101
|
Mao H, Yang H, Xu Z, Yang Y, Zhang X, Huang F, Wei L, Li Z. Microplastics and co-pollutant with ciprofloxacin affect interactions between free-floating macrophytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120546. [PMID: 36332704 DOI: 10.1016/j.envpol.2022.120546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Microplastic and antibiotic contamination are considered an increasing environmental problem in aquatic systems, while little is known about the impact of microplastics and co-pollutant with antibiotics on freshwater vascular plants, particularly the effects of interactions between macrophytes. Here, we performed a mesocosm experiment to evaluate the impact of polyethylene-microplastics and their co-pollutants with ciprofloxacin on the growth and physiological characteristics of Spirodela polyrhiza and Lemna minor and the interactions between these two macrophytes. Our results showed that microplastics alone cannot significantly influence fresh weight and specific leaf area of the two test free-floating macrophytes, but the effects on photosynthetic pigments, malondialdehyde, catalase and soluble sugar contents were species-specific. Ciprofloxacin can significant adverse effects on the growth and physiological traits of the two test macrophytes and microplastic mitigated the toxicity of ciprofloxacin on the two free-floating plants to a certain extent. In addition, our studies showed that microplastics and co-pollutants can influence relative yield and competitiveness of S. polyrhiza and L. minor by directly or indirectly influencing their physiology and growth. Therefore our findings suggest that species-specific sensibility to microplastic and its co-pollutant among free-floating macrophytes may influence macrophyte population dynamics and thereby community structure and ecosystem functioning. And microplastics altered other contaminant behaviours and toxicity, and may directly or indirectly influence macrophytes interactions and community structure. The present study is the first experimental study exploring the effects of microplastics alone and with their co-pollutants on interactions between free-floating macrophytes, which can provide basic theoretical guidance for improving the stability of freshwater ecosystems.
Collapse
Affiliation(s)
- Hongzhi Mao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Hui Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Zhiyan Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Yujing Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Xu Zhang
- Hubei Provincial Academy of Eco-environmental Science (Hubei Eco-environmental Engineering Assessment Center), Wuhan, 430079, China
| | - Feng Huang
- Hubei Provincial Academy of Eco-environmental Science (Hubei Eco-environmental Engineering Assessment Center), Wuhan, 430079, China
| | - Lifei Wei
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
102
|
Li J, Liu W, Lian Y, Shi R, Wang Q, Zeb A. Single and combined toxicity of polystyrene nanoplastics and arsenic on submerged plant Myriophyllum verticillatum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:513-523. [PMID: 36516538 DOI: 10.1016/j.plaphy.2022.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The contamination of nanoplastics (NPs) and heavy metals (HM) in water bodies has caused widespread concern, while their effects on submerged plants are poorly reported. Polystyrene nanoplastics (PSNPs) and arsenic (As) were used to assess their toxicity on Myriophyllum verticillatum L. via the orthogonal experiments. PSNPs significantly reduced the accumulation of As (17.24%-66.67%) in plant. Single As and high As-PSNPs treatments significantly inhibited plant growth, with a maximum reduction of 70.09% in the growth rate. The mineral nutrient content was significantly affected by PSNPs and As treatments. The antioxidant system was significantly inhibited, which was more pronounced in the roots. Similar findings were observed for soluble protein and soluble sugar. Some organic acids and amino acids showed down-regulation at high concentrations of As, leading to a decrease in the content of the mineral element and down-regulation of antioxidant enzyme synthesis. Furthermore, PSNPs could alleviate As toxicity under 0.1 mg/L As treatment but exacerbate As toxicity at 1 mg/L As dose. This study has important implications for the study of submerged plants exposed to co-contamination of microplastics and heavy metals, as well as the possible ecological risk assessment in freshwater.
Collapse
Affiliation(s)
- Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| |
Collapse
|
103
|
Hao B, Wu H, Zhang S, He B. Individual and combined toxicity of microplastics and diuron differs between freshwater and marine diatoms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158334. [PMID: 36044954 DOI: 10.1016/j.scitotenv.2022.158334] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Microplastics are considered as the emerging pollutants, which not only directly affect aquatic organisms, but also causes combined pollution by adsorbing other pollutants. Diuron, as one of the most widely used herbicides, is frequently monitored in the aquatic environment for its adverse effects on aquatic organisms. However, little is known about the combined toxicity of microplastics and diuron to aquatic organisms, especially diatoms. In this study, freshwater diatom (Cyclotella meneghiniana) and marine diatom (Skeletonema costatum) were selected to study the individual and combined toxicity of microplastics (polystyrene, 0.6- 1.0 μm) and diuron. Experimental concentrations of microplastics and diuron were set at 50 mg/L and 100 μg/L, respectively, which have been shown to significantly inhibit the growth of aquatic organisms. Results suggested that both single microplastics and single diuron significantly inhibited the growth of the two diatoms, while significant SOD and MDA increase were only found in single diuron exposure. For diatoms exposed to individual microplastics, the microplastic particles adsorbed inside Cyclotella sp. and those aggregated around Skeletonema sp. were the major factor inhibiting the growth of diatom, respectively. According to the independent action model, the combined toxicity for both diatoms were all antagonistic. The adsorption behavior of microplastics to diuron alleviated the intracellular damage to diatoms caused by diuron, and the oxidative stress induced by diuron mitigated the physical damage to diatoms caused by microplastics. Collectively, our findings suggest that the co-existence of microplastics and diuron may affect their respective toxicity to diatoms. The mechanism of this "cross-phenomenon" between microplastics and diuron and their combined toxicity to different aquatic organisms need to be further studied.
Collapse
Affiliation(s)
- Beibei Hao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Haoping Wu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Siyi Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Bin He
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China.
| |
Collapse
|
104
|
Qiao R, Mortimer M, Richter J, Rani-Borges B, Yu Z, Heinlaan M, Lin S, Ivask A. Hazard of polystyrene micro-and nanospheres to selected aquatic and terrestrial organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158560. [PMID: 36087672 DOI: 10.1016/j.scitotenv.2022.158560] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Plastics contamination in the environment is a major concern. Risk assessment of micro- and nanoplastics (MPL and NPL) poses significant challenges due to MPL and NPL heterogeneity regarding compositional polymers, particle sizes and morphologies in the environment. Yet, there exists considerable toxicological literature on commercial polystyrene (PS) micro- and nanospheres. Although such particles do not directly represent the environmental MPL and NPL, their toxicity data should be used to advance the hazard assessment of plastics. Here, toxicity data of PS micro- and nanospheres for microorganisms, aquatic and terrestrial invertebrates, fish, and higher plants was collected and analyzed. The evaluation of 294 papers revealed that aquatic invertebrates were the most studied organisms, nanosized PS was studied more often than microsized PS, acute exposures prevailed over chronic exposures, the toxicity of PS suspension additives was rarely addressed, and ∼40 % of data indicated no organismal effects of PS. Toxicity mechanisms were mainly studied in fish and nematode Caenorhabditis elegans, providing guidance for relevant studies in higher organisms. Future studies should focus on environmentally relevant plastics concentrations, wide range of organisms, co-exposures with other pollutants, and method development for plastics identification and quantification to fill the gap of bioaccumulation assessment of plastics.
Collapse
Affiliation(s)
- Ruxia Qiao
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jelizaveta Richter
- National Institute of Chemical Physics and Biophysics, Laboratory of Environmental Toxicology, Tallinn 12618, Estonia
| | - Bárbara Rani-Borges
- Institute of Science and Technology, São Paulo State University, UNESP, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil; Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Zhenyang Yu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Margit Heinlaan
- National Institute of Chemical Physics and Biophysics, Laboratory of Environmental Toxicology, Tallinn 12618, Estonia.
| | - Sijie Lin
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Angela Ivask
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia.
| |
Collapse
|
105
|
Abomohra A, Hanelt D. Recent Advances in Micro-/Nanoplastic (MNPs) Removal by Microalgae and Possible Integrated Routes of Energy Recovery. Microorganisms 2022; 10:microorganisms10122400. [PMID: 36557653 PMCID: PMC9788109 DOI: 10.3390/microorganisms10122400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Reliance on plastic has resulted in the widespread occurrence of micro-/nanoplastics (MNPs) in aquatic ecosystems, threatening the food web and whole ecosystem functions. There is a tight interaction between MNPs and microalgae, as dominant living organisms and fundamental constituents at the base of the aquatic food web. Therefore, it is crucial to better understand the mechanisms underlying the interactions between plastic particles and microalgae, as well as the role of microalgae in removing MNPs from aquatic ecosystems. In addition, finding a suitable route for further utilization of MNP-contaminated algal biomass is of great importance. The present review article provides an interdisciplinary approach to elucidate microalgae-MNP interactions and subsequent impacts on microalgal physiology. The degradation of plastic in the environment and differences between micro- and nanoplastics are discussed. The possible toxic effects of MNPs on microalgal growth, photosynthetic activity, and morphology, due to physical or chemical interactions, are evaluated. In addition, the potential role of MNPs in microalgae cultivation and/or harvesting, together with further safe routes for biomass utilization in biofuel production, are suggested. Overall, the current article represents a state-of-the-art overview of MNP generation and the consequences of their accumulation in the environment, providing new insights into microalgae integrated routes of plastic removal and bioenergy production.
Collapse
|
106
|
Khan FR, Catarino AI, Clark NJ. The ecotoxicological consequences of microplastics and co-contaminants in aquatic organisms: a mini-review. Emerg Top Life Sci 2022; 6:339-348. [PMID: 35972188 PMCID: PMC9788381 DOI: 10.1042/etls20220014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023]
Abstract
Microplastics (MPs, <5 mm in size) are a grave environmental concern. They are a ubiquitous persistent pollutant group that has reached into all parts of the environment - from the highest mountain tops to the depths of the ocean. During their production, plastics have added to them numerous chemicals in the form of plasticizers, colorants, fillers and stabilizers, some of which have known toxicity to biota. When released into the environments, MPs are also likely to encounter chemical contaminants, including hydrophobic organic contaminants, trace metals and pharmaceuticals, which can sorb to plastic surfaces. Additionally, MPs have been shown to be ingested by a wide range of organisms and it is this combination of ingestion and chemical association that gives weight to the notion that MPs may impact the bioavailability and toxicity of both endogenous and exogenous co-contaminants. In this mini-review, we set the recent literature within what has been previously published about MPs as chemical carriers to biota, with particular focus on aquatic invertebrates and fish. We then present a critical viewpoint on the validity of laboratory-to-field extrapolations in this area. Lastly, we highlight the expanding 'microplastic universe' with the addition of anthropogenic particles that have gained recent attention, namely, tire wear particles, nanoplastics and, bio-based or biodegradable MPs, and highlight the need for future research in their potential roles as vehicles of co-contaminant transfer.
Collapse
Affiliation(s)
- Farhan R Khan
- Department of Climate & Environment, Norwegian Research Center (NORCE), Nygårdsporten 112, NO-5008 Bergen, Norway
| | - Ana I Catarino
- Vlaams Instituut voor de Zee, Flanders Marine Institute InnovOcean site, Wandelaarkaai 7, 8400 Oostende, Belgium
| | - Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, U.K
- School of Health Professionals, University of Plymouth, Plymouth PL4 8AA, U.K
| |
Collapse
|
107
|
Dong R, Liu R, Xu Y, Liu W, Sun Y. Effect of foliar and root exposure to polymethyl methacrylate microplastics on biochemistry, ultrastructure, and arsenic accumulation in Brassica campestris L. ENVIRONMENTAL RESEARCH 2022; 215:114402. [PMID: 36167108 DOI: 10.1016/j.envres.2022.114402] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Despite the serious risk of microplastic pollution in the roots and leaves of crops, the phytotoxicity of microplastics (introduced via different exposure routes) in leafy vegetables remain insufficiently understood. Here, the effects of the root and foliar exposure of polymethyl methacrylate microplastic (PMMAMPs) on phytotoxicity, As accumulation, and subcellular distribution were investigated in rapeseed (Brassica campestris L). The relative chlorophyll content under PMMAMPs treatment decreased with time, and the 0.05 g L-1 root exposure decreased it significantly (by 9.97-20.48%, P < 0.05). In addition, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and ascorbate peroxidase (APX) activities in rapeseed were more sensitive to PMMAMPs introduced through root exposure than through foliar exposure. There was dose-dependent ultrastructural damage, and root exposure had a greater impact than foliar exposure on root tip cells and chloroplasts. PMMAMPs entered the shoots and roots of rapeseed through root exposure. Under foliar exposure, PMMAMPs promoted As accumulation in rapeseed by up to 75.6% in shoots and 68.2% in roots compared to that under control (CK). As content in cell wall under PMMAMP treatments was 3.6-5.3 times higher than that of CK, as indicated by subcellular component results. In general, root exposure to PMMAMPs resulted in a stronger physiological impact and foliar exposure led to increased As accumulation in rapeseed.
Collapse
Affiliation(s)
- Ruyin Dong
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Rongle Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China.
| | - Yingming Xu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Weitao Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China.
| |
Collapse
|
108
|
Feng LJ, Zhang KX, Shi ZL, Zhu FP, Yuan XZ, Zong WS, Song C. Aged microplastics enhance their interaction with ciprofloxacin and joint toxicity on Escherichia coli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114218. [PMID: 36279636 DOI: 10.1016/j.ecoenv.2022.114218] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) in natural environments undergo complex aging processes, changing their interactions with coexisting antibiotics, and posing unpredictable ecological risks. However, the joint toxicity of aged MPs (aMPs) and antibiotics to bacteria, especially at the molecular level, is unclear. In this study, non-thermal plasma technology was used to simultaneously simulate various radical oxidation and physical reactions that occur naturally in the environment, breaking the limitation of simple aging process in laboratory aging technologies. After aging, we investigated the altered properties of aMPs, their interactions with ciprofloxacin (CIP), and the molecular responses of E. coli exposed to pristine MPs (13.5 mg/L), aMPs (13.5 mg/L), and CIP (2 μg/L) individually or simultaneously. aMPs bound far more CIP to their surfaces than pristine MPs, especially in freshwater ecosystems. Notably, the growth of E. coli exposed to aMPs alone was inhibited, whereas pristine MPs exposure didn't affect the growth of E. coli. Moreover, the most differentially expressed genes in E. coli were induced by the coexposure of aMPs and CIP. Although E. coli depended on chemotaxis to improve its flagellar rotation and escaped the stress of pollutants, the coexposure of aMPs and CIP still caused cell membrane damage, oxidative stress, obstruction of DNA replication, and osmotic imbalance in E. coli. This study filled the knowledge gap between the toxicity of aMPs and pristine MPs coexisting with antibiotics at the transcription level, helping in the accurate assessment of the potential risks of MPs to the environment.
Collapse
Affiliation(s)
- Li-Juan Feng
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong 250014, PR China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui, Hebei 053000, PR China
| | - Kai-Xin Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; School of Eco-Environment, Hebei University, Baoding, Hebei 071002, PR China
| | - Zong-Lin Shi
- Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui, Hebei 053000, PR China; Department of Life Science, Hengshui College, Hengshui, Hebei 053000, PR China
| | - Fan-Ping Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Wan-Song Zong
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong 250014, PR China.
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
109
|
Sun A, Xu L, Zhou G, Yin E, Chen T, Wang Y, Li X. Roles of polystyrene micro/nano-plastics as carriers on the toxicity of Pb 2+ to Chlamydomonas reinhardtii. CHEMOSPHERE 2022; 309:136676. [PMID: 36191764 DOI: 10.1016/j.chemosphere.2022.136676] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Little information could be consulted on the impacts of micro-plastics as carriers on toxicity of heavy metals, especially for micro-plastics of different sizes. Therefore, this study investigated the adsorption and desorption of Pb2+ on polystyrene plastics with nano- and micro-size (NPs and MPs), and further evaluated the roles of NPs and MPs as carriers on the toxicity of Pb2+ to Chlamydomonas reinhardtii (C. reinhardtii). The results showed that NPs showed higher adsorption capacities and a lower desorption rate for Pb2+ than MPs. The growth inhibitory rates (IR) of mixed and loaded Pb2+ with MPs to C. reinhardtii were 18.29% and 15.76%, respectively, which were lower than that of Pb2+ (22.28%). The presence of MPs decreased the bioavailability of Pb2+ to C. reinhardtii by a competitive adsorption for Pb2+ between MPs and algal cells, and suppressed membrane damage and oxidative stress caused by Pb2+. Maximum IR was observed for the mixture of NPs with Pb2+ (35.64%), followed by Pb2+ loaded on NPs (30.13%), single NPs (26.71%) and Pb2+ (21.01%). The internalization of NPs with absorbed Pb2+ intensified lipid peroxidation. The mixed and loaded microplastics with Pb2+ had more negative effects on C. reinhardtii than the single microplastics. The size-dependent effect was observed in the capacity of heavy metal ions carried by microplastics and the roles of microplastics as carriers on the toxicity of Pb2+. The results showed that the indirect risk of microplastics as 'carriers' could not be ignored, especially for NPs.
Collapse
Affiliation(s)
- Aoxue Sun
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Limei Xu
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Gaoxiang Zhou
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Erqin Yin
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tiantian Chen
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Xiaochen Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
110
|
Entezari S, Al MA, Mostashari A, Ganjidoust H, Ayati B, Yang J. Microplastics in urban waters and its effects on microbial communities: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88410-88431. [PMID: 36327084 DOI: 10.1007/s11356-022-23810-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Microplastic (MP) pollution is one of the emerging threats to the water and terrestrial environment, forcing a new environmental challenge due to the growing trend of plastic released into the environment. Synthetic and non-synthetic plastic components can be found in rivers, lakes/reservoirs, oceans, mountains, and even remote areas, such as the Arctic and Antarctic ice sheets. MPs' main challenge is identifying, measuring, and evaluating their impacts on environmental behaviors, such as carbon and nutrient cycles, water and wastewater microbiome, and the associated side effects. However, until now, no standardized methodical protocols have been proposed for comparing the results of studies in different environments, especially in urban water and wastewater. This review briefly discusses MPs' sources, fate, and transport in urban waters and explains methodological uncertainty. The effects of MPs on urban water microbiomes, including urban runoff, sewage wastewater, stagnant water in plumbing networks, etc., are also examined in depth. Furthermore, this study highlights the pathway of MPs and their transport vectors to different parts of ecosystems and human life, particularly through mediating microbial communities, antibiotic-resistant genes, and biogeochemical cycles. Overall, we have briefly highlighted the present research gaps, the lack of appropriate policy for evaluating microplastics and their interactions with urban water microbiomes, and possible future initiatives.
Collapse
Affiliation(s)
- Saber Entezari
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Mamun Abdullah Al
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Amir Mostashari
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Hossein Ganjidoust
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran.
| | - Bita Ayati
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Jun Yang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| |
Collapse
|
111
|
Cao Q, Sun W, Yang T, Zhu Z, Jiang Y, Hu W, Wei W, Zhang Y, Yang H. The toxic effects of polystyrene microplastics on freshwater algae Chlorella pyrenoidosa depends on the different size of polystyrene microplastics. CHEMOSPHERE 2022; 308:136135. [PMID: 36007743 DOI: 10.1016/j.chemosphere.2022.136135] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are persistent environmental contaminants. The toxic effects of MPs on aquatic organisms have raised increasing concerns, but their toxic effects on aquatic phytoplankton has not been thoroughly investigated. In the present study, the toxic effects of two sizes MPs (1 μm and 5 μm) on Chlorella pyrenoidosa at 2, 10, 50 mg/L were explored for 1, 5, 10 days. The growth ratio, photosynthetic pigments content, extracellular polymeric substances content, soluble protein content, MDA content and relative expression of genes related to photosynthesis and energy metabolism were measured. These results indicated that 1 μm MP could significantly inhibit the growth of C. pyrenoidosa. Compared with the control group, 1 μm MP significantly reduced the photosynthetic pigment content, induced oxidative stress and disrupted the cell membrane integrity of C. pyrenoidosa. At the molecular level, 1 μm MP altered the transcript levels of genes related to photosynthesis and energy metabolism. Scanning electron microscopy and fluorescent images showed that MPs aggregation with C. pyrenoidosa may be the main reason for the toxic effects of MPs. These results will provide new insight into the toxicity of different MPs on aquatic phytoplankton, and evaluate the risks caused by MPs in aquatic environments.
Collapse
Affiliation(s)
- Qingsheng Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenbo Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Tian Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yinan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenlong Hu
- School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
112
|
Liu Y, Shi Q, Liu X, Wang L, He Y, Tang J. Perfluorooctane sulfonate (PFOS) enhanced polystyrene particles uptake by human colon adenocarcinoma Caco-2 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157640. [PMID: 35907536 DOI: 10.1016/j.scitotenv.2022.157640] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
As microplastics and nanoplastics (MNPs) are widely distributed in the environment and can be transferred to human body through food chain, their potential impact on human health is of great concern. Perfluorooctane sulfonate (PFOS) is persistent, bioaccumulative and can be adsorbed by MNPs. However, there are few studies on the combined human health effects of MNPs with PFOS. In this study, the effects of polystyrene (PS) particles and PFOS on human colon adenocarcinoma cell Caco-2 were investigated in vitro to explore the combined toxicity from cellular level, and the toxic mechanism was further illustrated. Results showed that the presence of PFOS significantly increased the cell uptake of PS nanoparticles by >30 %, which is related to variations of the surface properties of PS particles, including the decrease of hydration kinetic diameter, the rise of surface potential and the adsorption of hydrophobic PFOS molecules. The toxic effect of PFOS was weakened in the presence of PS particles under low PFOS concentration (10 μg/mL), which is because the bioavailability of PFOS was reduced after adsorption. PS particles with small particle size (20 nm) showed higher cell uptake and ROS production, while PS particles with large particle size (1 μm) led to higher lipid oxidation degree and related membrane damage as well as mitochondrial stress. This study provides the first evaluation of combined toxicity of MNPs and PFOS on human intestinal cells, in order to support the risk assessment of combined pollution of MNPs and PFOS on human health.
Collapse
Affiliation(s)
- Yaxuan Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qingying Shi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaomei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Hong Kong, SAR, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
113
|
Nugnes R, Russo C, Lavorgna M, Orlo E, Kundi M, Isidori M. Polystyrene microplastic particles in combination with pesticides and antiviral drugs: Toxicity and genotoxicity in Ceriodaphnia dubia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120088. [PMID: 36075334 DOI: 10.1016/j.envpol.2022.120088] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Freshwater ecosystems are recognized as non-negligible sources of plastic contamination for the marine environment that is the final acceptor of 53 thousand tons of plastic per year. In this context, microplastic particles are well known to directly pose a great threat to freshwater organisms, they also indirectly affect the aquatic ecosystem by adsorbing and acting as a vector for the transport of other pollutants ("Trojan horse effect"). Polystyrene is one of the most widely produced plastics on a global scale, and it is among the most abundant microplastic particles found in freshwaters. Nevertheless, to date few studies have focused on the eco-genotoxic effects on freshwater organisms caused by polystyrene microplastic particles (PS-MPs) in combination with other pollutants such as pharmaceuticals and pesticides. The aim of this study is to investigate chronic and sub-chronic effects of the microplastic polystyrene beads (PS-MP, 1.0 μm) both as individual xenobiotic and in combination (binary/ternary mixtures) with the acicloguanosine antiviral drug acyclovir (AC), and the neonicotinoid broad-spectrum insecticide imidacloprid (IMD) in one of the most sensitive non-target organisms of the freshwater food chain: the cladoceran crustacean Ceriodaphnia dubia. Considering that the individually selected xenobiotics have different modes of action and/or different biological sites, the Bliss independence was used as reference model for this research. Basically, when C. dubia neonates were exposed for 24 h to the mixtures during Comet assay, mostly an antagonistic genotoxic effect was observed. When neonates were exposed to the mixtures for 7 days, mostly an additive chronic toxic effect occurred at concentrations very close or even overlapping to the environmental ones ranging from units to tens of ng/L for PS-MPs, from tenths/hundredths to units of μg/L for AC and from units to hundreds of μg/L for IMD, revealing great environmental concern.
Collapse
Affiliation(s)
- Roberta Nugnes
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Chiara Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Margherita Lavorgna
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Elena Orlo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Michael Kundi
- Medical University of Vienna, Center for Public Health, Department of Environmental Health, Kinderspitalgasse 15, 1090, Vienna, Austria.
| | - Marina Isidori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| |
Collapse
|
114
|
Liu Q, Wu H, Chen J, Guo B, Zhao X, Lin H, Li W, Zhao X, Lv S, Huang C. Adsorption mechanism of trace heavy metals on microplastics and simulating their effect on microalgae in river. ENVIRONMENTAL RESEARCH 2022; 214:113777. [PMID: 35780846 DOI: 10.1016/j.envres.2022.113777] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) and heavy-metal contamination in freshwater is an increasing concern. Fe, Mn, Pb, Zn, Cr, and Cd are common heavy metals that can easily flow into rivers causing water pollution. Microplastics act as carriers for heavy metals and increase the transport of contaminants in freshwater systems. We investigated the adsorption mechanisms of three kinds of MPs having similar particle sizes, namely polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC), with respect to trace heavy metals of Pb, Cu, Cr, and Cd under different temperature and salinity conditions. The reaction kinetics of the adsorption of different trace heavy metals on different MPs were consistent with both the quasi primary and quasi secondary kinetic models, indicating the complexity of heavy metal adsorption by MPs. The adsorption rate of heavy metal on MPs was mainly controlled by intra-particle diffusion, and the isotherm model indicated that the adsorption of Pb, Cu, Cr, and Cd by MPs occurred in the form of monolayer physical adsorption. Additionally, an increase in temperature and decrease in salinity were favourable to improve the affinity of MPs toward heavy metals (through adsorption). Zeta potential measurements and Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses indicated that electrostatic force interaction was the main mechanism of the adsorption process; oxygen-containing functional groups, π-π interaction, and halogen bonds played important roles in the process of adsorption. Furthermore, the growth inhibition and oxidative stress of microalgae Chlorella vulgaris (GY-D27) due to PP, PS, and PVC were analysed; notably, MPs or Pb inhibited the growth of Chlorella vulgaris. However, the reduced toxicity to Chlorella vulgaris, with respect to a mixture of Pb and MPs, was confirmed using superoxide dismutase and catalase enzyme activities. Our results can be applied for the risk assessment of heavy metals and MPs in aquatic environments.
Collapse
Affiliation(s)
- Qian Liu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Haowen Wu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Jiajiao Chen
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Biaohu Guo
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xiufang Zhao
- Ecological Science Institute, LingNan Eco & Culture-Tourism Co., Ltd., Dongguan, 523125, China
| | - Hui Lin
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xin Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Sihao Lv
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
115
|
Hussain F, Ashun E, Jung SP, Kim T, Lee SH, Kim DJ, Oh SE. A direct contact bioassay using immobilized microalgal balls to evaluate the toxicity of contaminated field soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115930. [PMID: 35994967 DOI: 10.1016/j.jenvman.2022.115930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/18/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The present study used a bioassay of immobilized microalgae (Chlorella vulgaris) via direct contact to assess the toxicity of eleven uncontaminated (reference) and five field contaminated soils with various physicochemical properties and contamination. Photosynthetic oxygen concentration in the headspace of the test kit by Chlorella vulgaris in the reference soils ranged between 12.93% and 14.80% and only 2.54%-7.14% in the contaminated soils, respectively. Inherent test variability (CVi) values ranged between 2.90% and 9.04%; variation due to soil natural properties (CVrs) ranged between 0.33% and 13.0%; and minimal detectable difference (MDD) values ranged from 4.69% to 11.6%. A computed toxicity threshold of 15% was established for microalgae soil toxicity tests based on calculations of the maximal tolerable inhibition (MTI). All contaminated soils were considered toxic to microalgae because their levels of inhibition ranged between 39.5% and 82.9%, exceeding the 15% toxicity threshold. It can be concluded that the elevated concentrations of heavy metals and organic contaminants in the contaminated soils induced the higher inhibitory levels. Overall, direct contact soil toxicity tests using immobilized microalgae provided coherent and repeatable data and can be utilized as a simple and suitable tool for the toxicity testing of contaminated field soils.
Collapse
Affiliation(s)
- Fida Hussain
- Department of Biological Environment, Kangwon National University, Chuncheon 24341, Republic of Korea; Research Institute for Advanced Industrial Technology, College of Science and Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Ebenezer Ashun
- Department of Biological Environment, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sokhee P Jung
- Department of Environment and Energy Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Taeyoung Kim
- Department of Environmental Engineering, Chonsun University, 61452, Gwangju, Republic of Korea
| | - Sang-Hun Lee
- Department of Environmental Science, Keimyung University, Daegu, Republic of Korea
| | - Dong-Jin Kim
- Department of Environmental Sciences and Biotechnology and Institute of Energy and Environment, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
116
|
Yang Y, Liu J, Xue T, Hanamoto S, Wang H, Sun P, Zhao L. Complex behavior between microplastic and antibiotic and their effect on phosphorus-removing Shewanella strain during wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157260. [PMID: 35820524 DOI: 10.1016/j.scitotenv.2022.157260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Owing to their widespread application and use, microplastics (MPs) and antibiotics coexist in the sewage treatment systems. In this study, the effects and mechanisms of the combined stress of MPs and ciprofloxacin (CIP) on phosphorus removal by phosphorus-accumulating organisms (PAOs) were investigated. This study found that the four types of MPs and CIP exhibited different antagonistic effects on the inhibition of phosphorus removal by PAO. MPs reduced the effective concentration of CIP through adsorption and thus reduced its toxicity, which was affected by the biofilms on MPs. In addition, CIP may cause PAO to produce more extracellular polymeric substances, which reduces the physical and oxidative stress of MPs on PAO. Our results are helpful as they increase the understanding of the effects of complex emerging pollutants in sewage systems and propose measures to strengthen the biological phosphorus removal in sewage treatment processes.
Collapse
Affiliation(s)
- Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Jinyi Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tongyu Xue
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
117
|
Manzi HP, Zhang P, Zhang L, Xing X, Yue J, Song Z, Nan L, Yujun S, Khan A, Yoon Y, Salama ES. Effect of dibutyl phthalate on microalgal growth kinetics, nutrients removal, and stress enzyme activities. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105741. [PMID: 36122470 DOI: 10.1016/j.marenvres.2022.105741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The dibutyl phthalate (DPB) is an emerging plasticizer contaminant that disrupts the biological processes of primary producers, especially phytoplankton. In this study, two microalgal species (Chlorella sp. GEEL-08 and Tetradesmus dimorphus GEEL-04) were exposed to various concentrations of DBP extending from 0 to 100 mg/L. The growth kinetics, N-nitrate, and P-phosphate removal efficiency were assessed. The response enzymes such as malonaldehyde (MDA) and superoxide dismutase (SOD) were also investigated. The results revealed that the Chlorella sp. GEEL-08 at 10 mg/L concentration of DBP exhibited higher growth (0.88 OD680nm) compared to T. dimorphus GEEL-04 (0.80 OD680nm). More than 94% of N and P were removed from culture media by both microalgal species. The DBP (>50 mg/L) significantly exacerbates the growth of both microalgae species and the growth inhibition ratio was in the range of 3.6%-25.9%. The SOD activity and MDA were higher in T. dimorphus culture media than in the culture media of Chlorella sp. The results reflect the hazard and the risk of plasticizers on primary producers in the ecosystem.
Collapse
Affiliation(s)
- Habasi Patrick Manzi
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Lihong Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Xiaohong Xing
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Jianwei Yue
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Zhongzhong Song
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Lan Nan
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Su Yujun
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Aman Khan
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou City, Gansu Province, 730000, PR China
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China.
| |
Collapse
|
118
|
Xin X, Chen B, Péquin B, Song P, Yang M, Song X, Zhang B. Binary toxicity of polystyrene nanoplastics and polybrominated diphenyl ethers to Arctic Cyanobacteria under ambient and future climates. WATER RESEARCH 2022; 226:119188. [PMID: 36323199 DOI: 10.1016/j.watres.2022.119188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria are the predominant biota in the Arctic. Interactive effects on Arctic cyanobacteria between climate-change-shifting parameters and anthropogenic contaminants are largely unknown. We utilized a fractional factorial experiment and Arctic cyanobacteria Pseudanabaena biceps Strain PCCC_O-153 to capture the complexity of interacting climate factors, nano-polystyrene (nano-PS) and 2,2´,4,4´-tetrabromodipenyl ether (BDE-47). The short-term binary toxicity of nano-PS and BDE-47 was then examined through experiments, toxicity units, and reference models. The toxic mechanism was further revealed through biochemical analyses and multivariate statistics. We found that BDE-47 and nano-PS had more hazardous effects than changing climate conditions. The mixture had antagonistic effects on PCCC_O-153, attributing to the aggregation of nano-PS, the adsorption of BDE-47, and the wrapping of both contaminants by released extracellular polymeric substances. Binary toxicity was caused by the chain reactions triggered by combining individual contaminants. Total protein was a sensitive target and positively correlated to chlorophyll pigment. Oxidative stress for the mixture mainly resulted from the presence of nano-PS. This is the first study to access the hazardous effects of a mixture of anthropogenic contaminants on Arctic cyanobacteria under ambient and future climates.
Collapse
Affiliation(s)
- Xiaying Xin
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada
| | - Bérangère Péquin
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC H9×3V9, Canada
| | - Pei Song
- Institute of Green and Low-Carbon Eco-Environment Technology, CNCEC Lang, Zheng Environmental Protection Technology Co., Ltd, Xi'an, Shannxi 710065, China
| | - Min Yang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada
| | - Xing Song
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada.
| |
Collapse
|
119
|
Xu X, Pan B, Shu F, Chen X, Xu N, Ni J. Bioaccumulation of 35 metal(loid)s in organs of a freshwater mussel (Hyriopsis cumingii) and environmental implications in Poyang Lake, China. CHEMOSPHERE 2022; 307:136150. [PMID: 36028131 DOI: 10.1016/j.chemosphere.2022.136150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Benthic bioaccumulation of hazardous materials has been a great challenge to the health of lake ecosystems. As representative benthic macroinvertebrates, freshwater mussels and their accumulation characteristics have been regarded as effective indicators for assessing potential risks induced by sedimentary metal(loid)s in lakes. Here we profile organ-specific accumulation of 35 metal(loid)s in a freshwater mussel (Hyriopsis cumingii) and their correlations to metal speciation in sediments of Poyang Lake, the largest lake of China. Significant organ-specific characteristics of metal accumulation were found in gills, though higher thallium (Tl) and selenium (Se) were found in the hepatopancreas, and greater arsenic (As) mostly accumulated in gonads. Pearson correlation analysis revealed that the bioaccumulation of silver (Ag), cobalt (Co), and rare earth elements (ΣREE) in gills and As in gonads were closely associated with those in bioavailable fraction of sediments. Based on the biochemical analysis in the major organs, gills exhibited the highest enzymatic activity compared with hepatopancreas and gonads. Sedimentary metals, particularly for available Ag, Co, and ΣREE, play key roles in causing lipid peroxidation in gills and significantly promote the activities of superoxide dismutase (SOD)/glutathione reductase (GR), while many metals (e.g., cadmium, manganese, Se) inhibit the glutathione (GSH) content in gonads and hepatopancreas. Our study indicates a high physiological sensitivity of mussels to these target metals, which highlights the significance of organ-specific accumulation of metal(loid)s in understanding the potential ecological risks of sedimentary metal(loid)s in lake ecosystems.
Collapse
Affiliation(s)
- Xuming Xu
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Fengyue Shu
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xiufen Chen
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Nan Xu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jinren Ni
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| |
Collapse
|
120
|
Gao L, Xie Y, Su Y, Mehmood T, Bao R, Fan H, Peng L. Elucidating the negatively influential and potentially toxic mechanism of single and combined micro-sized polyethylene and petroleum to Chlorella vulgaris at the cellular and molecular levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114102. [PMID: 36152431 DOI: 10.1016/j.ecoenv.2022.114102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Although microplastics (MPs; <5 mm) may interact with co-contaminants (e.g., petroleum) in marine aquatic systems, little is known about their combined toxicity. Therefore, this study explored the toxicities and their mechanisms of micro-sized polyethylene (mPE) and their combination with petroleum to Chlorella vulgaris. The single MPs at various particle sizes, concentrations, and aging degree, single petroleum, and their combinations, were found to pose toxicities to C. vulgaris. This study also found the microcosm's microbial diversity changed. The microbial communities in the C. vulgaris biotopes were altered under exposure to mPE and petroleum, and were disturbed by external factors such as MPs particle size, concentration, aging time, and the combination with petroleum. Furthermore, as compared with the toxicity of petroleum on microalgal transcriptional function, mPE caused less toxic to C. vulgaris, and only impact the posttranslational modification, protein turnover, and signal transduction processes. Most importantly, mPE reduced petroleum toxicity in C. vulgaris via regulating the ABC transporter, eukaryotic ribosome synthesis, and the citrate cycle metabolic pathways. Overall, our findings could fundamentally provide insights into the joint ecotoxicological effects of MPs and petroleum, and highlight the potential risks of co-exsiting pollutants.
Collapse
Affiliation(s)
- Liu Gao
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province 570228, China
| | - Yang Xie
- Yangzhou Jiejia Testing Technology Co., Ltd, China
| | - Yuanyuan Su
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province 570228, China
| | - Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province 570228, China
| | - Ruiqi Bao
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province 570228, China
| | - Hongjie Fan
- Yangzhou Jiejia Testing Technology Co., Ltd, China
| | - Licheng Peng
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province 570228, China.
| |
Collapse
|
121
|
Ghosh D, Sarkar A, Basu AG, Roy S. Effect of plastic pollution on freshwater flora: A meta-analysis approach to elucidate the factors influencing plant growth and biochemical markers. WATER RESEARCH 2022; 225:119114. [PMID: 36152443 DOI: 10.1016/j.watres.2022.119114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The deterioration in the water quality of urban water bodies through plastic contamination is emerging as a matter of serious concern. Microplastics (MPs) and nanoplastics (NPs) both affect the growth and productivity of aquatic flora. However, there have been a lot of variations in the reported studies which calls for revisiting the results with an analytical approach. Therefore, this study was designed to systematically evaluate the publications based on PRISMA (2020) guidelines. In this connection, 43 eligible articles were selected for meta-analysis followed by subgroup analysis to determine the impact of size, concentration, plastic polymers, and effect of plant classes on several physiological and biochemical parameters (growth, chlorophyll-a, carotenoids, protein, and antioxidant enzymes). The results indicated that the higher concentrations of plastics negatively affected the growth, and also enhanced the protein content and antioxidative enzyme activity. While, NPs were found to impart an inhibitory effect on pigment contents, along with a significant increase in protein content and antioxidative enzyme activity. Among the plastic polymers, dibutyl phthalate (DBP) showed a comparatively higher effect on growth, whereas the photosynthetic pigments were disrupted to a greater extent in the presence of polyvinyl chloride (PVC) plastics. Moreover, the growth parameters under plastic exposure were affected in the algal members to a greater extent in comparison to the other plant groups. Lastly, several plants like Komvophoron, Elodea, Myriophyllum, Nostoc, Raphidocelis, Scenedesmus, Utricularia, Dunaliella, and Lemna appeared to be more tolerant than others (Tolerance Index ≥ 0.8), showing a significantly minimal effect on growth inhibition.
Collapse
Affiliation(s)
- Dibakar Ghosh
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Ashis Sarkar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Anindita Ghosh Basu
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
122
|
Shi K, Zhang H, Xu H, Liu Z, Kan G, Yu K, Jiang J. Adsorption behaviors of triclosan by non-biodegradable and biodegradable microplastics: Kinetics and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156832. [PMID: 35760165 DOI: 10.1016/j.scitotenv.2022.156832] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) pollution has been becoming serious and widespread in the global environment. Although MPs have been identified as vectors for contaminants, adsorption and desorption behaviors of chemicals with non-biodegradable and biodegradable MPs during the aging process is limited. In this work, the adsorption behaviors of triclosan (TCS) by non-biodegradable polyethylene (PE) and polypropylene (PP), and biodegradable polylactic acid (PLA) were investigated. The differences in morphology, chemical structures, crystallization, and hydrophilicity were investigated after the ultraviolet aging process and compared with the virgin MPs. The results show that the water contact angles of the aged MPs were slightly reduced compared with the virgin MPs. The aged MPs exhibited a stronger adsorption capacity for TCS because of the physical and chemical changes in MPs. The virgin biodegradable PLA had a larger adsorption capacity than the non-biodegradable PE and PP. The adsorption capacity presented the opposite trend after aging. The main adsorption mechanism of MPs relied on hydrophobicity interaction, hydrogen bonding, and electrostatic interaction. The work provides new insights into TCS as hazardous environmental contaminants, which will enhance the vector potential of non-biodegradable and biodegradable MPs.
Collapse
Affiliation(s)
- Ke Shi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China.
| | - HaoMing Xu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Zhe Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| |
Collapse
|
123
|
Hu L, Zhao Y, Xu H. Trojan horse in the intestine: A review on the biotoxicity of microplastics combined environmental contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129652. [PMID: 35901632 DOI: 10.1016/j.jhazmat.2022.129652] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 05/14/2023]
Abstract
With the reported ability of microplastics (MPs) to act as "Trojan horses" carrying other environmental contaminants, the focus of researches has shifted from their ubiquitous occurrence to interactive toxicity. In this review, we provided the latest knowledge on the processes and mechanisms of interaction between MPs and co-contaminants (heavy metals, persistent organic pollutants, pathogens, nanomaterials and other contaminants) and discussed the influencing factors (environmental conditions and characteristics of polymer and contaminants) that affect the adsorption/desorption process. In addition, the bio-toxicological outcomes of mixtures are elaborated based on the damaging effects on the intestinal barrier. Our review showed that the interaction processes and toxicological outcomes of mixture are complex and variable, and the intestinal barrier should receive more attention as the first line of defensing against MPs and environmental contaminants invasion. Moreover, we pointed out several knowledge gaps in this new research area and suggested directions for future studies in order to understand the multiple factors involved, such as epidemiological assessment, nanoplastics, mechanisms for toxic alteration and the fate of mixtures after desorption.
Collapse
Affiliation(s)
- Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
124
|
Nobre CR, Moreno BB, Alves AV, de Lima Rosa J, Fontes MK, Campos BGD, Silva LFD, Almeida Duarte LFD, Abessa DMDS, Choueri RB, Gusso-Choueri PK, Pereira CDS. Combined effects of polyethylene spiked with the antimicrobial triclosan on the swamp ghost crab (Ucides cordatus; Linnaeus, 1763). CHEMOSPHERE 2022; 304:135169. [PMID: 35671813 DOI: 10.1016/j.chemosphere.2022.135169] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/02/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Domestic sewage is an important source of pollutants in aquatic ecosystems and includes both microplastics (MPs) and pharmaceuticals and personal care products (PPCPs). This study sought to assess the biological effects of the interaction between plastic particles and the antibacterial agent triclosan (TCS). The study relied on the swamp ghost crab Ucides cordatus as a model. Herein polyethylene particles were contaminated with triclosan solution. Triclosan concentrations in the particles were then chemically analyzed. Swamp ghost crab specimens were exposed to experimental compounds (a control, microplastics, and microplastics with triclosan) for 7 days. Samplings were performed on days 3 (T3) and 7 (T7). Gill, hepatopancreas, muscle and hemolymph tissue samples were collected from the animals to evaluate the biomarkers ethoxyresorufin O-deethylase (EROD), dibenzylfluorescein dealkylase (DBF), glutathione S-transferase (GST), glutathione peroxidase (GPx), reduced glutathione (GSH), lipid peroxidation (LPO), DNA strands break (DNA damage), cholinesterase (ChE) through protein levels and neutral red retention time (NRRT). Water, organism, and microplastic samples were collected at the end of the assay for post-exposure chemical analyses. Triclosan was detected in the water and crab tissue samples, results which indicate that microplastics serve as triclosan carriers. Effects on the gills of organisms exposed to triclosan-spiked microplastics were observed as altered biomarker results (EROD, GST, GPx, GSH, LPO, DNA damage and NRRT). The effects were more closely associated with microplastic contaminated with triclosan exposure than with microplastic exposure, since animals exposed only to microplastics did not experience significant effects. Our results show that microplastics may be important carriers of substances of emerging interest in marine environments in that they contaminate environmental matrices and have adverse effects on organisms exposed to these stressors.
Collapse
Affiliation(s)
- Caio Rodrigues Nobre
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, 11330-900, São Vicente, São Paulo, Brazil.
| | - Beatriz Barbosa Moreno
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil
| | - Aline Vecchio Alves
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil
| | - Jonas de Lima Rosa
- Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, 11045-907, Santos, São Paulo, Brazil
| | - Mayana Karoline Fontes
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, 11330-900, São Vicente, São Paulo, Brazil
| | - Bruno Galvão de Campos
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, 11330-900, São Vicente, São Paulo, Brazil
| | - Leticia Fernanda da Silva
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, 11330-900, São Vicente, São Paulo, Brazil
| | - Luís Felipe de Almeida Duarte
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil; Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, 11045-907, Santos, São Paulo, Brazil
| | - Denis Moledo de Souza Abessa
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, 11330-900, São Vicente, São Paulo, Brazil
| | - Rodrigo Brasil Choueri
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil
| | - Paloma Kachel Gusso-Choueri
- Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, 11045-907, Santos, São Paulo, Brazil
| | - Camilo Dias Seabra Pereira
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil; Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, 11045-907, Santos, São Paulo, Brazil
| |
Collapse
|
125
|
Wang J, Lu S, Bian H, Xu M, Zhu W, Wang H, He C, Sheng L. Effects of individual and combined polystyrene nanoplastics and phenanthrene on the enzymology, physiology, and transcriptome parameters of rice (Oryza sativa L.). CHEMOSPHERE 2022; 304:135341. [PMID: 35716708 DOI: 10.1016/j.chemosphere.2022.135341] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Owing to their wide distribution, easy production, and resistance to degradation, microplastics (MPs) represent a globally emerging group of pollutants of concern. Furthermore, their decomposition can result in the generation of nanoplastics (NPs), which cause further environmental issues. Currently, the impact of the combination of these plastics with other organic pollutants on crop growth remains poorly investigated. In this study, a hydroponic experiment was conducted for seven days to evaluate the effects of 50 nm, 50 mg/L polystyrene (PS), and 1 mg/L phenanthrene (Phe) on the growth of rice plants. The results revealed that both Phe and PS inhibited growth and improved the antioxidant potential of rice. Relative to Phe alone, exposure to a combination of PS and Phe reduced Phe accumulation in the roots and shoots by 67.73% and 36.84%, respectively, and decreased the pressure on the antioxidant system. Exposure to Phe alone destroyed the photosynthetic system of rice plant leaves, whereas a combination of PS and Phe alleviated this damage. Gene Ontology (GO) analysis of the rice transcriptomes revealed that detoxification genes and phenylalanine metabolism were suppressed under exposure to Phe, which consequently diminished the antioxidant capacity and polysaccharide synthesis in rice plants. Kyoto Encyclopaedia of Genes and Genomes (KEGG) transcriptome analysis revealed that the combined presence of both PS and Phe improved photosynthesis and energy metabolism and alleviated the toxic effects of Phe by altering the carbon fixation pathway and hormone signal transduction in rice plants. The combination of PS and Phe also prevented Phe-associated damage to rice growth. These findings improve our understanding of the effects of MP/NPs and polycyclic aromatic hydrocarbons on crops.
Collapse
Affiliation(s)
- Junyuan Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Siyuan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Hongfeng Bian
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Miao Xu
- Key Laboratory of Straw Biology and Higher Value Application, The Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Weize Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Chunguang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| |
Collapse
|
126
|
Parsai T, Figueiredo N, Dalvi V, Martins M, Malik A, Kumar A. Implication of microplastic toxicity on functioning of microalgae in aquatic system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119626. [PMID: 35716891 DOI: 10.1016/j.envpol.2022.119626] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) released from both primary and secondary sources affect the functioning of aquatic system. These MPs and components leached, can interact with aquatic organisms of all trophic levels, including the primary producers, such as microalgae. Considering the ecological value of microalgae and the toxicological effects of MPs towards them, this review provides: (1) a detailed understanding of the interactions between MPs and microalgae in the complex natural environment; (2) a discussion about the toxic effects of single type and mixtures of plastic particles on the microalgae cells, and (3) a discussion about the impacts of MPs on various features of microalgae -based bioremediation technology. For this purpose, toxic effects of MPs on various microalgal species were compiled and plastic components of MPs were ranked on the basis of their toxic effects. Based on available data, ranking for various plastic components was found to be: Polystyrene (PS) (rank 1) > Polyvinyl Chloride (PVC) > Polypropylene (PP) > Polyethylene (PE) (rank 4). Furthermore, the review suggested the need to understand joint toxicity of MPs along with co-contaminants on microalgae as the presence of other pollutants along with MPs might affect microalgae differently. In-depth investigations are required to check the impact of MPs on microalgae-based wastewater treatment technology and controlling factors.
Collapse
Affiliation(s)
- Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology, Delhi, India.
| | - Neusa Figueiredo
- MARE-Marine and Environmental Sciences Centre, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| | - Vivek Dalvi
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, India
| | - Marta Martins
- MARE-Marine and Environmental Sciences Centre, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| | - Anushree Malik
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, India
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, Delhi, India
| |
Collapse
|
127
|
Zhang J, Kong L, Zhao Y, Lin Q, Huang S, Jin Y, Ma Z, Guan W. Antagonistic and synergistic effects of warming and microplastics on microalgae: Case study of the red tide species Prorocentrum donghaiense. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119515. [PMID: 35609842 DOI: 10.1016/j.envpol.2022.119515] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Bibliometric network analysis has revealed that the widespread distribution of microplastics (MPs) has detrimental effects on marine organisms; however, the combined effects of MPs and climate change (e.g., warming) is not well understood. In this study, Prorocentrum donghaiense, a typical red tide species in the East China Sea, was exposed to different MP concentrations (0, 1, 5, and 10 mg L-1) and temperatures (16, 22, and 28 °C) for 7 days to investigate the combined effects of MPs and simulated ocean warming by measuring different physiological parameters, such as cell growth, pigment contents (chlorophyll a and carotenoid), relative electron transfer rate (rETR), reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and adenosine triphosphate (ATP). The results demonstrated that MPs significantly decreased cell growth, pigment contents, and rETRmax, but increased the MDA, ROS, and SOD levels for all MP treatments at low temperature (16 °C). However, high temperatures (22 and 28 °C) increased the pigment contents and rETRmax, but decreased the SOD and MDA levels. Positive and negative effects of high temperatures (22 or 28 °C) were observed at low (1 and 5 mg L-1) and high MP (10 mg L-1) concentrations, respectively, indicating the antagonistic and synergistic effects of combined warming and MP pollution. These results imply that the effects of MPs on microalgae will likely not be substantial in future warming scenarios if MP concentrations are controlled at a certain level. These findings expand the current knowledge of microalgae in response to increasing MP pollution in future warming scenarios.
Collapse
Affiliation(s)
- Jiazhu Zhang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Yan Zhao
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qingming Lin
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shaojie Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yafang Jin
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
128
|
Manzi HP, Zhang M, Salama ES. Extensive investigation and beyond the removal of micro-polyvinyl chloride by microalgae to promote environmental health. CHEMOSPHERE 2022; 300:134530. [PMID: 35405188 DOI: 10.1016/j.chemosphere.2022.134530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) remediation via algae could be a prospective strategy to address MPs pollution concerns. In this study, Chlorella sp. GEEL-08 was exposed to different gradient concentrations ranging from 0 to 200 mg L-1 of polyvinyl chloride (PVC0.2μm). Microalgal growth, total nitrogen (TN), total phosphorus (TP), and cations (Cu, Zn, Na, and K) removal were investigated. The oxidative stress enzymes such as superoxide dismutase (SOD) and malonaldehyde (MDA) were also assessed. The addition of 50 mg L-1 mPVC resulted in the highest growth along with >99% removal of nutrients (TN and TP) and >80% removal of cations. However, the addition of 100-200 mg L-1 mPVC inhibited microalgal growth by 8.8-12.3%. The stress-induced by mPVC was highly observed at 200 mg L-1 mPVC on the 4th d with 70.8 U mgprot-1 and 62.3 nmol mgprot-1 of SOD and MDA, respectively. Fourier-transform infrared spectroscopy (FTIR) spectra confirmed that microalgal biomass retained mPVC. Thermogravimetric analysis/derivative thermogravimetric analysis (TGA/DTG) spectra showed that the organic matter of microalgal biomass attached with mPVC was decomposed faster than control, indicating the possibilities of using this biomass for pyrolysis and the formation of bio-products.
Collapse
Affiliation(s)
- Habasi Patrick Manzi
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China.
| |
Collapse
|
129
|
Zhang X, Su H, Gao P, Li B, Feng L, Liu Y, Du Z, Zhang L. Effects and mechanisms of aged polystyrene microplastics on the photodegradation of sulfamethoxazole in water under simulated sunlight. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128813. [PMID: 35395526 DOI: 10.1016/j.jhazmat.2022.128813] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/09/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical and microplastics (MPs) have been frequently detected in aquatic environment. In this study, the effects of polystyrene MPs (PS MPs) with different aging degrees on the photolysis of sulfamethoxazole (SMX) in simulated sunlit water were investigated. The results showed that the presence of PS MPs inhibited the photodegradation of SMX, and the photodegradation rate (kobs) of SMX was negatively correlated with the aging degree of PS MPs (R2 = 0.998). The aged PS MPs would cause light-screening effect, thereby reducing the photodegradation of SMX in sunlit water. Further, the free radical quenching experiment showed that the mechanism for inhibiting the photolysis of SMX was the reduction of the triplet excited state SMX (3SMX*). According to sample characterization, aging PS MPs formed more unsaturated chromophores and produced organic intermediates that enhanced photon absorption. Additionally, aged PS MPs also decreased the types and yields of degradation products of SMX via product analysis. This study provides an insight into the environmental behaviors of SMX and the photochemical roles of aged MPs in sunlit surface waters.
Collapse
Affiliation(s)
- Xushen Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Hui Su
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Peng Gao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Benhang Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Ziwen Du
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China.
| |
Collapse
|
130
|
Yang L, Cao X, Cui J, Wang Y, Zhu Z, Sun H, Liang W, Li J, Li A. Holey Ti3C2 nanosheets based membranes for efficient separation and removal of microplastics from water. J Colloid Interface Sci 2022; 617:673-682. [DOI: 10.1016/j.jcis.2022.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 10/18/2022]
|
131
|
Delaeter C, Spilmont N, Bouchet VMP, Seuront L. Plastic leachates: Bridging the gap between a conspicuous pollution and its pernicious effects on marine life. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154091. [PMID: 35219681 DOI: 10.1016/j.scitotenv.2022.154091] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
With 4 to 12 million tons of plastic entering the marine environment each year, plastic pollution has become one of the most ubiquitous sources of pollution of the Anthropocene threatening the marine environment. Beyond the conspicuous physical damages, plastics may release a cocktail of harmful chemicals, i.e. monomers, additives and persistent organic pollutants. Although known to be highly toxic, plastic leachates seemingly appear, however, as the "somewhat sickly child" of the plastic pollution literature. We reviewed the only 26 studies investigating the impact of plastic leachates on marine microbes and invertebrates, and concluded that the observed effects essentially depend on the species, polymer type, plastic composition, accumulated contaminants and weathering processes. We identified several gaps that we believe may hamper progress in this emerging area of research and discussed how they could be bridged to further our understanding of the effects of the compounds released by plastic items on marine organisms. We first stress the lack of a consensus on the use of the term 'leachate', and subsequently introduce the concepts of primary and secondary leachates, based on the intrinisic or extrinsic origin of the products released in bulk seawater. We discuss how methodological inconsistencies and the discrepancy between the polymers used in experiments and their abundance in the environment respectively limit comparison between studies and a comprehensive assessment of the effects leachate may actually have in the ocean. We also discuss how the imbalanced in the variety of both organisms and polymers considered, the mostly unrealistic concentrations used in laboratory experiments, and the lack of investigation on key ecosystem engineers may considerably narrow the spectrum of our understanding of the plastic leachates' effects. We finally discuss how increasing multi-disciplinarity through collaborations between different research fields may benefit to an area of research which is still in its early infancy.
Collapse
Affiliation(s)
- Camille Delaeter
- Univ. Lille, CNRS, IRD, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France.
| | - Nicolas Spilmont
- Univ. Lille, CNRS, IRD, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France
| | - Vincent M P Bouchet
- Univ. Lille, CNRS, IRD, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France
| | - Laurent Seuront
- Univ. Lille, CNRS, IRD, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
132
|
Li X, Luo J, Zeng H, Zhu L, Lu X. Microplastics decrease the toxicity of sulfamethoxazole to marine algae (Skeletonema costatum) at the cellular and molecular levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153855. [PMID: 35176357 DOI: 10.1016/j.scitotenv.2022.153855] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 05/24/2023]
Abstract
Microplastics (MPs) and sulfamethoxazole (SMX) are ubiquitous in various aquatic environments, but little is known about their joint toxicity mechanism on marine organisms. This study investigated the individual and joint toxicity of SMX and five MPs, including polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS) and bioplastic polylactic acid (PLA), on Skeletonema costatum. The inhibition rates (IR) of the single MPs systems (50 mg/L) followed the order of PP > PE > PLA > PS > PET, while the addition of 0.3 mg/L SMX significantly decreased the toxicity of PP, PE and PLA in the joint system due to the "shelter" effect from MPs adsorption. As for the PS and SMX joint system, the malondialdehyde (MDA), reactive oxygen species (ROS) levels and superoxide dismutase (SOD) activity were higher than those of the other joint systems. The metabolomic results showed that SMX downregulated glycerophospholipid and amino acid metabolism. PS caused the downregulation of glycerophospholipids, carbohydrates and amino acid via the hetero-aggregation with algae. The co-exposure of SMX and PS alleviated the perturbation of alanine, aspartate and glutamate metabolism of algae compared with SMX. These findings enhance our understanding of the potential mechanisms of the MPs and organic pollutants joint toxicity in the marine environment.
Collapse
Affiliation(s)
- Xue Li
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiwei Luo
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hui Zeng
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lin Zhu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
133
|
Lu X, Deng DF, Huang F, Casu F, Kraco E, Newton RJ, Zohn M, Teh SJ, Watson AM, Shepherd B, Ma Y, Dawood MA, Rios Mendoza LM. Chronic exposure to high-density polyethylene microplastic through feeding alters the nutrient metabolism of juvenile yellow perch ( Perca flavescens). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:143-158. [PMID: 35573095 PMCID: PMC9079722 DOI: 10.1016/j.aninu.2022.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/30/2021] [Accepted: 01/30/2022] [Indexed: 01/02/2023]
Abstract
Microplastics are emergent contaminants threatening aquatic organisms including aquacultured fish. This study investigated the effects of high-density polyethylene (HDPE, 100 to 125 μm) on yellow perch (Perca flavescens) based on integrative evaluation including growth performance, nutritional status, nutrient metabolism, fish health, and gut microbial community. Five test diets (0, 1, 2, 4, or 8 g HDPE/100 g diet) containing 41% protein and 10.5% lipid were fed to juvenile perch (average body weight, 25.9 ± 0.2 g; n = 15) at a feeding rate of 1.5% to 2.0% body weight daily. The feeding trial was conducted in a flow-through water system for 9 wk with 3 tanks per treatment and 15 yellow perch per tank. No mortality or HDPE accumulation in the fish was found in any treatments. Weight gain and condition factor of fish were not significantly impacted by HDPE (P > 0.05). Compared to the control group, fish fed the 8% HDPE diet had significantly decreased levels of protein and ash (P < 0.05). In response to the increasing levels of HDPE exposure, the hepatosomatic index value, hepatocyte size, and liver glycogen level were increased, but lipid content was reduced in the liver tissues. Compared to the control treatment, fish fed the 8% HDPE diet had significant accumulations of total bile acids and different metabolism pathways such as bile acid biosynthesis, pyruvate metabolism, and carnitine synthesis. Significant enterocyte necrosis was documented in the foregut of fish fed the 2% or 8% HDPE diet; and significant cell sloughing was observed in the midgut and hindgut of fish fed the 8% HDPE diet. Fish fed the 2% HDPE diet harbored different microbiota communities compared to the control fish. This study demonstrates that HDPE ranging from 100 to 125 μm in feed can be evacuated by yellow perch with no impact on growth. However, dietary exposure to HDPE decreased whole fish nutrition quality, altered nutrient metabolism and the intestinal histopathology as well as microbiota community of yellow perch. The results indicate that extended exposure may pose a risk to fish health and jeopardize the nutrition quality of aquacultured end product. This hypothesis remains to be investigated further.
Collapse
Affiliation(s)
- Xing Lu
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Dong-Fang Deng
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
- Corresponding author.
| | - Fei Huang
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Fabio Casu
- South Carolina Department of Natural Resources, Charleston, SC, 29412, USA
| | - Emma Kraco
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Merry Zohn
- USDA/ARS/School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Swee J. Teh
- School of Veterinary Medicine, Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, 95616, USA
| | - Aaron M. Watson
- South Carolina Department of Natural Resources, Charleston, SC, 29412, USA
| | - Brian Shepherd
- USDA/ARS/School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Ying Ma
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Mahmound A.O. Dawood
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Lorena M. Rios Mendoza
- Department of Natural Sciences, Marine Resources Research Institute, University of Wisconsin, Superior, WI, 54880, USA
| |
Collapse
|
134
|
Das S, Thiagarajan V, Chandrasekaran N, Ravindran B, Mukherjee A. Nanoplastics enhance the toxic effects of titanium dioxide nanoparticle in freshwater algae Scenedesmus obliquus. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109305. [PMID: 35219900 DOI: 10.1016/j.cbpc.2022.109305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 01/22/2023]
Abstract
The increased usage of titanium dioxide nanoparticles (nTiO2) in consumer products has led to their prevalence in freshwater systems. Nanoplastics, a secondary pollutant, can significantly influence the toxic effects of nTiO2 in freshwater organisms. The present study investigates the role of fluorescent nanoplastics (FNPs) in modifying the harmful effects of P25 nTiO2 in freshwater algae Scenedesmus obliquus. Three different concentrations of nTiO2, 0.025, 0.25, and 2.5 mg/L, were mixed with 1 mg/L of the FNPs to perform the mixture toxicity experiments. The presence of the FNPs in the mixture increased the toxicity of nTiO2 significantly. A significant increment in the oxidative stress parameters like total ROS, superoxide (O2∎-), and hydroxyl radical generation was observed for the mixture of nTiO2 with the FNPs in comparison with their individual counterparts. The lipid peroxidation, and the antioxidant enzyme activities in the algal cells correlated well with the reactive species generation results. The treatments with the binary mixture resulted in notable decrease in the esterase activity in the algal cells. The mixture toxicity results were further validated with Abbott's independent action model. Additionally, optical microscopic analysis and FTIR analysis were performed to study the morphological and surface chemical changes in the algae. This study demonstrated that the FNPs played a key role in enhancing the toxicity of nTiO2 in freshwater algae.
Collapse
Affiliation(s)
- Soupam Das
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Vignesh Thiagarajan
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
135
|
Potential Risks of Microplastic Fomites to Aquatic Organisms with Special Emphasis on Polyethylene-Microplastic-Glyphosate Exposure Case in Aquacultured Shrimp. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plastic litter is increasingly becoming pervasive in aquatic environments, characterized by circulatory patterns between different compartments and continual loading with new debris. Microplastic pollution can cause a variety of effects on aquatic organisms. This review presents the current knowledge of microplastics distribution and sorption capacity, reflecting on possible bioaccumulation and health effects in aquatic organisms. A model case study reveals the fate and toxic effects of glyphosate, focusing on the simultaneous exposure of aquacultured shrimp to polyethylene and glyphosate and their contact route and on the potential effects on their health and the risk for transmission of the contaminants. The toxicity and bioaccumulation of glyphosate-sorbed polyethylene microplastics in shrimp are not well understood, although individual effects have been studied extensively in various organisms. We aim to delineate this knowledge gap by compiling current information regarding the co-exposure to polyethylene microplastic adsorbed with glyphosate to assist in the assessment of the possible health risks to aquacultured shrimp and their consumers.
Collapse
|
136
|
Li Z, Dong S, Huang F, Lin L, Hu Z, Zheng Y. Toxicological Effects of Microplastics and Sulfadiazine on the Microalgae Chlamydomonas reinhardtii. Front Microbiol 2022; 13:865768. [PMID: 35572694 PMCID: PMC9096495 DOI: 10.3389/fmicb.2022.865768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the fact that microplastics (MPs) facilitate the adsorption of environmental organic pollutants and influence their toxicity for organisms, more study is needed on the combination of MPs and antibiotics pollutant effects. In this study, polystyrene MPs (1 and 5 μm) and sulfadiazine (SDZ) were examined separately and in combination on freshwater microalga, Chlamydomonas reinhardtii. The results suggest that both the MPs and SDZ alone and in combination inhibited the growth of microalgae with an increasing concentration of MPs and SDZ (5–200 mg l–1); however, the inhibition rate was reduced by combination. Upon exposure for 7 days, both the MPs and SDZ inhibited algal growth, reduced chlorophyll content, and enhanced superoxide dismutase (SOD) activities, whereas glutathione peroxidase (GSH-Px) activity was elevated only with the exposure of 1 μm MPs. Fluorescence microscopy and scanning electron microscopy also indicated that particle size contributed to the combined toxicity by aggregating MPs with periphery pollutants. Further, the amount of extracellular secretory protein increased in the presence of MPs and SDZ removal ratio decreased when MPs and SDZ coexisted, suggesting that MPs affected SDZ metabolism by microalgae. The particle size of microplastics affected the toxicity of MPs on microalgae and the combined effect of MPs and SDZ could be mitigated by MPs adsorption. These findings provide insight into microalgae responses to the combination of MPs and antibiotics in water ecosystems.
Collapse
Affiliation(s)
- Ze Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology Shenzhen, Shenzhen, China
| | - Sheng Dong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Fei Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Langli Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yihong Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
137
|
Ou Y, Yan Z, Shi G, Yu Z, Cai Y, Ma R. Enantioselective toxicity, degradation and transformation of the chiral insecticide fipronil in two algae culture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113424. [PMID: 35313125 DOI: 10.1016/j.ecoenv.2022.113424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The occurrence of pesticides and their metabolites in the environment can alter the ecological relationships between aquatic food chains. Fipronil is a broad-spectrum insecticide which release in the environment may harm the non-target organisms. However, the toxicity and biotransformation of its two enantiomers are far from fully understood. The present study aimed to investigate the aquatic toxicity and environmental behavior of fipronil at enantiomeric level using two freshwater algae, Scenedesmus quaclricauda (S. quaclricauda), and Chlorella vulgaris (C. vulgaris) through an integrative approach the transformation process of the individual enantiomer isolated and in racemic form. The 72 h-EC50 values of rac-, R-, S-fipronil varied from 3.27 to 7.24 mg L-1 with R-fipronil posing a more significant effect on algal growth inhibition. Chlorophyll a was more susceptible to fipronil exposure than chlorophyll b and carotenoids. Enantioselective alterations on physiological and biochemical parameters (chlorophyll a, chlorophyll b, carotenoids, and the activities of antioxidant enzyme catalase (CAT) and superoxide dismutase (SOD)) were also observed. The half-lives (T1/2) of R-fipronil and S-fipronil in algae culture were 3.4-3.5 d and 4.0-4.9 d, respectively. By the end of the 17-d exposure, the enantiomer fractions (EFs) increased to 0.59, indicating a preferential depuration of R-fipronil. The metabolites monitoring showed the fipronil sulfide was the main metabolite followed by fipronil sulfone. The results revealed that the enantiomers of fipronil pose enantiospecific behaviors induced by these two algae, with the R-enantiomer more toxic to algal growth and favorable in degradation. These analyses are beneficial for understanding the ecological effect of chiral pesticide in aquatic environment, and the enantiomeric differences of the toxicity, degradation and the formation of toxic metabolites could be helpful for the eco-environmental risk evaluation.
Collapse
Affiliation(s)
- Yingjuan Ou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410028, China
| | - Zhiyong Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410028, China.
| | - Guofeng Shi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ziling Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yixiang Cai
- College of Resources and Environment, Hunan Agricultural University, Changsha 410028, China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
138
|
Ge J, Yang Q, Fang Z, Liu S, Zhu Y, Yao J, Ma Z, Gonçalves RJ, Guan W. Microplastics impacts in seven flagellate microalgae: Role of size and cell wall. ENVIRONMENTAL RESEARCH 2022; 206:112598. [PMID: 34953887 DOI: 10.1016/j.envres.2021.112598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The toxicity of microplastic particles (MPs) on aquatic environments has been widely reported; however, their effects on protists are still contradictory. For example, it is unclear if cell size and cell wall have a role in shaping the response of flagellates to MPs. In this study, seven marine flagellated microalgae (six Dinoflagellates and one Raphidophyceae) were incubated with 10 mg L-1 MPs (polystyrene plastic micro-spheres, 1 μm diameter) to address the above question by measuring different response variables, i.e., growth, optimal photochemical efficiency (Fv/Fm), chlorophyll-a (Chl-a) content, superoxide dismutase (SOD) activity, and cell morphology. The effect of MPs on growth and Fv/Fm showed species-specificity effects. Maximum and minimum MPs-induced inhibitions were detected in Karenia mikimotoi (76.43%) and Akashiwo sanguinea (10.16%), respectively, while the rest of the species showed intermediate responses. The presence of MPs was associated with an average reduction of Chl-a content in most cases and with a higher superoxide dismutase activity in all cases. Seven species were classified into two groups by the variation of Chl-a under MPs treatment. One group (Prorocentrum minimum and Karenia mikimotoi) showed increased Chl-a, while the other (P. donghaiense, P. micans, Alexandrium tamarense, Akashiwo sanguinea, Heterosigma akashiwo) showed decreased Chl-a content. The MPs-induced growth inhibition was negatively correlated with cell size in the latter group. SEM images further indicated that MPs-induced malformation in the smaller cells (e.g., P. donghaiense and K. mikimotoi) was more severe than the bigger cells (e.g., A. sanguinea and P. micans), probably due to a relatively higher ratio of the cell surface to cell volume in the former. These results implicate that the effect of MPs on marine flagellated microalgae was related to the cell size among most species but not cell wall. Thus plastic pollution may have size-dependent effects on phytoplankton in future scenarios.
Collapse
Affiliation(s)
- Jingke Ge
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qiongying Yang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Zhouxi Fang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Shuqi Liu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Yue Zhu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Jiang Yao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Rodrigo J Gonçalves
- Laboratorio de Oceanografía Biológica (LOBio), Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), U9120ACD, Puerto Madryn, Argentina
| | - Wanchun Guan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China.
| |
Collapse
|
139
|
Rai PK, Sonne C, Brown RJC, Younis SA, Kim KH. Adsorption of environmental contaminants on micro- and nano-scale plastic polymers and the influence of weathering processes on their adsorptive attributes. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127903. [PMID: 34895806 PMCID: PMC9758927 DOI: 10.1016/j.jhazmat.2021.127903] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 05/09/2023]
Abstract
Increases in plastic-related pollution and their weathering can be a serious threat to environmental sustainability and human health, especially during the present COVID-19 (SARS-CoV-2 coronavirus) pandemic. Planetary risks of plastic waste disposed from diverse sources are exacerbated by the weathering-driven alterations in their physical-chemical attributes and presence of hazardous pollutants mediated through adsorption. Besides, plastic polymers act as vectors of toxic chemical contaminants and pathogenic microbes through sorption onto the 'plastisphere' (i.e., plastic-microbe/biofilm-environment interface). In this review, the effects of weathering-driven alterations on the plastisphere are addressed in relation to the fate/cycling of environmental contaminants along with the sorption/desorption dynamics of micro-/nano-scale plastic (MPs/NPs) polymers for emerging contaminants (e.g., endocrine-disrupting chemicals (EDCs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pharmaceuticals and personal care products (PPCPs), and certain heavy metals). The weathering processes, pathways, and mechanisms governing the adsorption of specific environmental pollutants on MPs/NPs surface are thus evaluated in relation to the physicochemical alterations based on several kinetic and isotherm studies. Consequently, the detailed evaluation on the role of the complex associations between weathering and physicochemical properties of plastics should help us gain a better knowledge with respect to the transport, behavior, fate, and toxicological chemistry of plastics along with the proper tactics for their sustainable remediation.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Phyto-Technologies and Plant Invasion Lab, Department of Environmental Science, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, Mizoram, India
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Richard J C Brown
- Atmospheric Environmental Science Department, National Physical Laboratory, Teddington TW11 0LW, UK
| | - Sherif A Younis
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt; Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, PO 12588, Giza, Egypt; Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
140
|
Li X, Wang Z, Bai M, Chen Z, Gu G, Li X, Hu C, Zhang X. Effects of polystyrene microplastics on copper toxicity to the protozoan Euglena gracilis: emphasis on different evaluation methods, photosynthesis, and metal accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23461-23473. [PMID: 34806148 DOI: 10.1007/s11356-021-17545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) released into aquatic environment interact with other pollutants that already exist in water, potentially altering their toxicity, which poses a new problem for aquatic ecosystems. In the present study, we first evaluated the effects of polystyrene MPs (mPS) on copper (Cu) toxicity to the protozoan Euglena gracilis using three methods based on 96-h acute toxicity, orthogonal test and 12-d sub-acute toxicity data. Thereafter, the 12-d sub-acute exposure was employed to investigate protozoan growth, photosynthetic parameters and pigments, soluble protein, total antioxidant capacity and trace metal accumulation in E. gracilis after exposure to either 1.5 mg/L of Cu, 75-nm mPS (1 and 5 mg/L) or a combination therein, with the objective to understand the underlined mechanisms. The results show that the concentration and exposure time are key factors influencing the effects of the mPS on Cu toxicity. A mPS concentration of 5 mg/L caused significantly more dissipation energy, which is used for photosynthesis and thus decreased photosynthetic efficiency, but this effect weakened after 12 d of exposure. Exposure to Cu alone resulted in significantly high Cu accumulation in the cells and inhibited uptake of manganese and zinc. The presence of mPS did not influence the effects of Cu on trace metal accumulation. Our result suggests that application of multiple methods and indices could provide more information for a comprehensive understanding of the effects of mPS on toxicity of other pollutants. In addition, long-term exposure seems necessary for evaluating mPS toxicity.
Collapse
Affiliation(s)
- Xiuling Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Life Science, Linyi University, Linyi, 276000, People's Republic of China
| | - Zhengjun Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Ming Bai
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Zhehua Chen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Gan Gu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
141
|
Toxic Chemicals and Persistent Organic Pollutants Associated with Micro-and Nanoplastics Pollution. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
142
|
Li M, Chen Q, Ma C, Gao Z, Yu H, Xu L, Shi H. Effects of microplastics and food particles on organic pollutants bioaccumulation in equi-fugacity and above-fugacity scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152548. [PMID: 34952063 DOI: 10.1016/j.scitotenv.2021.152548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs), as emerging contaminants, sorb organic pollutants from the environment or leach out additives, thereby altering the fate of co-existing pollutants to organisms. We chose equi-fugacity and above-fugacity concentrations of polychlorinated biphenyls (PCBs) as background contamination and plastic additive concentrations, respectively, to investigate the effects of MPs on PCB bioaccumulation; we compared the effects of MPs with those of food-borne particles (FBPs). Co-exposure to MPs and FBPs at both the equi-fugacity and above-fugacity PCB concentrations had no obvious toxic effects (ROS generation and cyp1a expression) on zebrafish. When the zebrafish were exposed to the equi-fugacity PCB concentrations, the PCB concentrations reached 177.7-400.5 ng/g after a 7-d uptake; the presence of MPs did not significantly enhance PCB bioaccumulation. The remaining PCB concentrations in the fish after a 4-d depuration were 58.4-125.1 ng/g; the effects of MPs were the same as those during the uptake period. However, at the above-fugacity PCB concentrations, the MPs markedly increased the PCB bioaccumulation (by 1.8-fold) to 712.9 ng/g. This is because at above-fugacity concentrations, PCBs on MPs migrate to organisms as there were high fugacity gradients. The FBPs enhanced PCB bioaccumulation in zebrafish more effectively than the MPs, even after depuration. In the presence of FBPs, PCB bioaccumulation increased by 2.8- and 4.2- fold after uptake in the equi-fugacity and above-fugacity scenarios, respectively, both of which were significantly higher than that observed for the MPs. This is probably because FBPs are easily assimilated by fish, making the associated PCBs more bioavailable. Finally, during the co-existence of MPs and FBPs, MPs facilitate the depuration of PCBs accumulated via FBP vectors; conversely, FBPs did not affect PCB accumulation via MP vectors. Thus, this study elucidated the effects of MPs and FBPs on the bioaccumulation of pollutants at equi-fugacity or above-fugacity concentrations in aquatic environments.
Collapse
Affiliation(s)
- Mingyuan Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Cuizhu Ma
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Zhuo Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Hairui Yu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology for Agro-Products of CAAS, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China.
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
143
|
Zheng X, Liu X, Zhang L, Wang Z, Yuan Y, Li J, Li Y, Huang H, Cao X, Fan Z. Toxicity mechanism of Nylon microplastics on Microcystis aeruginosa through three pathways: Photosynthesis, oxidative stress and energy metabolism. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128094. [PMID: 34952496 DOI: 10.1016/j.jhazmat.2021.128094] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Nylon has been widely used all over the world, and most of it eventually enters the aquatic environment in the form of microplastics (MPs). However, the impact of Nylon MPs on aquatic ecosystem remains largely unknown. Thus, the long-term biological effects and toxicity mechanism of Nylon MPs on Microcystis aeruginosa (M. aeruginosa) were explored in this study. Results demonstrated that Nylon MPs had a dose-dependent growth inhibition of M. aeruginosa at the initial stage, and the maximum inhibition rate reached to 47.62% at the concentration of 100 mg/L. Meanwhile, Nylon MPs could obstruct photosynthesis electron transfer, reduce phycobiliproteins synthesis, destroy algal cell membrane, enhance the release of extracellular polymeric substances, and induce oxidative stress. Furthermore, transcriptomic analysis indicated that Nylon MPs dysregulated the expression of genes involved in tricarboxylic acid cycle, photosynthesis, photosynthesis-antenna proteins, oxidative phosphorylation, carbon fixation in photosynthetic organisms, and porphyrin and chlorophyll metabolism. According to the results of transcriptomic and biochemical analysis, the growth inhibition of M. aeruginosa is inferred to be regulated by three pathways: photosynthesis, oxidative stress, and energy metabolism. Our findings provide new insights into the toxicity mechanism of Nylon MPs on freshwater microalgae and valuable data for risk assessment of MPs.
Collapse
Affiliation(s)
- Xiaowei Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xianglin Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Liangliang Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zeming Wang
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Yuan Yuan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jue Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yanyao Li
- Laboratory of Industrial Water and Ecotechnology, Department of Green Chemistry and Technology, Ghent University, 8500 Kortrijk, Belgium
| | - Honghui Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Xin Cao
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
144
|
Sarma H, Hazarika RP, Kumar V, Roy A, Pandit S, Prasad R. Microplastics in marine and aquatic habitats: sources, impact, and sustainable remediation approaches. ENVIRONMENTAL SUSTAINABILITY (SINGAPORE) 2022; 5:39-49. [PMID: 37519772 PMCID: PMC8923096 DOI: 10.1007/s42398-022-00219-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 12/31/2022]
Abstract
Plastic trash dumped into water bodies degrade over time into small fragments. These plastic fragments, which come under the category of micro-plastics (MPs), are generally 0.05-5 mm in size, and due to their small size they are frequently consumed by aquatic organisms. As a result, widespread MPs infiltration is a global concern for the aquatic environment, posing a threat to existing life forms. MPs easily bind to other toxic chemicals or metals, acting as vector for such toxic substances and introducing them into life forms. Polyethylene, polypropylene, polystyrene, and other polymers are emerging pollutants that are detrimental to all types of organisms. The main route for MPs into the aquatic ecosystems is through the flushing of urban wastewater. The current paper investigates the origin, environmental fate, and toxicity of MPs, shedding light on their sustainable remediation. Graphical abstract
Collapse
Affiliation(s)
- Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam 783370 India
| | - Rupshikha Patowary Hazarika
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam 781035 India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201306 India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306 India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| |
Collapse
|
145
|
Zhang T, Jiang B, Xing Y, Ya H, Lv M, Wang X. Current status of microplastics pollution in the aquatic environment, interaction with other pollutants, and effects on aquatic organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16830-16859. [PMID: 35001283 DOI: 10.1007/s11356-022-18504-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Microplastics, as emerging pollutants, have received great attention in the past few decades due to its adverse effects on the environment. Microplastics are ubiquitous in the atmosphere, soil, and water bodies, and mostly reported in aqueous environment. This paper summarizes the abundance and types of microplastics in different aqueous environments and discusses the interactions of microplastics with other contaminants such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), antibiotics, and heavy metals. The toxicity of microplastics to aquatic organisms and microorganisms is addressed. Particularly, the combined toxic effects of microplastics and other pollutants are discussed, demonstrating either synergetic or antagonistic effects. Future prospectives should be focused on the characterization of different types and shapes of microplastics, the standardization of microplastic units, exploring the interaction and toxicity of microplastics with other pollutants, and the degradation of microplastics, for a better understanding of the ecological risks of microplastics.
Collapse
Affiliation(s)
- Tian Zhang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, People's Republic of China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Haobo Ya
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Mingjie Lv
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xin Wang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| |
Collapse
|
146
|
Safety assessment of commercial antimicrobial food packaging: Triclosan and microplastics, a closer look. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
147
|
Xia B, Sui Q, Du Y, Wang L, Jing J, Zhu L, Zhao X, Sun X, Booth AM, Chen B, Qu K, Xing B. Secondary PVC microplastics are more toxic than primary PVC microplastics to Oryzias melastigma embryos. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127421. [PMID: 34653869 DOI: 10.1016/j.jhazmat.2021.127421] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Irregular-shaped and partially degraded secondary microplastics (SMP) account for the majority of MPs in marine environments, yet little is known about their effects on marine organisms. In this study, we investigated the embryotoxicity of polyvinyl chloride SMP and primary microplastics (PMP) to the marine medaka Oryzias melastigma. This study aimed to determine the physical impacts of MPs and, for the first time, elucidate the underlying mechanisms of physical toxicity. SMP shortened hatching time and induced higher teratogenic effects on larvae relative to PMP, indicating a higher toxicity from SMP. Physical damage from SMP to the chorion surface appears to be the main toxicity mechanism, caused by their irregular shape and reduced aggregation relative to PMP. In contrast, real-time changes in oxygen demonstrated that hypoxia caused by greater PMP adsorption to the chorion surface contributes to the toxicological responses of this material relative to SMP. Modulation of genes involved in hypoxia-response, cardiac development and hatching confirmed the toxicity mechanisms of PMP and SMP. The chemical contribution to observed toxicity was negligible, confirming impacts derived from physical toxicity. Our findings highlight the negative effects of environmentally relevant SMP on the marine ecosystems.
Collapse
Affiliation(s)
- Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.
| | - Qi Sui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yushan Du
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Liang Wang
- SINTEF Energy Research, Trondheim, 7034, Norway
| | - Jing Jing
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Lin Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Xinguo Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Xuemei Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Andy M Booth
- SINTEF Ocean, Department of Climate and Environment, Trondheim, 7465, Norway.
| | - Bijuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
148
|
Salt crust-assisted thermal decomposition method for direct and simultaneous quantification of polypropylene microplastics and organic contaminants in high organic matter soils. Anal Chim Acta 2022; 1194:338801. [PMID: 35063164 DOI: 10.1016/j.aca.2021.338801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022]
Abstract
Direct quantitative analysis of soil polypropylene microplastics (MPs) via thermal method is still a challenge due to its sensitivity to the soil matrix during the thermal decomposition. In this work, the impact of soil organic matter (SOM) on MPs decomposition in real soil was estimated, and high SOM contents was found have significantly negative effect on the qualitative and quantitative analysis of PP. To solve this problem, a salt crust-assisted thermal decomposition method was developed to reduce the soil matrix effect. By adding salt solution and heating in appropriate temperature program, salt crust can be formed between MPs and soil matrix to isolate PP MPs and soils during the heating process, and thereby to avoid the influence of SOM. Thermal desorption/decomposition coupling with headspace solid phase microextraction (HS-SPME) was used extraction of MPs decomposition products. All the thermal decomposition products of PP were identified, several alkenes and dialkenes were selected as candidates for quantitative analysis, and 2,4,6,8,10-pentamethyltridec-1-ene with optimal linearity was finally established for quantification. Besides, this method was also established for simultaneous determination of PP MPs and organic contaminants (OCs) including PCBs and PAHs, since it is capable of providing a new approach for investigation of their interaction in real soil environment. A theoretical LOD of 0.002 wt% was obtained for PP MPs, and the LOD of OCs ranges from 0.05 to 1.87 ng/g. Determination of aged soil samples reveal that adsorption of OCs is not a predominating effect of MPs in soil environment, and MPs contaminants may reduce the soil retention capacity. This method provides a new approach for direct quantification of soil PP MPs, and applicable for investigation of the interactions between MPs and OCs in real soils.
Collapse
|
149
|
Ma Y, Shen W, Tang T, Li Z, Dai R. Environmental estrogens in surface water and their interaction with microalgae: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150637. [PMID: 34592293 DOI: 10.1016/j.scitotenv.2021.150637] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Environmental estrogens (EEs) have received extensive attention because they interfere with biological endocrine and reproduction systems by mimicking, antagonizing, or otherwise affecting the actions of endogenous hormones. Additionally, harmful algal blooms have become a global problem in surface water. Microalgae, as an essential primary producer, is especially important for aquatic life and the entire ecosystem. The presence of EEs in surface water may be a potential promoting factor for algal blooms, and microalgae may have effects on the degradation of EEs. This review focuses on the distribution and pollution characteristics of EEs in global surface waters, effects of single and mixed EEs on microalgae regarding growth and toxin production, mechanisms of EEs on microalgae at the cellular and molecular level. The impacts of microalgae on EEs were also discussed. This review provides a risk assessment of EEs and identifies essential clues that will aid in formulating and revising the relevant standards of surface water regarding EEs, which is significant for ecosystems and human health.
Collapse
Affiliation(s)
- Yingxiao Ma
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China.
| | - Wendi Shen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China.
| | - Tingting Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China.
| | - Zihao Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China.
| | - Ruihua Dai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China.
| |
Collapse
|
150
|
Nam SH, Lee J, An YJ. Towards understanding the impact of plastics on freshwater and marine microalgae: A review of the mechanisms and toxicity endpoints. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127174. [PMID: 34844337 DOI: 10.1016/j.jhazmat.2021.127174] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Plastics are ubiquitous and persistent in aquatic environments, threatening environmental and human health. This review focused on the effects of plastics (single toxicity) and associated chemicals (combined or leachate toxicities) on freshwater and marine microalgae. Forty-seven publications from 2010 to 2020 were used in this review. Based on their topic of focus, we classified the publications among the following categories: single plastic toxicity, combined toxicity of plastics and other chemicals, and toxicity of leachates released from plastics. The test species Chlorophyta and Ochrophyta were generally used to assess the impacts of plastics on aquatic microalgae. This study identified the inhibition of algal growth and photosynthesis due to single toxicity through the physical adsorption of plastics, showing that leachates released from plastics contained non-specific chemicals which could potentially affect microalgae. Production of malondialdehyde or reactive oxygen species presented significant effects on algae independent of the experimental conditions. This review could improve our understanding of the effects of plastic pollution on microalgae in freshwater and marine environments. It has implications for further research in this field and associated water management in light of the global ubiquity of plastic pollution.
Collapse
Affiliation(s)
- Sun-Hwa Nam
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Jieun Lee
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|