reducing or eliminating the environmental impact caused by the improper disposal of these dyes in aquatic environments.
Collapse
Affiliation(s)
- Erica Janaina Rodrigues de Almeida
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil.
| | - Dânia Elisa Christofoletti Mazzeo
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual de São Paulo (Unesp), Av. 24-A, 1515, 13506-900, Rio Claro, SP, Brazil
| | - Lais Roberta Deroldo Sommaggio
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual de São Paulo (Unesp), Av. 24-A, 1515, 13506-900, Rio Claro, SP, Brazil
| | - Maria Aparecida Marin-Morales
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual de São Paulo (Unesp), Av. 24-A, 1515, 13506-900, Rio Claro, SP, Brazil
| | - Adalgisa Rodrigues de Andrade
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil; Unesp, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil
| | - Carlos Renato Corso
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual de São Paulo (Unesp), Av. 24-A, 1515, 13506-900, Rio Claro, SP, Brazil
| |
Collapse
|
102
|
Xie X, Jin Y, Ma Z, Tang S, Peng H, Giesy JP, Liu H. Underlying mechanisms of reproductive toxicity caused by multigenerational exposure of 2, bromo-4, 6-dinitroaniline (BDNA) to Zebrafish (Danio rerio) at environmental relevant levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105285. [PMID: 31546070 DOI: 10.1016/j.aquatox.2019.105285] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
2-bromo-4, 6-dinitroaniline (BDNA) is a mutagenic aromatic amine involved in the production and degradation of Disperse blue 79, one of the most extensively used brominated azo dyes. In our previous study, a multigenerational exposure of BDNA (0.5, 5, 50 and 500 μg/L) to zebrafish from F0 adult to F2 larvae including a recovery group in F2 larvae was conducted. The effects on apical points observed in individuals and the long-term effects predicted on population were all related to reproduction. In this study, we performed molecular analysis to elucidate the underlying mechanisms of the reproductive toxicity of BDNA. In F1 generation, measurement of vitellogenin and transcription levels of genes associated with hypothalamus-pituitary-gland (HPG) axis, estrogen receptor (ER) and androgen receptor (AR) were conducted. There was a decrease in VTG level in the blood of F1 female fish and transcription of genes related to ER was more affected than that of genes related to AR. These results were consistent with adverse effects that sexual differentiation was biased towards males and fecundity was impaired in a concentration-dependent manner in adults of F1 generation after 150 days exposure. In F2 generation, global gene transcriptions of F2 larvae were investigated. It was uncovered that processes related to apoptosis, development and DNA damage were strongly affected. Alterations to these biological pathways accounted for the irreversible parental influence on a significant decrease in hatchability and increase in abnormality of F2 larvae. All evidence suggested that the multigenerational exposure of BDNA posed lasting effects transmitted from parents to offspring that persisted after exposure ceased.
Collapse
Affiliation(s)
- Xianyi Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yaru Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhiyuan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Song Tang
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Hui Peng
- Department of Chemistry, University of Toronto, Ontario, M5S 3H6, Canada
| | - John P Giesy
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SKS7N 5B3, Canada
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
103
|
Jasińska A, Soboń A, Góralczyk-Bińkowska A, Długoński J. Analysis of decolorization potential of Myrothecium roridum in the light of its secretome and toxicological studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26313-26323. [PMID: 31286376 PMCID: PMC6717178 DOI: 10.1007/s11356-019-05324-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
To identify the enzymes potentially useful for the decolorization of azo dyes, the secretome of the ascomycetous fungus Myrothecium roridum IM6482 was studied by using a bottom-up proteomic approach. Among the identified proteins, the most promising for dye removal was laccase, which decolorized respectively, 66, 91, 79, and 80% of Acid Blue 113 (AB 113), Acid Red 27 (AR 27), Direct Blue 14 (DB 14), and Acid Orange 7 (AO 7). The degradation of dyes was enhanced at the wide range of pH from 4 to 8. The addition of redox mediators allowed eliminating AB 113 in concentrations up to 400 mg/L and decolorization of the simulated textile effluent. Microbial toxicity and phytotoxicity tests indicated that dyes are converted into low-toxicity metabolites. This is the first insight into the M. roridum secretome, its identification and its application for removal of select azo dyes. Obtained results extended knowledge concerning biodegradative potential of ascomycetous, ligninolytic fungi and will contribute to the improvement of dye removal by fungi.
Collapse
Affiliation(s)
- Anna Jasińska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Adrian Soboń
- Department of Microbial Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Aleksandra Góralczyk-Bińkowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Jerzy Długoński
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| |
Collapse
|
104
|
Survey on hazardous non-regulated aromatic amines as cleavage products of azo dyes found in clothing textiles on the Swiss market. J Verbrauch Lebensm 2019. [DOI: 10.1007/s00003-019-01245-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
105
|
Dimitrijević A, Jocić A, Zec N, Tot A, Papović S, Gadžurić S, Vraneš M, Trtić-Petrović T. Improved single-step extraction performance of aqueous biphasic systems using novel symmetric ionic liquids for the decolorisation of toxic dye effluents. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
106
|
Synthesis of nanocomposites using xylan and graphite oxide for remediation of cationic dyes in aqueous solutions. Int J Biol Macromol 2019; 137:886-894. [PMID: 31284003 DOI: 10.1016/j.ijbiomac.2019.07.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 11/21/2022]
Abstract
Due to the rapid development of industrialization, the water resources on which we depend are facing unprecedented challenges. Dyes, as an indispensable substance in our lives, have caused great pollution to the water resources in nature, and the removal of dyes from wastewater is becoming an important topic. A porous xylan/poly(acrylic acid)/graphite oxide nanocomposite was prepared by graft polymerization and used for adsorption of cationic ethyl violet dye in wastewaters in this paper. Various techniques, i.e., Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, elemental analysis, scanning electron microscopy, and ultraviolet-visible spectroscopy, were used to study this composite. Adsorption isotherm measurements showed that the composite's adsorption behavior fits the Langmuir isotherm adsorption model. Adsorption tests showed that this material has excellent adsorption properties; the maximum adsorption capacity for ethyl violet dye was 273.99 mg/g. Investigation of the adsorption mechanism indicated that electrostatic forces and π-π effects are mainly involved in adsorption. Desorption cycling tests showed that the adsorption efficiency of the composite was still over 95% after 3 cycles. These results show that this porous xylan/poly (acrylic acid)/graphite oxide nanocomposite has potential applications in cationic dye removal.
Collapse
|
107
|
Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biori.2019.09.001] [Citation(s) in RCA: 773] [Impact Index Per Article: 128.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
108
|
Menezes O, Brito R, Hallwass F, Florêncio L, Kato MT, Gavazza S. Coupling intermittent micro-aeration to anaerobic digestion improves tetra-azo dye Direct Black 22 treatment in sequencing batch reactors. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
109
|
Kämpfer P, Crettaz S, Nussbaumer S, Scherer M, Krepich S, Deflorin O. Quantitative determination of 58 aromatic amines and positional isomers in textiles by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. J Chromatogr A 2019; 1592:71-81. [DOI: 10.1016/j.chroma.2019.01.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/21/2018] [Accepted: 01/13/2019] [Indexed: 10/27/2022]
|
110
|
Louati I, Hadrich B, Nasri M, Belbahri L, Woodward S, Mechichi T. Modelling of Reactive Black 5 decolourization in the presence of heavy metals by the newly isolated
Pseudomonas aeruginosa
strain Gb30. J Appl Microbiol 2019; 126:1761-1771. [DOI: 10.1111/jam.14262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/11/2019] [Accepted: 03/18/2019] [Indexed: 11/28/2022]
Affiliation(s)
- I. Louati
- Laboratory of Enzyme Engineering and Microbiology National School of Engineers of Sfax University of Sfax Sfax Tunisia
| | - B. Hadrich
- Unité de Biotechnologie des Algues Biological Engineering Department National School of Engineers of Sfax University of Sfax Sfax Tunisia
| | - M. Nasri
- Laboratory of Enzyme Engineering and Microbiology National School of Engineers of Sfax University of Sfax Sfax Tunisia
| | - L. Belbahri
- Laboratoire de biologie des sols Université de Neuchâtel Neuchâtel Switzerland
| | - S. Woodward
- School of Biological Sciences University of Aberdeen Aberdeen UK
| | - T. Mechichi
- Laboratory of Enzyme Engineering and Microbiology National School of Engineers of Sfax University of Sfax Sfax Tunisia
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases National School of Engineers of Sfax University of Sfax Sfax Tunisia
| |
Collapse
|
111
|
Determination of synthetic and natural colorants in selected green colored foodstuffs through reverse phase-high performance liquid chromatography. Food Chem 2019; 278:381-387. [DOI: 10.1016/j.foodchem.2018.11.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
|
112
|
Wang S, Wang Z, Wang Y, Xia C, Hong E, Bai L, Li T, Wang B. Study on the controlled synthesis and photocatalytic performance of rare earth Nd deposited on mesoporous TiO 2 photocatalysts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:85-92. [PMID: 30359805 DOI: 10.1016/j.scitotenv.2018.10.154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/30/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Nanosized TiO2 photocatalysis technology is one of the most promising technologies for the treatment of wastewater containing azo dyes. In this work, TiO2 was deposited on a mesoporous SBA-15 molecular sieve by chemical deposition, and rare earth (RE) metal neodymium (Nd) was further deposited on the surface of the catalyst to obtain an Nd-TiO2-SBA-15 photocatalyst. The prepared photocatalyst was analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and N2 adsorption-desorption. The activity of the Nd-TiO2-SBA-15 photocatalyst was evaluated by using methyl orange to represent the azo dye. The effects of different Nd deposition amounts and different solution pH values on the photocatalyst performance were principally studied. The results show that the synthesized photocatalyst formed an anatase crystal with a mesoporous structure. The specific surface area and pore size of the photocatalyst are 548.2 m2/g and 6.5 nm, respectively. As the amount of Nd deposition gradually increases, the activity of photocatalyst undergoes a process of first rising and then decreasing. In addition, the photocatalyst maintains high photocatalytic activity in the pH range of 2-10, exhibiting good acid-base adaptability. This work demonstrates that the Nd-TiO2-SBA-15 nanophotocatalyst has broad practical application prospects on a large scale.
Collapse
Affiliation(s)
- Shuo Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province 161006, China
| | - Zhiyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yu Wang
- Pharmacy Department, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Chunhui Xia
- Pharmacy Department, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Enlv Hong
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Liming Bai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province 161006, China.
| | - Tao Li
- Pharmacy Department, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China.
| | - Baiqi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
113
|
Arl M, Nogueira DJ, Schveitzer Köerich J, Mottim Justino N, Schulz Vicentini D, Gerson Matias W. Tattoo inks: Characterization and in vivo and in vitro toxicological evaluation. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:548-561. [PMID: 30388639 DOI: 10.1016/j.jhazmat.2018.10.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Tattoo inks represent a growing market in the world economy, but this growth is associated with an increase in reports of adverse effects caused by the use of this product. In this study, four commercial tattoo inks (blue, green, red and black) were studied to characterize the composition and particle size and identify possible in vivo and in vitro toxicological effects on Daphnia magna and HaCaT cells, respectively. Compositional analysis confirmed the functional groups in the vehicles and organic pigments. The presence of nanoparticles was confirmed by image analysis. The toxicological evaluation indicated distinct results for blue and green inks for the parameters tested, despite the presence of similar levels of metals. The red ink, followed by the green, presented the highest toxicity, which may be related to pigments containing azo compounds and not to the metal fraction. Black ink was found to be the safest toxicologically. This paper provides an overview of the composition of tattoo inks and their toxicological effects in epidermal cells and in the environment.
Collapse
Affiliation(s)
- Miriam Arl
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina State, Florianópolis, Brazil
| | - Diego José Nogueira
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina State, Florianópolis, Brazil
| | - Jéssica Schveitzer Köerich
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina State, Florianópolis, Brazil
| | - Naiara Mottim Justino
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina State, Florianópolis, Brazil
| | - Denice Schulz Vicentini
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina State, Florianópolis, Brazil
| | - William Gerson Matias
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina State, Florianópolis, Brazil.
| |
Collapse
|
114
|
Pellicer JA, Rodríguez-López MI, Fortea MI, Lucas-Abellán C, Mercader-Ros MT, López-Miranda S, Gómez-López VM, Semeraro P, Cosma P, Fini P, Franco E, Ferrándiz M, Pérez E, Ferrándiz M, Núñez-Delicado E, Gabaldón JA. Adsorption Properties of β- and Hydroxypropyl-β-Cyclodextrins Cross-Linked with Epichlorohydrin in Aqueous Solution. A Sustainable Recycling Strategy in Textile Dyeing Process. Polymers (Basel) 2019; 11:E252. [PMID: 30960236 PMCID: PMC6419267 DOI: 10.3390/polym11020252] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 11/24/2022] Open
Abstract
β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) were used to prepare insoluble polymers using epichlorohydrin as a cross-linking agent and the azo dye Direct Red 83:1 was used as target adsorbate. The preliminary study related to adsorbent dosage, pH, agitation or dye concentration allowed us to select the best conditions to carry out the rest of experiments. The kinetics was evaluated by Elovich, pseudo first order, pseudo second order, and intra-particle diffusion models. The results indicated that the pseudo second order model presented the best fit to the experimental data, indicating that chemisorption is controlling the process. The results were also evaluated by Freundlich, Langmuir and Temkin isotherms. According to the determination coefficient (R²), Freunlich gave the best results, which indicates that the adsorption process is happening on heterogeneous surfaces. One interesting parameter obtained from Langmuir isotherm is qmax (maximum adsorption capacity). This value was six times higher when a β-CDs-EPI polymer was employed. The cross-linked polymers were fully characterized by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA). Also, morphology and particle size distribution were both assessed. Under optimized conditions, the β-CDs-EPI polymer seems to be a useful device for removing Direct Red 83:1 (close 90%), from aqueous solutions and industrial effluents. Complementarily, non-adsorbed dye was photolyzed by a pulsed light driven advanced oxidation process. The proposed methodology is environmental and economically advantageous, considering the point of view of a sustainable recycling economy in the textile dyeing process.
Collapse
Affiliation(s)
- José A Pellicer
- Dpto. de Ciencias de la Salud., Universidad Católica San Antonio de Murcia (UCAM), Avenida de los Jerónimos s/n, 30107 Guadalupe, Murcia, Spain.
| | - María I Rodríguez-López
- Dpto. de Ciencias de la Salud., Universidad Católica San Antonio de Murcia (UCAM), Avenida de los Jerónimos s/n, 30107 Guadalupe, Murcia, Spain.
| | - María I Fortea
- Dpto. de Ciencias de la Salud., Universidad Católica San Antonio de Murcia (UCAM), Avenida de los Jerónimos s/n, 30107 Guadalupe, Murcia, Spain.
| | - Carmen Lucas-Abellán
- Dpto. de Ciencias de la Salud., Universidad Católica San Antonio de Murcia (UCAM), Avenida de los Jerónimos s/n, 30107 Guadalupe, Murcia, Spain.
| | - María T Mercader-Ros
- Dpto. de Ciencias de la Salud., Universidad Católica San Antonio de Murcia (UCAM), Avenida de los Jerónimos s/n, 30107 Guadalupe, Murcia, Spain.
| | - Santiago López-Miranda
- Dpto. de Ciencias de la Salud., Universidad Católica San Antonio de Murcia (UCAM), Avenida de los Jerónimos s/n, 30107 Guadalupe, Murcia, Spain.
| | - Vicente M Gómez-López
- Dpto. de Ciencias de la Salud., Universidad Católica San Antonio de Murcia (UCAM), Avenida de los Jerónimos s/n, 30107 Guadalupe, Murcia, Spain.
| | - Paola Semeraro
- Universita degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4, 70126 Bari, Italy.
| | - Pinalysa Cosma
- Universita degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4, 70126 Bari, Italy.
| | - Paola Fini
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4, 70126 Bari, Italy.
| | - Esther Franco
- Biotechnology Department, Textile Industry Research Association (AITEX), Plaza Emilio Sala, 1, 03801 Alcoy, Spain.
| | - Marcela Ferrándiz
- Biotechnology Department, Textile Industry Research Association (AITEX), Plaza Emilio Sala, 1, 03801 Alcoy, Spain.
| | - Enrique Pérez
- Colorprint Fashion, SL, Avda. Fco. Vitoria Laporta 104, 03830 Muro de Alcoy, Alicante, Spain.
| | - Miguel Ferrándiz
- Colorprint Fashion, SL, Avda. Fco. Vitoria Laporta 104, 03830 Muro de Alcoy, Alicante, Spain.
| | - Estrella Núñez-Delicado
- Dpto. de Ciencias de la Salud., Universidad Católica San Antonio de Murcia (UCAM), Avenida de los Jerónimos s/n, 30107 Guadalupe, Murcia, Spain.
| | - José A Gabaldón
- Dpto. de Ciencias de la Salud., Universidad Católica San Antonio de Murcia (UCAM), Avenida de los Jerónimos s/n, 30107 Guadalupe, Murcia, Spain.
| |
Collapse
|
115
|
Grisales CM, Salazar LM, Garcia DP. Treatment of synthetic dye baths by Fenton processes: evaluation of their environmental footprint through life cycle assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4300-4311. [PMID: 30027374 DOI: 10.1007/s11356-018-2757-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Inorganic and organic constituents present in textile effluents have a noticeable effect on the performance of Fenton processes. However, studies have been focused on simple wastewater matrices that do not offer enough information to stakeholders to evaluate their real potential in large-scale facilities. Chemical auxiliaries, commonly present in textile wastewaters (NaCl = 30 g/L, Na2CO3 = 5 g/L, and CH3COONa = 1 g/L), affect both the economic and environmental performance of the process because they increase the treatment time (from 0.5 to 24 h) and the consumption of H2SO4 (657%) and NaOH (148%) during conditioning steps. The life cycle assessment (LCA) performed with the IPCC-2013 method revealed that dyeing auxiliaries increase from 1.06 to 3.73 (252%) the emissions of carbon dioxide equivalent (CO2-Eqv/m3). Electricity consumption can be considered an environmental hotspot because it represents 60% of the carbon footprint of the Fenton process. Also, the presence of auxiliaries is critical for the process because it results in the increase of the relative impact (between 50 and 80%) in all environmental categories considered by the ReCiPe-2008 method. Chemical auxiliaries increased the costs of the treatment process in 178% (US$2.22/m3) due to the higher energy consumption and the additional reagent requirements. It is worthwhile mentioning that the technical simplicity of the Fenton process and its low economic and environmental costs turn this process into an attractive alternative for the treatment of textile effluents in emerging economies.
Collapse
Affiliation(s)
- Claudia Mildred Grisales
- Sede Palmira, Facultad de Ingeniería y Administración, Universidad Nacional de Colombia, Carrera 32 No. 12-00, Chapinero, Vía Candelaria, Palmira, Colombia
| | - Luis Miguel Salazar
- Sede Palmira, Facultad de Ingeniería y Administración, Universidad Nacional de Colombia, Carrera 32 No. 12-00, Chapinero, Vía Candelaria, Palmira, Colombia
| | - Dorian Prato Garcia
- Sede Palmira, Facultad de Ingeniería y Administración, Universidad Nacional de Colombia, Carrera 32 No. 12-00, Chapinero, Vía Candelaria, Palmira, Colombia.
| |
Collapse
|
116
|
Odling G, Robertson N. Bridging the gap between laboratory and application in photocatalytic water purification. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02438c] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite a large number of publications in the field, photocatalytic water treatment is still somewhat disconnected from real world application and we highlight recent developments to address this.
Collapse
Affiliation(s)
- Gylen Odling
- EaStCHEM School of Chemistry
- Joseph Black Building
- The King's Buildings
- Edinburgh
- UK
| | - Neil Robertson
- EaStCHEM School of Chemistry
- Joseph Black Building
- The King's Buildings
- Edinburgh
- UK
| |
Collapse
|
117
|
Tekin G, Ersöz G, Atalay S. Visible light assisted Fenton oxidation of tartrazine using metal doped bismuth oxyhalides as novel photocatalysts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 228:441-450. [PMID: 30243079 DOI: 10.1016/j.jenvman.2018.08.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/13/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
This research focused on the abatement of the model food dye, tartrazine, using visible light photo-Fenton oxidation with novel bismuth oxyhalide catalysts. Bismuth-oxyhalide and metal doped bismuth oxyhalide catalysts (BiOCl, Cu-BiOCl, and Fe-BiOCl) were synthesized via the facile co-precipitation method. The catalysts were characterized by SEM-EDX, XRD, BET, and DRS analyses and the results showed that Cu-BiOCl possess a unique flower-like nanostructure with narrow band gap (2.53 eV) which enhanced its visible light photocatalytic activity remarkably which was proven by catalyst screening experiments. A detailed experimental study was carried out to investigate the effects of operating parameters on the degradation and decolorization of the dye and from this the optimum values were determined as 0.25 g/L for photocatalyst loading, 100 W for visible light power, 6 for initial pH, 6 mM for initial H2O2 concentration, and temperature of 70 °C. Approximately 91% degradation, 95% decolorization, and 59% TOC reduction were obtained at optimum conditions. The results for the kinetic study showed that the degradation and decolorization reactions are in the pseudo-first order and obey the simplified Langmuir-Hinselwood kinetic model. The activation energies were calculated as 86.54 and 69.39 kJ/mol for degradation and decolorization, respectively.
Collapse
Affiliation(s)
- Gülen Tekin
- Ege University, Faculty of Engineering, Chemical Engineering Department, 35100, Bornova, İzmir, Turkey.
| | - Gülin Ersöz
- Ege University, Faculty of Engineering, Chemical Engineering Department, 35100, Bornova, İzmir, Turkey.
| | - Süheyda Atalay
- Ege University, Faculty of Engineering, Chemical Engineering Department, 35100, Bornova, İzmir, Turkey.
| |
Collapse
|
118
|
Xie X, Liu N, Yang F, Zhang Q, Zheng X, Wang Y, Liu J. Comparative study of antiestrogenic activity of two dyes after Fenton oxidation and biological degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:416-424. [PMID: 30142608 DOI: 10.1016/j.ecoenv.2018.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
In present study, two methods (Fenton oxidation and biological degradation) were used to degrade azo dye (Reactive Black 5, RB5) and anthraquinone dye (Remazol Brilliant Blue R, RBBR). The changes of antiestrogenic activities of these two dyes through two degradation methods were detected using the yeast two-hybrid assay method. Fluorescence spectroscopy together with gas chromatography-mass spectrometry (GC-MS) method was performed to analyze the metabolites of RB5 and RBBR after Fenton oxidation and biological degradation. Results indicated that by Fenton oxidation, the decolorization of RB5 and RBBR were 99.31% and 96.62%, respectively, which were much higher than that by biological degradation. Dissolved organic carbon (DOC) reduction rates of RB5 and RBBR after Fenton oxidation were also much higher than that after biological degradation. By Fenton oxidation, the antiestrogenic activities of RB5 and RBBR all decreased below detection limit after degradation, while by biological degradation all of them increased significantly after degradation. Fluorescence spectroscopy analysis and GC-MS analysis confirmed the degradation effects of RB5 and RBBR by these two degradation methods. In addition, fluorescence spectroscopy analysis revealed that the metabolites humic acid-like substances might contribute to the increasing of antiestrogenic activity of RB5 and RBBR after biological degradation.
Collapse
Affiliation(s)
- Xuehui Xie
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University, Education District, Suzhou, Anhui 234000, PR China.
| | - Fang Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Qingyun Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xiulin Zheng
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yiqiin Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jianshe Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
119
|
Prickly pear cactus cladodes powder of Opuntia ficus indica as a cost effective biosorbent for dyes removal from aqueous solutions. 3 Biotech 2018; 8:478. [PMID: 30456012 DOI: 10.1007/s13205-018-1499-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/01/2018] [Indexed: 10/27/2022] Open
Abstract
The textiles manufacturing is one of the core industries that release a huge amount of dyes during the dyeing process. As a result, the growing demand of an efficient and low-cost treatment has given rise to alternative adsorbents. In the present study, prickly pear cactus cladodes powder (PPCP) of Opuntia ficus indica was investigated as an ecofriendly and low-cost biosorbent of Acid orange 51 (AO51) and Reactive Red 75 (RR75) dyes commonly used in dyeing. The FTIR spectroscopic characterization of PPCP showed the heterogeneity in surface structure and functional groups which confers to the biosorbent its capability to interact with acidic (AO51) and reactive (RR75) dyes molecules. Effects of pH, temperature, initial dye concentration and adsorbent dose on adsorption yield were investigated. The dyes uptake process was closely fitted to the pseudo-second order kinetic for both dyes. Experimental data were analyzed by applying the Langmuir, Freundlich, Dubinin-Raduskevich, Temkin, Redlich-Peterson, and BET isotherms equations. The models of BET and Langmuir were considered as the best isotherms models fitting experimental data, respectively, of RR75 and AO51. The maximum Langmuir monolayer biosorption capacities were of 198.9 and 45 mg g-1, respectively for RR75 and AO51.
Collapse
|
120
|
Mediterranean forested wetlands are yeast hotspots for bioremediation: a case study using azo dyes. Sci Rep 2018; 8:15943. [PMID: 30374188 PMCID: PMC6206003 DOI: 10.1038/s41598-018-34325-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/16/2018] [Indexed: 11/15/2022] Open
Abstract
Forested wetlands are interfaces between terrestrial and aquatic environments. These ecosystems play an important role in the hydrology, chemistry and biodiversity maintenance. Despite their high microbial diversity, there has been a lack of attention to the potential of their yeast communities. The purpose of this study is to evaluate the potential of yeasts isolated from a Mediterranean forested wetlands in decolorizing azo dyes. Azo dyes are synthetic, and highly recalcitrant to degradation. Ninety-two out of 560 isolates were randomly chosen to assess their ability to decolorize five azo dyes. Hierarchical clustering based on medium color changes during incubations was used to evaluate the isolates’ decolorization performance. All of the isolates that best degraded the 5 dyes tested were identified as Basidiomycota (Filobasidiales, Tremellales and Sporidiobolales). This work identifies new azo dye-degrading yeast species, and supports the hypothesis that forested wetlands are a niche for yeasts with bioremediation potential - namely azo dyes removal.
Collapse
|
121
|
Cardoso BK, Linde GA, Colauto NB, do Valle JS. Panus strigellus laccase decolorizes anthraquinone, azo, and triphenylmethane dyes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
122
|
Malik NH, Zain H, Ali N. Organismic-level acute toxicology profiling of reactive azo dyes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:612. [PMID: 30259157 DOI: 10.1007/s10661-018-6986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
In the present study, organismic-level acute toxicology profile of three reactive azo dyes, viz. Reactive Blue 221, Reactive Red 195, and Reactive Yellow 145, was investigated, by using bacterial (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Listeria monocytogenes, and Bacillus subtilis), fungal (Trichoderma asperellum, Aspergillus flavus, Fusarium fujikuroi, and Rhizoctonia solani), plant (Raphanus sativus, Triticum aestivum, Sorghum bicolor, and Phaseolus mungo), and aquatic (Artemia salina and Daphnia magna) specimens. Microbial test organisms (all the six bacteria and two fungi, i.e., T. asperellum and A. flavus) and D. magna were found to be relatively more sensitive towards the reactive azo dyes and their mixture, as the EC50 values were in the range of 80-330, 135-360, and 108-242 ppm for bacteria, fungi, and D. magna, respectively (but the effect was not acutely toxic). Moreover, the effect of dye mixture was comparable tothe individual dyes in almost all the tested microbial specimens. For plant seeds, the dye mixture was found to be relatively more inhibitory towards T. aestivum and R. sativus than the individual dyes. For S. bicolor and P. mungo seeds, the effect of the dye mixture was almost identical to the individual dyes. However, in all cases, EC50 values were in the range of 950-3500 ppm, which indicates a non-toxic effect on plant seed germination potential. Likewise, the dyes and their mixture were not acutely toxic for Artemia salina larvae (more sensitive to the dye mixture) and Daphnia magna neonates (EC50, 516-950 and 108-242 ppm, respectively).
Collapse
Affiliation(s)
| | - Hajira Zain
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Naeem Ali
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
123
|
Castellanos NJ, Martinez Rojas Z, Camargo HA, Biswas S, Granados-Oliveros G. Congo red decomposition by photocatalytic formation of hydroxyl radicals (·OH) using titanium metal–organic frameworks. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0271-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
124
|
Procner M, Orzeł Ł, Stochel G, van Eldik R. Catalytic Degradation of Orange II by MnIII(TPPS) in Basic Hydrogen Peroxide Medium: A Detailed Kinetic Analysis. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Magdalena Procner
- Faculty of Chemistry; Jagiellonian University; Gronostajowa 2 30-387 Kraków Poland
| | - Łukasz Orzeł
- Faculty of Chemistry; Jagiellonian University; Gronostajowa 2 30-387 Kraków Poland
| | - Grażyna Stochel
- Faculty of Chemistry; Jagiellonian University; Gronostajowa 2 30-387 Kraków Poland
| | - Rudi van Eldik
- Faculty of Chemistry; Jagiellonian University; Gronostajowa 2 30-387 Kraków Poland
- Department of Chemistry and Pharmacy; University of Erlangen-Nürnberg; Egerlandstr. 1 91058 Erlangen Germany
| |
Collapse
|
125
|
Roy DC, Biswas SK, Saha AK, Sikdar B, Rahman M, Roy AK, Prodhan ZH, Tang SS. Biodegradation of Crystal Violet dye by bacteria isolated from textile industry effluents. PeerJ 2018; 6:e5015. [PMID: 29942689 PMCID: PMC6015751 DOI: 10.7717/peerj.5015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/21/2018] [Indexed: 12/02/2022] Open
Abstract
Industrial effluent containing textile dyes is regarded as a major environmental concern in the present world. Crystal Violet is one of the vital textile dyes of the triphenylmethane group; it is widely used in textile industry and known for its mutagenic and mitotic poisoning nature. Bioremediation, especially through bacteria, is becoming an emerging and important sector in effluent treatment. This study aimed to isolate and identify Crystal Violet degrading bacteria from industrial effluents with potential use in bioremediation. The decolorizing activity of the bacteria was measured using a photo electric colorimeter after aerobic incubation in different time intervals of the isolates. Environmental parameters such as pH, temperature, initial dye concentration and inoculum size were optimized using mineral salt medium containing different concentration of Crystal Violet dye. Complete decolorizing efficiency was observed in a mineral salt medium containing up to 150 mg/l of Crystal Violet dye by 10% (v/v) inoculums of Enterobacter sp. CV-S1 tested under 72 h of shaking incubation at temperature 35 °C and pH 6.5. Newly identified bacteria Enterobacter sp. CV-S1, confirmed by 16S ribosomal RNA sequencing, was found as a potential bioremediation biocatalyst in the aerobic degradation/de-colorization of Crystal Violet dye. The efficiency of degrading triphenylmethane dye by this isolate, minus the supply of extra carbon or nitrogen sources in the media, highlights the significance of larger-scale treatment of textile effluent.
Collapse
Affiliation(s)
- Dipankar Chandra Roy
- Biomedical and Toxicological Research Institute, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Sudhangshu Kumar Biswas
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lampur, Malaysia
- Department of Biotechnology and Genetic Engineering, Faculty of Applied Science and Technology, Islamic University Kushtia, Kushtia, Bangladesh
| | - Ananda Kumar Saha
- Department of Zoology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Biswanath Sikdar
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Applied Science and Technology, Islamic University Kushtia, Kushtia, Bangladesh
| | - Apurba Kumar Roy
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Zakaria Hossain Prodhan
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lampur, Malaysia
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Swee-Seong Tang
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lampur, Malaysia
| |
Collapse
|
126
|
Yu L, Qiu Y, Yu Y, Wang S. Reductive decolorization of azo dyes via in situ generation of green tea extract-iron chelate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17300-17309. [PMID: 29651730 DOI: 10.1007/s11356-018-1907-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
In this study, rapid decolorization of azo dyes was achieved by in situ-generated green tea extract-iron (GTE-Fe) chelate for the first time. When changing reaction conditions from the aerobic condition to the anaerobic condition, the decolorization efficiencies of two azo dyes, i.e., acid orange 7 (AO7) and acid black 1 (AB1), increased from 46.38 and 83.17 to 90.13 and 95.37%, respectively. The recalcitrant AO7 was then selected as the targeting pollutant in subsequent optimization and mechanism studies. Experimental evidences showed that the initial concentrations of AO7, Fe(III), and GTE are the key factors to optimize the decolorization efficiency. Further characterization studies by spectroscopic analysis, including FESEM, FTIR, and XPS, suggested that the major mechanism of AO7 decolorization is the nucleophilic attack of the oxygen in green tea polyphenols (GTP), and this attack could be facilitated by the organometal chelation. This study provided an efficient and environmental friendly strategy to decolorize azo dyes via in situ generation of the GTE-Fe chelate, as well as its mechanistic insights, shedding lights on in situ remediation of azo dye pollution. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Ling Yu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
- Environmental Microbiome Research Center, Sun Yat-Sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Yewen Qiu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Yang Yu
- Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, 510632, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
- Environmental Microbiome Research Center, Sun Yat-Sen University, Guangzhou, 510275, China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| |
Collapse
|
127
|
Desai AV, Roy A, Samanta P, Manna B, Ghosh SK. Base-Resistant Ionic Metal-Organic Framework as a Porous Ion-Exchange Sorbent. iScience 2018; 3:21-30. [PMID: 30428321 PMCID: PMC6137287 DOI: 10.1016/j.isci.2018.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 01/21/2023] Open
Abstract
A systematic approach has been employed to obtain a hydrolytically stable cationic metal-organic framework (MOF). The synthesized two-dimensional Ni(II)-centered cationic MOF, having its backbone built from purely neutral N-donor ligand, is found to exhibit uncommon resistance over wide pH range, particularly even under highly alkaline conditions. This report presents a rare case of a porous MOF retaining structural integrity under basic conditions, and an even rarer case of a porous cationic MOF. The features of stability and porosity in this ionic MOF have been harnessed for the function of charge- and size-selective capture of small organic dye through ion-exchange process across a wide pH range.
Collapse
Affiliation(s)
- Aamod V Desai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Arkendu Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Partha Samanta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Biplab Manna
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India; Centre for Energy Science, IISER Pune, Pune 411 008, India.
| |
Collapse
|
128
|
Sharma B, Deswal R. Single pot synthesized gold nanoparticles using Hippophae rhamnoides leaf and berry extract showed shape-dependent differential nanobiotechnological applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:408-418. [DOI: 10.1080/21691401.2018.1458034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Bhavana Sharma
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
129
|
Mishra S, Maiti A. The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8286-8314. [PMID: 29383646 DOI: 10.1007/s11356-018-1273-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
The industrial dye-contaminated wastewater has been considered as the most complex and hazardous in terms of nature and composition of toxicants that can cause severe biotic risk. Reactive azo, anthroquinone and triphenylmethane dyes are mostly used in dyeing industries; thus, the unfixed hydrolysed molecules of these dyes are commonly found in wastewater. In this regard, bacterial species have been proved to be highly effective to treat wastewater containing reactive dyes and heavy metals. The bio-decolourisation of dye occurs either by adsorption or through degradation in bacterial metabolic pathways under optimised environmental conditions. The bacterial dye decolourisation rates vary with the type of bacteria, reactivity of dye and operational parameters such as temperature, pH, co-substrate, electron donor and dissolved oxygen concentration. The present paper reviews the efficiency of bacterial species (individual and consortia) to decolourise wastewater containing reactive azo, anthroquinone and triphenylmethane dyes either individually or mixed or with metal ions. It has been observed that bacteria Pseudomonas spp. are comparatively more effective to treat reactive dyes and metal-contaminated wastewater. In recent studies, either immobilised cell or isolated enzymes are being used to decolourise dye at a large scale of operations. However, it is required to investigate more potent bacterial species or consortia that could be used to treat wastewater containing mixed reactive dyes and heavy metals like chromium ions.
Collapse
Affiliation(s)
- Saurabh Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India
| | - Abhijit Maiti
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India.
| |
Collapse
|
130
|
Rawat D, Sharma RS, Karmakar S, Arora LS, Mishra V. Ecotoxic potential of a presumably non-toxic azo dye. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:528-537. [PMID: 29125956 DOI: 10.1016/j.ecoenv.2017.10.049] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 05/26/2023]
Abstract
Microbes have potential to convert non-toxic azo dyes into hazardous products in the environment. However, the role of microbes in biotransforming such presumably non-toxic dyes has not been given proper attention, thereby, questions the environmental safety of such compounds. The present study assessed salinity driven microbial degradation of an unregulated azo dye, Acid orange 7 (AO7), under moderately halophilic conditions of textile effluent. The halophilic microbial consortium from effluent decolorized ~97% AO7 (50-500mgL-1). The consortium efficiently decolorized the dye at different pH (5-8) and salinity (5-18% NaCl). The 16S rRNA sequence analyses confirmed the presence of Halomonas and Escherichia in the consortium. The FTIR and GC-MS analyses suggested microbial consortium degrade AO7 following symmetric and asymmetric cleavage and yield carcinogenic/mutagenic aromatic byproducts viz. aniline, 1-amino-2-naphthol, naphthalene, and phenyldiazene. In contrast to AO7, the biodegraded products caused molecular, cellular and organism level toxicity. The degraded products significantly reduced: radicle length in root elongation assay; shoot length/biomass in plant growth assays; and caused chromosomal abnormalities and reduced mitotic index in Allium cepa bioassay. We demonstrated that under saline conditions of textile effluent, halophilic microbes convert a presumably non-toxic azo dye into hazardous products. The study calls to review the current toxicity classification of azo dyes and develop environmentally sound regulatory policies by incorporating the role of environmental factors in governing dye toxicity, for environmental safety.
Collapse
Affiliation(s)
- Deepak Rawat
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Swagata Karmakar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Lakhbeer Singh Arora
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India.
| |
Collapse
|
131
|
Maganha de Almeida AC, Backhaus J, Corso CR. Recycling food waste to clean water: the use of a biodigester's residual liquid inoculum (RLI) to decolourise textile azo dyes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:398-408. [PMID: 29377824 DOI: 10.2166/wst.2017.546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A residual liquid inoculum (RLI) was used to decolourise solutions of Acid Yellow 25 (AY25) and Direct Violet 51 (DV51) azo dyes. The RLI was obtained through anaerobic digestion of food waste from a university restaurant. The concentration of bacteria in the RLI was 8.45 × 107 CFU mL-1. Dye solutions (50 μg mL-1) were inoculated with the RLI (20% v/v) and incubated at room temperature. The decolourisation studies took place at microaerophilic and in-batch conditions and at pH = 2.50. Initially, the dyes were taken up from solution by biosorption; maximum colour removal was achieved after 3 hours of incubation, with 88.66% for AY25 and 77.65% of DV51. At prolonged incubation times (3-96 hours) decolourisation was mainly attributed to biodegradation of the azo solutions, with breakage of the azo bond, as detected by UV-VIS spectroscopy and Fourier transform infrared (FT-IR) analysis. Analysis of UV-VIS absorption rates of dyes showed, however, that AY25 was more readily biodegradable whereas DV51 was more recalcitrant to the action of the RLI.
Collapse
Affiliation(s)
- A C Maganha de Almeida
- Biochemistry and Microbiology Department, Biological Sciences Institute, São Paulo State University - UNESP - Av 24A, 1515 CEP 13.506-900, Rio Claro, São Paulo, Brazil E-mail:
| | - J Backhaus
- Institute for Instrumental Analysis and Bioanalysis, Mannheim University of Applied Sciences, Windeckstraße 110, Mannheim 68163, Germany
| | - C R Corso
- Biochemistry and Microbiology Department, Biological Sciences Institute, São Paulo State University - UNESP - Av 24A, 1515 CEP 13.506-900, Rio Claro, São Paulo, Brazil E-mail:
| |
Collapse
|
132
|
Role of Bacterial Consortia in Bioremediation of Textile Recalcitrant Compounds. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7413-4_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
133
|
Shanmugam BK, Easwaran SN, Lakra R, Deepa PR, Mahadevan S. Metabolic pathway and role of individual species in the bacterial consortium for biodegradation of azo dye: A biocalorimetric investigation. CHEMOSPHERE 2017; 188:81-89. [PMID: 28869849 DOI: 10.1016/j.chemosphere.2017.08.138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/03/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
In this study, an attempt was made to investigate the functional role and metabolic behaviour of the monoculture (Staphylococcus lentus (SL), Bacillus flexus (BF) and Pseudomonas aeruginosa (PA)) in the bacterial biocenosis for biotransformation of an azo dye. The power-time profile obtained from consortia depicted three distinct peaks, which correlated well with the individual bacterial growth (PA > SL > BF), indicating the synergistic relation and division of labour in the biocenosis. The heat release pattern was used to identify the sequential behaviour of microbial consortia in real time. Yield calculation based on total heat liberated to the complete substrate utilization Y (Q/S) for PA, SL, and BF were 15.99, 16.68, 7.32 kJ/L respectively. Similarly, the oxy calorific values Y (Q/O) for the above species are respectively 386, 375, 440 kJ/mol and indicates the aerobic nature of microorganism employed. Further, the metabolome produced during the biotransformation were identified using Gas Chromatography-Mass Spectrometry (GC-MS), based on which a plausible pathway was predicted. The abundant metabolites were palmitic acid (m/z = 256) and diethyl phthalate (m/z = 222.2). The abundance of diethyl phthalate was much lesser in the consortia compared to the monoculture. Thus, the biocalorimetric heat yield calculation along with the stoichiometry and plausible pathway based biochemical elucidation provides a mechanistic basis for understanding the azo-dye biotransformation by the monocultures in consortia.
Collapse
Affiliation(s)
- Bhuvanesh Kumar Shanmugam
- Chemical Engineering Department, Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
| | - Sivanesh Nanjan Easwaran
- Chemical Engineering Department, Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
| | - Rachita Lakra
- Biomaterials Department, Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, India
| | - Perinkulam Ravi Deepa
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan 333031, India
| | - Surianarayanan Mahadevan
- Chemical Engineering Department, Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India.
| |
Collapse
|
134
|
Arica MY, Salih B, Celikbicak O, Bayramoglu G. Immobilization of laccase on the fibrous polymer-grafted film and study of textile dye degradation by MALDI–ToF-MS. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2017.09.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
135
|
Jin L, Zhao X, Qian X, Dong M. Nickel nanoparticles encapsulated in porous carbon and carbon nanotube hybrids from bimetallic metal-organic-frameworks for highly efficient adsorption of dyes. J Colloid Interface Sci 2017; 509:245-253. [PMID: 28915482 DOI: 10.1016/j.jcis.2017.09.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/27/2017] [Accepted: 09/01/2017] [Indexed: 01/19/2023]
Abstract
Nickel nanoparticles encapsulated in porous carbon/carbon nanotube hybrids (Ni/PC-CNT) were successfully prepared by a facile carbonization process using Ni/Zn-MOF as the precursor. Distinct from previous studies, Ni/Zn-MOF precursors were prepared via a direct precipitation method at room temperature for only 5min. After the carbonization, magnetic Ni nanoparticles were well embedded in the porous carbon and carbon nanotube. The obtained Ni/PC-CNT composites had a high surface area (999m2 g-1), large pore volume (0.86cm3 g-1) and well-developed graphitized wall. The Ni/PC-CNT composites showed excellent adsorption capacity for removal of malachite green (MG), congo red (CR), rhodamine B (Rh B), methylene blue (MB) and methyl orange (MO) from aqueous solution. The maximum adsorption capacity of Ni/PC-CNT composites were about 898, 818, 395, 312 and 271mg/g for MG, CR, RB, MB and MO dyes, respectively, which were much higher than most of the previously reported adsorbents. Moreover, the Ni/PC-CNT composites could be easily regenerated by washing it with ethanol and easy magnetic separation.
Collapse
Affiliation(s)
- Lina Jin
- Institute for Advanced Materials, and School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaoshuang Zhao
- Institute for Advanced Materials, and School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinye Qian
- Institute for Advanced Materials, and School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Mingdong Dong
- Center for DNA Nanotechnology (CDNA), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
136
|
Brüschweiler BJ, Merlot C. Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet. Regul Toxicol Pharmacol 2017; 88:214-226. [DOI: 10.1016/j.yrtph.2017.06.012] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 11/28/2022]
|
137
|
Singh S, Mishra R, Sharma RS, Mishra V. Phenol remediation by peroxidase from an invasive mesquite: Turning an environmental wound into wisdom. JOURNAL OF HAZARDOUS MATERIALS 2017; 334:201-211. [PMID: 28412630 DOI: 10.1016/j.jhazmat.2017.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
The present study examines mesquite (Prosopis juliflora), an invasive species, to yield peroxidase that may reduce hazards of phenolics to living organisms. As low as 0.3U of low-purity mesquite peroxidase (MPx) efficiently remove phenol and chlorophenols (90-92%) compared with Horseradish peroxidase (HRP) (40-60%). MPx shows a very high removal efficiency (40-50%) at a wide range of pH (2-9) and temperature (20-80°C), as opposed to HRP (15-20%). At a high-level of the substrate (2.4mM) and without the addition of PEG, MPx maintains a significant phenolic removal (60-≥92%) and residual activity (∼25%). It proves the superiority of MPx over HRP, which showed insignificant removal (10-12%) under similar conditions, and no residual activity even with PEG addition. The root elongation and plant growth bioassays confirm phenolic detoxification by MPx. Readily availability of mesquite across the countries and easy preparation of MPx from leaves make this tree as a sustainable source for a low-technological solution for phenol remediation. This study is the first step towards converting a biological wound of invasive species into wisdom and strength for protecting the environment from phenol pollution.
Collapse
Affiliation(s)
- Savita Singh
- Bioresources and Environmental Biotechnology, Laboratory, Department of Environmental Studies, University of Delhi, Delhi-110 007, India
| | - Ruchi Mishra
- Bioresources and Environmental Biotechnology, Laboratory, Department of Environmental Studies, University of Delhi, Delhi-110 007, India
| | - Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology, Laboratory, Department of Environmental Studies, University of Delhi, Delhi-110 007, India
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology, Laboratory, Department of Environmental Studies, University of Delhi, Delhi-110 007, India.
| |
Collapse
|
138
|
Liu W, Liu C, Liu L, You Y, Jiang J, Zhou Z, Dong Z. Simultaneous decolorization of sulfonated azo dyes and reduction of hexavalent chromium under high salt condition by a newly isolated salt-tolerant strain Bacillus circulans BWL1061. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:9-16. [PMID: 28284151 DOI: 10.1016/j.ecoenv.2017.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
The co-existence of dyes, Cr(VI) and high concentration of salt in dyeing wastewater causes serious and complex environmental problems. In this study, a salt-tolerant strain Bacillus circulans BWL1061 was reported to simultaneously remove 50mg/L methyl orange and 50mg/L Cr(VI) under the anaerobic condition with 60g/L NaCl. During the decolorization process, the Cr(VI) reduction occurred preferentially over the dye decolorization due to the dominate utilization of electron by Cr(VI). The analysis of enzyme activities suggested that azoreductase, NADH-DCIP reductase, and laccase were associated with decolorization of methyl orange. A possible degradation pathway was proposed based on the metabolites analysis. The decolorization of methyl orange is involved in the symmetric cleavage of azo bond, which formed N,N-dimethyl p-phenylenediamine and 4-amino sulfonic acid, or the asymmetric cleavage of azo bond, which formed 4-(dimethylamino) phenol and 4-diazenylbenzene sulfonic acid. Phytotoxicity assays showed that strain BWL1061 could decrease the toxicity of methyl orange to Triticum aestivum, Pogostemon cablin and Isatis indigotica Fort during the decolorization process. In this study, Bacillus circulans is reported for the first time that could simultaneously remove azo dyes and Cr (VI) under high salt condition.
Collapse
Affiliation(s)
- Weijie Liu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China.
| | - Cong Liu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Liang Liu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Yanting You
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Jihong Jiang
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Zhengkun Zhou
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Zhen Dong
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| |
Collapse
|
139
|
Janović BS, Collins AR, Vujčić ZM, Vujčić MT. Acidic horseradish peroxidase activity abolishes genotoxicity of common dyes. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:576-585. [PMID: 27694021 DOI: 10.1016/j.jhazmat.2016.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/22/2016] [Accepted: 09/16/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to investigate the impact of dyes on DNA before and after enzymatic decolorization by acidic horseradish peroxidase (HRP-A). The comet assay is easy and feasible method widely used to measure DNA damage and repair. The medium-throughput comet assay was employed for assessment of genotoxic effects of 8 dyes in BEAS-2B cells. We have incorporated a digestion with bacterial endonuclease (formamidopyrimidine DNA glycosylase, FPG) to detect oxidized bases in the case of single and double azo dyes, Orange II (OR2) and Amido Black 10B (AB), respectively. This allowed detection 8-oxo-7,8-dihydroguanine, one of most abundant oxidized bases in nuclear DNA. In the case of AB there was no indication of DNA damage, either strand brakes or FPG-sensitive sites before and after decolorization. The OR2 induced DNA damage (in terms of percentage of DNA in comet tails). Also, the frequency of FPG-sensitive sites increased with OR2 concentration. After decolorization no DNA damaging effects was seen at all. The interaction studies of OR2 and AB, before and after decolorization, with calf thymus DNA has been investigated by absorption and fluorescence spectroscopy. The results provide support for the idea that in some cases enzymatic decolorization contributes to lower genotoxicity potential.
Collapse
Affiliation(s)
- Barbara S Janović
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, P.O. Box 815, 11000 Belgrade, Serbia.
| | - Andrew R Collins
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PB 1046 Blindern, 0316 Oslo, Norway
| | - Zoran M Vujčić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Miroslava T Vujčić
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, P.O. Box 815, 11000 Belgrade, Serbia
| |
Collapse
|
140
|
Shabbir S, Faheem M, Ali N, Kerr PG, Wu Y. Periphyton biofilms: A novel and natural biological system for the effective removal of sulphonated azo dye methyl orange by synergistic mechanism. CHEMOSPHERE 2017; 167:236-246. [PMID: 27728882 DOI: 10.1016/j.chemosphere.2016.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
Due to their large scale use, azo dyes are adversely affecting aquatic fauna and flora as well as humans. The persistent nature of sulphonated azo dyes makes them potential ecotoxic hazards. The aim of the present study was to employ a proficient, locally available biomaterial, viz. periphyton (i.e. epiphyton, epilithon or metaphyton), for removal of the azo dye, methyl orange (MO). Results showed that the periphytic biofilms are capable of completely removing comparatively high concentrations (up to 500 mg L-1) of MO from wastewater. The removal of MO occurs by a synergistic mechanism involving bioadsorption and biodegradation processes. The adsorption of MO by periphyton can be described by pseudo-second order kinetics. Elovich and intraparticle diffusion models as well as Langmuir equations fit well to the MO adsorption process. FTIR analysis of MO and its metabolites demonstrated biotransformation into simpler compounds within 72 h. GC-MS/MS analysis showed the conversion of MO into simpler compounds such as phenol, ethyl acetate and acetyl acetate. The results indicated that periphyton is a promising biomaterial for the complete removal of MO from wastewater and that the treatment process has the potential for in situ removal of MO at contaminated sites.
Collapse
Affiliation(s)
- Sadaf Shabbir
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, Jiangsu, People's Republic of China; Department of Microbiology, Quaid-i-Azam University, 3rd Avenue, 45320, Islamabad, Pakistan
| | - Muhammad Faheem
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Naeem Ali
- Department of Microbiology, Quaid-i-Azam University, 3rd Avenue, 45320, Islamabad, Pakistan
| | - Philip G Kerr
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, Jiangsu, People's Republic of China.
| |
Collapse
|
141
|
Abbas N, Hussain S, Azeem F, Shahzad T, Bhatti SH, Imran M, Ahmad Z, Maqbool Z, Abid M. Characterization of a salt resistant bacterial strain Proteus sp. NA6 capable of decolorizing reactive dyes in presence of multi-metal stress. World J Microbiol Biotechnol 2016; 32:181. [PMID: 27646208 DOI: 10.1007/s11274-016-2141-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/12/2016] [Indexed: 11/26/2022]
Abstract
Microbial biotechnologies for the decolorization of textile wastewaters have attracted worldwide attention because of their economic suitability and easiness in handling. However, the presence of high amounts of salts and metal ions in textile wastewaters adversely affects the decolorization efficiency of the microbial bioresources. In this regard, the present study was conducted to isolate salt tolerant bacterial strains which might have the potential to decolorize azo dyes even in the presence of multi-metal ion mixtures. Out of the tested 48 bacteria that were isolated from an effluent drain, the strain NA6 was found relatively more efficient in decolorizing the reactive yellow-2 (RY2) dye in the presence of 50 g L(-1) NaCl. Based on the similarity of its 16S rRNA gene sequence and its position in a phylogenetic tree, this strain was designated as Proteus sp. NA6. The strain NA6 showed efficient decolorization (>90 %) of RY2 at pH 7.5 in the presence of 50 g L(-1) NaCl under static incubation at 30 °C. This strain also had the potential to efficiently decolorize other structurally related azo dyes in the presence of 50 g L(-1) NaCl. Moreover, Proteus sp. NA6 was found to resist the presence of different metal ions (Co(+2), Cr(+6), Zn(+2), Pb(+2), Cu(+2), Cd(+2)) and was capable of decolorizing reactive dyes in the presence of different levels of the mixtures of these metal ions along with 50 g L(-1) NaCl. Based on the findings of this study, it can be suggested that Proteus sp. NA6 might serve as a potential bioresource for the biotechnologies involving bioremediation of textile wastewaters containing the metal ions and salts.
Collapse
Affiliation(s)
- Naila Abbas
- Department of Environmental Sciences & Engineering, Government College University, Allama Iqbal Road, Faisalabad, Pakistan
| | - Sabir Hussain
- Department of Environmental Sciences & Engineering, Government College University, Allama Iqbal Road, Faisalabad, Pakistan.
- UCD School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Tanvir Shahzad
- Department of Environmental Sciences & Engineering, Government College University, Allama Iqbal Road, Faisalabad, Pakistan
| | | | - Muhammad Imran
- Department of Soil Science, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
- Environmental Microbiology, Soil Science Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38000, Pakistan
| | - Zulfiqar Ahmad
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Zahid Maqbool
- Department of Environmental Sciences & Engineering, Government College University, Allama Iqbal Road, Faisalabad, Pakistan
| | - Muhammad Abid
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakaria University, Multan, Pakistan
| |
Collapse
|