101
|
Rhoades NS, Cinco IR, Hendrickson SM, Slifka MK, Messaoudi I. Taxonomic and Functional Shifts in the Perinatal Gut Microbiome of Rhesus Macaques. Microbiol Spectr 2022; 10:e0081422. [PMID: 35863030 PMCID: PMC9431225 DOI: 10.1128/spectrum.00814-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022] Open
Abstract
Pregnancy and the postpartum period result in some of the most dramatic metabolic, hormonal, and physiological changes that can be experienced by an otherwise healthy adult. The timing and magnitude of these changes is key for both maternal and fetal health. One of the factors believed to critically modulate these physiological changes is the maternal gut microbiome. However, the dynamic changes in this community during the perinatal period remain understudied. Clinical studies can be complicated by confounding variables like diet and other drivers of heterogeneity in the human microbiome. Therefore, in this study, we conducted a longitudinal analysis of the fecal microbiome obtained during the pregnancy and postpartum periods in 26 captive rhesus macaques using 16S rRNA gene amplicon sequencing and shotgun metagenomics. Shifts at both the taxonomic and functional potential level were detected when comparing pregnancy to postpartum samples. Taxonomically, Alloprevotella, Actinobacillus, and Anaerovibrio were enriched in the gut microbiome during pregnancy, while Treponema, Lachnospiraceae, and Methanosphaera were more abundant postpartum. Functionally, the gut microbiome during pregnancy was associated with increased abundance in pathways involving the production of the short-chain fatty acid (SCFA) butyrate, while pathways associated with starch degradation and folate transformation were more abundant during the postpartum period. These data demonstrate dramatic changes in the maternal gut microbiome even in the absence of dietary changes and suggest that rhesus macaques could provide a valuable model to determine how changes in the microbiome correlate to other physiological changes in pregnancy. IMPORTANCE Pregnancy and the postpartum period are characterized by a myriad of metabolic and physiological adaptations needed to support fetal growth and maternal health. The maternal gut microbiome is believed to play a key role during this period but remains underexplored. Here, we report significant shifts in the taxonomic landscape and functional potential of the gut microbiome in 26 pregnant rhesus macaques during the transition from pregnancy to the postpartum period, despite shared dietary and environmental exposures. Increased abundance of pathways involved in the production of the short-chain fatty acid butyrate could play a critical role in modulating the maternal immune system and regulating fetal tolerance. On the other hand, increased abundance of pathways associated with starch degradation and folate transformation during the postpartum period could be important for meeting the metabolic demands of breastfeeding and neonatal growth.
Collapse
Affiliation(s)
- Nicholas S. Rhoades
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Isaac R. Cinco
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Sara M. Hendrickson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, Oregon, USA
| | - Mark K. Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, Oregon, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
102
|
Slykerman RF, Li E. A randomized trial of probiotic supplementation in nurses to reduce stress and viral illness. Sci Rep 2022; 12:14742. [PMID: 36042251 PMCID: PMC9427766 DOI: 10.1038/s41598-022-19104-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Animal studies demonstrate how the gut microbiota influence psychological health and immunity to viral infections through their actions along multiple dynamic pathways in the body. Considerable interest exists in probiotics to reduce stress and illness symptoms through beneficial effects in the gut, but translating pre-clinical evidence from animal models into humans remains challenging. We conducted a large trial in nurses working during the 2020 COVID19 pandemic year to establish whether daily ingestion of the probiotic Lactobacillus rhamnosus HN001 reduced perceived stress and the number of days participants reported symptoms of a viral illness. Our results showed no significant difference in perceived stress or the average number of illness days between probiotic supplemented nurses and the placebo group. Stress and viral illness symptoms reduced during the study for all participants, a trajectory likely influenced by societal-level factors. The powerful effect of a well-managed public health response to the COVID19 pandemic and the elimination of COVID19 from the community in 2020 may have altered the trajectory of stress levels and reduced circulating viral infections making it difficult to detect any effect of probiotic supplementation. Our study highlights the challenge in controlling environmental factors in human trials.
Collapse
Affiliation(s)
- Rebecca F Slykerman
- Department of Psychological Medicine, University of Auckland, Building 507, 22-30 Park Avenue, Grafton, Auckland, 1023, New Zealand.
| | - Eileen Li
- A Better Start - National Science Challenge University of Auckland, Auckland, New Zealand
| |
Collapse
|
103
|
ROLE OF GUT MICROBIOTA IN DEPRESSION: UNDERSTANDING MOLECULAR PATHWAYS, RECENT RESEARCH, AND FUTURE DIRECTION. Behav Brain Res 2022; 436:114081. [PMID: 36037843 DOI: 10.1016/j.bbr.2022.114081] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Gut microbiota, also known as the "second brain" in humans because of the regulatory role it has on the central nervous system via neuronal, chemical and immune pathways. It has been proven that there exists a bidirectional communication between the gut and the brain. Increasing evidence supports that this crosstalk is linked to the etiology and treatment of depression. Reports suggest that the gut microbiota control the host epigenetic machinery in depression and gut dysbiosis causes negative epigenetic modifications via mechanisms like histone acetylation, DNA methylation and non-coding RNA mediated gene inhibition. The gut microbiome can be a promising approach for the management of depression. The diet and dietary metabolites like kynurenine, tryptophan, and propionic acid also greatly influence the microbiome composition and thereby, the physiological activities. This review gives a bird-eye view on the pathological updates and currently used treatment approaches targeting the gut microbiota in depression.
Collapse
|
104
|
Song J, Zhou B, Kan J, Liu G, Zhang S, Si L, Zhang X, Yang X, Ma J, Cheng J, Liu X, Yang Y. Gut microbiota: Linking nutrition and perinatal depression. Front Cell Infect Microbiol 2022; 12:932309. [PMID: 36093196 PMCID: PMC9459161 DOI: 10.3389/fcimb.2022.932309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Perinatal depression is a mood disorder that is reported in women during pregnancy (prenatal) and after childbirth (postnatal). The onset of perinatal depression is associated with changes in reproductive hormones, stress hormones and neurosteroids. These chemical compounds can be modulated by the gut microbiota, which may affect maternal mental health during the perinatal period via the gut-brain-axis. Recent studies suggest that nutritional and dietary interventions (vitamin D, ω-3 fatty acids, iron, and fiber) effectively prevent or mitigate maternal depression and anxiety, but their efficacy is confounded by various factors, including the gut microbiota. Probiotics are efficacious in maintaining microbiota homeostasis, and thus, have the potential to modulate the development of perinatal mood disorders, despite no evidence in human. Therefore, clinical trials are warranted to investigate the role of probiotic supplementation in perinatal depression and behavioral changes. This article reviews the interplay between nutrition, gut microbiota and mood and cognition, and the evidence suggesting that probiotics affect the onset and development of perinatal depression.
Collapse
Affiliation(s)
- Jia Song
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi Zhou
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | | | - Sheng Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Si
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianping Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Yang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhua Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junrui Cheng
- Ingredion Incorporated, Bridgewater, NJ, United States
| | - Xiaobo Liu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yongde Yang, ; Xiaobo Liu,
| | - Yongde Yang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yongde Yang, ; Xiaobo Liu,
| |
Collapse
|
105
|
Kim H, Jeon S, Kim J, Seol D, Jo J, Cho S, Kim H. Investigation of memory-enhancing effects of Streptococcus thermophilus EG007 in mice and elucidating molecular and metagenomic characteristics using nanopore sequencing. Sci Rep 2022; 12:13274. [PMID: 35918353 PMCID: PMC9346115 DOI: 10.1038/s41598-022-14837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Over the past decades, accumulating evidences have highlighted the gut microbiota as a key player in the brain functioning via microbiota–gut–brain axis, and accordingly, the beneficial role of several probiotic strains in cognitive ability also have been actively investigated. However, the majority of the research have demonstrated the effects against age-related cognitive decline or neurological disease. To this end, we aimed to investigate lactic acid bacteria strains having beneficial effects on the cognitive function of healthy young mice and elucidate underlying characteristics by carrying out nanopore sequencing-based genomics and metagenomics analysis. 8-week consumption of Streptococcus thermophilus EG007 demonstrated marked enhancements in behavior tests assessing short-term spatial and non-spatial learning and memory. It was revealed that EG007 possessed genes encoding various metabolites beneficial for a health condition in many aspects, including gamma-aminobutyric acid producing system, a neurotransmitter associated with mood and stress response. Also, by utilizing 16S–23S rRNA operon as a taxonomic marker, we identified more accurate species-level compositional changes in gut microbiota, which was increase of certain species, previously reported to have associations with mental health or down-regulation of inflammation or infection-related species. Moreover, correlation analysis revealed that the EG007-mediated altered microbiota had a significant correlation with the memory traits.
Collapse
Affiliation(s)
- Hyaekang Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soomin Jeon
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jina Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Donghyeok Seol
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,eGnome, Inc, Seoul, Republic of Korea
| | - JinChul Jo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seoae Cho
- eGnome, Inc, Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. .,eGnome, Inc, Seoul, Republic of Korea.
| |
Collapse
|
106
|
Reynoso-García J, Miranda-Santiago AE, Meléndez-Vázquez NM, Acosta-Pagán K, Sánchez-Rosado M, Díaz-Rivera J, Rosado-Quiñones AM, Acevedo-Márquez L, Cruz-Roldán L, Tosado-Rodríguez EL, Figueroa-Gispert MDM, Godoy-Vitorino F. A complete guide to human microbiomes: Body niches, transmission, development, dysbiosis, and restoration. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:951403. [PMID: 38993286 PMCID: PMC11238057 DOI: 10.3389/fsysb.2022.951403] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Humans are supra-organisms co-evolved with microbial communities (Prokaryotic and Eukaryotic), named the microbiome. These microbiomes supply essential ecosystem services that play critical roles in human health. A loss of indigenous microbes through modern lifestyles leads to microbial extinctions, associated with many diseases and epidemics. This narrative review conforms a complete guide to the human holobiont-comprising the host and all its symbiont populations- summarizes the latest and most significant research findings in human microbiome. It pretends to be a comprehensive resource in the field, describing all human body niches and their dominant microbial taxa while discussing common perturbations on microbial homeostasis, impacts of urbanization and restoration and humanitarian efforts to preserve good microbes from extinction.
Collapse
Affiliation(s)
| | | | | | - Kimil Acosta-Pagán
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Mitchell Sánchez-Rosado
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Jennifer Díaz-Rivera
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Angélica M. Rosado-Quiñones
- Department of Biology, UPR Rio Piedras Campus, San Juan, PR, United States
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Luis Acevedo-Márquez
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Lorna Cruz-Roldán
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | | | | | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| |
Collapse
|
107
|
Psychobiotics: the Influence of Gut Microbiota on the Gut-Brain Axis in Neurological Disorders. J Mol Neurosci 2022; 72:1952-1964. [PMID: 35849305 PMCID: PMC9289355 DOI: 10.1007/s12031-022-02053-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/12/2022] [Indexed: 12/01/2022]
Abstract
Nervous system disorders are one of the common problems that affect many people around the world every year. Regarding the beneficial effects of the probiotics on the gut and the gut-brain axis, their application along with current medications has been the subject of intense interest. Psychobiotics are a probiotic strain capable to affect the gut-brain axis. The effective role of Psychobiotics in several neurological disorders is documented. Consumption of the Psychobiotics containing nutrients has positive effects on the improvement of microbiota as well as alleviation of some symptoms of central nervous system (CNS) disorders. In the present study, the effects of probiotic strains on some CNS disorders in terms of controlling the disease symptoms were reviewed. Finding suggests that Psychobiotics can efficiently alleviate the symptoms of several CNS disorders such as autism spectrum disorders, Parkinson’s disease, multiple sclerosis, insomnia, depression, diabetic neuropathy, and anorexia nervosa. It can be concluded that functional foods containing psychotropic strains can help to improve mental health.
Collapse
|
108
|
Ali U, Waqas A, Ayub M. Research Trends and Geographical Contribution in the Field of Perinatal Mental Health: A Bibliometric Analysis from 1900 to 2020. WOMEN'S HEALTH REPORTS 2022; 3:661-669. [PMID: 35982774 PMCID: PMC9380875 DOI: 10.1089/whr.2021.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/26/2022] [Indexed: 10/26/2022]
Affiliation(s)
- Usman Ali
- Academic Department of Psychiatry and Behavioral Sciences, King Edward Medical University/Mayo Hospital, Lahore, Pakistan
| | - Ahmed Waqas
- Institute of Population Health, University of Liverpool, United Kingdom
| | - Muhammad Ayub
- Department of Psychiatry, University College London, London, England
| |
Collapse
|
109
|
Min Z, Li Y, Ying H. Blood T-helper 17 cells and interleukin-17A correlate with the elevated risk of postpartum depression and anxiety. J Clin Lab Anal 2022; 36:e24559. [PMID: 35708016 PMCID: PMC9279994 DOI: 10.1002/jcla.24559] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND T-helper (Th) cells regulate inflammation and immunity, which is implicated in psychological disorders. The current study aimed to explore the clinical role of blood Th1, Th2, and Th17 cells and their main secreted cytokines in postpartum depression (PPD) and postpartum anxiety (PPA). METHODS A total of 226 postpartum women were included. At 6 weeks postpartum, Edinburgh Postnatal Depression Scale (EPDS) and State Trait Anxiety Inventory 6 item version (STAI6) scores were assessed; meanwhile, blood Th1, Th2, and Th17 cells were detected by flow cytometry, serum interferon-gamma (IFN-γ), interleukin-4 (IL-4), and IL-17A were detected by enzyme-linked immunosorbent assay. RESULTS The incidence of PPD and PPA were 24.3% and 27.9%, respectively. Th17 cells and IL-17A were positively correlated with EPDS score and STAI6 score (all p < 0.001). Besides, Th17 cells (p < 0.001) and IL-17A (p = 0.002) were increased in PPD cases vs. non-PPD cases, and they were also elevated in PPA cases vs. non-PPA cases (both p < 0.05). However, Th1 cells, Th2 cells, IFN-γ, and IL-4 were not linked with EPDS score or STAI6 score (all p > 0.05); besides, they did not vary in PPD cases vs. non-PPD cases or in PPA cases vs. non-PPA cases (all p > 0.05). Multivariate logistic regression model analysis showed that Th17 cells were independently associated with an elevated risk of PPD (odds ratio [OR] = 1.600, p = 0.001) and PPA (OR = 1.371, p = 0.022). CONCLUSION Blood Th17 cells and IL-17A are positively linked with the risk of PPD and PPA, indicating which may be involved in the development of PPD and PPA.
Collapse
Affiliation(s)
- Zhihong Min
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yan Li
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Hao Ying
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
110
|
Slykerman RF, Li E, Mitchell EA. Probiotics for Reduction of Examination Stress in Students (PRESS) study: A randomized, double-blind, placebo-controlled trial of the probiotic Lacticaseibacillus rhamnosus HN001. PLoS One 2022; 17:e0267778. [PMID: 35675229 PMCID: PMC9176810 DOI: 10.1371/journal.pone.0267778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
Background Studies suggest that bioactive compounds such as probiotics may positively influence psychological health. This study aimed to determine whether supplementation with the probiotic Lacticaseibacillus rhamnosus HN001 reduced stress and improve psychological wellbeing in university students sitting examinations. Methods In this randomized, double-blind, placebo-controlled study, 483 undergraduate students received either the probiotic L. rhamnosus HN001, or placebo, daily during a university semester. Students completed measures of stress, anxiety, and psychological wellbeing at baseline and post-intervention before examinations. Mann Whitney U tests compared the change in psychological outcomes between groups. Results Of the 483 students, 391 (81.0%) completed the post-intervention questions. There was no significant difference between the probiotic and placebo supplemented groups in psychological health outcomes. The COVID19 pandemic restrictions may have influenced the typical trajectory of stress leading up to examinations. Conclusion We found no evidence of significant benefit of probiotics on the psychological health of university students. These findings highlight the challenges of conducting probiotic trials in human populations where the potential for contextual factors such as COVID19 response, and participant adherence to the intervention may influence results.
Collapse
Affiliation(s)
- Rebecca F. Slykerman
- Department of Psychological Medicine, University of Auckland, Auckland, New Zealand
- * E-mail:
| | - Eileen Li
- A Better Start – National Science Challenge University of Auckland, New Zealand
| | - Edwin A. Mitchell
- Department of Pediatrics, Child & Youth Health, University of Auckland, New Zealand
| |
Collapse
|
111
|
Abstract
Innate and adaptive immunity are essential for neurodevelopment and central nervous system (CNS) homeostasis; however, the fragile equilibrium between immune and brain cells can be disturbed by any immune dysregulation and cause detrimental effects. Accumulating evidence indicates that, despite the blood-brain barrier (BBB), overactivation of the immune system leads to brain vulnerability that increases the risk of neuropsychiatric disorders, particularly upon subsequent exposure later in life. Disruption of microglial function in later life can be triggered by various environmental and psychological factors, including obesity-driven chronic low-grade inflammation and gut dysbiosis. Increased visceral adiposity has been recognized as an important risk factor for multiple neuropsychiatric conditions. The review aims to present our current understanding of the topic.
Collapse
|
112
|
Trifkovič KČ, Mičetić-Turk D, Kmetec S, Strauss M, Dahlen HG, Foster JP, Fijan S. Efficacy of Direct or Indirect Use of Probiotics for the Improvement of Maternal Depression during Pregnancy and in the Postnatal Period: A Systematic Review and Meta-Analysis. Healthcare (Basel) 2022; 10:970. [PMID: 35742022 PMCID: PMC9223194 DOI: 10.3390/healthcare10060970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
The mother and infant form a unique bond, with maternal mental health affecting the interactions with the infant and infant behaviours impacting maternal mental health. One of the possible mechanisms influencing maternal mental health is the manipulation of the gut-brain axis by consuming probiotic supplements. Probiotics can also have an indirect influence on maternal mental health via the modulation of the infant microbiome and consequently improving the infant's health and thus, indirectly leading to an improvement in maternal mood. This systematic review evaluated the efficacy of probiotics on maternal mental health by searching for randomised controlled trials via international databases: Cochrane Library, PubMed, Scopus, ScienceDirect, and Web of Science until January 2022. A meta-analysis was performed using the Cochrane Collaboration methodology where possible. We found seven clinical trials that included the word probiotics and addressed maternal depression and/or anxiety. Of these, five trials investigated the influence of maternal probiotic supplementation on the gut-brain axis. Two trials investigated the indirect influence of probiotics on maternal depression via supplementation of probiotics by infants and subsequent influence on the crying of colicky infants. Meta-analysis of two studies of pregnant and postnatal women and two studies of infants consuming probiotics on the outcome of the Edinburgh Postnatal Depression Scale for mothers showed no statistical difference. The findings indicate that maternal depression is very complex and is influenced by various bidirectional factors. One of the factors that can improve maternal mental health is probiotics, however, careful consideration must be given to correct strain selection as strain-specific effectiveness was observed. Further well-designed, robust clinical studies are warranted.
Collapse
Affiliation(s)
- Klavdija Čuček Trifkovič
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia; (K.Č.T.); (S.K.); (M.S.)
| | - Dušanka Mičetić-Turk
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia;
| | - Sergej Kmetec
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia; (K.Č.T.); (S.K.); (M.S.)
| | - Maja Strauss
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia; (K.Č.T.); (S.K.); (M.S.)
| | - Hannah G. Dahlen
- School of Nursing and Midwifery, University of Western Sydney, Parramatta, NSW 2751, Australia; (H.G.D.); (J.P.F.)
| | - Jann P. Foster
- School of Nursing and Midwifery, University of Western Sydney, Parramatta, NSW 2751, Australia; (H.G.D.); (J.P.F.)
- Ingham Research Institute, Liverpool, NSW 2170, Australia
- NSW Centre for Evidence Based Health Care: A JBI Affiliated Group, Parramatta, NSW 2751, Australia
| | - Sabina Fijan
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia; (K.Č.T.); (S.K.); (M.S.)
| |
Collapse
|
113
|
Eltokhi A, Sommer IE. A Reciprocal Link Between Gut Microbiota, Inflammation and Depression: A Place for Probiotics? Front Neurosci 2022; 16:852506. [PMID: 35546876 PMCID: PMC9081810 DOI: 10.3389/fnins.2022.852506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Depression is a severe mental disorder that places a significant economic burden on public health. The reciprocal link between the trillions of bacteria in the gut, the microbiota, and depression is a controversial topic in neuroscience research and has drawn the attention of public interest and press coverage in recent years. Mounting pieces of evidence shed light on the role of the gut microbiota in depression, which is suggested to involve immune, endocrine, and neural pathways that are the main components of the microbiota-gut-brain axis. The gut microbiota play major roles in brain development and physiology and ultimately behavior. The bidirectional communication between the gut microbiota and brain function has been extensively explored in animal models of depression and clinical research in humans. Certain gut microbiota strains have been associated with the pathophysiology of depression. Therefore, oral intake of probiotics, the beneficial living bacteria and yeast, may represent a therapeutic approach for depression treatment. In this review, we summarize the findings describing the possible links between the gut microbiota and depression, focusing mainly on the inflammatory markers and sex hormones. By discussing preclinical and clinical studies on probiotics as a supplementary therapy for depression, we suggest that probiotics may be beneficial in alleviating depressive symptoms, possibly through immune modulation. Still, further comprehensive studies are required to draw a more solid conclusion regarding the efficacy of probiotics and their mechanisms of action.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells & Systems, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
114
|
The Gut Microbiome, Mental Health, and Cognitive and Neurodevelopmental Disorders: A Scoping Review. J Nurse Pract 2022. [DOI: 10.1016/j.nurpra.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
115
|
Mohankumar B, Shandil R, Narayanan S, Krishnan UM. Vaginosis: Advances in new therapeutic development and microbiome restoration. Microb Pathog 2022; 168:105606. [DOI: 10.1016/j.micpath.2022.105606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
|
116
|
Seif El Dahan K, Bejjani J, Nasrallah AA, Youssef L, Mladenovic A, Dosch L, Leone A, Jurjus A. Probiotics Properties: A Focus on Pregnancy Outcomes. Eur J Obstet Gynecol Reprod Biol 2022; 272:16-23. [PMID: 35278924 DOI: 10.1016/j.ejogrb.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/01/2022] [Accepted: 03/01/2022] [Indexed: 11/04/2022]
Abstract
A healthy microbiome plays an important role in the prevention of illness and maintenance of overall health, including reproductive health. Although the therapeutic advantages of probiotics have been shown to run across multiple organ systems, their role in pregnancy is not well explored. The aim of this review is to highlight the potential advantages and adverse effects of probiotics in pregnancy. Data were collected from the literature over the past decade using PubMed, Medline, Google Scholar, Ovid, Scopus, and Science Direct. A total of 40 articles were utilized in this review. Collected data indicated that prenatal and post-natal supplementation with lactobacilli alone or lactobacilli with Bifidobacterium spp. seems to be protective. Probiotics may improve insulin resistance and consequently reduce the risk of gestational diabetes. Probiotics may also reduce anxiety and depression by influencing brain activity. Additionally, they interfere with vaginal flora to make it friendlier to beneficial bacteria, and enhance anti-inflammatory or reduce pro-inflammatory cytokines. They may also decrease eczema in breastfed infants and prevent allergic reactions by downregulating Th2 responses to specific allergens from mid to late gestation. Leveraging the cervicovaginal microbiota could promote a number of positive pregnancy-related health outcomes. Caution should be exercised in the selection, dosing, and monitoring of probiotics administration. More comprehensive randomized clinical trials are needed to reach a more meaningful evidence-based clinical knowledge.
Collapse
Affiliation(s)
| | - Joseph Bejjani
- Faculty of Medicine, American University of Beirut, Lebanon.
| | - Ali A Nasrallah
- Faculty of Medicine, American University of Beirut, Lebanon.
| | - Lara Youssef
- Faculty of Medicine, University of Balamand, Koura, Lebanon.
| | | | - Laura Dosch
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Lebanon.
| | - Angelo Leone
- Department of Experimental Biomedicine and Neuroscience, Section of Histology and Embryology, University of Palermo, Italy.
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Lebanon.
| |
Collapse
|
117
|
Lehtoranta L, Ala-Jaakkola R, Laitila A, Maukonen J. Healthy Vaginal Microbiota and Influence of Probiotics Across the Female Life Span. Front Microbiol 2022; 13:819958. [PMID: 35464937 PMCID: PMC9024219 DOI: 10.3389/fmicb.2022.819958] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Vaginal microbiota plays a central role in women's health and reproduction. Vaginal microbiota is dynamic and shaped by hormonal shifts in each stage of a woman's life from pre-puberty to postmenopause. Current research has mainly focused on vaginal bacterial and fungal members of the community and emphasized their role in disease. However, the impact of balanced vaginal microbiota on health and its interaction with the host is yet poorly understood. High abundance of vaginal lactobacilli is most strongly associated with health, but the concept of health may vary as vaginal dysbiosis may be asymptomatic. Furthermore, there is a lot of variation between ethnic groups in terms of dominating vaginal bacteria. Probiotic lactobacilli could be a safe and natural means to balance and maintain healthy vaginal microbiota. Research evidence is accumulating on their role in supporting women's health throughout life. This review describes the current literature on vaginal microbiota, the major factors affecting its composition, and how the communities change in different life stages. Furthermore, we focused on reviewing available literature on probiotics and their impact on vaginal microbiota and health.
Collapse
|
118
|
Nobile V, Giardina S, Puoci F. The Effect of a Probiotic Complex on the Gut-Brain Axis: A Translational Study. Neuropsychobiology 2022; 81:116-126. [PMID: 34515196 DOI: 10.1159/000518385] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The gut-brain axis refers to the network of connections that involve multiple biologic systems, allowing bidirectional communication between the gut and the brain. This communication is mainly mediated by gut microbiota, thanks to its ability to modulate several processes like the production of neurotransmitters. As such, keeping a balanced gut microbiota through probiotic intake could be a valid solution in supporting the right gut-brain communications. METHODS A two-step in vitro screening of five different probiotic strains was carried out to select the best performers in the modulation of stress markers. A first selection on SK-N-DZ neuronal cell lines was performed to evaluate the inhibition of the epigenetic enzyme LSD1, promotion of GABA, and expression of serotonin. Three out of five strains were tested for their ability to promote serotonin synthesis in the Caco2 cell line. As a result, Limosilactobacillus reuteri PBS072 and Bifidobacterium breve BB077 were selected as the best performing strains. To confirm their effects in humans, a proof-of-concept trial was carried out to evaluate stress-related parameters for 28 days of product intake in a group of 30 stressed students. RESULTS A significant improvement of cognitive functions, in terms of short-term memory, attention, and executive performance, as well as of psychophysiological markers, such as salivary cortisol level, skin conductance, sleep quality, and anxiety, were observed. CONCLUSIONS According to the results, L. reuteri PBS072 and B. breve BB077 are potential probiotic candidates for improving stress resilience, cognitive functions, and sleep quality.
Collapse
Affiliation(s)
| | | | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Cosenza, Italy
| |
Collapse
|
119
|
The Impact of Probiotic Bacillus subtilis on Injurious Behavior in Laying Hens. Animals (Basel) 2022; 12:ani12070870. [PMID: 35405859 PMCID: PMC8997090 DOI: 10.3390/ani12070870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Injurious behavior prevention is a critical issue in the poultry industry due to increasing social stress, leading to negative effects on bird production and survivability, consequently enhancing gut microbiota dysbiosis and neuroinflammation via the microbiota–gut–brain axis. Probiotics have been used as potential therapeutic psychobiotics to treat or improve neuropsychiatric disorders or symptoms by boosting cognitive and behavioral processes and reducing stress reactions in humans and various experimental animals. The current data will first report that probiotic Bacillus subtilis reduces stress-induced injurious behavior in laying hens via regulating microbiota–gut–brain function with the potential to be an alternative to beak trimming during poultry egg production. Abstract Intestinal microbiota functions such as an endocrine organ to regulate host physiological homeostasis and behavioral exhibition in stress responses via regulating the gut–brain axis in humans and other mammals. In humans, stress-induced dysbiosis of the gut microbiota leads to intestinal permeability, subsequently affecting the clinical course of neuropsychiatric disorders, increasing the frequency of aggression and related violent behaviors. Probiotics, as direct-fed microorganism, have been used as dietary supplements or functional foods to target gut microbiota (microbiome) for the prevention or therapeutic treatment of mental diseases including social stress-induced psychiatric disorders such as depression, anxiety, impulsivity, and schizophrenia. Similar function of the probiotics may present in laying hens due to the intestinal microbiota having a similar function between avian and mammals. In laying hens, some management practices such as hens reared in conventional cages or at a high stocking density may cause stress, leading to injurious behaviors such as aggressive pecking, severe feather pecking, and cannibalism, which is a critical issue facing the poultry industry due to negative effects on hen health and welfare with devastating economic consequences. We discuss the current development of using probiotic Bacillus subtilis to prevent or reduce injurious behavior in laying hens.
Collapse
|
120
|
The Therapeutic Role of Exercise and Probiotics in Stressful Brain Conditions. Int J Mol Sci 2022; 23:ijms23073610. [PMID: 35408972 PMCID: PMC8998860 DOI: 10.3390/ijms23073610] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurological disorders such as Parkinson’s disease, Alzheimer’s dementia, ischemic stroke, and head and spinal cord injury. The increased production of reactive oxygen species (ROS) has been associated with mitochondrial dysfunction, altered metal homeostasis, and compromised brain antioxidant defence. All these changes have been reported to directly affect synaptic activity and neurotransmission in neurons, leading to cognitive dysfunction. In this context two non-invasive strategies could be employed in an attempt to improve the aforementioned stressful brain status. In this regard, it has been shown that exercise could increase the resistance against oxidative stress, thus providing enhanced neuroprotection. Indeed, there is evidence suggesting that regular physical exercise diminishes BBB permeability as it reinforces antioxidative capacity, reduces oxidative stress, and has anti-inflammatory effects. However, the differential effects of different types of exercise (aerobic exhausted exercise, anaerobic exercise, or the combination of both types) and the duration of physical activity will be also addressed in this review as likely determinants of therapeutic efficacy. The second proposed strategy is related to the use of probiotics, which can also reduce some biomarkers of oxidative stress and inflammatory cytokines, although their underlying mechanisms of action remain unclear. Moreover, various probiotics produce neuroactive molecules that directly or indirectly impact signalling in the brain. In this review, we will discuss how physical activity can be incorporated as a component of therapeutic strategies in oxidative stress-based neurological disorders along with the augmentation of probiotics intake.
Collapse
|
121
|
Barthow C, Hood F, Crane J, Huthwaite M, Weatherall M, Parry-Strong A, Krebs J. A randomised controlled trial of a probiotic and a prebiotic examining metabolic and mental health outcomes in adults with pre-diabetes. BMJ Open 2022; 12:e055214. [PMID: 35332040 PMCID: PMC8948404 DOI: 10.1136/bmjopen-2021-055214] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIMS To evaluate the effect of the probiotic Lactobacillus rhamnosus HN001 and/or cereal enriched with oat-derived beta-glucan (OBG) on metabolic and mental health outcomes when administered to adults with pre-diabetes. DESIGN 2×2 factorial design randomised, parallel-groups placebo-controlled; double-blinded for probiotic, single-blinded for cereals. PARTICIPANTS Community-dwelling adults aged 18-80 years with pre-diabetes: glycated haemoglobin (HbA1c) 41-49 mmol/mol. INTERVENTIONS Capsules containing Lactobacillus rhamnosus (HN001) (6×109 colony-forming units/day), or placebo capsules; and cereal containing 4 g/day OBG or calorie-matched control cereal, taken daily, for 6 months. Study groups were: (A) HN001 capsules+OBG cereal; (B) HN001 capsules+control cereal; (C) placebo capsules+OBG cereal and (D) placebo capsules+control cereal. OUTCOME MEASURES Primary outcome: HbA1c at 6 months. SECONDARY OUTCOMES fasting plasma glucose, fasting insulin, homeostatic model assessment of insulin resistance, fasting lipids, blood pressure, body weight, waist circumference, body mass index and mental well-being. RESULTS 153 participants were randomised. There was complete HbA1c outcome data available for 129 participants. At 6 months the mean (SD) HbA1c was 45.9 (4.4) mmol/mol, n=66 for HN001, and 46.7 (4.3) mmol/mol, n=63 for placebo capsules; 46.5 (4.0) mmol/mol, n=67 for OBG and 46.0 (4.6) mmol/mol n=62 for control cereal. The estimated difference between HN001-placebo capsules was -0.83, 95% CI -1.93 to 0.27 mmol/mol, p=0.63, and between OBG-control cereals -0.17, 95% CI -1.28 to 0.94 mmol/mol, p=0.76. There was no significant interaction between treatments p=0.79. There were no differences between groups or significant interactions between treatments for any of the secondary outcomes. CONCLUSIONS This study found no evidence of clinical benefit from the supplementation with either HN001 and/or cereal containing 4 g OBG on HbA1c and all secondary outcomes relevant to adults with pre-diabetes. TRIAL REGISTRATION NUMBER Australian New Zealand Clincial Trials Registry number ACTRN12617000990325.
Collapse
Affiliation(s)
- Christine Barthow
- Department of Medicine, Univeristy of Otago, Wellington, New Zealand
| | - Fiona Hood
- Department of Medicine, Univeristy of Otago, Wellington, New Zealand
| | - Julian Crane
- Department of Medicine, Univeristy of Otago, Wellington, New Zealand
| | - Mark Huthwaite
- Department of Psychological Medicine, University of Otago, Wellington, New Zealand
| | - Mark Weatherall
- Department of Medicine, Univeristy of Otago, Wellington, New Zealand
| | - Amber Parry-Strong
- Centre for Endocrine, Diabetes and Obesity Research, Capital and Coast District Health Board, Wellington, New Zealand
| | - Jeremy Krebs
- Department of Medicine, Univeristy of Otago, Wellington, New Zealand
| |
Collapse
|
122
|
Therapeutic Anti-Depressant Potential of Microbial GABA Produced by Lactobacillus rhamnosus Strains for GABAergic Signaling Restoration and Inhibition of Addiction-Induced HPA Axis Hyperactivity. Curr Issues Mol Biol 2022; 44:1434-1451. [PMID: 35723354 PMCID: PMC9164062 DOI: 10.3390/cimb44040096] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
The role of the microbiota–gut–brain (MGB) axis in mood regulation and depression treatment has gained attention in recent years, as evidenced by the growing number of animal and human studies that have reported the anti-depressive and associated gamma-aminobutyric acid-ergic (GABAergic) effects of probiotics developed from Lactobacillus rhamnosus bacterial strains in the gut microbiome. The depressive states attenuated by these probiotics in patients suffering from clinical depression also characterize the severe and relapse-inducing withdrawal phase of the addiction cycle, which has been found to arise from the intoxication-enabled hyperregulation of the hypothalamic–pituitary–adrenal (HPA) axis, the body’s major stress response system, and a corresponding attenuation of its main inhibitory system, the gamma-aminobutyric acid (GABA) signaling system. Therefore, the use of probiotics in the treatment of general cases of depression provides hope for a novel therapeutic approach to withdrawal depression remediation. This review discusses potential therapeutic avenues by which probiotic application of Lactobacillus rhamnosus strains can be used to restore the central GABAergic activity responsible for attenuating the depression-inducing HPA axis hyperactivity in addiction withdrawal. Also, information is provided on brain GABAergic signaling from other known GABA-producing strains of gut microbiota.
Collapse
|
123
|
Lacticaseibacillus rhamnosus: A Suitable Candidate for the Construction of Novel Bioengineered Probiotic Strains for Targeted Pathogen Control. Foods 2022; 11:foods11060785. [PMID: 35327208 PMCID: PMC8947445 DOI: 10.3390/foods11060785] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics, with their associated beneficial effects, have gained popularity for the control of foodborne pathogens. Various sources are explored with the intent to isolate novel robust probiotic strains with a broad range of health benefits due to, among other mechanisms, the production of an array of antimicrobial compounds. One of the shortcomings of these wild-type probiotics is their non-specificity. A pursuit to circumvent this limitation led to the advent of the field of pathobiotechnology. In this discipline, specific pathogen gene(s) are cloned and expressed into a given probiotic to yield a novel pathogen-specific strain. The resultant recombinant probiotic strain will exhibit enhanced species-specific inhibition of the pathogen and its associated infection. Such probiotics are also used as vehicles to deliver therapeutic agents. As fascinating as this approach is, coupled with the availability of numerous probiotics, it brings a challenge with regard to deciding which of the probiotics to use. Nonetheless, it is indisputable that an ideal candidate must fulfil the probiotic selection criteria. This review aims to show how Lacticaseibacillus rhamnosus, a clinically best-studied probiotic, presents as such a candidate. The objective is to spark researchers’ interest to conduct further probiotic-engineering studies using L. rhamnosus, with prospects for the successful development of novel probiotic strains with enhanced beneficial attributes.
Collapse
|
124
|
Rupp SK, Stengel A. Bi-Directionality of the Microbiota-Gut-Brain Axis in Patients With Functional Dyspepsia: Relevance of Psychotherapy and Probiotics. Front Neurosci 2022; 16:844564. [PMID: 35295092 PMCID: PMC8919856 DOI: 10.3389/fnins.2022.844564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Functional dyspepsia is one of the most commonly diagnosed disorders of the gut-brain interaction worldwide. The precise pathogenesis of functional dyspepsia is complex and remains incompletely understood. Therefore, advances in the understanding of functional dyspepsia could change clinical practice. The aim of this review is to highlight the relevance of psychotherapy and probiotics in the context of the microbiota-gut-brain axis in the pathophysiology and especially in the treatment of functional dyspepsia. Therefore, studies which have been conducted to investigate the role of psychotherapy and probiotics in FD and the microbiota-gut-brain axis in the pathophysiology of functional dyspepsia were examined, and the outcomes of this research summarized. There might be a link between changes in the microbiome and functional dyspepsia. Even though, specific alterations in the microbiome that may be pathognomonic in functional dyspepsia remain unclear, the use of probiotics became a viable treatment option for patients with functional dyspepsia. Since mental illness also plays an important role in the pathophysiology of functional dyspepsia, psychotherapy is a useful treatment method, with additional study results indicating that psychotherapy may also shift the microbiome in a favorable direction. Moreover, other findings suggest that probiotics can be used not only to alleviate gastrointestinal symptoms in functional dyspepsia, but also to treat or even prevent mental disorders in these patients. In summary, in this review we highlight the bi-directionality of the microbiota-gut-brain axis in the pathophysiology of functional dyspepsia. Although there are multiple treatment approaches, the burden of disease in patients with functional dyspepsia is still enormous and a definitive therapy to cure this disease does not (yet) exist. Lastly, there is a lack of studies on the impact of dysbiosis, mental health and probiotics on pathophysiology and symptomatology in functional dyspepsia which should be investigated in future studies.
Collapse
Affiliation(s)
- Sophia Kristina Rupp
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Stengel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Andreas Stengel,
| |
Collapse
|
125
|
Tian P, Chen Y, Zhu H, Wang L, Qian X, Zou R, Zhao J, Zhang H, Qian L, Wang Q, Wang G, Chen W. Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: A randomized clinical trial. Brain Behav Immun 2022; 100:233-241. [PMID: 34875345 DOI: 10.1016/j.bbi.2021.11.023] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Psychobiotics, as a novel class of probiotics mainly acting on the gut-brain axis, have shown promising prospects in treating psychiatric disorders. Bifidobacterium breve CCFM1025 was validated to have an antidepressant-like effect in mice. This study aims to assess its psychotropic potential in managing major depression disorder (MDD) and unravel the underlying mechanisms. METHODS Clinical Trial Registration: https://www.chictr.org.cn/index.aspx (identifier: NO. ChiCTR2100046321). Patients (n = 45) diagnosed with MDD were randomly assigned to the Placebo (n = 25) and CCFM1025 (n = 20) groups. The freeze-dried CCFM1025 in a dose of viable bacteria of 1010 CFU was given to MDD patients daily for four weeks, while the placebo group was given maltodextrin. Changes from baseline in psychometric and gastrointestinal symptoms were evaluated using Hamilton Depression Rating scale-24 Items (HDRS-24), Montgomery-Asberg Depression Rating Scale (MADRS), Brief Psychiatric Rating Scale (BPRS), and Gastrointestinal Symptom Rating Scale (GSRS). Serum measures were also determined, i.e., cortisol, TNF-α, and IL-β. Serotonin turnover in the circulation, gut microbiome composition, and tryptophan metabolites were further investigated for clarifying the probiotics' mechanisms of action. RESULTS CCFM1025 showed a better antidepressant-like effect than placebo, based on the HDRS-24 (placebo: M = 6.44, SD = 5.44; CCFM1025: M = 10.40, SD = 6.85; t(43) = 2.163, P = 0.036, d = 0.640) and MADRS (placebo: M = 4.92, SD = 7.15; CCFM1025: M = 9.60, SD = 7.37; t(43) = 2.152, P = 0.037, d = 0.645) evaluation. The factor analysis of BPRS and GSRS suggested that patients' emotional and gastrointestinal problems may be affected by the serotonergic system. Specifically, CCFM1025 could significantly and to a larger extend reduce the serum serotonin turnover compared with the placebo (placebo: M = -0.01, SD = 0.41; CCFM1025: M = 0.27, SD = 0.40; t(43) = 2.267, P = 0.029, d = 0.681). It may be due to changes in gut microbiome and gut tryptophan metabolism under the probiotic treatment, such as changes in alpha diversity, tryptophan, and indoles derivatives. CONCLUSION B. breve CCFM1025 is a promising candidate psychobiotic strain that attenuates depression and associated gastrointestinal disorders. The mechanisms may be relevant to the changes in the gut microbiome and tryptophan metabolism. These findings support the future clinical applications of psychobiotics in the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Huiyue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luyao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Renying Zou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu 225004, China; Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute, Wuxi, Jiangsu 214122, China
| | - Long Qian
- The Tinghu People's Hospital, Yancheng, Jiangsu 224002, China
| | - Qun Wang
- The Tinghu People's Hospital, Yancheng, Jiangsu 224002, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu 225004, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
126
|
One Giant Leap from Mouse to Man: The Microbiota-Gut-Brain Axis in Mood Disorders and Translational Challenges Moving towards Human Clinical Trials. Nutrients 2022; 14:nu14030568. [PMID: 35276927 PMCID: PMC8840472 DOI: 10.3390/nu14030568] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
The microbiota–gut–brain axis is a bidirectional communication pathway that enables the gut microbiota to communicate with the brain through direct and indirect signaling pathways to influence brain physiology, function, and even behavior. Research has shown that probiotics can improve several aspects of health by changing the environment within the gut, and several lines of evidence now indicate a beneficial effect of probiotics on mental and brain health. Such evidence has prompted the arrival of a new term to the world of biotics research: psychobiotics, defined as any exogenous influence whose effect on mental health is bacterially mediated. Several taxonomic changes in the gut microbiota have been reported in neurodevelopmental disorders, mood disorders such as anxiety and depression, and neurodegenerative disorders such as Alzheimer’s disease. While clinical evidence supporting the role of the gut microbiota in mental and brain health, and indeed demonstrating the beneficial effects of probiotics is rapidly accumulating, most of the evidence to date has emerged from preclinical studies employing different animal models. The purpose of this review is to focus on the role of probiotics and the microbiota–gut–brain axis in relation to mood disorders and to review the current translational challenges from preclinical to clinical research.
Collapse
|
127
|
Zhang H, Liu L, Cheng S, Jia Y, Wen Y, Yang X, Meng P, Li C, Pan C, Chen Y, Zhang Z, Zhang J, Zhang F. Assessing the joint effects of brain aging and gut microbiota on the risks of psychiatric disorders. Brain Imaging Behav 2022; 16:1504-1515. [PMID: 35076893 DOI: 10.1007/s11682-022-00630-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 12/20/2022]
Abstract
We aim to explore the potential interaction effects of brain aging and gut microbiota on the risks of sleep, anxiety and depression disorders. The genome-wide association study (GWAS) datasets of brain aging (N = 21,407) and gut microbiota (N = 3,890) were obtained from published studies. Individual level genotype and phenotype data of psychiatric traits (including sleep, anxiety and depression) were all from the UK Biobank (N = 107,947-374,505). We first calculated the polygenic risk scores (PRS) of 62 brain aging modes and 114 gut microbiota taxa as the instrumental variables, and then constructed linear and logistic regression analyses to systematically explore the potential interaction effects of brain aging and gut microbiota on psychiatric disorders. We observed the interaction effects of brain aging and gut microbiota on sleep, anxiety and depression disorders, such as Putamen/caudate T2* vs. Rhodospirillales (β = -0.012, P = 8.4 × 10-4) was negatively associated with chronotype, Fornix MD vs. Holdemanella (β = -0.007, P = 1.76 × 10-2) was negatively related to general anxiety disorder (GAD) scores, and White matter lesions vs. Acidaminococcaceae (β = 0.019, P = 1.29 × 10-3) was positively correlated with self-reported depression. Interestingly, Putamen volume vs. Intestinibacter was associated with all three psychiatric disorders, including chronotype (negative correlation), GAD scores (positive correlation) and self-reported depression (positive correlation). Our study results suggest the significant impacts of brain aging and gut microbiota on the development of sleep, anxiety and depression disorders, providing new clues for clarifying the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China.
| |
Collapse
|
128
|
Yang Y, Zhao S, Yang X, Li W, Si J, Yang X. The antidepressant potential of lactobacillus casei in the postpartum depression rat model mediated by the microbiota-gut-brain axis. Neurosci Lett 2022; 774:136474. [DOI: 10.1016/j.neulet.2022.136474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/22/2022]
|
129
|
Pogačar MŠ, Mičetić-Turk D, Fijan S. Probiotics: current regulatory aspects of probiotics for use in different disease conditions. PROBIOTICS IN THE PREVENTION AND MANAGEMENT OF HUMAN DISEASES 2022:465-499. [DOI: 10.1016/b978-0-12-823733-5.00021-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
130
|
Pyle S. Human Gut Microbiota and the Influence of Probiotics, Prebiotics, and Micronutrients. COMPREHENSIVE GUT MICROBIOTA 2022:271-288. [DOI: 10.1016/b978-0-12-819265-8.00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
131
|
Martínez Pizarro S. Probiotics in the treatment of depression. REVISTA COLOMBIANA DE PSIQUIATRIA (ENGLISH ED.) 2022; 51:6-7. [PMID: 35210205 DOI: 10.1016/j.rcpeng.2020.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/25/2020] [Indexed: 06/14/2023]
|
132
|
Lai CT, Chen CY, She SC, Chen WJ, Kuo TBJ, Lin HC, Yang CCH. Production of Lactobacillus brevis ProGA28 attenuates stress-related sleep disturbance and modulates the autonomic nervous system and the motor response in anxiety/depression behavioral tests in Wistar-Kyoto rats. Life Sci 2022; 288:120165. [PMID: 34822793 DOI: 10.1016/j.lfs.2021.120165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Abstract
AIMS Many studies have reported that the production of Lactobacillus brevis is beneficial for sleep, but the underlying mechanism remains unclear. Other known beneficial effects of Lactobacillus brevis include improvement of anxious or depressive symptoms and better modulation of the autonomic nervous system, both of which impact sleep. In this study, we investigated whether the sleep benefit of Lactobacillus brevis was associated with the modulating effects on the autonomic nervous system and anxious/depressive symptoms. MAIN METHODS Wistar-Kyoto rats were fed the production of Lactobacillus brevis (ProGA28) for the last 2 weeks of treatment before being exposed to case exchange (stress-induced insomnia paradigm). Waking, quiet sleep, and paradoxical sleep states were defined based on polysomnographic measurements. Autonomic functioning was assessed by heart rate variability (HRV). A combined behavioral test was used to evaluate anxiety-like or depressive-like behaviors after the following 2 days. KEY FINDINGS In exposure to the dirty cage, the control group had significant prolongation of sleep latency, sleep loss during the first 2 h, and decreased parasympathetic activity and increased sympathetic activity during quiet sleep, which were significantly mitigated in the ProGA28 group. In behavioral tests, the ProGA28 group exhibited significantly less anxiety/depression-like motor responses in the elevated plus maze test, the forced swimming test, and the three-chamber social interaction test. Less initial sleep loss in the ProGA28 group was related to higher parasympathetic activity during quiet sleep, and shorter sleep latency in both groups was associated with longer time staying in the open arm in the elevated plus maze test. SIGNIFICANCE These findings suggest that L. brevis ProGA28 can attenuate stress-related sleep disturbance, which may be associated with increased parasympathetic activity and decreased anxiety-like behaviors.
Collapse
Affiliation(s)
- Chun-Ting Lai
- Institute of Brain Science, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Sleep Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chun-Yu Chen
- Department of Medicine, Taipei Veterans General Hospital Yuli Branch, Hualien County, Taiwan
| | - Sheng-Chieh She
- Institute of Brain Science, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Sleep Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Wei-Jen Chen
- College of Management, Chang Jung Christian University, Tainan, Taiwan
| | - Terry B J Kuo
- Institute of Brain Science, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Sleep Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Clinical Research Center, Taoyuan Psychiatric Center, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Cheryl C H Yang
- Institute of Brain Science, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Sleep Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
| |
Collapse
|
133
|
The Role of the Gut Microbiota in the Development and Progression of Major Depressive and Bipolar Disorder. Nutrients 2021; 14:nu14010037. [PMID: 35010912 PMCID: PMC8746924 DOI: 10.3390/nu14010037] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
A growing number of studies in rodents indicate a connection between the intestinal microbiota and the brain, but comprehensive human data is scarce. Here, we systematically reviewed human studies examining the connection between the intestinal microbiota and major depressive and bipolar disorder. In this review we discuss various changes in bacterial abundance, particularly on low taxonomic levels, in terms of a connection with the pathophysiology of major depressive and bipolar disorder, their use as a diagnostic and treatment response parameter, their health-promoting potential, as well as novel adjunctive treatment options. The diversity of the intestinal microbiota is mostly decreased in depressed subjects. A consistent elevation of phylum Actinobacteria, family Bifidobacteriaceae, and genus Bacteroides, and a reduction of family Ruminococcaceae, genus Faecalibacterium, and genus Roseburia was reported. Probiotics containing Bifidobacterium and/or Lactobacillus spp. seemed to improve depressive symptoms, and novel approaches with different probiotics and synbiotics showed promising results. Comparing twin studies, we report here that already with an elevated risk of developing depression, microbial changes towards a “depression-like” microbiota were found. Overall, these findings highlight the importance of the microbiota and the necessity for a better understanding of its changes contributing to depressive symptoms, potentially leading to new approaches to alleviate depressive symptoms via alterations of the gut microbiota.
Collapse
|
134
|
Sharma H, Bajwa J. Approach of probiotics in mental health as a psychobiotics. Arch Microbiol 2021; 204:30. [PMID: 34923592 DOI: 10.1007/s00203-021-02622-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/26/2022]
Abstract
Probiotics are those beneficial microbes that confer various health benefits to humans when integrated in diet in adequate amount. They possess vital metabolites having nutritional and therapeutic properties which provide countless health benefits. Scientific discoveries demonstrated that these living microbial consortiums may exert impact on anxiety, depression, cognitive functions, stress responses and behaviours. Those probiotics that controls the functioning or actions of central nervous system (CNS) conciliated by the gut brain axis (GBA) through neural, humoral and metabolic pathways to ameliorate the gastrointestinal activity as well as anti-depressant and anxiolytic capacity are known as psychobiotics. Few evidences have confirmed the remedial effects of psychobiotics against neurological conditions or disorders. So, therapeutic approach of psychobiotics leads to the future possibilities in the development field for researchers. This review article describes the potential role and mechanism of action of psychobiotics.
Collapse
Affiliation(s)
- Heenu Sharma
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Jasveen Bajwa
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
135
|
Hao WZ, Ma QY, Tao G, Huang JQ, Chen JX. Oral coniferyl ferulate attenuated depression symptoms in mice via reshaping gut microbiota and microbial metabolism. Food Funct 2021; 12:12550-12564. [PMID: 34812830 DOI: 10.1039/d1fo02655k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The gut microbiome is known to be involved in depression development. Thus, phytochemicals changing gut microbiota may alleviate depression-like behaviors. Coniferyl ferulate (CF) is a long studied natural product and known to alleviate psychiatric disorders. However, its mechanism of action remains unclear. In this experimental study, oral administration of 50 mg kg-1 CF once daily attenuated weight loss and depression-like and anxiety-like behaviors induced by chronic unpredicted mild stress (CUMS) in mice. Four weeks of CF administration significantly ameliorated colonic inflammation, lowered the levels of IL-6, IL-1β, and TNF-α, and restructured the gut microbiome, and microbial metabolism. Intestinal microbiota can impact the development and function of the brain via the microbiota-gut-brain axis. Therefore, oral administration of CF is a promising nutritional strategy to treat CUMS-induced depression via the regulation of microbiota and microbial metabolism.
Collapse
Affiliation(s)
- Wen-Zhi Hao
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Qing-Yu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas 77204, USA
| | - Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China. .,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
136
|
Li H, Xiang Y, Zhu Z, Wang W, Jiang Z, Zhao M, Cheng S, Pan F, Liu D, Ho RCM, Ho CSH. Rifaximin-mediated gut microbiota regulation modulates the function of microglia and protects against CUMS-induced depression-like behaviors in adolescent rat. J Neuroinflammation 2021; 18:254. [PMID: 34736493 PMCID: PMC8567657 DOI: 10.1186/s12974-021-02303-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chronic unpredictable mild stress (CUMS) can not only lead to depression-like behavior but also change the composition of the gut microbiome. Regulating the gut microbiome can have an antidepressant effect, but the mechanism by which it improves depressive symptoms is not clear. Short-chain fatty acids (SCFAs) are small molecular compounds produced by the fermentation of non-digestible carbohydrates. SFCAs are ubiquitous in intestinal endocrine and immune cells, making them important mediators of gut microbiome-regulated body functions. The balance between the pro- and anti-inflammatory microglia plays an important role in the occurrence and treatment of depression caused by chronic stress. Non-absorbable antibiotic rifaximin can regulate the structure of the gut microbiome. We hypothesized that rifaximin protects against stress-induced inflammation and depression-like behaviors by regulating the abundance of fecal microbial metabolites and the microglial functions. METHODS We administered 150 mg/kg rifaximin intragastrically to rats exposed to CUMS for 4 weeks and investigated the composition of the fecal microbiome, the content of short-chain fatty acids in the serum and brain, the functional profiles of microglia and hippocampal neurogenesis. RESULTS Our results show that rifaximin ameliorated depressive-like behavior induced by CUMS, as reflected by sucrose preference, the open field test and the Morris water maze. Rifaximin increased the relative abundance of Ruminococcaceae and Lachnospiraceae, which were significantly positively correlated with the high level of butyrate in the brain. Rifaximin increased the content of anti-inflammatory factors released by microglia, and prevented the neurogenic abnormalities caused by CUMS. CONCLUSIONS These results suggest that rifaximin can regulate the inflammatory function of microglia and play a protective role in pubertal neurodevelopment during CUMS by regulating the gut microbiome and short-chain fatty acids.
Collapse
Affiliation(s)
- Haonan Li
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yujiao Xiang
- Cheeloo Hospital, Shandong University, Jinan, People's Republic of China
| | - Zemeng Zhu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhijun Jiang
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Mingyue Zhao
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Shuyue Cheng
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
| | - Roger C M Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Cyrus S H Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
137
|
|
138
|
Fransson E. Psychoneuroimmunology in the context of perinatal depression - Tools for improved clinical practice. Brain Behav Immun Health 2021; 17:100332. [PMID: 34589817 PMCID: PMC8474604 DOI: 10.1016/j.bbih.2021.100332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Maternal mental health spans in a temporary manner from pre-conception through the phases of pregnancy, childbirth, and the postpartum period (i.e., perinatal). The psychoneuroimmunology (PNI) field has made important contributions to the knowledge of the pathophysiology of poor perinatal mental health, but the PNI lens could be used more broadly to inform clinical practice. This review argues that PNI holds the key to several important aspects of variations in mental health for pregnant and postpartum women. This review describes existing knowledge from studies on immune activation in maternal depression during pregnancy and postpartum, and other important features such as stress reactivity, the microbiome, and its metabolites. The importance of objective measures for screening and prediction is discussed as well as the need for novel therapeutics to treat poor mental health in the perinatal period. The PNI framework could thus be further applied to inform research about the mechanisms of perinatal psychiatric morbidity, which could pave the way for future precision medicine for perinatal mental health issues.
Collapse
Affiliation(s)
- Emma Fransson
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
139
|
Influence of Smallanthus sonchifolius (Yacon) on the Activity of Antidepressant Drugs in Mice. Life (Basel) 2021; 11:life11111117. [PMID: 34832993 PMCID: PMC8624190 DOI: 10.3390/life11111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Depression is one of the most common mental disorders in the world that negatively affects the daily functioning of patients. Numerous studies are currently being conducted to examine the antidepressant potential of innovative synthetic compounds and herbal substances. Yacon, Smallantchus sonchifolius, belongs to plants with numerous health-beneficial properties. Yacon-based products are regarded as a functional food. In our study, we attempted to check whether administration of Yacon tuber extract would have an antidepressant effect in the forced swim test (FST) in mice and whether its intake could influence the activity of conventional antidepressant drugs with different mechanisms of action, i.e., imipramine hydrochloride, fluoxetine hydrochloride, and reboxetine mesylate. The spontaneous locomotor activity of the tested mice was also investigated to eliminate any false-positive results. We demonstrated that an intragastric administration of the Yacon tuber extract at a dose of 100 mg/kg induced the antidepressant-like behavior in the FST in mice and that a combined administration of the sub-effective doses of the Yacon extract (50 mg/kg) with imipramine hydrochloride (7.5 mg/kg), fluoxetine hydrochloride (20 mg/kg), or reboxetine mesylate (5 mg/kg) significantly reduced the immobility time of animals in this behavioral test. The obtained results were not affected by the increased locomotor activity of the tested subjects. In conclusion, our findings suggest that Yacon tuber extract is promising as an alternative mood-improving product since it possesses an antidepressant potential and it can acts synergistically with conventional antidepressant drugs.
Collapse
|
140
|
Nader-Macías MEF, De Gregorio PR, Silva JA. Probiotic lactobacilli in formulas and hygiene products for the health of the urogenital tract. Pharmacol Res Perspect 2021; 9:e00787. [PMID: 34609059 PMCID: PMC8491456 DOI: 10.1002/prp2.787] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/04/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Lactobacilli are the predominant microorganisms of the healthy human vagina. A novel alternative for the prevention and treatment of female urogenital tract infections (UGTI) is the inclusion of these microorganisms as active pharmaceutical ingredients in probiotic formulas, and more recently in female hygienic products. Probiotics are defined as “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host.” A list of requirements must be considered during the development of probiotic product/formula for the female urogenital tract (UGT). This review aims to resume the requirements, probiotic characteristics, and clinical trial applied to determine the effect of probiotic and potentially probiotic strains on different woman’s physiological and pathological conditions, and in preterm birth prevention. A revision of female hygienic products available in the world market is included, together with novel studies applying nanotechnology for Lactobacillus incorporation in hygienic products. Further studies and well‐designed clinical trials are urgently required to complement the current knowledge and applications of probiotics in the female UGT. The use of probiotic formulas and products will improve and restore the ecological equilibrium of the UGT microbiome to prevent and treat UGTI in women under different conditions.
Collapse
Affiliation(s)
- María Elena Fátima Nader-Macías
- Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Priscilla Romina De Gregorio
- Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Jessica Alejandra Silva
- Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CERELA-CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
141
|
Hofmeister M, Clement F, Patten S, Li J, Dowsett LE, Farkas B, Mastikhina L, Egunsola O, Diaz R, Cooke NCA, Taylor VH. The effect of interventions targeting gut microbiota on depressive symptoms: a systematic review and meta-analysis. CMAJ Open 2021; 9:E1195-E1204. [PMID: 34933877 PMCID: PMC8695538 DOI: 10.9778/cmajo.20200283] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite their popularity, the efficacy of interventions targeting gut microbiota to improve depressive symptoms is unknown. Our objective is to summarize the effect of microbiome-targeting interventions on depressive symptoms. METHODS We conducted a systematic review and meta-analysis. We searched MEDLINE, Embase, PsycINFO, Database of Abstracts of Reviews of Effects, Cochrane Database of Systematic Reviews and the Cochrane Controlled Register of Trials from inception to Mar. 5, 2021. We included studies that evaluated probiotic, prebiotic, synbiotic, paraprobiotic or fecal microbiota transplant interventions in an adult population (age ≥ 18 yr) with an inactive or placebo comparator (defined by the absence of active intervention). Studies must have measured depressive symptoms with a validated scale, and used a randomized controlled trial study design. We conducted a random effects meta-analysis of change scores, using standardized mean difference as the measure of effect. RESULTS Sixty-two studies formed the final data set, with 50 included in the meta-analysis. Probiotic, prebiotic, and synbiotic interventions on depressive symptoms showed statistically significant benefits. In the single studies evaluating each of fecal microbiota transplant and paraprobiotic interventions, neither showed a statistically significant benefit. INTERPRETATION Despite promising findings of benefit of probiotic, prebiotic and synbiotic interventions for depressive symptoms in study populations, there is not yet strong enough evidence to favour inclusion of these interventions in treatment guidelines for depression. Critical questions about species administered, dosage and timing relative to other antidepressant medications remain to be answered. STUDY REGISTRATION PROSPERO no. 143178.
Collapse
Affiliation(s)
- Mark Hofmeister
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Fiona Clement
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Scott Patten
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Joyce Li
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Laura E Dowsett
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Brenlea Farkas
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Liza Mastikhina
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Oluwaseun Egunsola
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Ruth Diaz
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Noah C A Cooke
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Valerie H Taylor
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta.
| |
Collapse
|
142
|
Foster JA, Baker GB, Dursun SM. The Relationship Between the Gut Microbiome-Immune System-Brain Axis and Major Depressive Disorder. Front Neurol 2021; 12:721126. [PMID: 34650506 PMCID: PMC8508781 DOI: 10.3389/fneur.2021.721126] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Major depressive disorder (MDD) is a prominent cause of disability worldwide. Current antidepressant drugs produce full remission in only about one-third of MDD patients and there are no biomarkers to guide physicians in selecting the best treatment for individuals. There is an urgency to learn more about the etiology of MDD and to identify new targets that will lead to improved therapy and hopefully aid in predicting and preventing MDD. There has been extensive interest in the roles of the immune system and the gut microbiome in MDD and in how these systems interact. Gut microbes can contribute to the nature of immune responses, and a chronic inflammatory state may lead to increased responsiveness to stress and to development of MDD. The gut microbiome-immune system-brain axis is bidirectional, is sensitive to stress and is important in development of stress-related disorders such as MDD. Communication between the gut and brain involves the enteric nervous system (ENS), the autonomic nervous system (ANS), neuroendocrine signaling systems and the immune system, and all of these can interact with the gut microbiota. Preclinical studies and preliminary clinical investigations have reported improved mood with administration of probiotics and prebiotics, but large, carefully controlled clinical trials are now necessary to evaluate their effectiveness in treating MDD. The roles that several gut microbe-derived molecules such as neurotransmitters, short chain fatty acids and tryptophan play in MDD are reviewed briefly. Challenges and potential future directions associated with studying this important axis as it relates to MDD are discussed.
Collapse
Affiliation(s)
- Jane A. Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Glen B. Baker
- Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Serdar M. Dursun
- Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
143
|
Naguy A, Pridmore S, Abuzeid MY, Thiguti SH, Alamiri B. Depression: A Gut "Microbiome" Feeling! J Nerv Ment Dis 2021; 209:691-692. [PMID: 34448737 DOI: 10.1097/nmd.0000000000001365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Burgeoning body of evidence from neuroscience is pouring in highlighting a potential association between gut microbiota with the pathophysiology of depression and anxiety. Manipulation of gut microbiota may be then useful to decode this role and to provide novel therapeutics for major depressive disorder (MDD), developing microbiota-related biomarkers to stratify patients at risk and to delineate more homogeneous biotypes of MDD.
Collapse
Affiliation(s)
- Ahmed Naguy
- Al-Manara CAP Centre, Kuwait Centre for Mental Health, Shuwaikh, Kuwait
| | | | | | | | | |
Collapse
|
144
|
Faraj J, Takanti V, Tavakoli HR. The Gut-Brain Axis: Literature Overview and Psychiatric Applications. Fed Pract 2021; 38:356-362. [PMID: 34733087 PMCID: PMC8560095 DOI: 10.12788/fp.0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Literature exploring the relationship between the intestinal microbiome and its effects on general health and well-being has grown significantly in recent years, and our knowledge of this subject continues to grow. Mounting evidence indicates that the intestinal microbiome is a potential target for therapeutic intervention in psychiatric illness and in neurodegenerative disorders such as Alzheimer disease. It is reasonable to consider modulating not just a patient's neurochemistry, behavior, or cognitive habits, but also their intestinal microbiome in an effort to improve psychiatric symptoms. OBSERVATIONS In this review paper, we show that intestinal microbiota possess the ability to directly influence both physical and mental well-being; therefore, should be included in future discussions regarding psychiatric treatment. CONCLUSIONS Clinicians are encouraged to consider patients' gut health when evaluating and treating psychiatric conditions, such as anxiety and depression. Optimization and diversification of gut flora through the use of psychobiotics-probiotics that confer mental health benefits-may soon become standard practice in conjunction with traditional psychiatric treatment modalities such as pharmacotherapy and psychotherapy.
Collapse
Affiliation(s)
- Janine Faraj
- is a General Medical Officer at Naval Surface Forces Atlantic, Medical Readiness Division, Norfolk, Virginia. is a Resident Physician in the Department of Anesthesiology at Rush University Hospital in Chicago, Illinois. is the head of Psychiatry Consultation-Liaison Services at the Naval Medical Center, Portsmouth, Virginia
| | - Varun Takanti
- is a General Medical Officer at Naval Surface Forces Atlantic, Medical Readiness Division, Norfolk, Virginia. is a Resident Physician in the Department of Anesthesiology at Rush University Hospital in Chicago, Illinois. is the head of Psychiatry Consultation-Liaison Services at the Naval Medical Center, Portsmouth, Virginia
| | - Hamid R Tavakoli
- is a General Medical Officer at Naval Surface Forces Atlantic, Medical Readiness Division, Norfolk, Virginia. is a Resident Physician in the Department of Anesthesiology at Rush University Hospital in Chicago, Illinois. is the head of Psychiatry Consultation-Liaison Services at the Naval Medical Center, Portsmouth, Virginia
| |
Collapse
|
145
|
Sheyholislami H, Connor KL. Are Probiotics and Prebiotics Safe for Use during Pregnancy and Lactation? A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13072382. [PMID: 34371892 PMCID: PMC8308823 DOI: 10.3390/nu13072382] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Probiotic and prebiotic products have shown potential health benefits, including for the prevention of adverse pregnancy outcomes. The incidence of adverse effects in pregnant people and their infants associated with probiotic/prebiotic/synbiotic intake, however, remains unclear. The objectives of this study were to evaluate the evidence on adverse effects of maternal probiotic, prebiotic, and/or synbiotic supplementation during pregnancy and lactation and interpret the findings to help inform clinical decision-making and care of this population. A systematic review was conducted following PRISMA guidelines. Scientific databases were searched using pre-determined terms, and risk of bias assessments were conducted to determine study quality. Inclusion criteria were English language studies, human studies, access to full-text, and probiotic/prebiotic/synbiotic supplementation to the mother and not the infant. In total, 11/100 eligible studies reported adverse effects and were eligible for inclusion in quantitative analysis, and data were visualised in a GOfER diagram. Probiotic and prebiotic products are safe for use during pregnancy and lactation. One study reported increased risk of vaginal discharge and changes in stool consistency (relative risk [95% CI]: 3.67 [1.04, 13.0]) when administering Lactobacillus rhamnosus and L. reuteri. Adverse effects associated with probiotic and prebiotic use do not pose any serious health concerns to mother or infant. Our findings and knowledge translation visualisations provide healthcare professionals and consumers with information to make evidence-informed decisions about the use of pre- and probiotics.
Collapse
|
146
|
Zhang X, Chen S, Zhang M, Ren F, Ren Y, Li Y, Liu N, Zhang Y, Zhang Q, Wang R. Effects of Fermented Milk Containing Lacticaseibacillus paracasei Strain Shirota on Constipation in Patients with Depression: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021; 13:2238. [PMID: 34209804 DOI: 10.3390/nu13072238if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/25/2021] [Indexed: 07/26/2024] Open
Abstract
Probiotics have been shown to benefit patients with constipation and depression, but whether they specifically alleviate constipation in patients with depression remains unclear. The aim of this study was to investigate the effect of Lacticaseibacillus paracasei strain Shirota (LcS), formerly Lactobacillus casei strain Shirota, on constipation in patients with depression with specific etiology and gut microbiota and on depressive regimens. Eighty-two patients with constipation were recruited. The subjects consumed 100 mL of a LcS beverage (108 CFU/mL) or placebo every day for 9 weeks. After ingesting beverages for this period, we observed no significant differences in the total patient constipation-symptom (PAC-SYM) scores in the LcS group when compared with the placebo group. However, symptoms/scores in item 7 (rectal tearing or bleeding after a bowel movement) and items 8-12 (stool symptom subscale) were more alleviated in the LcS group than in the placebo group. The Beck Depression Index (BDI) and Hamilton Depression Rating Scale (HAMD) scores were all significantly decreased, and the degree of depression was significantly improved in both the placebo and LcS groups (p < 0.05), but there was no significant difference between the groups. The LcS intervention increased the beneficial Adlercreutzia, Megasphaera and Veillonella levels and decreased the bacterial levels related to mental illness, such as Rikenellaceae_RC9_gut_group, Sutterella and Oscillibacter. Additionally, the interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) levels were significantly decreased in both the placebo and LcS groups (p < 0.05). In particular, the IL-6 levels were significantly lower in the LcS group than the placebo group after the ingestion period (p < 0.05). In conclusion, the daily consumption of LcS for 9 weeks appeared to relieve constipation and improve the potentially depressive symptoms in patients with depression and significantly decrease the IL-6 levels. In addition, the LcS supplementation also appeared to regulate the intestinal microbiota related to mental illness.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Shanbin Chen
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Ming Zhang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Yimei Ren
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government China Agricultural University, Beijing 100083, China
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Ning Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Yan Zhang
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Qi Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Ran Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| |
Collapse
|
147
|
Zhang X, Chen S, Zhang M, Ren F, Ren Y, Li Y, Liu N, Zhang Y, Zhang Q, Wang R. Effects of Fermented Milk Containing Lacticaseibacillus paracasei Strain Shirota on Constipation in Patients with Depression: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021; 13:2238. [PMID: 34209804 PMCID: PMC8308326 DOI: 10.3390/nu13072238] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics have been shown to benefit patients with constipation and depression, but whether they specifically alleviate constipation in patients with depression remains unclear. The aim of this study was to investigate the effect of Lacticaseibacillus paracasei strain Shirota (LcS), formerly Lactobacillus casei strain Shirota, on constipation in patients with depression with specific etiology and gut microbiota and on depressive regimens. Eighty-two patients with constipation were recruited. The subjects consumed 100 mL of a LcS beverage (108 CFU/mL) or placebo every day for 9 weeks. After ingesting beverages for this period, we observed no significant differences in the total patient constipation-symptom (PAC-SYM) scores in the LcS group when compared with the placebo group. However, symptoms/scores in item 7 (rectal tearing or bleeding after a bowel movement) and items 8-12 (stool symptom subscale) were more alleviated in the LcS group than in the placebo group. The Beck Depression Index (BDI) and Hamilton Depression Rating Scale (HAMD) scores were all significantly decreased, and the degree of depression was significantly improved in both the placebo and LcS groups (p < 0.05), but there was no significant difference between the groups. The LcS intervention increased the beneficial Adlercreutzia, Megasphaera and Veillonella levels and decreased the bacterial levels related to mental illness, such as Rikenellaceae_RC9_gut_group, Sutterella and Oscillibacter. Additionally, the interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) levels were significantly decreased in both the placebo and LcS groups (p < 0.05). In particular, the IL-6 levels were significantly lower in the LcS group than the placebo group after the ingestion period (p < 0.05). In conclusion, the daily consumption of LcS for 9 weeks appeared to relieve constipation and improve the potentially depressive symptoms in patients with depression and significantly decrease the IL-6 levels. In addition, the LcS supplementation also appeared to regulate the intestinal microbiota related to mental illness.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (X.Z.); (S.C.); (F.R.); (Y.L.); (N.L.); (Q.Z.)
| | - Shanbin Chen
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (X.Z.); (S.C.); (F.R.); (Y.L.); (N.L.); (Q.Z.)
| | - Ming Zhang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China;
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (X.Z.); (S.C.); (F.R.); (Y.L.); (N.L.); (Q.Z.)
| | - Yimei Ren
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government China Agricultural University, Beijing 100083, China;
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (X.Z.); (S.C.); (F.R.); (Y.L.); (N.L.); (Q.Z.)
| | - Ning Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (X.Z.); (S.C.); (F.R.); (Y.L.); (N.L.); (Q.Z.)
| | - Yan Zhang
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China;
| | - Qi Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (X.Z.); (S.C.); (F.R.); (Y.L.); (N.L.); (Q.Z.)
| | - Ran Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (X.Z.); (S.C.); (F.R.); (Y.L.); (N.L.); (Q.Z.)
| |
Collapse
|
148
|
Hulkkonen P, Kataja EL, Vahlberg T, Koivuniemi E, Houttu N, Pellonperä O, Mokkala K, Karlsson H, Laitinen K. The efficacy of probiotics and/or n-3 long-chain polyunsaturated fatty acids intervention on maternal prenatal and postnatal depressive and anxiety symptoms among overweight and obese women. J Affect Disord 2021; 289:21-30. [PMID: 33930612 DOI: 10.1016/j.jad.2021.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Maternal depression and anxiety may endanger well-being of both mother and child. We investigated the efficacy of probiotics and/or fish oil (FO) in modifying pre- and postnatal depressive and anxiety symptoms. Symptom trajectories were identified and the influence of lifestyle factors on symptoms was evaluated. METHODS Overweight women (n = 439) were randomized to intervention groups (probiotics+FO, probiotics+placebo, FO+placebo, placebo+placebo) from early pregnancy until six months postpartum, and assessed for depressive and anxiety symptoms with Edinburgh Postnatal Depression Scale (EPDS) and Anxiety subscale of Symptoms Checklist (SCL-90) at early and late pregnancy and three, six and 12 months postpartum. Latent growth mixture modeling was used to model the symptom courses. Dietary quality and physical activity were assessed with validated indices. RESULTS Symptom scores were generally low. Statistically significant intervention effect was seen during pregnancy (p = 0.017): EPDS scores increased (by 1.11 points) in the FO+probiotics group and decreased (by 0.85 points) in the FO+placebo group. At 12 months postpartum, FO+placebo group had lower EPDS scores compared to probiotics+placebo group (p = 0.039). No differences in SCL scores were seen in response to the intervention. Irrespective of the intervention, three depressive and two anxiety symptoms trajectories were identified. Dietary quality correlated negatively with depressive symptoms in early pregnancy and six months postpartum and with anxiety symptoms in early pregnancy. Perinatal events including mother-reported colic were related to symptoms. LIMITATIONS Secondary outcomes of the primary trial. CONCLUSIONS Intervention had a modest impact on depressive symptoms. Diet and obstetric events were associated with depressive and anxiety symptoms.
Collapse
Affiliation(s)
- P Hulkkonen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland; Department of Psychology and Logopedics, University of Turku, Finland
| | - E-L Kataja
- Department of Psychology and Logopedics, University of Turku, Finland; The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Finland
| | - T Vahlberg
- Department of Clinical Medicine, Biostatistics, University of Turku, Turku, Finland
| | - E Koivuniemi
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - N Houttu
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - O Pellonperä
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland
| | - K Mokkala
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - H Karlsson
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Finland; Turku University Hospital and University of Turku, Department of Psychiatry, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - K Laitinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland.
| |
Collapse
|
149
|
Bastiaanssen TFS, Cussotto S, Claesson MJ, Clarke G, Dinan TG, Cryan JF. Gutted! Unraveling the Role of the Microbiome in Major Depressive Disorder. Harv Rev Psychiatry 2021; 28:26-39. [PMID: 31913980 PMCID: PMC7012351 DOI: 10.1097/hrp.0000000000000243] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microorganisms can be found in virtually any environment. In humans, the largest collection of microorganisms is found in the gut ecosystem. The adult gut microbiome consists of more genes than its human host and typically spans more than 60 genera from across the taxonomic tree. In addition, the gut contains the largest number of neurons in the body, after the brain. In recent years, it has become clear that the gut microbiome is in communication with the brain, through the gut-brain axis. A growing body of literature shows that the gut microbiome plays a shaping role in a variety of psychiatric disorders, including major depressive disorder (MDD). In this review, the interplay between the microbiome and MDD is discussed in three facets. First, we discuss factors that affect the onset/development of MDD that also greatly impinge on the composition of the gut microbiota-especially diet and stressful life events. We then examine the interplay between the microbiota and MDD. We examine evidence suggesting that the microbiota is altered in MDD, and we discuss why the microbiota should be considered during MDD treatment. Finally, we look toward the future and examine how the microbiota might become a therapeutic target for MDD. This review is intended to introduce those familiar with the neurological and psychiatric aspects of MDD to the microbiome and its potential role in the disorder. Although research is in its very early days, with much yet to be the understood, the microbiome is offering new avenues for developing potentially novel strategies for managing MDD.
Collapse
|
150
|
Consumption of OLL1073R-1 yogurt improves psychological quality of life in women healthcare workers: secondary analysis of a randomized controlled trial. BMC Gastroenterol 2021; 21:237. [PMID: 34030638 PMCID: PMC8142513 DOI: 10.1186/s12876-021-01793-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 01/03/2023] Open
Abstract
Background We conducted a randomized controlled trial to investigate the effects of consumption of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 in women healthcare workers. In a previous study we used these data to investigate hypothesized preventive effects against flu, however any effects on improving mental quality of life were not analyzed at that time. In the present study, we focus on that aspect. Methods The participants (961 women; mainly nurses, aged 20–71 years) were randomly allocated to either the yogurt group (n = 479) or the control group (n = 482). Participants in the yogurt group drank 112 mL of OLL1073R-1 yogurt for 16 weeks, while those in the control group did not consume any yogurt. All participants were prohibited from consuming other yogurt or fermented dairy products during the study period. The participants answered the Pittsburgh Sleep Quality Index (PSQI), Short Form-8 Health Survey (SF-8), and Gastrointestinal Symptom Rating Scale (GSRS) questionnaires at baseline and after 16 weeks. Results The PSQI score showed significant improvement after the intake of yogurt (p < 0.01). SF-8 results showed significant intervention effects in the General Health and Vitality scores (p = 0.02 and p = 0.01, respectively). In other subscales of SF-8, we did not observe significant effects of the yogurt. In the GSRS, daily intake of yogurt exerted a preventive effect on constipation (p = 0.03). Conclusions Consumption of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 enhances subjective psychological quality of life by improving quality of sleep and gastrointestinal condition among women healthcare workers.
Collapse
|