101
|
Intestinal epithelial cell apoptosis due to a hemolytic toxin from Vibrio vulnificus and protection by a 36 kDa glycoprotein from Rhus verniciflua Stokes. Food Chem Toxicol 2019; 125:46-54. [DOI: 10.1016/j.fct.2018.12.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/22/2018] [Accepted: 12/24/2018] [Indexed: 01/22/2023]
|
102
|
Evolutionary Model of Cluster Divergence of the Emergent Marine Pathogen Vibrio vulnificus: From Genotype to Ecotype. mBio 2019; 10:mBio.02852-18. [PMID: 30782660 PMCID: PMC6381281 DOI: 10.1128/mbio.02852-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vibrio vulnificus is an emergent marine pathogen and is the cause of a deadly septicemia. However, the genetic factors that differentiate its clinical and environmental strains and its several biotypes remain mostly enigmatic. In this work, we investigated the underlying genomic properties and population dynamics of the V. vulnificus species to elucidate the traits that make these strains emerge as a human pathogen. The acquisition of different ecological determinants could have allowed the development of highly divergent clusters with different lifestyles within the same environment. However, we identified strains from both clusters in the mucosa of aquaculture species, indicating that manmade niches are bringing strains from the two clusters together, posing a potential risk of recombination and of emergence of novel variants. We propose a new evolutionary model that provides a perspective that could be broadly applicable to other pathogenic vibrios and facultative bacterial pathogens to pursue strategies to prevent their infections. Vibrio vulnificus, an opportunistic pathogen, is the causative agent of a life-threatening septicemia and a rising problem for aquaculture worldwide. The genetic factors that differentiate its clinical and environmental strains remain enigmatic. Furthermore, clinical strains have emerged from every clade of V. vulnificus. In this work, we investigated the underlying genomic properties and population dynamics of the V. vulnificus species from an evolutionary and ecological point of view. Genome comparisons and bioinformatic analyses of 113 V. vulnificus isolates indicate that the population of V. vulnificus is made up of four different clusters. We found evidence that recombination and gene flow between the two largest clusters (cluster 1 [C1] and C2) have drastically decreased to the point where they are diverging independently. Pangenome and phenotypic analyses showed two markedly different lifestyles for these two clusters, indicating commensal (C2) and bloomer (C1) ecotypes, with differences in carbohydrate utilization, defense systems, and chemotaxis, among other characteristics. Nonetheless, we identified frequent intra- and interspecies exchange of mobile genetic elements (e.g., antibiotic resistance plasmids, novel “chromids,” or two different and concurrent type VI secretion systems) that provide high levels of genetic diversity in the population. Surprisingly, we identified strains from both clusters in the mucosa of aquaculture species, indicating that manmade niches are bringing strains from the two clusters together. We propose an evolutionary model of V. vulnificus that could be broadly applicable to other pathogenic vibrios and facultative bacterial pathogens to pursue strategies to prevent their infections and emergence.
Collapse
|
103
|
Abstract
Hepcidin is central to regulation of iron metabolism. Its effect on a cellular level involves binding ferroportin, the main iron export protein, resulting in its internalization and degradation and leading to iron sequestration within ferroportin-expressing cells. Aberrantly increased hepcidin leads to systemic iron deficiency and/or iron restricted erythropoiesis. Furthermore, insufficiently elevated hepcidin occurs in multiple diseases associated with iron overload. Abnormal iron metabolism as a consequence of hepcidin dysregulation is an underlying factor resulting in pathophysiology of multiple diseases and several agents aimed at manipulating this pathway have been designed, with some already in clinical trials. In this chapter, we present an overview of and rationale for exploring the development of hepcidin agonists and antagonists in various clinical scenarios.
Collapse
Affiliation(s)
- Yelena Z Ginzburg
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
104
|
Song W, Joo M, Yeom JH, Shin E, Lee M, Choi HK, Hwang J, Kim YI, Seo R, Lee JE, Moore CJ, Kim YH, Eyun SI, Hahn Y, Bae J, Lee K. Divergent rRNAs as regulators of gene expression at the ribosome level. Nat Microbiol 2019; 4:515-526. [DOI: 10.1038/s41564-018-0341-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/05/2018] [Indexed: 01/21/2023]
|
105
|
Li L, Wang L, Zhang C, Chen P, Luo X. A case of Vibrio vulnificus related wound infection diagnosed by next-generation sequencing. IDCases 2019; 15:e00497. [PMID: 30847277 PMCID: PMC6389543 DOI: 10.1016/j.idcr.2019.e00497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Vibrio vulnificus is a serious opportunistic human pathogen, which can cause primary septicemia, wound infection and gastroenteritis. In this case, wound and blood culture failed to grow the pathogen and a next-generation sequencing method was used to detect the pathogen as V. vulnificus.
Collapse
Affiliation(s)
- Linhui Li
- Wenzhou Medical University, Wenzhou, China
| | | | - Chunhong Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Chen
- Wenzhou Medical University, Wenzhou, China
| | - Xu Luo
- Department of Burns and Wound Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
106
|
Bhat P, Bhaskar M, Sistla S, Kadhiravan T. Fatal case of necrotising fasciitis due to Vibrio vulnificus in a patient with alcoholic liver disease and diabetes mellitus. BMJ Case Rep 2019; 12:12/1/bcr-2018-227851. [PMID: 30659010 DOI: 10.1136/bcr-2018-227851] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vibrio vulnificus is a halophilic Vibrio found globally. They are thought to be normal microbiome in the estuaries along the coasts associated with seawater and seashells. Infection usually results from consumption of raw oysters or shellfish or exposure of broken skin or open wounds to contaminated salt or brackish water. Clinical manifestations range from gastroenteritis to skin and subcutaneous infection and primary sepsis. Pathogen has the ability to cause infections with significant mortality in high-risk populations, including patients with chronic liver disease, immunodeficiency, diabetes mellitus and iron storage disorders. There is often a lack of clinical suspicion in cases due to Vibrio vulnificus leading to delay in treatment and subsequent mortality. Herein we report a case of necrotising fasciitis in a diabetic patient with alcoholic liver disease caused by Vibrio vulnificus which ended fatally.
Collapse
Affiliation(s)
- Prasanna Bhat
- Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Maanasa Bhaskar
- Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sujatha Sistla
- Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Tamilarasu Kadhiravan
- Internal Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
107
|
Zuo Y, Zhao L, Xu X, Zhang J, Zhang J, Yan Q, Huang L. Mechanisms underlying the virulence regulation of new Vibrio alginolyticus ncRNA Vvrr1 with a comparative proteomic analysis. Emerg Microbes Infect 2019; 8:1604-1618. [PMID: 31711375 PMCID: PMC6853220 DOI: 10.1080/22221751.2019.1687261] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
The incidence of Vibrio alginolyticus infections has increased in recent years due to the influence of climate change and rising sea temperature. Vibrio virulence regulatory RNA 1 (Vvrr1) is a newly found noncoding RNA (ncRNA) predicted to be closely related to the adhesion ability of V. alginolyticus based on the previous RNA-seq. In this study, the target genes of Vvrr1 were fully screened and verified by constructing Vvrr1-overexpressing strains and using the proteome sequencing technology. Pyruvate kinase I (pykF) gene was predicted to be a chief target gene of Vvrr1 involved in virulence regulation. The adhesion ability, biofilm formation and virulence were significantly reduced in the Vvrr1-overexpressing and the pykF-silenced strain compared with the wild strains. Similar to the overexpression of Vvrr1, the silencing of pykF also reduced the expression level of virulence genes, such as ndk, eno, sdhB, glpF, and cysH. Meanwhile, by constructing the "pykF-GFP" fusion expression plasmid and using the GFP reporter gene analysis in Escherichia coli, the fluorescence intensity of the strain containing Vvrr1 whole ncRNA sequence vector was found to be significantly weakened. These indicated that Vvrr1 participated in the virulence regulation mechanism of V. alginolyticus by interacting with the virulence gene pykF.
Collapse
Affiliation(s)
- Yanfei Zuo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, PR People’s Republic of China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, PR People’s Republic of China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, PR People’s Republic of China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, People’s Republic of China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, People’s Republic of China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, PR People’s Republic of China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, PR People’s Republic of China
| |
Collapse
|
108
|
Abstract
Infections are common in hand surgery and proper management is important to achieve optimal outcomes. Although most cases are not urgent, less common, severe infections such as flexor tenosynovitis and necrotizing fasciitis require urgent identification with both medical and surgical management. It is common for diagnoses to be missed or delayed because clinical and laboratory indicators are often variably present. Delayed identification and management can result in poor outcomes with permanent deficits. This article will provide a review of hand infections with a focus on identifying serious hand infections requiring urgent or emergent treatment, and distinguishing these from less urgent scenarios.
Collapse
Affiliation(s)
- John C Koshy
- Division of Plastic Surgery, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Bryce Bell
- Department of Orthopedic Surgery, Baylor College of Medicine, Texas Children's Hospital, Houston, TX.
| |
Collapse
|
109
|
Han L, Yuan J, Ao X, Lin S, Han X, Ye H. Biochemical Characterization and Phylogenetic Analysis of the Virulence Factor Lysine Decarboxylase From Vibrio vulnificus. Front Microbiol 2018; 9:3082. [PMID: 30619163 PMCID: PMC6297170 DOI: 10.3389/fmicb.2018.03082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Cadaverine is produced in organisms from the amino acid lysine in a decarboxylation reaction catalyzed by lysine decarboxylase (EC 4.1.1.18). The inducible lysine decarboxylase CadA plays a vital role in acid stress response for enteric bacteria. Vibrio vulnificus is an extremely virulent human pathogen causing gastroenteritis when the acid conditions that prevent survival of V. vulnificus in the stomach or small intestine are overcome. A gene encoding CadA was identified from V. vulnificus. Subsequent analyses showed that CadA from V. vulnificus (VvCadA) is a decamer with a 82-kDa subunit. Homogenous VvCadA was purified from Escherichia coli and used for lysine decarboxylation with an optimal pH of 6.0 and optimal temperature of 37°C. The apparent V max and K m for lysine were 9.45 ± 0.24 μM/min and 0.45 ± 0.05 mM, respectively. Mutation analysis suggested that the amino-acid-binding pyridoxal phosphate, the cofactor of the enzyme, plays a vital role in the reaction. Mutation of the negatively charged residues interacting with lysine also affected the activity of the enzyme to some extent. Quantitative RT-PCR showed that expression of VvcadA was up-regulated under low pH, low salinity, and oxidative stresses. Furthermore, the concentration of cadaverine released to the cell exterior also increased under these stresses. Protein sequence similarity network (SSN) analysis indicated that lysine decarboxylases with ornithine decarboxylases and arginine decarboxylases shared a common ancestor, and that lysine decarboxylases are more conserved during evolution. Our data provide evidence for the biochemical characteristics and important roles of VvCadA under stress conditions.
Collapse
Affiliation(s)
- Lifen Han
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, China
- Infectious Diseases Hospital of Fuzhou, Fuzhou, China
| | - Jinjin Yuan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, China
- Infectious Diseases Hospital of Fuzhou, Fuzhou, China
| | - Xiulan Ao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, China
- Infectious Diseases Hospital of Fuzhou, Fuzhou, China
| | - Shujin Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, China
- Infectious Diseases Hospital of Fuzhou, Fuzhou, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Hanhui Ye
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, China
- Infectious Diseases Hospital of Fuzhou, Fuzhou, China
| |
Collapse
|
110
|
Chahin AB, Opal JM, Opal SM. Whatever happened to the Shwartzman phenomenon? Innate Immun 2018; 24:466-479. [PMID: 30409091 PMCID: PMC6830869 DOI: 10.1177/1753425918808008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022] Open
Abstract
Ninety years ago, Gregory Shwartzman first reported an unusual discovery following the intradermal injection of sterile culture filtrates from principally Gram-negative strains from bacteria into normal rabbits. If this priming dose was followed in 24 h by a second intravenous challenge (the provocative dose) from same culture filtrate, dermal necrosis at the first injection site would regularly occur. This peculiar, but highly reproducible, event fascinated the microbiologists, hematologists, and immunologists of the time, who set out to determine the mechanisms that underlie the pathogenesis of this reaction. The speed of this reaction seemed to rule out an adaptive, humoral, immune response as its cause. Histopathologic material from within the necrotic center revealed fibrinoid, thrombo-hemorrhagic necrosis within small arterioles and capillaries in the micro-circulation. These pathologic features bore a striking resemblance to a more generalized coagulopathic phenomenon following two repeated endotoxin injections described 4 yr earlier by Sanarelli. This reaction came to be known as the generalized Shwartzman phenomenon, while the dermal reaction was named the localized or dermal Shwartzman reaction. A third category was later added, called the single organ or mono-visceral form of the Shwartzman phenomenon. The occasional occurrence of typical pathological features of the generalized Shwartzman reaction limited to a single organ is notable in many well-known clinical events (e.g., hyper-acute kidney transplant rejection, fulminant hepatic necrosis, or adrenal apoplexy in Waterhouse-Fredrickson syndrome). We will briefly review the history and the significant insights gained from understanding this phenomenon regarding the circuitry and control mechanisms responsible for disseminated intravascular coagulation, the vasculopathy and the immunopathy of sepsis.
Collapse
Affiliation(s)
- Abdullah B Chahin
- Infectious Disease Service and Critical Care Division, Memorial
Hospital of Rhode Island and the Alpert Medical School of Brown University,
Providence, USA
| | - Jason M Opal
- Department of History and Classical Studies, McGill University,
Montreal, Canada
| | - Steven M Opal
- The Infectious Disease Division, Rhode Island Hospital and the
Alpert Medical School of Brown University, Providence, USA
| |
Collapse
|
111
|
Characterization of Vibrio vulnificus Isolated from the Coastal Areas in the Eastern Province of Saudi Arabia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.3.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
112
|
Lee A, Kim MS, Cho D, Jang KK, Choi SH, Kim TS. Vibrio vulnificus RtxA Is a Major Factor Driving Inflammatory T Helper Type 17 Cell Responses in vitro and in vivo. Front Immunol 2018; 9:2095. [PMID: 30283443 PMCID: PMC6157323 DOI: 10.3389/fimmu.2018.02095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022] Open
Abstract
T helper type 17 (Th17) cells are a subset of pro-inflammatory T helper cells that mediate host defense and pathological inflammation. We have previously reported that host dendritic cells (DCs) infected with Vibrio vulnificus induce Th17 responses through the production of several pro-inflammatory cytokines, including interleukin (IL)-1β and IL-6. V. vulnificus produces RTX toxin (RtxA), an important virulence factor that determines successful pathophysiology. In this study, we investigated the involvement of RtxA from V. vulnificus in Th17 cell induction through the activation and maturation of DCs. The increased expression of the DC surface marker CD40 caused by V. vulnificus wild-type infection was reduced by rtxA gene mutation in V. vulnificus. The mRNA and protein levels of Th17 polarization-related cytokines also decreased in V. vulnificus rtxA mutant-infected DCs. In addition, the co-culture of Th cells and DCs infected with rtxA mutant V. vulnificus resulted in reduction in DC-mediated Th17 responses. Th17 cell responses in the small intestinal lamina propria decreased in mice inoculated with V. vulnificus rtxA mutant as compared to those inoculated with the wild-type strain. These decreases in DC maturation, Th17-polarizing cytokine secretion, and Th17 responses attributed to rtxA mutation were restored following infection with the rtxA revertant strain. Furthermore, the mutation in the hlyU gene encoding the activator of rtxA1 gene reproduced the results observed with rtxA mutation. Taken together, V. vulnificus, by means of RtxA, induces inflammatory Th17 responses, which may be associated with adaptive responses of the host against V. vulnificus infection.
Collapse
Affiliation(s)
- Arim Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Myun Soo Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Daeho Cho
- Institute of Convergence Science, Korea University, Seoul, South Korea
| | - Kyung Ku Jang
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
113
|
Exploring the antivirulent and sea food preservation efficacy of essential oil combined with DNase on Vibrio parahaemolyticus. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
114
|
Cyclo-(l-Phe-l-Pro), a Quorum-Sensing Signal of Vibrio vulnificus, Induces Expression of Hydroperoxidase through a ToxR-LeuO-HU-RpoS Signaling Pathway To Confer Resistance against Oxidative Stress. Infect Immun 2018; 86:IAI.00932-17. [PMID: 29914931 PMCID: PMC6105893 DOI: 10.1128/iai.00932-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022] Open
Abstract
Vibrio vulnificus, an opportunistic human pathogen, produces cyclo-(l-Phe-l-Pro) (cFP), which serves as a signaling molecule controlling the ToxR-dependent expression of innate bacterial genes, and also as a virulence factor eliciting pathogenic effects on human cells by enhancing intracellular reactive oxygen species levels. We found that cFP facilitated the protection of V. vulnificus against hydrogen peroxide. At a concentration of 1 mM, cFP enhanced the level of the transcriptional regulator RpoS, which in turn induced expression of katG, encoding hydroperoxidase I, an enzyme that detoxifies H2O2 to overcome oxidative stress. We found that cFP upregulated the transcription of the histone-like proteins vHUα and vHUβ through the cFP-dependent regulator LeuO. LeuO binds directly to upstream regions of vhuA and vhuB to enhance transcription. vHUα and vHUβ then enhance the level of RpoS posttranscriptionally by stabilizing the mRNA. This cFP-mediated ToxR-LeuO-vHUαβ-RpoS pathway also upregulates genes known to be members of the RpoS regulon, suggesting that cFP acts as a cue for the signaling pathway responsible for both the RpoS and the LeuO regulons. Taken together, this study shows that cFP plays an important role as a virulence factor, as well as a signal for the protection of the cognate pathogen.
Collapse
|
115
|
Heo ST, Kwon KT, Yoo JR, Choi JY, Lee KH, Ko KS. First Case of Necrotizing Fasciitis Caused by Skermanella aerolata Infection Mimicking Vibrio Sepsis. Ann Lab Med 2018; 38:604-606. [PMID: 30027706 PMCID: PMC6056393 DOI: 10.3343/alm.2018.38.6.604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/26/2018] [Accepted: 06/08/2018] [Indexed: 11/19/2022] Open
Affiliation(s)
- Sang Taek Heo
- Department of Infectious Disease, Jeju National University School of Medicine, Jeju, Korea
| | - Ki Tae Kwon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jeong Rae Yoo
- Department of Infectious Disease, Jeju National University School of Medicine, Jeju, Korea
| | - Ji Young Choi
- Department of Molecular Cell Biology and Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Keun Hwa Lee
- Department of Microbiology and Immunology, Jeju National University School of Medicine, Jeju, Korea
| | - Kwan Soo Ko
- Department of Molecular Cell Biology and Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea.
| |
Collapse
|
116
|
Vasagar B, Jain V, Germinario A, Watson HJ, Ouzts M, Presutti RJ, Alvarez S. Approach to Aquatic Skin Infections. Prim Care 2018; 45:555-566. [PMID: 30115341 DOI: 10.1016/j.pop.2018.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aquatic-based infections can present a treatment challenge for primary care physicians because of the likely polymicrobial nature of the infection and the possibility of uncommon pathogenic organisms. Although Staphylococcus and Streptococcus species that colonize the skin are the most common etiologic agents associated with saltwater and freshwater skin and soft tissue infections, other significant pathogens can include Vibrio, Aeromonas, Edwardsiella, Erysipelothrix, and Mycobacterium. Early detection and appropriate management of aquatic infections can significantly decrease morbidity and mortality. This article reviews the pathophysiology, presentation, and management for the most common water-borne pathogens causing skin and soft tissue infections.
Collapse
Affiliation(s)
- Brintha Vasagar
- Department of Family Medicine, Medical University of South Carolina, 5 Charleston Center, Charleston, SC 29425, USA.
| | - Vasudha Jain
- Department of Family Medicine, Tidelands Health MUSC Family Medicine Residency Program, 4320 Holmestown Road, Myrtle Beach, SC 29578, USA
| | - Anthony Germinario
- Department of Family Medicine, Tidelands Health MUSC Family Medicine Residency Program, 4320 Holmestown Road, Myrtle Beach, SC 29578, USA
| | - Heber J Watson
- Department of Family Medicine, Tidelands Health MUSC Family Medicine Residency Program, 4320 Holmestown Road, Myrtle Beach, SC 29578, USA
| | - Michael Ouzts
- Department of Family Medicine, Tidelands Health MUSC Family Medicine Residency Program, 4320 Holmestown Road, Myrtle Beach, SC 29578, USA
| | - Richard John Presutti
- Department of Family Medicine, Mayo School of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Salvador Alvarez
- Department of Internal Medicine, Mayo School of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
117
|
Dvorak AC, Solo-Gabriele HM, Galletti A, Benzecry B, Malone H, Boguszewski V, Bird J. Possible impacts of sea level rise on disease transmission and potential adaptation strategies, a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:951-968. [PMID: 29679917 DOI: 10.1016/j.jenvman.2018.03.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Sea levels are projected to rise in response to climate change, causing the intrusion of sea water into land. In flat coastal regions, this would generate an increase in shallow water covered areas with limited circulation. This scenario raises a concern about the consequences it could have on human health, specifically the possible impacts on disease transmission. In this review paper we identified three categories of diseases which are associated with water and whose transmission can be affected by sea level rise. These categories include: mosquitoborne diseases, naturalized organisms (Vibrio spp. and toxic algae), and fecal-oral diseases. For each disease category, we propose comprehensive adaptation strategies that would help minimize possible health risks. Finally, the City of Key West, Florida is analyzed as a case study, due to its inherent vulnerability to sea level rise. Current and projected adaptation techniques are discussed as well as the integration of additional recommendations, focused on disease transmission control. Given that sea level rise will likely continue into the future, the promotion and implementation of positive adaptation strategies is necessary to ensure community resilience.
Collapse
Affiliation(s)
- Ana C Dvorak
- Dept. of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | - Helena M Solo-Gabriele
- Dept. of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL, USA.
| | - Andrea Galletti
- Dept. of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | - Bernardo Benzecry
- Dept. of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | - Hannah Malone
- Dept. of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | | | | |
Collapse
|
118
|
Imdad S, Batool N, Pradhan S, Chaurasia AK, Kim KK. Identification of 2',4'-Dihydroxychalcone as an Antivirulence Agent Targeting HlyU, a Master Virulence Regulator in Vibrio vulnificus. Molecules 2018; 23:E1492. [PMID: 29925801 PMCID: PMC6099652 DOI: 10.3390/molecules23061492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
The emergence of antimicrobial resistance and rapid acclimation allows Vibrio vulnificus to rapidly propagate in the host. This problematic pathological scenario can be circumvented by employing an antivirulence strategy, treating Vibrio infections without hindering the bacterial growth. We developed a genome-integrated orthogonal inhibitor screening platform in E. coli to identify antivirulence agents targeting a master virulence regulator of V. vulnificus. We identified 2′,4′-dihydroxychalcone (DHC) from the natural compound library and verified that it decreases the expression of the major toxin network which is equivalent to the ∆hlyU deletion mutant. 2′,4′-DHC also reduced the hemolytic activity of V. vulnificus which was tested as an example of virulence phenotype. The electrophoretic mobility shift assay confirmed that 2′,4′-DHC specifically targeted HlyU and inhibited its binding to PrtxA1 promoter. Under in vivo conditions, a single dose of 2′,4′-DHC protected ~50% wax-worm larvae from V. vulnificus infection at a non-toxic concentration to both V. vulnificus and wax-worm larvae. In the current study, we demonstrated that an orthogonal reporter system is suitable for the identification of antivirulence compounds with accuracy, and identified 2′,4′-DHC as a potent antivirulence agent that specifically targets the HlyU virulence transcriptional regulator and significantly reduces the virulence and infection potential of V. vulnificus.
Collapse
Affiliation(s)
- Saba Imdad
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| | - Nayab Batool
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| | - Subhra Pradhan
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| | - Akhilesh Kumar Chaurasia
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
119
|
Vázquez-Martínez ER, García-Gómez E, Camacho-Arroyo I, González-Pedrajo B. Sexual dimorphism in bacterial infections. Biol Sex Differ 2018; 9:27. [PMID: 29925409 PMCID: PMC6011518 DOI: 10.1186/s13293-018-0187-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022] Open
Abstract
Background Sex differences are important epidemiological factors that impact in the frequency and severity of infectious diseases. A clear sexual dimorphism in bacterial infections has been reported in both humans and animal models. Nevertheless, the molecular mechanisms involved in this gender bias are just starting to be elucidated. In the present article, we aim to review the available data in the literature that report bacterial infections presenting a clear sexual dimorphism, without considering behavioral and social factors. Main body The sexual dimorphism in bacterial infections has been mainly attributed to the differential levels of sex hormones between males and females, as well as to genetic factors. In general, males are more susceptible to gastrointestinal and respiratory bacterial diseases and sepsis, while females are more susceptible to genitourinary tract bacterial infections. However, these incidences depend on the population evaluated, animal model and the bacterial species. Female protection against bacterial infections and the associated complications is assumed to be due to the pro-inflammatory effect of estradiol, while male susceptibility to those infections is associated with the testosterone-mediated immune suppression, probably via their specific receptors. Recent studies indicate that the protective effect of estradiol depends on the estrogen receptor subtype and the specific tissue compartment involved in the bacterial insult, suggesting that tissue-specific expression of particular sex steroid receptors contributes to the susceptibility to bacterial infections. Furthermore, this gender bias also depends on the effects of sex hormones on specific bacterial species. Finally, since a large number of genes related to immune functions are located on the X chromosome, X-linked mosaicism confers a highly polymorphic gene expression program that allows women to respond with a more expanded immune repertoire as compared with men. Conclusion Notwithstanding there is increasing evidence that confirms the sexual dimorphism in certain bacterial infections and the molecular mechanisms associated, further studies are required to clarify conflicting data and to determine the role of specific hormone receptors involved in the gender bias of bacterial infections, as well as their potential as therapeutic targets.
Collapse
Affiliation(s)
- Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Elizabeth García-Gómez
- Unidad de Investigación en Reproducción Humana, Consejo Nacional de Ciencia y Tecnología (CONACyT)-Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
120
|
Okeyo AN, Nontongana N, Fadare TO, Okoh AI. Vibrio Species in Wastewater Final Effluents and Receiving Watershed in South Africa: Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061266. [PMID: 29914048 PMCID: PMC6025350 DOI: 10.3390/ijerph15061266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/21/2018] [Accepted: 06/07/2018] [Indexed: 11/17/2022]
Abstract
Wastewater treatment facilities in South Africa are obliged to make provision for wastewater effluent quality management, with the aim of securing the integrity of the surrounding watersheds and environments. The Department of Water Affairs has documented regulatory parameters that have, over the years, served as a guideline for quality monitoring/management purposes. However, these guidelines have not been regularly updated and this may have contributed to some of the water quality anomalies. Studies have shown that promoting the monitoring of the current routinely monitored parameters (both microbial and physicochemical) may not be sufficient. Organisms causing illnesses or even outbreaks, such as Vibrio pathogens with their characteristic environmental resilience, are not included in the guidelines. In South Africa, studies that have been conducted on the occurrence of Vibrio pathogens in domestic and wastewater effluent have made it apparent that these pathogens should also be monitored. The importance of effective wastewater management as one of the key aspects towards protecting surrounding environments and receiving watersheds, as well as protecting public health, is highlighted in this review. Emphasis on the significance of the Vibrio pathogen in wastewater is a particular focus.
Collapse
Affiliation(s)
- Allisen N Okeyo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
- Department of Biochemistry and Microbiology, University of Fort Hare, P/Bag X1314, Eastern Cape, Alice 5700, South Africa.
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
- Department of Biochemistry and Microbiology, University of Fort Hare, P/Bag X1314, Eastern Cape, Alice 5700, South Africa.
| | - Taiwo O Fadare
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
- Department of Biochemistry and Microbiology, University of Fort Hare, P/Bag X1314, Eastern Cape, Alice 5700, South Africa.
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
- Department of Biochemistry and Microbiology, University of Fort Hare, P/Bag X1314, Eastern Cape, Alice 5700, South Africa.
| |
Collapse
|
121
|
Abstract
Transition metals are required cofactors for many proteins that are critical for life, and their concentration within cells is carefully maintained to avoid both deficiency and toxicity. To defend against bacterial pathogens, vertebrate immune proteins sequester metals, in particular zinc, iron, and manganese, as a strategy to limit bacterial acquisition of these necessary nutrients in a process termed "nutritional immunity." In response, bacteria have evolved elegant strategies to access metals and counteract this host defense. In mammals, metal abundance can drastically shift due to changes in dietary intake or absorption from the intestinal tract, disrupting the balance between host and pathogen in the fight for metals and altering susceptibility to disease. This review describes the current understanding of how dietary metals modulate host-microbe interactions and the subsequent impact on the outcome of disease.
Collapse
Affiliation(s)
- Christopher A Lopez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
122
|
Kim HM, Yoon CK, Ham HI, Seok YJ, Park YH. Stimulation of Vibrio vulnificus Pyruvate Kinase in the Presence of Glucose to Cope With H 2O 2 Stress Generated by Its Competitors. Front Microbiol 2018; 9:1112. [PMID: 29896177 PMCID: PMC5987630 DOI: 10.3389/fmicb.2018.01112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/11/2018] [Indexed: 01/29/2023] Open
Abstract
The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) regulates a variety of cellular processes in addition to catalyzing the coupled transport and phosphorylation of carbohydrates. We recently reported that, in the presence of glucose, HPr of the PTS is dephosphorylated and interacts with pyruvate kinase A (PykA) catalyzing the conversion of PEP to pyruvate in Vibrio vulnificus. Here, we show that this interaction enables V. vulnificus to survive H2O2 stress by increasing pyruvate production. A pykA deletion mutant was more susceptible to H2O2 stress than wild-type V. vulnificus without any decrease in the expression level of catalase, and this sensitivity was rescued by the addition of pyruvate. The H2O2 sensitivity difference between wild-type and pykA mutant strains becomes more apparent in the presence of glucose. Fungi isolated from the natural habitat of V. vulnificus retarded the growth of the pykA mutant more severely than the wild-type strain in the presence of glucose by glucose oxidase-dependent generation of H2O2. These data suggest that V. vulnificus has evolved to resist the killing action of its fungal competitors by increasing pyruvate production in the presence of glucose.
Collapse
Affiliation(s)
- Hey-Min Kim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Chang-Kyu Yoon
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Hyeong-In Ham
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Young-Ha Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, South Korea
| |
Collapse
|
123
|
Liu J, Fu K, Wu C, Qin K, Li F, Zhou L. "In-Group" Communication in Marine Vibrio: A Review of N-Acyl Homoserine Lactones-Driven Quorum Sensing. Front Cell Infect Microbiol 2018; 8:139. [PMID: 29868495 PMCID: PMC5952220 DOI: 10.3389/fcimb.2018.00139] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
N-Acyl Homoserine Lactones (N-AHLs) are an important group of small quorum-sensing molecules generated and released into the surroundings by Gram-negative bacteria. N-AHLs play a crucial role in various infection-related biological processes of marine Vibrio species, including survival, colonization, invasion, and pathogenesis. With the increasing problem of antibiotic abuse and subsequently the emergence of drug-resistant bacteria, studies on AHLs are therefore expected to bring potential new breakthroughs for the prevention and treatment of Vibrio infections. This article starts from AHLs generation in marine Vibrio, and then discusses the advantages, disadvantages, and trends in the future development of various detection methods for AHLs characterization. In addition to a detailed classification of the various marine Vibrio-derived AHL types that have been reported over the years, the regulatory mechanisms of AHLs and their roles in marine Vibrio biofilms, pathogenicity and interaction with host cells are also highlighted. Intervention measures for AHLs in different stages are systematically reviewed, and the prospects of their future development and application are examined.
Collapse
Affiliation(s)
- Jianfei Liu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Kaifei Fu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Chenglin Wu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Kewei Qin
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Fei Li
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Lijun Zhou
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
124
|
Son JH, Pindar C, Soltanian H. Surgical Treatment of a Catfish Spine Puncture Wound in the Hand. J Hand Microsurg 2018; 10:57-58. [PMID: 29706741 DOI: 10.1055/s-0037-1608695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ji H Son
- Department of Plastic and Reconstructive Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States
| | - Christina Pindar
- Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Hooman Soltanian
- Department of Plastic and Reconstructive Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States.,Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| |
Collapse
|
125
|
Lee W, Lee SH, Kim M, Moon JS, Kim GW, Jung HG, Kim IH, Oh JE, Jung HE, Lee HK, Ku KB, Ahn DG, Kim SJ, Kim KS, Oh JW. Vibrio vulnificus quorum-sensing molecule cyclo(Phe-Pro) inhibits RIG-I-mediated antiviral innate immunity. Nat Commun 2018; 9:1606. [PMID: 29686409 PMCID: PMC5913291 DOI: 10.1038/s41467-018-04075-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
Abstract
The recognition of pathogen-derived ligands by pattern recognition receptors activates the innate immune response, but the potential interaction of quorum-sensing (QS) signaling molecules with host anti-viral defenses remains largely unknown. Here we show that the Vibrio vulnificus QS molecule cyclo(Phe-Pro) (cFP) inhibits interferon (IFN)-β production by interfering with retinoic-acid-inducible gene-I (RIG-I) activation. Binding of cFP to the RIG-I 2CARD domain induces a conformational change in RIG-I, preventing the TRIM25-mediated ubiquitination to abrogate IFN production. cFP enhances susceptibility to hepatitis C virus (HCV), as well as Sendai and influenza viruses, each known to be sensed by RIG-I but did not affect the melanoma-differentiation-associated gene 5 (MDA5)-recognition of norovirus. Our results reveal an inter-kingdom network between bacteria, viruses and host that dysregulates host innate responses via a microbial quorum-sensing molecule modulating the response to viral infection.
Collapse
Affiliation(s)
- Wooseong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Seung-Hoon Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Minwoo Kim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jae-Su Moon
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Geon-Woo Kim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Hae-Gwang Jung
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - In Hwang Kim
- Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Hi Eun Jung
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Keun Bon Ku
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Dae-Gyun Ahn
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Kun-Soo Kim
- Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
126
|
Wood MA, Paralkar M, Paralkar MP, Nguyen A, Struck AJ, Ellrott K, Margolin A, Nellore A, Thompson RF. Population-level distribution and putative immunogenicity of cancer neoepitopes. BMC Cancer 2018; 18:414. [PMID: 29653567 PMCID: PMC5899330 DOI: 10.1186/s12885-018-4325-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Background Tumor neoantigens are drivers of cancer immunotherapy response; however, current prediction tools produce many candidates requiring further prioritization. Additional filtration criteria and population-level understanding may assist with prioritization. Herein, we show neoepitope immunogenicity is related to measures of peptide novelty and report population-level behavior of these and other metrics. Methods We propose four peptide novelty metrics to refine predicted neoantigenicity: tumor vs. paired normal peptide binding affinity difference, tumor vs. paired normal peptide sequence similarity, tumor vs. closest human peptide sequence similarity, and tumor vs. closest microbial peptide sequence similarity. We apply these metrics to neoepitopes predicted from somatic missense mutations in The Cancer Genome Atlas (TCGA) and a cohort of melanoma patients, and to a group of peptides with neoepitope-specific immune response data using an extension of pVAC-Seq (Hundal et al., pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med 8:11, 2016). Results We show neoepitope burden varies across TCGA diseases and HLA alleles, with surprisingly low repetition of neoepitope sequences across patients or neoepitope preferences among sets of HLA alleles. Only 20.3% of predicted neoepitopes across TCGA patients displayed novel binding change based on our binding affinity difference criteria. Similarity of amino acid sequence was typically high between paired tumor-normal epitopes, but in 24.6% of cases, neoepitopes were more similar to other human peptides, or bacterial (56.8% of cases) or viral peptides (15.5% of cases), than their paired normal counterparts. Applied to peptides with neoepitope-specific immune response, a linear model incorporating neoepitope binding affinity, protein sequence similarity between neoepitopes and their closest viral peptides, and paired binding affinity difference was able to predict immunogenicity (AUROC = 0.66). Conclusions Our proposed prioritization criteria emphasize neoepitope novelty and refine patient neoepitope predictions for focus on biologically meaningful candidate neoantigens. We have demonstrated that neoepitopes should be considered not only with respect to their paired normal epitope, but to the entire human proteome, and bacterial and viral peptides, with potential implications for neoepitope immunogenicity and personalized vaccines for cancer treatment. We conclude that putative neoantigens are highly variable across individuals as a function of cancer genetics and personalized HLA repertoire, while the overall behavior of filtration criteria reflects predictable patterns. Electronic supplementary material The online version of this article (10.1186/s12885-018-4325-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mary A Wood
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA.,Portland VA Research Foundation, Portland, OR, USA
| | - Mayur Paralkar
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA.,Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mihir P Paralkar
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA.,Carnegie Mellon University, Pittsburgh, PA, USA
| | - Austin Nguyen
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA.,Oregon State University, Corvallis, OR, USA
| | - Adam J Struck
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA
| | - Kyle Ellrott
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Adam Margolin
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Abhinav Nellore
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA.,Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Reid F Thompson
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA. .,Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA. .,Department of Radiation Medicine, Oregon Health and Science University, Portland, OR, USA. .,VA Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
127
|
Orthopaedic Watercraft Injuries: Characterization of Mechanisms, Fractures, and Complications in 216 Injuries. J Orthop Trauma 2018; 32:e134-e138. [PMID: 29557939 DOI: 10.1097/bot.0000000000001111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To review the orthopaedic injuries from watercraft treated surgically at our institution and report the mechanisms, fractures, and complications encountered. DESIGN Retrospective case series. SETTING Level I trauma center. PATIENTS/PARTICIPANTS There were 216 fractures from watercraft in 146 patients. Average age was 33 years (range 4-78 years), there were 68% males (99/146), and 16% of the injuries occurred in children. INTERVENTION Operative fracture fixation. MAIN OUTCOME MEASUREMENTS After IRB approval, data were collected from January 1, 1998, to December 31, 2015, for patients including demographics, watercraft type, mechanism of injury, fracture pattern, infection, organisms, union, and amputation. Descriptive statistics were used. RESULTS There were 130 closed fractures (60%) and 86 open fractures (40%). There were 146 (67%) lower extremity injuries, 49 (23%) upper extremity injuries, and 21 (10%) pelvic injuries. The overall postoperative infection rate was 9% (20/216) and was commonly polymicrobial in nature. The postoperative infection rate in closed fractures was 4% (5/130) and the postoperative infection rate in open fractures was 17% (15/86). Open fractures also had a high proportion of nonunion (8%) and amputation (16%). CONCLUSIONS This is the largest reported series of orthopaedic injuries from watercraft. These injuries can be devastating in nature and difficult to manage, particularly when they are open (40%). There is a high rate of postoperative infection (17%), nonunion (8%), and amputation (16%) associated with open orthopaedic watercraft fractures. LEVEL OF EVIDENCE Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Collapse
|
128
|
Abstract
Hepcidin agonists are a new class of compounds that regulate blood iron levels, limit iron absorption, and could improve the treatment of hemochromatosis, β-thalassemia, polycythemia vera, and other disorders in which disrupted iron homeostasis causes or contributes to disease. Hepcidin agonists also have the potential to prevent severe complications of siderophilic infections in patients with iron overload or chronic liver disease. This review highlights the preclinical studies that support the development of hepcidin agonists for the treatment of these disorders.
Collapse
|
129
|
D’Souza C, Kumar BK, Kapinakadu S, Shetty R, Karunasagar I, Karunasagar I. PCR-based evidence showing the presence of Vibrio vulnificus in wound infection cases in Mangaluru, India. Int J Infect Dis 2018; 68:74-76. [DOI: 10.1016/j.ijid.2018.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/17/2022] Open
|
130
|
Subhan F, Shahzad R, Tauseef I, Haleem KS, Rehman AU, Mahmood S, Lee IJ. Isolation, identification, and pathological effects of beach sand bacterial extract on human skin keratinocytes in vitro. PeerJ 2018; 6:e4245. [PMID: 29441229 PMCID: PMC5807979 DOI: 10.7717/peerj.4245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/18/2017] [Indexed: 01/22/2023] Open
Abstract
Background Beaches are recreational spots for people. However, beach sand contains harmful microbes that affect human health, and there are no established methods for either sampling and identifying beach-borne pathogens or managing the quality of beach sand. Method This study was conducted with the aim of improving human safety at beaches and augmenting the quality of the beach experience. Beach sand was used as a resource to isolate bacteria due to its distinctive features and the biodiversity of the beach sand biota. A selected bacterial isolate termed FSRS was identified as Pseudomonas stutzeri using 16S rRNA sequencing and phylogenetic analysis, and the sequence was deposited in the NCBI GenBank database under the accession number MF599548. The isolated P. stutzeri bacterium was cultured in Luria-Bertani growth medium, and a crude extract was prepared using ethyl acetate to examine the potential pathogenic effect of P. stutzeri on human skin. A human skin keratinocyte cell line (HaCaT) was used to assess cell adhesion, cell viability, and cell proliferation using a morphological analysis and a WST-1 assay. Result The crude P. stutzeri extract inhibited cell adhesion and decreased cell viability in HaCaT cells. We concluded that the crude extract of P. stutzeri FSRS had a strong pathological effect on human skin cells. Discussion Beach visitors frequently get skin infections, but the exact cause of the infections is yet to be determined. The beach sand bacterium P. stutzeri may, therefore, be responsible for some of the dermatological problems experienced by people visiting the beach.
Collapse
Affiliation(s)
- Fazli Subhan
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Isfahan Tauseef
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | | | - Atta-Ur Rehman
- Department of Zoology, Hazara University, Mansehra, Pakistan
| | - Sajid Mahmood
- Department of Zoology, Hazara University, Mansehra, Pakistan
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.,Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
131
|
Lee SJ, Lee HJ, Jung YH, Kim JS, Choi SH, Han HJ. Melatonin inhibits apoptotic cell death induced by Vibrio vulnificus VvhA via melatonin receptor 2 coupling with NCF-1. Cell Death Dis 2018; 9:48. [PMID: 29352110 PMCID: PMC5833450 DOI: 10.1038/s41419-017-0083-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
Melatonin, an endogenous hormone molecule, has a variety of biological functions, but a functional role of melatonin in the infection of Gram-negative bacterium Vibrio vulnificus has yet to be described. In this study, we investigated the molecular mechanism of melatonin in the apoptosis of human intestinal epithelial (HCT116) cells induced by the hemolysin (VvhA) produced by V. vulnificus. Melatonin (1 μM) significantly inhibited apoptosis induced by the recombinant protein (r) VvhA, which had been inhibited by the knockdown of MT2. The rVvhA recruited caveolin-1, NCF-1, and Rac1 into lipid rafts to facilitate the production of ROS responsible for the phosphorylation of PKC and JNK. Interestingly, melatonin recruited NCF-1 into non-lipid rafts to prevent ROS production via MT2 coupling with Gαq. Melatonin inhibited the JNK-mediated phosphorylation of c-Jun responsible for Bax expression, the release of mitochondrial cytochrome c, and caspase-3/-9 activation during its promotion of rVvhA-induced apoptotic cell death. In addition, melatonin inhibited JNK-mediated phosphorylation of Bcl-2 responsible for the release of Beclin-1 and Atg5 expression during its promotion of rVvhA-induced autophagic cell death. These results demonstrate that melatonin signaling via MT2 triggers recruitment of NCF-1 into non-lipid rafts to block ROS production and JNK-mediated apoptotic and autophagic cell deaths induced by rVvhA in intestinal epithelial cells.
Collapse
Affiliation(s)
- Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan, 38610, South Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, South Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, South Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul, 08826, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
132
|
Harrington-Kandt R, Stylianou E, Eddowes LA, Lim PJ, Stockdale L, Pinpathomrat N, Bull N, Pasricha J, Ulaszewska M, Beglov Y, Vaulont S, Drakesmith H, McShane H. Hepcidin deficiency and iron deficiency do not alter tuberculosis susceptibility in a murine M.tb infection model. PLoS One 2018; 13:e0191038. [PMID: 29324800 PMCID: PMC5764373 DOI: 10.1371/journal.pone.0191038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/27/2017] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis (TB), caused by the macrophage-tropic pathogen Mycobacterium tuberculosis (M.tb) is a highly prevalent infectious disease. Since an immune correlate of protection or effective vaccine have yet to be found, continued research into host-pathogen interactions is important. Previous literature reports links between host iron status and disease outcome for many infections, including TB. For some extracellular bacteria, the iron regulatory hormone hepcidin is essential for protection against infection. Here, we investigated hepcidin (encoded by Hamp1) in the context of murine M.tb infection. Female C57BL/6 mice were infected with M.tb Erdman via aerosol. Hepatic expression of iron-responsive genes was measured by qRT-PCR and bacterial burden determined in organ homogenates. We found that hepatic Hamp1 mRNA levels decreased post-infection, and correlated with a marker of BMP/SMAD signalling pathways. Next, we tested the effect of Hamp1 deletion, and low iron diets, on M.tb infection. Hamp1 knockout mice did not have a significantly altered M.tb mycobacterial load in either the lungs or spleen. Up to 10 weeks of dietary iron restriction did not robustly affect disease outcome despite causing iron deficiency anaemia. Taken together, our data indicate that unlike with many other infections, hepcidin is decreased following M.tb infection, and show that hepcidin ablation does not influence M.tb growth in vivo. Furthermore, because even severe iron deficiency did not affect M.tb mycobacterial load, we suggest that the mechanisms M.tb uses to scavenge iron from the host must be extremely efficient, and may therefore represent potential targets for drugs and vaccines.
Collapse
Affiliation(s)
| | - Elena Stylianou
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Lucy A. Eddowes
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Pei Jin Lim
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Lisa Stockdale
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Naomi Bull
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Janet Pasricha
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Yulia Beglov
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sophie Vaulont
- Institut Cochin, INSERM 567, CNRS 8104, Université Paris 5, Paris, France
| | - Hal Drakesmith
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail: (HD); (HMcS)
| | - Helen McShane
- Jenner Institute, University of Oxford, Oxford, United Kingdom
- * E-mail: (HD); (HMcS)
| |
Collapse
|
133
|
Hashimoto T, Takaya S, Kutsuna S, Hayakawa K, Shiojiri D, Katanami Y, Yamamoto K, Takeshita N, Ohmagari N. A case report of Vibrio furnissii bacteremia and cellulitis in a malnourished patient without an apparent site of entry. J Infect Chemother 2018; 24:65-67. [PMID: 28964653 DOI: 10.1016/j.jiac.2017.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/17/2017] [Accepted: 08/28/2017] [Indexed: 11/27/2022]
Abstract
We herein report a case of Vibrio furnissii bacteremia with bilateral lower limb cellulitis. A 53-year-old Japanese man with a mood disorder presented to our hospital with fever and a complaint of an inability to walk. Two sets of blood cultures became positive for V. furnissii. The treatment regimen was modified to ceftazidime and doxycycline. The patient recovered without relapse. Despite thorough examinations, portal of entry of V. furnissii remained unclear. Although the bacteria was first misidentified as V. fluvialis by the phenotyping assay (API rapid ID 32E) and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry, it was later confirmed as V. furnissii by dnaJ gene sequencing.
Collapse
Affiliation(s)
| | - Saho Takaya
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Satoshi Kutsuna
- National Center for Global Health and Medicine, Tokyo, Japan.
| | - Kayoko Hayakawa
- National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Yuichi Katanami
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Kei Yamamoto
- National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Norio Ohmagari
- National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
134
|
Baker-Austin C, Oliver JD. Vibrio vulnificus: new insights into a deadly opportunistic pathogen. Environ Microbiol 2017; 20:423-430. [DOI: 10.1111/1462-2920.13955] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Craig Baker-Austin
- Weymouth Laboratory; Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth; Dorset DT4 8UB England
| | - James D. Oliver
- Department of Biology; University of North Carolina at Charlotte; Charlotte NC USA
- Duke University Marine Laboratory; Durham NC USA
| |
Collapse
|
135
|
Yang JH, Mok JS, Jung YJ, Lee KJ, Kwon JY, Park K, Moon SY, Kwon SJ, Ryu AR, Lee TS. Distribution and antimicrobial susceptibility of Vibrio species associated with zooplankton in coastal area of Korea. MARINE POLLUTION BULLETIN 2017; 125:39-44. [PMID: 28781188 DOI: 10.1016/j.marpolbul.2017.07.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/22/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
Vibrio parahaemolyticus and V. vulnificus are the most common pathogens causing seafood-borne illnesses in Korea. This study determines the abundance and antimicrobial resistance of pathogenic Vibrio species in seawater and zooplankton samples from the Geoje Island coast in Korea, which is an important area for coastal fisheries, the fishing industry, and tourism. The two Vibrio species were detected more in mesozooplankton samples than in seawater samples. V. parahaemolyticus isolates showed greater resistance than those of V. vulnificus for antimicrobials. Of V. parahaemolyticus isolates, 93.3% exhibited resistance to three or more antimicrobial agents. Conversely, more than 80% of V. vulnificus isolates showed susceptibility to all antimicrobials examined, with the exception of rifampicin. Our findings show that strong antimicrobial resistance of V. parahaemolyticus in the surveyed area was exposed to conventionally used antibiotics, therefore necessitating proper surveillance programs for the monitoring of antimicrobial resistance patterns in seawater bodies and aquatic animals.
Collapse
Affiliation(s)
- Ji Hye Yang
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Jong Soo Mok
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea.
| | - Yeoun Joong Jung
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Ka Jeong Lee
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Ji Young Kwon
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Kunbawui Park
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Seong Yong Moon
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Soon Jae Kwon
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - A Ra Ryu
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Tea Seek Lee
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| |
Collapse
|
136
|
Bonnin-Jusserand M, Copin S, Le Bris C, Brauge T, Gay M, Brisabois A, Grard T, Midelet-Bourdin G. Vibrio species involved in seafood-borne outbreaks (Vibrio cholerae, V. parahaemolyticus and V. vulnificus): Review of microbiological versus recent molecular detection methods in seafood products. Crit Rev Food Sci Nutr 2017; 59:597-610. [DOI: 10.1080/10408398.2017.1384715] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maryse Bonnin-Jusserand
- Univ. Littoral Côte d'Opale, convention ANSES, EA 7394 – ICV – Institut Charles Viollette, Boulogne-sur-Mer, France
- INRA, France
- Univ. Lille, Lille, France
- ISA, Lille, France
- Univ. Artois, Arras, France
| | - Stéphanie Copin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Cédric Le Bris
- Univ. Littoral Côte d'Opale, convention ANSES, EA 7394 – ICV – Institut Charles Viollette, Boulogne-sur-Mer, France
| | - Thomas Brauge
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Mélanie Gay
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Anne Brisabois
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Thierry Grard
- Univ. Littoral Côte d'Opale, convention ANSES, EA 7394 – ICV – Institut Charles Viollette, Boulogne-sur-Mer, France
| | - Graziella Midelet-Bourdin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| |
Collapse
|
137
|
Huang YT, Cheng JF, Liu YT, Mao YC, Wu MS, Liu PY. Genome-based analysis of virulence determinants of a Serratia marcescens strain from soft tissues following a snake bite. Future Microbiol 2017; 13:331-343. [PMID: 29105506 DOI: 10.2217/fmb-2017-0202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Serratia marcescens wound infection after snakebite is often associated with aggressive presentations. However, the virulence determinants remain understudied. MATERIALS & METHODS Whole-genome sequencing was performed on S. marcescens VGH107, an isolate from wound infection secondary to Trimeresurus mucrosquamatus bite. Comparative genomics approach coupled with multivirulent-locus sequencing typing was applied to systematically predict potential virulence factors. RESULTS Multivirulent-locus sequencing typing indicated VGH107 falls within the cluster of high pathogenic strains. Comparative analysis identified virulence genes unique in VGH107, including ecpD and ecpE genes for periplasmic chaperone-pilus subunit complex and cdiA and cdiB genes for contact-dependent growth inhibition system. CONCLUSION The data established here provide foundation for further research regarding the virulence and resistance of S. marcescens.
Collapse
Affiliation(s)
- Yao-Ting Huang
- Department of Computer Science & Information Engineering, National Chung Cheng University, Chia-Yi, Taiwan
| | - Jan-Fang Cheng
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Yi-Ting Liu
- Department of Computer Science & Information Engineering, National Chung Cheng University, Chia-Yi, Taiwan
| | - Yan-Chiao Mao
- Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Meng-San Wu
- Division of Infection & Immunity, University College London, London, UK
| | - Po-Yu Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
138
|
Serratore P, Zavatta E, Fiocchi E, Serafini E, Serraino A, Giacometti F, Bignami G. Preliminary study on the antimicrobial susceptibility pattern related to the genotype of Vibrio vulnificus strains isolated in the north-western Adriatic Sea coastal area. Ital J Food Saf 2017; 6:6843. [PMID: 29564231 PMCID: PMC5850071 DOI: 10.4081/ijfs.2017.6843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 01/22/2023] Open
Abstract
V. vulnificus is a Gram-negative bacterium, commonly found in estuarine and coastal habitats, that can infect humans through seafood consumption or wound exposure. This study represents the first attempt to correlate the genotype of Vibrio vulnificus strains isolated in the north-western Adriatic Sea coastal area, with their antimicrobial susceptibility patterns. On the whole, 40 V. vulnificus strains, isolated from shellfish (n=20), different coastal water bodies (n=19), and the blood of a Carretta carretta turtle (n=1), were utilized. All strains were positive for the species-specific genes vvhA and hsp, with high variability for other markers: 55% (22 out of 40) resulted of the environmental (E) genotype (vcgE, 16S rRNA type A, CPS2 or CPS0), 10% (4 out of 40) of the clinical (C) genotype (vcgC, 16S rRNA type B, CPS1), and 35% (14 out of 40) of the mixed (M) genotype, possessing both E and C markers. The antimicrobial susceptibility was assayed by the diffusion method on agar, according to the Clinical Laboratory Standards Institute (CLSI), utilizing the following commercial disks (Oxoid): ampicillin (AMP), ampicillin- sulbactam (SAM), piperacillin (PRL), cefazolin (KZ), cefotaxime(CTX), ceftazidime (CAZ), imipenem (IPM), meropenem (MEM), amikacin (AK), gentamicin(CN), tetracycline(TE), ciprofloxacin (CIP), levofloxacin (LEV), trimethoprim-sulfamethoxazole (SXT), and chloramphenicol (C). 75% of the strains, (n=30) including all C strains, was sensitive to all the tested antibiotics, whereas E strains showed intermediate sensitivity to AK (2 strains), CIP and CAZ (1 strain), TE (1 strain) and resistance to KZ (1 strain), and 4 M strains showed I to AK.
Collapse
Affiliation(s)
- Patrizia Serratore
- Department of Veterinary Medical Science, Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Emanuele Zavatta
- Department of Veterinary Medical Science, Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Eleonora Fiocchi
- Department of Veterinary Medical Science, Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Emanuele Serafini
- Department of Veterinary Medical Science, Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Science, Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Federica Giacometti
- Department of Veterinary Medical Science, Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giorgia Bignami
- Department of Veterinary Medical Science, Alma Mater Studiorum- University of Bologna, Bologna, Italy
| |
Collapse
|
139
|
Antimicrobial peptide-loaded gold nanoparticle-DNA aptamer conjugates as highly effective antibacterial therapeutics against Vibrio vulnificus. Sci Rep 2017; 7:13572. [PMID: 29051620 PMCID: PMC5648795 DOI: 10.1038/s41598-017-14127-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022] Open
Abstract
Vibrio vulnificus causes fatal infections in humans, and antibiotics are commonly used in treatment regimens against V. vulnificus infection. However, the therapeutic effects of antibiotics are limited by multidrug resistance. In this study, we demonstrated that an antimicrobial peptide (AMP), HPA3PHis, loaded onto a gold nanoparticle-DNA aptamer (AuNP-Apt) conjugate (AuNP-Apt-HPA3PHis) is an effective therapeutic tool against V. vulnificus infection in vivo in mice. HPA3PHis induced bacterial cell death through the disruption of membrane integrity of V. vulnificus. The introduction of AuNP-Apt-HPA3PHis into V. vulnificus-infected HeLa cells dramatically reduced intracellular V. vulnificus by 90%, leading to an increase in the viability of the infected cells. Moreover, when V. vulnificus-infected mice were intravenously injected with AuNP-Apt-HPA3PHis, a complete inhibition of V. vulnificus colonization was observed in the mouse organs, leading to a 100% survival rate among the treated mice, whereas all the control mice died within 40 hours of being infected. Therefore, this study demonstrated the potential of an AMP delivered by AuNP-Apt as an effective and rapid treatment option against infection caused by a major pathogen in humans and aquatic animals.
Collapse
|
140
|
Zhang C, Wang Z, Zhang D, Zhou J, Lu C, Su X, Ding D. Proteomics and 1H NMR-based metabolomics analysis of pathogenic Vibrio vulnificus aquacultures isolated from sewage drains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23704-23713. [PMID: 28864971 DOI: 10.1007/s11356-017-0007-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Vibrio bacteria live in both marine and freshwater habitats and are associated with aquatic animals. Vibrio vulnificus is a pathogenic bacterium that infects people and livestock. It is usually found in offshore waters or within fish and shellfish. This study presents a comparative proteomic analysis of the outer membrane protein (OMP) changes in V. vulnificus proteins after stimulation with sewage from sewage drains. Using two-dimensional electrophoresis followed by MALDI-TOF MS/MS, 32 protein spots with significant differences in abundance were identified and characterized. These identified proteins were found to be involved in various functional categories, including catalysis, transport, membrane proteins progresses, receptor activity, energy metabolism, cytokine activity, and protein metabolism. The mRNA expression levels of 12 differential proteins were further assessed by qRT-PCR. Seven genes including carboxypeptidase, hemoglobin receptor, succinate dehydrogenase iron-sulfur subunit, ATP synthase subunit alpha, thioredoxin, succinyl-CoA synthetase subunit, and alanine dehydrogenase were downregulated upon stimulation, whereas the protein expression levels HupA receptor, type I secretion outer membrane protein, glutamine synthetase, superoxide dismutase, OmpU, and VuuA were upregulated. 1H NMR spectra showed 18 dysregulated metabolites from V. vulnificus after the sewage stimulation and the pathogenicity was enhanced after that.
Collapse
Affiliation(s)
- Chundan Zhang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Zhonghua Wang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Dijun Zhang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jun Zhou
- School of Marine Science, Ningbo University, Ningbo, China
| | - Chenyang Lu
- School of Marine Science, Ningbo University, Ningbo, China
| | - Xiurong Su
- School of Marine Science, Ningbo University, Ningbo, China.
| | - Dewen Ding
- School of Marine Science, Ningbo University, Ningbo, China.
| |
Collapse
|
141
|
From Sea to Bloodstream: Vibrio vulnificus Sepsis. Am J Med 2017; 130:1167-1169. [PMID: 28693913 DOI: 10.1016/j.amjmed.2017.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022]
|
142
|
Bhattacharyya RP, Flores EJ, Azar MM. Case 30-2017. A 65-Year-Old Woman with Altered Mental Status, Bacteremia, and Acute Liver Failure. N Engl J Med 2017; 377:1274-1282. [PMID: 28953442 DOI: 10.1056/nejmcpc1706100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Roby P Bhattacharyya
- From the Department of Medicine, Division of Infectious Disease (R.P.B.), and the Departments of Radiology (E.J.F.) and Pathology (M.M.A.), Massachusetts General Hospital, and the Departments of Medicine (R.P.B.), Radiology (E.J.F.), and Pathology (M.M.A.), Harvard Medical School - both in Boston
| | - Efren J Flores
- From the Department of Medicine, Division of Infectious Disease (R.P.B.), and the Departments of Radiology (E.J.F.) and Pathology (M.M.A.), Massachusetts General Hospital, and the Departments of Medicine (R.P.B.), Radiology (E.J.F.), and Pathology (M.M.A.), Harvard Medical School - both in Boston
| | - Marwan M Azar
- From the Department of Medicine, Division of Infectious Disease (R.P.B.), and the Departments of Radiology (E.J.F.) and Pathology (M.M.A.), Massachusetts General Hospital, and the Departments of Medicine (R.P.B.), Radiology (E.J.F.), and Pathology (M.M.A.), Harvard Medical School - both in Boston
| |
Collapse
|
143
|
Jang KK, Lee ZW, Kim B, Jung YH, Han HJ, Kim MH, Kim BS, Choi SH. Identification and characterization of Vibrio vulnificus plpA encoding a phospholipase A 2 essential for pathogenesis. J Biol Chem 2017; 292:17129-17143. [PMID: 28855258 DOI: 10.1074/jbc.m117.791657] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/28/2017] [Indexed: 12/23/2022] Open
Abstract
The marine bacterium Vibrio vulnificus causes food-borne diseases, which may lead to life-threatening septicemia in some individuals. Therefore, identifying virulence factors in V. vulnificus is of high priority. We performed a transcriptome analysis on V. vulnificus after infection of human intestinal HT29-methotrexate cells and found induction of plpA, encoding a putative phospholipase, VvPlpA. Bioinformatics, biochemical, and genetic analyses demonstrated that VvPlpA is a phospholipase A2 secreted in a type II secretion system-dependent manner. Compared with the wild type, the plpA mutant exhibited reduced mortality, systemic infection, and inflammation in mice as well as low cytotoxicity toward the human epithelial INT-407 cells. Moreover, plpA mutation attenuated the release of actin and cytosolic cyclophilin A from INT-407 cells, indicating that VvPlpA is a virulence factor essential for causing lysis and necrotic death of the epithelial cells. plpA transcription was growth phase-dependent, reaching maximum levels during the early stationary phase. Also, transcription factor HlyU and cAMP receptor protein (CRP) mediate additive activation and host-dependent induction of plpA Molecular biological analyses revealed that plpA expression is controlled via the promoter, P plpA , and that HlyU and CRP directly bind to P plpA upstream sequences. Taken together, this study demonstrated that VvPlpA is a type II secretion system-dependent secretory phospholipase A2 regulated by HlyU and CRP and is essential for the pathogenicity of V. vulnificus.
Collapse
Affiliation(s)
- Kyung Ku Jang
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and
| | - Zee-Won Lee
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and
| | - Bityeoul Kim
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and
| | - Young Hyun Jung
- the Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Medicine, BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 08826, South Korea and
| | - Ho Jae Han
- the Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Medicine, BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 08826, South Korea and
| | - Myung Hee Kim
- the Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Byoung Sik Kim
- the Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Sang Ho Choi
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and
| |
Collapse
|
144
|
Ho YC, Hung FR, Weng CH, Li WT, Chuang TH, Liu TL, Lin CY, Lo CJ, Chen CL, Chen JW, Hashimoto M, Hor LI. Lrp, a global regulator, regulates the virulence of Vibrio vulnificus. J Biomed Sci 2017; 24:54. [PMID: 28800764 PMCID: PMC5554404 DOI: 10.1186/s12929-017-0361-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Background An attenuated mutant (designated NY303) of Vibrio vulnificus, which causes serious wound infection and septicemia in humans, was isolated fortuitously from a clinical strain YJ016. This mutant was defective in cytotoxicity, migration on soft agar and virulence in the mouse. The purpose of this study was to map the mutation in this attenuated mutant and further explore how the gene thus identified is involved in virulence. Methods The whole genome sequence of mutant NY303 determined by next-generation sequencing was compared with that of strain YJ016 to map the mutations. By isolating and characterizing the specific gene-knockout mutants, the gene associated with the phenotype of mutant NY303 was identified. This gene encodes a global regulator, Lrp. A mutant, YH01, deficient in Lrp was isolated and examined in vitro, in vivo and ex vivo to find the affected virulence mechanisms. The target genes of Lrp were further identified by comparing the transcriptomes, which were determined by RNA-seq, of strain YJ016 and mutant YH01. The promoters bound by Lrp were identified by genome footprinting-sequencing, and those related with virulence were further examined by electrophoretic mobility shift assay. Results A mutation in lrp was shown to be associated with the reduced cytotoxicity, chemotaxis and virulence of mutant NY303. Mutant YH01 exhibited a phenotype resembling that of mutant NY303, and was defective in colonization in the mouse and growth in mouse serum, but not the antiphagocytosis ability. 596 and 95 genes were down- and up-regulated, respectively, in mutant YH01. Many of the genes involved in secretion of the MARTX cytotoxin, chemotaxis and iron-acquisition were down-regulated in mutant YH01. The lrp gene, which was shown to be negatively autoregulated, and 7 down-regulated virulence-associated genes were bound by Lrp in their promoters. A 14-bp consensus sequence, mkCrTTkwAyTsTG, putatively recognized by Lrp was identified in the promoters of these genes. Conclusions Lrp is a global regulator involved in regulation of cytotoxicity, chemotaxis and iron-acquisition in V. vulnificus. Down-regulation of many of the genes associated with these properties may be responsible, at least partly, for loss of virulence in mutant NY303. Electronic supplementary material The online version of this article (doi:10.1186/s12929-017-0361-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Chi Ho
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Feng-Ru Hung
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Chao-Hui Weng
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Wei-Ting Li
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Tzu-Hung Chuang
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tsung-Lin Liu
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ching-Yuan Lin
- Department of Physics and Graduate Institute of Biophysics, National Central University, Taoyuan, 32001, Taiwan
| | - Chien-Jung Lo
- Department of Physics and Graduate Institute of Biophysics, National Central University, Taoyuan, 32001, Taiwan
| | - Chun-Liang Chen
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Jen-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan.,Center of Infectious Disease and Signal Transduction, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Masayuki Hashimoto
- Center of Infectious Disease and Signal Transduction, National Cheng Kung University, Tainan, 70101, Taiwan.,Department of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Lien-I Hor
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
145
|
Murciano C, Lee CT, Fernández-Bravo A, Hsieh TH, Fouz B, Hor LI, Amaro C. MARTX Toxin in the Zoonotic Serovar of Vibrio vulnificus Triggers an Early Cytokine Storm in Mice. Front Cell Infect Microbiol 2017; 7:332. [PMID: 28775962 PMCID: PMC5517466 DOI: 10.3389/fcimb.2017.00332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022] Open
Abstract
Vibrio vulnificus biotype 2-serovar E is a zoonotic clonal complex that can cause death by sepsis in humans and fish. Unlike other biotypes, Bt2 produces a unique type of MARTXVv (Multifunctional-Autoprocessive-Repeats-in-Toxin; RtxA13), which is encoded by a gene duplicated in the pVvBt2 plasmid and chromosome II. In this work, we analyzed the activity of this toxin and its role in human sepsis by performing in vitro, ex vivo, and in vivo assays. First, we demonstrated that the ACD domain, present exclusively in this toxin variant, effectively has an actin-cross-linking activity. Second, we determined that the whole toxin caused death of human endotheliocytes and monocytes by lysis and apoptosis, respectively. Finally, we tested the hypothesis that RtxA13 contributes to human death caused by this zoonotic serovar by triggering an early cytokine storm in blood. To this end, we used a Bt2-SerE strain (R99) together with its rtxA13 deficient mutant, and a Bt1 strain (YJ016) producing RtxA11 (the most studied MARTXVv) together with its rtxA11 deficient mutant, as controls. Our results showed that RtxA13 was essential for virulence, as R99ΔΔrtxA13 was completely avirulent in our murine model of infection, and that R99, but not strain YJ016, induced an early, strong and dysregulated immune response involving the up-regulation of a high number of genes. This dysregulated immune response was directly linked to RtxA13. Based on these results and those obtained ex vivo (human blood), we propose a model of infection for the zoonotic serovar of V. vulnificus, in which RtxA13 would act as a sepsis-inducing toxin.
Collapse
Affiliation(s)
- Celia Murciano
- Departamento de Microbiología y Ecología & Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de ValènciaValencia, Spain
| | - Chung-Te Lee
- Department of Microbiology & Immunology & College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Ana Fernández-Bravo
- Departamento de Microbiología y Ecología & Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de ValènciaValencia, Spain
| | - Tsung-Han Hsieh
- Department of Microbiology & Immunology & College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Belén Fouz
- Departamento de Microbiología y Ecología & Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de ValènciaValencia, Spain
| | - Lien-I Hor
- Department of Microbiology & Immunology & College of Medicine, National Cheng Kung UniversityTainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Carmen Amaro
- Departamento de Microbiología y Ecología & Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de ValènciaValencia, Spain
| |
Collapse
|
146
|
Gavin HE, Satchell KJF. Surface hypothermia predicts murine mortality in the intragastric Vibrio vulnificus infection model. BMC Microbiol 2017; 17:136. [PMID: 28629317 PMCID: PMC5477130 DOI: 10.1186/s12866-017-1045-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/09/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The Gram-negative bacterium Vibrio vulnificus can cause severe disease in humans who consume undercooked, contaminated seafood. To study food-borne V. vulnificus disease in the laboratory, mouse virulence studies predominantly use death as the primary experimental endpoint because behaviorally based moribund status does not consistently predict lethality. This study assessed ventral surface temperature (VST) and its association with mouse survival during V. vulnificus virulence studies as an efficacious, humane alternative. METHODS VST of mice intragastrically inoculated with V. vulnificus was measured every 2-h for 24 h and data for minimal VST analyzed for prediction of lethal outcome. RESULTS In contrast to the relatively stable VST of mock-infected control animals, mice infected with V. vulnificus exhibited hypothermia with minima occurring 8 to 12 h post-inoculation. The minimum VST of mice that proceeded to death was significantly lower than that of surviving mice. VST ≤ 23.5 °C was predictive of subsequent death with a sensitivity of 68% and specificity of 95%. CONCLUSIONS Use of VST ≤ 23.5 °C as an experimental endpoint during V. vulnificus infection has potential to reduce suffering of nearly 70% of mice for a mean of 10 h per mouse, without compromising experimental efficacy. Temperature cutoff of 23.5 °C exhibited 93% positive and 77% negative predictive value. For future V. vulnificus virulence studies requiring only binary comparison (e.g., LD50 assays), we find that VST can be applied as a humane endpoint. However, use of VST is not recommended when detailed survival kinetics are desired.
Collapse
Affiliation(s)
- Hannah E. Gavin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Ward 6-205, Chicago, IL 60611 USA
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Ward 6-205, Chicago, IL 60611 USA
| |
Collapse
|
147
|
Heng SP, Letchumanan V, Deng CY, Ab Mutalib NS, Khan TM, Chuah LH, Chan KG, Goh BH, Pusparajah P, Lee LH. Vibrio vulnificus: An Environmental and Clinical Burden. Front Microbiol 2017; 8:997. [PMID: 28620366 PMCID: PMC5449762 DOI: 10.3389/fmicb.2017.00997] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
Vibrio vulnificus is a Gram negative, rod shaped bacterium that belongs to the family Vibrionaceae. It is a deadly, opportunistic human pathogen which is responsible for the majority of seafood-associated deaths worldwide. V. vulnificus infection can be fatal as it may cause severe wound infections potentially requiring amputation or lead to sepsis in susceptible individuals. Treatment is increasingly challenging as V. vulnificus has begun to develop resistance against certain antibiotics due to their indiscriminate use. This article aims to provide insight into the antibiotic resistance of V. vulnificus in different parts of the world as well as an overall review of its clinical manifestations, treatment, and prevention. Understanding the organism's antibiotic resistance profile is vital in order to select appropriate treatment and initiate appropriate prevention measures to treat and control V. vulnificus infections, which should eventually help lower the mortality rate associated with this pathogen worldwide.
Collapse
Affiliation(s)
- Sing-Peng Heng
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Vengadesh Letchumanan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Chuan-Yan Deng
- Zhanjiang Evergreen South Ocean Science and Technology CorporationGuangdong, China
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Tahir M. Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Department of Pharmacy, Absyn University PeshawarPeshawar, Pakistan
| | - Lay-Hong Chuah
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Priyia Pusparajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
148
|
Hendren N, Sukumar S, Glazer CS. Vibrio vulnificus septic shock due to a contaminated tattoo. BMJ Case Rep 2017; 2017:bcr-2017-220199. [PMID: 28551603 DOI: 10.1136/bcr-2017-220199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a case of Vibrio vulnificus septic shock and cellulitis in a patient with chronic liver disease that occurred after obtaining a leg tattoo with subsequent seawater exposure in the Gulf of Mexico. Initial suspicion for V. vulnificus was high and he was started on empiric doxycycline and ceftriaxone at admission. Blood and wound cultures grew oxidase positive and comma-shaped Gram-negative rods ultimately confirmed to be V. vulnificus. Despite aggressive initial treatment, the patient developed septic shock and died. This case highlights the association of chronic liver disease and high mortality associated with infections of V. vulnificus Health providers should remain vigilant for V. vulnificus infections in patients with chronic liver disease and raw oyster ingestion or seawater exposure.
Collapse
|
149
|
Karimi K, Odhav A, Kollipara R, Fike J, Stanford C, Hall JC. Acute Cutaneous Necrosis: A Guide to Early Diagnosis and Treatment. J Cutan Med Surg 2017; 21:425-437. [DOI: 10.1177/1203475417708164] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acute cutaneous necrosis is characterised by a wide range of aetiologies and is associated with significant morbidity and mortality, warranting complex considerations in management. Early recognition is imperative in diagnosis and management of sudden gangrenous changes in the skin. This review discusses major causes of cutaneous necrosis, examines the need for early assessment, and integrates techniques related to diagnosis and management. The literature, available via PubMed, on acute cutaneous necrotic syndromes was reviewed to summarise causes and synthesise appropriate treatment strategies to create a clinician’s guide in the early diagnosis and management of acute cutaneous necrosis. Highlighted in this article are key features associated with common causes of acute cutaneous necrosis: warfarin-induced skin necrosis, heparin-induced skin necrosis, calciphylaxis, pyoderma gangrenosum, embolic phenomena, purpura fulminans, brown recluse spider bite, necrotising fasciitis, ecthyma gangrenosum, antiphospholipid syndrome, hypergammaglobulinemia, and cryoglobulinemia. This review serves to increase recognition of these serious pathologies and complications, allowing for prompt diagnosis and swift limb- or life-saving management.
Collapse
Affiliation(s)
- Karen Karimi
- Texas Tech University Health Sciences Center, Department of Dermatology, Lubbock, TX, USA
| | - Ashika Odhav
- National Jewish Health, Department of Allergy and Immunology, Denver, CO, USA
| | - Ramya Kollipara
- Texas Tech University Health Sciences Center, Department of Dermatology, Lubbock, TX, USA
| | - Jesse Fike
- Texas Tech University Health Sciences Center- El Paso, Paul L. Foster School of Medicine, El Paso, TX, USA
| | - Carol Stanford
- University of Missouri Kansas City, Department of Internal Medicine, Kansas City, MO, USA
| | - John C. Hall
- University of Missouri Kansas City, Department of Internal Medicine, Kansas City, MO, USA
| |
Collapse
|
150
|
Park N, Song S, Choi G, Jang KK, Jo I, Choi SH, Ha NC. Crystal Structure of the Regulatory Domain of AphB from Vibrio vulnificus, a Virulence Gene Regulator. Mol Cells 2017; 40:299-306. [PMID: 28427249 PMCID: PMC5424276 DOI: 10.14348/molcells.2017.0015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 11/27/2022] Open
Abstract
The transcriptional activator AphB has been implicated in acid resistance and pathogenesis in the food borne pathogens Vibrio vulnificus and Vibrio cholerae. To date, the full-length AphB crystal structure of V. cholerae has been determined and characterized by a tetrameric assembly of AphB consisting of a DNA binding domain and a regulatory domain (RD). Although acidic pH and low oxygen tension might be involved in the activation of AphB, it remains unknown which ligand or stimulus activates AphB at the molecular level. In this study, we determine the crystal structure of the AphB RD from V. vulnificus under aerobic conditions without modification at the conserved cysteine residue of the RD, even in the presence of the oxidizing agent cumene hydroperoxide. A cysteine to serine amino acid residue mutant RD protein further confirmed that the cysteine residue is not involved in sensing oxidative stress in vitro. Interestingly, an unidentified small molecule was observed in the inter-subdomain cavity in the RD when the crystal was incubated with cumene hydroperoxide molecules, suggesting a new ligand-binding site. In addition, we confirmed the role of AphB in acid tolerance by observing an aphB-dependent increase in cadC transcript level when V. vulnificus was exposed to acidic pH. Our study contributes to the understanding of the AphB molecular mechanism in the process of recognizing the host environment.
Collapse
Affiliation(s)
- Nohra Park
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Saemee Song
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Garam Choi
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul 08826,
Korea
| | - Kyung Ku Jang
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul 08826,
Korea
| | - Inseong Jo
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Sang Ho Choi
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul 08826,
Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|