101
|
Du Y, Chen J, Shen L, Wang B. TRP channels in inflammatory bowel disease: potential therapeutic targets. Biochem Pharmacol 2022; 203:115195. [DOI: 10.1016/j.bcp.2022.115195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022]
|
102
|
Asaoka M, Kabata H, Fukunaga K. Heterogeneity of ILC2s in the Lungs. Front Immunol 2022; 13:918458. [PMID: 35757740 PMCID: PMC9222554 DOI: 10.3389/fimmu.2022.918458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are GATA3-expressing type 2 cytokine-producing innate lymphocytes that are present in various organs throughout the body. Basically, ILC2s are tissue-resident cells associated with a variety of pathological conditions in each tissue. Differences in the tissue-specific properties of ILC2s are formed by the post-natal tissue environment; however, diversity exists among ILC2s within each localized tissue due to developmental timing and activation. Diversity between steady-state and activated ILC2s in mice and humans has been gradually clarified with the advancement of single-cell RNA-seq technology. Another layer of complexity is that ILC2s can acquire other ILC-like functions, depending on their tissue environment. Further, ILC2s with immunological memory and exhausted ILC2s are both present in tissues, and the nature of ILC2s varies with senescence. To clarify how ILC2s affect human diseases, research should be conducted with a comprehensive understanding of ILC2s, taking into consideration the diversity of ILC2s rather than a snapshot of a single section. In this review, we summarize the current understanding of the heterogeneity of ILC2s in the lungs and highlight a novel field of immunology.
Collapse
Affiliation(s)
- Masato Asaoka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
103
|
Klimov V, Cherevko N, Klimov A, Novikov P. Neuronal-Immune Cell Units in Allergic Inflammation in the Nose. Int J Mol Sci 2022; 23:6938. [PMID: 35805946 PMCID: PMC9266453 DOI: 10.3390/ijms23136938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Immune cells and immune-derived molecules, endocrine glands and hormones, the nervous system and neuro molecules form the combined tridirectional neuroimmune network, which plays a significant role in the communication pathways and regulation at the level of the whole organism and local levels, in both healthy persons and patients with allergic rhinitis based on an allergic inflammatory process. This review focuses on a new research paradigm devoted to neuronal-immune cell units, which are involved in allergic inflammation in the nose and neuroimmune control of the nasal mucociliary immunologically active epithelial barrier. The categorization, cellular sources of neurotransmitters and neuropeptides, and their prevalent profiles in constituting allergen tolerance maintenance or its breakdown are discussed. Novel data on the functional structure of the nasal epithelium based on a transcriptomic technology, single-cell RNA-sequencing results, are considered in terms of neuroimmune regulation. Notably, the research of pathogenesis and therapy for atopic allergic diseases, including recently identified local forms, from the viewpoint of the tridirectional interaction of the neuroimmune network and discrete neuronal-immune cell units is at the cutting-edge.
Collapse
Affiliation(s)
- Vladimir Klimov
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
| | - Natalia Cherevko
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
| | - Andrew Klimov
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
| | - Pavel Novikov
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
- Medical Association “Center for Family Medicine”, 634050 Tomsk, Russia
| |
Collapse
|
104
|
Misawa T, Wagner M, Koyasu S. ILC2s and Adipose Tissue Homeostasis: Progress to Date and the Road Ahead. Front Immunol 2022; 13:876029. [PMID: 35784368 PMCID: PMC9243262 DOI: 10.3389/fimmu.2022.876029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) were initially identified as a new type of lymphocytes that produce vigorous amounts of type 2 cytokines in adipose tissue. Subsequent studies revealed that ILC2s are present not only in adipose tissue but also in various other tissues such as lung and skin. ILC2s are generally recognized as tissue-resident immune cells that regulate tissue homeostasis. ILC2s express receptors for various humoral factors and thus can change their functions or distribution depending on the environment and circumstances. In this review, we will outline our recent understanding of ILC2 biology and discuss future directions for ILC2 research, particularly in adipose tissue and metabolic homeostasis.
Collapse
Affiliation(s)
- Takuma Misawa
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Marek Wagner
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- *Correspondence: Shigeo Koyasu,
| |
Collapse
|
105
|
Zhang N, Xu J, Jiang C, Lu S. Neuro-Immune Regulation in Inflammation and Airway Remodeling of Allergic Asthma. Front Immunol 2022; 13:894047. [PMID: 35784284 PMCID: PMC9245431 DOI: 10.3389/fimmu.2022.894047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Allergic asthma is a common chronic inflammation of the airways and causes airway remodeling eventually. For a long time, investigators have been focusing on the immunological mechanism of asthma. However, in recent years, the role of neuro-regulation in the occurrence of asthma has gradually attracted investigators’ attention. In this review, we firstly describe neuro-immune regulation in inflammation of allergic asthma from two aspects: innate immunity and adaptive immunity. Secondly, we introduce neuro-immune regulation in airway remodeling of asthma. Finally, we prospect the role of pulmonary neuroendocrine cells in the development of asthma. In general, the amount of researches is limited. Further researches on the neural regulation during the occurrence of asthma will help us clarify the mechanism of asthma more comprehensively and find more effective ways to prevent and control asthma.
Collapse
Affiliation(s)
- Ning Zhang
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jing Xu
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Congshan Jiang
- National Regional Children’s Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi’an Key Laboratory of Children’s Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Congshan Jiang, ; Shemin Lu,
| | - Shemin Lu
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Regional Children’s Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi’an Key Laboratory of Children’s Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Congshan Jiang, ; Shemin Lu,
| |
Collapse
|
106
|
Inclan-Rico JM, Rossi HL, Herbert DR. "Every cell is an immune cell; contributions of non-hematopoietic cells to anti-helminth immunity". Mucosal Immunol 2022; 15:1199-1211. [PMID: 35538230 PMCID: PMC9646929 DOI: 10.1038/s41385-022-00518-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023]
Abstract
Helminths are remarkably successful parasites that can invade various mammalian hosts and establish chronic infections that can go unnoticed for years despite causing severe tissue damage. To complete their life cycles, helminths migrate through multiple barrier sites that are densely populated by a complex array of hematopoietic and non-hematopoietic cells. While it is clear that type 2 cytokine responses elicited by immune cells promote worm clearance and tissue healing, the actions of non-hematopoietic cells are increasingly recognized as initiators, effectors and regulators of anti-helminth immunity. This review will highlight the collective actions of specialized epithelial cells, stromal niches, stem, muscle and neuroendocrine cells as well as peripheral neurons in the detection and elimination of helminths at mucosal sites. Studies dissecting the interactions between immune and non-hematopoietic cells will truly provide a better understanding of the mechanisms that ensure homeostasis in the context of helminth infections.
Collapse
Affiliation(s)
- Juan M Inclan-Rico
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather L Rossi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
107
|
Yano H, Artis D. Neuronal regulation of innate lymphoid cell responses. Curr Opin Immunol 2022; 76:102205. [DOI: 10.1016/j.coi.2022.102205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
108
|
Sunaga S, Tsunoda J, Teratani T, Mikami Y, Kanai T. Heterogeneity of ILC2s in the Intestine; Homeostasis and Pathology. Front Immunol 2022; 13:867351. [PMID: 35707544 PMCID: PMC9190760 DOI: 10.3389/fimmu.2022.867351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) were identified in 2010 as a novel lymphocyte subset lacking antigen receptors, such as T-cell or B-cell receptors. ILC2s induce local immune responses characterized by producing type 2 cytokines and play essential roles for maintaining tissue homeostasis. ILC2s are distributed across various organs, including the intestine where immune cells are continuously exposed to external antigens. Followed by luminal antigen stimulation, intestinal epithelial cells produce alarmins, such as IL-25, IL-33, and thymic stromal lymphopoietin, and activate ILC2s to expand and produce cytokines. In the context of parasite infection, the tuft cell lining in the epithelium has been revealed as a dominant source of intestinal IL-25 and possesses the capability to regulate ILC2 homeostasis. Neuronal systems also regulate ILC2s through neuropeptides and neurotransmitters, and interact with ILC2s bidirectionally, a process termed “neuro-immune crosstalk”. Activated ILC2s produce type 2 cytokines, which contribute to epithelial barrier function, clearance of luminal antigens and tissue repair, while ILC2s are also involved in chronic inflammation and tissue fibrosis. Recent studies have shed light on the contribution of ILC2s to inflammatory bowel diseases, mainly comprising ulcerative colitis and Crohn’s disease, as defined by chronic immune activation and inflammation. Modern single-cell analysis techniques provide a tissue-specific picture of ILC2s and their roles in regulating homeostasis in each organ. Particularly, single-cell analysis helps our understanding of the uniqueness and commonness of ILC2s across tissues and opens the novel research area of ILC2 heterogeneity. ILC2s are classified into different phenotypes depending on tissue and phase of inflammation, mainly inflammatory and natural ILC2 cells. ILC2s can also switch phenotype to ILC1- or ILC3-like subsets. Hence, recent studies have revealed the heterogeneity and plasticity of ILC2, which indicate dynamicity of inflammation and the immune system. In this review, we describe the regulatory mechanisms, function, and pathological roles of ILC2s in the intestine.
Collapse
Affiliation(s)
- Shogo Sunaga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Junya Tsunoda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- *Correspondence: Yohei Mikami, ; Takanori Kanai,
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- *Correspondence: Yohei Mikami, ; Takanori Kanai,
| |
Collapse
|
109
|
Finding a Niche: Tissue Immunity and Innate Lymphoid Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:57-73. [PMID: 35567741 DOI: 10.1007/978-981-16-8387-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The immune system plays essential roles in maintaining homeostasis in mammalian tissues that extend beyond pathogen clearance and host defense. Recently, several homeostatic circuits comprised of paired hematopoietic and non-hematopoietic cells have been described to influence tissue composition and turnover in development and after perturbation. Crucial circuit components include innate lymphoid cells (ILCs), which seed developing organs and shape their resident tissues by influencing progenitor fate decisions, microbial interactions, and neuronal activity. As they develop in tissues, ILCs undergo transcriptional imprinting that encodes receptivity to corresponding signals derived from their resident tissues but ILCs can also shift their transcriptional profiles to adapt to specific types of tissue perturbation. Thus, ILC functions are embedded within their resident tissues, where they constitute key regulators of homeostatic responses that can lead to both beneficial and pathogenic outcomes. Here, we examine the interactions between ILCs and various non-hematopoietic tissue cells, and discuss how specific ILC-tissue cell circuits form essential elements of tissue immunity.
Collapse
|
110
|
Crosstalk between ILC2s and Th2 CD4+ T Cells in Lung Disease. J Immunol Res 2022; 2022:8871037. [PMID: 35592688 PMCID: PMC9113865 DOI: 10.1155/2022/8871037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/30/2022] [Accepted: 04/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cytokine secretion, such as interleukin-4 (IL-4), IL-5, IL-9, IL-13, and amphiregulin (Areg), by type 2 innate lymphoid cells (ILC2s) is indispensable for homeostasis, remodeling/repairing tissue structure, inflammation, and tumor immunity. Often viewed as the innate cell surrogate of T helper type 2 (Th2) cells, ILC2s not only secrete the same type 2 cytokines, but are also inextricably related to CD4+T cells in terms of cell origin and regulatory factors, bridging between innate and adaptive immunity. ILC2s interact with CD4+T cells to play a leading role in a variety of diseases through secretory factors. Here, we review the latest progress on ILC2s and CD4+T cells in the lung, the close relationship between the two, and their relevance in the lung disease and immunity. This literature review aids future research in pulmonary type 2 immune diseases and guides innovative treatment approaches for these diseases.
Collapse
|
111
|
Hurrell BP, Helou DG, Shafiei-Jahani P, Howard E, Painter JD, Quach C, Akbari O. Cannabinoid receptor 2 engagement promotes group 2 innate lymphoid cell expansion and enhances airway hyperreactivity. J Allergy Clin Immunol 2022; 149:1628-1642.e10. [PMID: 34673048 PMCID: PMC9013728 DOI: 10.1016/j.jaci.2021.09.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cannabinoids modulate the activation of immune cells and physiologic processes in the lungs. Group 2 innate lymphoid cells (ILC2s) are central players in type 2 asthma, but how cannabinoids modulate ILC2 activation remains to be elucidated. OBJECTIVE Our goal was to investigate the effects of cannabinoids on ILC2s and their role in asthma. METHODS A combination of cannabinoid receptor (CB)2 knockout (KO) mice, CB2 antagonist and agonist were used in the mouse models of IL-33, IL-25, and Alternaria alternata ILC2-dependent airway inflammation. RNA sequencing was performed to assess transcriptomic changes in ILC2s, and humanized mice were used to assess the role of CB2 signaling in human ILC2s. RESULTS We provide evidence that CB2 signaling in ILC2s is important for the development of ILC2-driven airway inflammation in both mice and human. We showed that both naive and activated murine pulmonary ILC2s express CB2. CB2 signaling did not affect ILC2 homeostasis at steady state, but strikingly it stimulated ILC2 proliferation and function upon activation. As a result, ILC2s lacking CB2 induced lower lung inflammation, as we made similar observations using a CB2 antagonist. Conversely, CB2 agonism remarkably exacerbated ILC2-driven airway hyperreactivity and lung inflammation. Mechanistically, transcriptomic and protein analysis revealed that CB2 signaling induced cyclic adenosine monophosphate-response element binding protein (CREB) phosphorylation in ILC2s. Human ILC2s expressed CB2, as CB2 antagonism and agonism showed opposing effects on ILC2 effector function and development of airway hyperreactivity in humanized mice. CONCLUSION Collectively, our results define CB2 signaling in ILC2s as an important modulator of airway inflammation.
Collapse
Affiliation(s)
- Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Doumet Georges Helou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Emily Howard
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif.
| |
Collapse
|
112
|
Abstract
A principal purpose of type 2 immunity was thought to be defense against large parasites, but it also functions in the restoration of homeostasis, such as toxin clearance following snake bites. In other cases, like allergy, the type 2 T helper (Th2) cytokines and cells present in the environment are detrimental and cause diseases. In recent years, the recognition of cell heterogeneity within Th2-associated cell populations has revealed specific functions of cells with a particular phenotype or gene signature. In addition, here we discuss the recent data regarding heterogeneity of type 2 immunity-related cells, as well as their newly identified role in a variety of processes ranging from involvement in respiratory viral infections [especially in the context of the recent COVID-19 (coronavirus disease 2019) pandemic] to control of cancer development or of metabolic homeostasis.
Collapse
Affiliation(s)
- Hamida Hammad
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Nincy Debeuf
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Helena Aegerter
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Andrew S Brown
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
113
|
Abstract
Nonresolving inflammation contributes to many diseases, including COVID-19 in its fatal and long forms. Our understanding of inflammation is rapidly evolving. Like the immune system of which it is a part, inflammation can now be seen as an interactive component of a homeostatic network with the endocrine and nervous systems. This review samples emerging insights regarding inflammatory memory, inflammatory aging, inflammatory cell death, inflammatory DNA, inflammation-regulating cells and metabolites, approaches to resolving or modulating inflammation, and inflammatory inequity.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
114
|
Pascal M, Kazakov A, Chevalier G, Dubrule L, Deyrat J, Dupin A, Saha S, Jagot F, Sailor K, Dulauroy S, Moigneu C, Belkaid Y, Lepousez G, Lledo PM, Wilhelm C, Eberl G. The neuropeptide VIP potentiates intestinal innate type 2 and type 3 immunity in response to feeding. Mucosal Immunol 2022; 15:629-641. [PMID: 35501356 DOI: 10.1038/s41385-022-00516-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023]
Abstract
The nervous system and the immune system both rely on an extensive set of modalities to perceive and act on perturbations in the internal and external environments. During feeding, the intestine is exposed to nutrients that may contain noxious substances and pathogens. Here we show that Vasoactive Intestinal Peptide (VIP), produced by the nervous system in response to feeding, potentiates the production of effector cytokines by intestinal type 2 and type 3 innate lymphoid cells (ILC2s and ILC3s). Exposure to VIP alone leads to modest activation of ILCs, but strongly potentiates ILCs to concomitant or subsequent activation by the inducer cytokines IL-33 or IL-23, via mobilization of cAMP and energy by glycolysis. Consequently, VIP increases resistance to intestinal infection by the helminth Trichuris muris and the enterobacteria Citrobacter rodentium. These findings uncover a functional neuro-immune crosstalk unfolding during feeding that increases the reactivity of innate immunity necessary to face potential threats associated with food intake.
Collapse
Affiliation(s)
- Maud Pascal
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015, Paris, France. .,Institut Pasteur, Université Paris Cité, INSERM U1224, Microenvironment and Immunity Unit, F-75015, Paris, France. .,PhD program 'Cerveau, Cognition, Comportement' (ED3C), Université Paris Sciences & Lettres, Paris, France.
| | - Alexander Kazakov
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Grégoire Chevalier
- Institut Pasteur, Université Paris Cité, INSERM U1224, Microenvironment and Immunity Unit, F-75015, Paris, France
| | - Lola Dubrule
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Julie Deyrat
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Alice Dupin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Soham Saha
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Ferdinand Jagot
- Institut Pasteur, Université Paris Cité, INSERM U1224, Microenvironment and Immunity Unit, F-75015, Paris, France
| | - Kurt Sailor
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Sophie Dulauroy
- Institut Pasteur, Université Paris Cité, INSERM U1224, Microenvironment and Immunity Unit, F-75015, Paris, France
| | - Carine Moigneu
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, and NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gabriel Lepousez
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Pierre-Marie Lledo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015, Paris, France.
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Gérard Eberl
- Institut Pasteur, Université Paris Cité, INSERM U1224, Microenvironment and Immunity Unit, F-75015, Paris, France.
| |
Collapse
|
115
|
Abstract
More than a decade ago, type 2 innate lymphoid cells (ILC2s) were discovered to be members of a family of innate immune cells consisting of five subsets that form a first line of defence against infections before the recruitment of adaptive immune cells. Initially, ILC2s were implicated in the early immune response to parasitic infections, but it is now clear that ILC2s are highly diverse and have crucial roles in the regulation of tissue homeostasis and repair. ILC2s can also regulate the functions of other type 2 immune cells, including T helper 2 cells, type 2 macrophages and eosinophils. Dysregulation of ILC2s contributes to type 2-mediated pathology in a wide variety of diseases, potentially making ILC2s attractive targets for therapeutic interventions. In this Review, we focus on the spectrum of ILC2 phenotypes that have been described across different tissues and disease states with an emphasis on human ILC2s. We discuss recent insights in ILC2 biology and suggest how this knowledge might be used for novel disease treatments and improved human health. Type 2 innate lymphoid cells (ILC2s) have diverse phenotypes across different tissues and disease states. Recent insights into ILC2 biology raise new possibilities for the improved treatment of cancer and of metabolic, infectious and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Hergen Spits
- Department of Experimental Immunology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands.
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
116
|
Irie M, Sasahara K, Artis D, Kabata H. Current overview of the role of neuropeptides in ILC2s and future directions. Allergol Int 2022; 71:294-300. [PMID: 35367135 DOI: 10.1016/j.alit.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 12/22/2022] Open
Abstract
The neural and immune systems are closely connected, and recently, their molecular mechanisms and relationships with diseases have attracted substantial attention. Particularly, it has been increasingly reported that ILC2s, which produce type 2 cytokines independent of acquired immunity, are regulated by neuropeptides such as catecholamines, acetylcholine, vasoactive intestinal peptide, neuromedins, and calcitonin gene-related peptide. However, the regulatory mechanisms in this regard are only partially understood, implying that further studies are still needed to clarify the complete mechanisms and processes. In this review, we summarize current reports on the regulatory effect of neuropeptides on ILC2s, some of which have conflicting results, possibly owing to the complexity of G-protein coupled receptors. By summarizing the current evidence, we hope to be able to identify what is currently unknown as well as what needs to be clarified in the future.
Collapse
|
117
|
Zheng M, Zhu J. Innate Lymphoid Cells and Intestinal Inflammatory Disorders. Int J Mol Sci 2022; 23:1856. [PMID: 35163778 PMCID: PMC8836863 DOI: 10.3390/ijms23031856] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/27/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a population of lymphoid cells that do not express T cell or B cell antigen-specific receptors. They are largely tissue-resident and enriched at mucosal sites to play a protective role against pathogens. ILCs mimic the functions of CD4 T helper (Th) subsets. Type 1 innate lymphoid cells (ILC1s) are defined by the expression of signature cytokine IFN-γ and the master transcription factor T-bet, involving in the type 1 immune response; ILC2s are characterized by the expression of signature cytokine IL-5/IL-13 and the master transcription factor GATA3, participating in the type 2 immune response; ILC3s are RORγt-expressing cells and are capable of producing IL-22 and IL-17 to maintain intestinal homeostasis. The discovery and investigation of ILCs over the past decades extends our knowledge beyond classical adaptive and innate immunology. In this review, we will focus on the roles of ILCs in intestinal inflammation and related disorders.
Collapse
Affiliation(s)
- Mingzhu Zheng
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Microbiology and Immunology, Southeast University, Nanjing 210009, China
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
118
|
CGRP: A New Endogenous Cell Stemness Maintenance Molecule. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4107433. [PMID: 35132349 PMCID: PMC8817839 DOI: 10.1155/2022/4107433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
Stem cells have the ability of self-replication and multidirectional differentiation, but the mechanism of how stem cells “maintain” this ability and how to “decide” to give up this state and differentiate into cells with specific functions is still unknown. The Nobel Prize in physiology and medicine in 2021 was awarded to “temperature and tactile receptor,” which made the pain receptor TRPV1-calcitonin gene-related peptide (CGRP) pathway active again. The activation and blocking technology of CGRP has been applied to many clinical diseases. CGRP gene has complex structure and transcription process, with multiple methylation and other modification sites. It has been considered as a research hotspot and difficulty since its discovery. Drug manipulation of TRPV1 and inhibition of CGRP might improve metabolism and prolong longevity. However, whether the TRPV1-neuropeptide-CGRP pathway is directly or indirectly involved in stem cell self-replication and multidirectional differentiation is unclear. Recent studies have found that CGRP is closely related to the migration and differentiation of tumor stem cells, which may be realized by turning off or turning on the CGRP gene expression in stem cells and activating a variety of ways to regulate stem cell niches. In this study, we reviewed the advances in researches concentrated on the biological effects of CGRP as a new endogenous switching of cell stemness.
Collapse
|
119
|
Wu X, Kasmani MY, Zheng S, Khatun A, Chen Y, Winkler W, Zander R, Burns R, Taparowsky EJ, Sun J, Cui W. BATF promotes group 2 innate lymphoid cell-mediated lung tissue protection during acute respiratory virus infection. Sci Immunol 2022; 7:eabc9934. [PMID: 35030033 DOI: 10.1126/sciimmunol.abc9934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xiaopeng Wu
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Moujtaba Y Kasmani
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shikan Zheng
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Achia Khatun
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yao Chen
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wendy Winkler
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Ryan Zander
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Robert Burns
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Elizabeth J Taparowsky
- Department of Biological Sciences, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
120
|
Lidocaine Ameliorates Psoriasis by Obstructing Pathogenic CGRP Signaling-Mediated Sensory Neuron-Dendritic Cell Communication. J Invest Dermatol 2022; 142:2173-2183.e6. [PMID: 35032503 DOI: 10.1016/j.jid.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 01/30/2023]
Abstract
Psoriasis is a chronic immune-mediated skin disorder with the nervous system contributing to its pathology. The neurogenic mediators of psoriasis are elusive and whether the intervention of cutaneous nervous system can treat psoriasis remains to be determined. Here we conducted a pilot study using epidural injection of lidocaine to treat patients with psoriasis. Lidocaine treatment markedly reduced patients' clinical scores, and improved an imiquimod (IMQ)-induced rat model of psoriasis as competent as systemic delivery of a TNF-α antibody. IMQ application elicited aberrant cutaneous nerve outgrowth and excessive generation of neuropeptide calcitonin gene-related peptide (CGRP) from dorsal root ganglion (DRG) neurons, both of which were inhibited by epidural lidocaine treatment. Single-cell RNA sequencing unveiled the overrepresentation of CGRP receptors in dermal dendritic cell (DC) populations of patients with psoriasis. Through disturbing CGRP signaling, lidocaine inhibited IL-23 production by DCs co-cultured with DRG neurons. Thus, epidural nerve block with lidocaine demonstrates an effective therapy for psoriasis, which suppresses both inordinate sensory nerve growth in the inflamed skin and CGRP-mediated IL-23 production from psoriatic DCs.
Collapse
|
121
|
CGRP Regulates Nucleus Pulposus Cell Apoptosis and Inflammation via the MAPK/NF- κB Signaling Pathways during Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:2958584. [PMID: 34987701 PMCID: PMC8720589 DOI: 10.1155/2021/2958584] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022]
Abstract
Chronic low back pain (CLBP) has been proved to be the dominating cause of disability in patients with lumbar degenerative diseases. Of the various etiological factors, intervertebral disc degeneration (IVDD) has been the dominating cause. In the past few decades, the role and changes of nerve systems, especially the peripheral sensory fibers and their neurotransmitters, in the induction and progression of IVDD have attracted growing concerns. The expression of many neuropeptides, such as SP, NPY, and CGRP, in the nociceptive pathways is increased during the progression of IVDD and responsible for the discogenic pain. Here, the role of CGRP in the progression of IVDD was firstly investigated both in vitro and in vivo. Firstly, we confirmed that human degenerated intervertebral disc tissue exhibited elevated expression of CGRP and its receptor. Secondly, in vitro experiments suggested that CGRP could inhibit the proliferation and induce apoptosis in human nucleus pulposus (NP) cells, as well as promote inflammation and degenerated phenotypes through activating NF-κB and MAPK signaling pathways. Thirdly, CGRP receptor antagonist, Rimegepant, can ameliorate the adverse effects of CGRP imposed on NP cells, which were confirmed in vitro and in vivo. Our results will bring about a brand-new insight into the roles of neuromodulation in IVDD and related therapeutic attempts.
Collapse
|
122
|
Somatosensory and autonomic neuronal regulation of the immune response. Nat Rev Neurosci 2022; 23:157-171. [PMID: 34997214 DOI: 10.1038/s41583-021-00555-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/11/2022]
Abstract
Bidirectional communication between the peripheral nervous system (PNS) and the immune system is a crucial part of an effective but balanced mammalian response to invading pathogens, tissue damage and inflammatory stimuli. Here, we review how somatosensory and autonomic neurons regulate immune cellular responses at barrier tissues and in peripheral organs. Immune cells express receptors for neuronal mediators, including neuropeptides and neurotransmitters, allowing neurons to influence their function in acute and chronic inflammatory diseases. Distinct subsets of peripheral sensory, sympathetic, parasympathetic and enteric neurons are able to signal to innate and adaptive immune cells to modulate their cellular functions. In this Review, we highlight recent studies defining the molecular mechanisms by which neuroimmune signalling mediates tissue homeostasis and pathology. Understanding the neural circuitry that regulates immune responses can offer novel targets for the treatment of a wide array of diseases.
Collapse
|
123
|
Das A, Harly C, Ding Y, Bhandoola A. ILC Differentiation from Progenitors in the Bone Marrow. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:7-24. [DOI: 10.1007/978-981-16-8387-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
124
|
Zhang Y, Grazda R, Yang Q. Interaction Between Innate Lymphoid Cells and the Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:135-148. [DOI: 10.1007/978-981-16-8387-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
125
|
Coordination of Mucosal Immunity by Innate Lymphoid Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:113-134. [DOI: 10.1007/978-981-16-8387-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
126
|
Kabata H, Motomura Y, Kiniwa T, Kobayashi T, Moro K. ILCs and Allergy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:75-95. [DOI: 10.1007/978-981-16-8387-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
127
|
Tseng PY, Hoon MA. Interactions of the Neuro‒Immune‒Stromal Triad in Itch. J Invest Dermatol 2022; 142:42-46. [PMID: 34662564 PMCID: PMC8688333 DOI: 10.1016/j.jid.2021.08.443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023]
Abstract
This review focuses on recent advances in understanding the mechanisms involved in itch signaling in the skin and how these new findings fit into the wider picture of the expression of itch mediators and their receptors in the dermal layer. Because at present studies mostly concentrate on single cellular compartments (e.g., neural alone), we suggest that they may miss important interactions with other compartments. Therefore, to fully appreciate pruritus, we propose that studies should consider (e.g., using transcriptomic information) signal transmission within the entire neuro‒immune‒stromal triad.
Collapse
Affiliation(s)
- Pang-Yen Tseng
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, 35 Convent Drive, Bethesda, MD 20892, USA
| | - Mark A. Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, 35 Convent Drive, Bethesda, MD 20892, USA.,To whom correspondence should be addressed,
| |
Collapse
|
128
|
Enteric neuroimmune interactions coordinate intestinal responses in health and disease. Mucosal Immunol 2022; 15:27-39. [PMID: 34471248 PMCID: PMC8732275 DOI: 10.1038/s41385-021-00443-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/04/2023]
Abstract
The enteric nervous system (ENS) of the gastrointestinal (GI) tract interacts with the local immune system bidirectionally. Recent publications have demonstrated that such interactions can maintain normal GI functions during homeostasis and contribute to pathological symptoms during infection and inflammation. Infection can also induce long-term changes of the ENS resulting in the development of post-infectious GI disturbances. In this review, we discuss how the ENS can regulate and be regulated by immune responses and how such interactions control whole tissue physiology. We also address the requirements for the proper regeneration of the ENS and restoration of GI function following the resolution of infection.
Collapse
|
129
|
Korchagina AA, Koroleva E, Tumanov AV. Innate Lymphoid Cells in Response to Intracellular Pathogens: Protection Versus Immunopathology. Front Cell Infect Microbiol 2021; 11:775554. [PMID: 34938670 PMCID: PMC8685334 DOI: 10.3389/fcimb.2021.775554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a heterogeneous group of cytokine-producing lymphocytes which are predominantly located at mucosal barrier surfaces, such as skin, lungs, and gastrointestinal tract. ILCs contribute to tissue homeostasis, regulate microbiota-derived signals, and protect against mucosal pathogens. ILCs are classified into five major groups by their developmental origin and distinct cytokine production. A recently emerged intriguing feature of ILCs is their ability to alter their phenotype and function in response to changing local environmental cues such as pathogen invasion. Once the pathogen crosses host barriers, ILCs quickly activate cytokine production to limit the spread of the pathogen. However, the dysregulated ILC responses can lead to tissue inflammation and damage. Furthermore, the interplay between ILCs and other immune cell types shapes the outcome of the immune response. Recent studies highlighted the important role of ILCs for host defense against intracellular pathogens. Here, we review recent advances in understanding the mechanisms controlling protective and pathogenic ILC responses to intracellular pathogens. This knowledge can help develop new ILC-targeted strategies to control infectious diseases and immunopathology.
Collapse
Affiliation(s)
- Anna A Korchagina
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ekaterina Koroleva
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
130
|
Hiroki CH, Sarden N, Hassanabad MF, Yipp BG. Innate Receptors Expression by Lung Nociceptors: Impact on COVID-19 and Aging. Front Immunol 2021; 12:785355. [PMID: 34975876 PMCID: PMC8716370 DOI: 10.3389/fimmu.2021.785355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
The lungs are constantly exposed to non-sterile air which carries harmful threats, such as particles and pathogens. Nonetheless, this organ is equipped with fast and efficient mechanisms to eliminate these threats from the airways as well as prevent pathogen invasion. The respiratory tract is densely innervated by sensory neurons, also known as nociceptors, which are responsible for the detection of external stimuli and initiation of physiological and immunological responses. Furthermore, expression of functional innate receptors by nociceptors have been reported; however, the influence of these receptors to the lung function and local immune response is poorly described. The COVID-19 pandemic has shown the importance of coordinated and competent pulmonary immunity for the prevention of pathogen spread as well as prevention of excessive tissue injury. New findings suggest that lung nociceptors can be a target of SARS-CoV-2 infection; what remains unclear is whether innate receptor trigger sensory neuron activation during SARS-CoV-2 infection and what is the relevance for the outcomes. Moreover, elderly individuals often present with respiratory, neurological and immunological dysfunction. Whether aging in the context of sensory nerve function and innate receptors contributes to the disorders of these systems is currently unknown. Here we discuss the expression of innate receptors by nociceptors, particularly in the lungs, and the possible impact of their activation on pulmonary immunity. We then demonstrate recent evidence that suggests lung sensory neurons as reservoirs for SARS-CoV-2 and possible viral recognition via innate receptors. Lastly, we explore the mechanisms by which lung nociceptors might contribute to disturbance in respiratory and immunological responses during the aging process.
Collapse
Affiliation(s)
- Carlos H. Hiroki
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicole Sarden
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mortaza F. Hassanabad
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G. Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
131
|
Mindt BC, Krisna SS, Duerr CU, Mancini M, Richer L, Vidal SM, Gerondakis S, Langlais D, Fritz JH. The NF-κB Transcription Factor c-Rel Modulates Group 2 Innate Lymphoid Cell Effector Functions and Drives Allergic Airway Inflammation. Front Immunol 2021; 12:664218. [PMID: 34867937 PMCID: PMC8635195 DOI: 10.3389/fimmu.2021.664218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/27/2021] [Indexed: 01/03/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) play a key role in the initiation and orchestration of early type 2 immune responses. Upon tissue damage, ILC2s are activated by alarmins such as IL-33 and rapidly secrete large amounts of type 2 signature cytokines. ILC2 activation is governed by a network of transcriptional regulators including nuclear factor (NF)-κB family transcription factors. While it is known that activating IL-33 receptor signaling results in downstream NF-κB activation, the underlying molecular mechanisms remain elusive. Here, we found that the NF-κB subunit c-Rel is required to mount effective innate pulmonary type 2 immune responses. IL-33-mediated activation of ILC2s in vitro as well as in vivo was found to induce c-Rel mRNA and protein expression. In addition, we demonstrate that IL-33-mediated activation of ILC2s leads to nuclear translocation of c-Rel in pulmonary ILC2s. Although c-Rel was found to be a critical mediator of innate pulmonary type 2 immune responses, ILC2-intrinsic deficiency of c-Rel did not have an impact on the developmental capacity of ILC2s nor affected homeostatic numbers of lung-resident ILC2s at steady state. Moreover, we demonstrate that ILC2-intrinsic deficiency of c-Rel alters the capacity of ILC2s to upregulate the expression of ICOSL and OX40L, key stimulatory receptors, and the expression of type 2 signature cytokines IL-5, IL-9, IL-13, and granulocyte-macrophage colony-stimulating factor (GM-CSF). Collectively, our data using Rel−/− mice suggest that c-Rel promotes acute ILC2-driven allergic airway inflammation and suggest that c-Rel may contribute to the pathophysiology of ILC2-mediated allergic airway disease. It thereby represents a promising target for the treatment of allergic asthma, and evaluating the effect of established c-Rel inhibitors in this context would be of great clinical interest.
Collapse
Affiliation(s)
- Barbara C. Mindt
- McGill University Research Centre on Complex Traits (MRCCT), Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Sai Sakktee Krisna
- McGill University Research Centre on Complex Traits (MRCCT), Montréal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Claudia U. Duerr
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| | - Mathieu Mancini
- McGill University Research Centre on Complex Traits (MRCCT), Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Lara Richer
- Department of Pathology, McGill University, Montréal, QC, Canada
| | - Silvia M. Vidal
- McGill University Research Centre on Complex Traits (MRCCT), Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Steven Gerondakis
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - David Langlais
- McGill University Research Centre on Complex Traits (MRCCT), Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Jörg H. Fritz
- McGill University Research Centre on Complex Traits (MRCCT), Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
- FOCiS Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
- *Correspondence: Jörg H. Fritz,
| |
Collapse
|
132
|
Olguín-Martínez E, Ruiz-Medina BE, Licona-Limón P. Tissue-Specific Molecular Markers and Heterogeneity in Type 2 Innate Lymphoid Cells. Front Immunol 2021; 12:757967. [PMID: 34759931 PMCID: PMC8573327 DOI: 10.3389/fimmu.2021.757967] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most recently described group of lymphoid subpopulations. These tissue-resident cells display a heterogeneity resembling that observed on different groups of T cells, hence their categorization as cytotoxic NK cells and helper ILCs type 1, 2 and 3. Each one of these groups is highly diverse and expresses different markers in a context-dependent manner. Type 2 innate lymphoid cells (ILC2s) are activated in response to helminth parasites and regulate the immune response. They are involved in the etiology of diseases associated with allergic responses as well as in the maintenance of tissue homeostasis. Markers associated with their identification differ depending on the tissue and model used, making the study and understanding of these cells a cumbersome task. This review compiles evidence for the heterogeneity of ILC2s as well as discussion and analyses of molecular markers associated with their identity, function, tissue-dependent expression, and how these markers contribute to the interaction of ILC2s with specific microenvironments to maintain homeostasis or respond to pathogenic challenges.
Collapse
Affiliation(s)
- Enrique Olguín-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Blanca E Ruiz-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
133
|
Orimo K, Tamari M, Saito H, Matsumoto K, Nakae S, Morita H. Characteristics of tissue-resident ILCs and their potential as therapeutic targets in mucosal and skin inflammatory diseases. Allergy 2021; 76:3332-3348. [PMID: 33866593 DOI: 10.1111/all.14863] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Discovery of innate lymphoid cells (ILCs), which are non-T and non-B lymphocytes that have no antigen-specific receptors, changed the classical concept of the mechanism of allergy, which had been explained mainly as antigen-specific acquired immunity based on IgE and Th2 cells. The discovery led to dramatic improvement in our understanding of the mechanism of non-IgE-mediated allergic inflammation. Numerous studies conducted in the past decade have elucidated the characteristics of each ILC subset in various organs and tissues and their ontogeny. We now know that each ILC subset exhibits heterogeneity. Moreover, the functions and activating/suppressing factors of each ILC subset were found to differ among both organs and types of tissue. Therefore, in this review, we summarize our current knowledge of ILCs by focusing on the organ/tissue-specific features of each subset to understand their roles in various organs. We also discuss ILCs' involvement in human inflammatory diseases in various organs and potential therapeutic/preventive strategies that target ILCs.
Collapse
Affiliation(s)
- Keisuke Orimo
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Masato Tamari
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life Hiroshima University Hiroshima Japan
- Precursory Research for Embryonic Science and Technology Japan Science and Technology Agency Saitama Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| |
Collapse
|
134
|
Kotas ME, Mroz NM, Koga S, Liang HE, Schroeder AW, Ricardo-Gonzalez RR, Schneider C, Locksley RM. CISH constrains the tuft-ILC2 circuit to set epithelial and immune tone. Mucosal Immunol 2021; 14:1295-1305. [PMID: 34290377 PMCID: PMC8528700 DOI: 10.1038/s41385-021-00430-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/15/2021] [Accepted: 07/04/2021] [Indexed: 02/04/2023]
Abstract
Innate lymphoid cells (ILCs) are tissue-resident effectors poised to activate rapidly in response to local signals such as cytokines. To preserve homeostasis, ILCs must employ multiple pathways, including tonic suppressive mechanisms, to regulate their primed state and prevent inappropriate activation and immunopathology. Such mechanisms remain incompletely characterized. Here we show that cytokine-inducible SH2-containing protein (CISH), a suppressor of cytokine signaling (SOCS) family member, is highly and constitutively expressed in type 2 innate lymphoid cells (ILC2s). Mice that lack CISH either globally or conditionally in ILC2s show increased ILC2 expansion and activation, in association with reduced expression of genes inhibiting cell-cycle progression. Augmented proliferation and activation of CISH-deficient ILC2s increases basal and inflammation-induced numbers of intestinal tuft cells and accelerates clearance of the model helminth, Nippostrongylus brasiliensis, but compromises innate control of Salmonella typhimurium. Thus, CISH constrains ILC2 activity both tonically and after perturbation, and contributes to the regulation of immunity in mucosal tissue.
Collapse
Affiliation(s)
- Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy & Sleep Medicine, University of California, San Francisco, CA, USA
| | - Nicholas M Mroz
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Satoshi Koga
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Hong-Erh Liang
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | | | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
135
|
Chen Y, Wu X, Yang X, Liu X, Zeng Y, Li J. Melatonin antagonizes ozone-exacerbated asthma by inhibiting the TRPV1 channel and stabilizing the Nrf2 pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59858-59867. [PMID: 34146326 DOI: 10.1007/s11356-021-14945-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/12/2021] [Indexed: 06/12/2023]
Abstract
Over the past few years, ozone has been identified as a potential risk factor for exacerbating asthma. However, few attempts have been made to prevent the progression of ozone-exacerbated asthma. This study investigated the attenuating effects of melatonin on ozone-aggravated allergic asthma, and explored the changes to the transient receptor potential vanilloid 1 (TRPV1)-nuclear factor erythroid-derived 2-related factor 2 (Nrf2) pathway associated with melatonin treatment. The levels of TRPV1 and calcitonin gene-related peptides (CGRP) in lung tissue were detected by immunohistochemistry, western blot, and enzyme-linked immunosorbent assay (ELISA). The Nrf2 signaling involved proteins and mRNA were evaluated by western blot and RT-qPCR. The change of Immunoglobulin E (IgE) and T helper (Th) 2 and Th17 cytokines in serum and bronchoalveolar lavage fluid (BALF) was determined by ELISA. Recruitment of inflammatory cells in BALF, histopathological changes, and airway hyperresponsiveness (AHR) were also determined in lung tissues. Our results indicated that melatonin treatment significantly reduced oxidative stress, as indicated by levels of glutathione (GSH), malonaldehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OH-dG). Moreover, ozone-exacerbated asthma symptoms, such as inflammatory cell infiltration, levels of serum immunoglobulin, Th2 and Th17 cytokines in BALF, obvious changes in lung histology, and AHR, were all ameliorated by melatonin treatment. Interestingly, melatonin not only markedly decreased the protein levels of TRPV1 and CGRP, but also enhanced the expression of Nrf2, quinone oxidoreductase-1 (NQO-1), and heme oxygenase-1 (HO-1). Taken together, our results demonstrate that melatonin administration could antagonize ozone-exacerbated asthma by inhibiting the TRPV1 channel and stabilizing the Nrf2 pathway.
Collapse
Affiliation(s)
- Yushan Chen
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiaoyu Wu
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xu Yang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xudong Liu
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564507, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jinquan Li
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
136
|
Tarnawski L, Olofsson PS. Inflammation neuroscience: neuro-immune crosstalk and interfaces. Clin Transl Immunology 2021; 10:e1352. [PMID: 34754449 PMCID: PMC8558388 DOI: 10.1002/cti2.1352] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a key process in antimicrobial defence and tissue repair, and failure to properly regulate inflammation can result in tissue damage and death. Neural circuits play important roles throughout the course of an inflammatory response, and the neurophysiological and molecular mechanisms are only partly understood. Here, we review key evidence for the neural regulation of inflammation and discuss emerging technologies to further map and harness this neurophysiology, a cornerstone in the rapidly evolving field of inflammation neuroscience.
Collapse
Affiliation(s)
- Laura Tarnawski
- Laboratory of ImmunobiologyDivision of Cardiovascular MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Stockholm Center for Bioelectronic MedicineMedTechLabsBioclinicumKarolinska University HospitalSolnaSweden
| | - Peder S Olofsson
- Laboratory of ImmunobiologyDivision of Cardiovascular MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Stockholm Center for Bioelectronic MedicineMedTechLabsBioclinicumKarolinska University HospitalSolnaSweden
- Institute of Bioelectronic MedicineFeinstein Institutes for Medical ResearchManhassetNYUSA
| |
Collapse
|
137
|
Neuro-immune-metabolism: The tripod system of homeostasis. Immunol Lett 2021; 240:77-97. [PMID: 34655659 DOI: 10.1016/j.imlet.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022]
Abstract
Homeostatic regulation of cellular and molecular processes is essential for the efficient physiological functioning of body organs. It requires an intricate balance of several networks throughout the body, most notable being the nervous, immune and metabolic systems. Several studies have reported the interactions between neuro-immune, immune-metabolic and neuro-metabolic pathways. Current review aims to integrate the information and show that neuro, immune and metabolic systems form the triumvirate of homeostasis. It focuses on the cellular and molecular interactions occurring in the extremities and intestine, which are innervated by the peripheral nervous system and for the intestine in particular the enteric nervous system. While the interdependence of neuro-immune-metabolic pathways provides a fallback mechanism in case of disruption of homeostasis, in chronic pathologies of continued disequilibrium, the collapse of one system spreads to the other interacting networks as well. Current review illustrates this domino-effect using diabetes as the main example. Together, this review attempts to provide a holistic picture of the integrated network of neuro-immune-metabolism and attempts to broaden the outlook when devising a scientific study or a treatment strategy.
Collapse
|
138
|
Roma S, Carpen L, Raveane A, Bertolini F. The Dual Role of Innate Lymphoid and Natural Killer Cells in Cancer. from Phenotype to Single-Cell Transcriptomics, Functions and Clinical Uses. Cancers (Basel) 2021; 13:cancers13205042. [PMID: 34680190 PMCID: PMC8533946 DOI: 10.3390/cancers13205042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Innate lymphoid cells (ILCs), a family of innate immune cells including natural killers (NKs), play a multitude of roles in first-line cancer control, in escape from immunity and in cancer progression. In this review, we summarize preclinical and clinical data on ILCs and NK cells concerning their phenotype, function and clinical applications in cellular therapy trials. We also describe how single-cell transcriptome sequencing has been used and forecast how it will be used to better understand ILC and NK involvement in cancer control and progression as well as their therapeutic potential. Abstract The role of innate lymphoid cells (ILCs), including natural killer (NK) cells, is pivotal in inflammatory modulation and cancer. Natural killer cell activity and count have been demonstrated to be regulated by the expression of activating and inhibitory receptors together with and as a consequence of different stimuli. The great majority of NK cell populations have an anti-tumor activity due to their cytotoxicity, and for this reason have been used for cellular therapies in cancer patients. On the other hand, the recently classified helper ILCs are fundamentally involved in inflammation and they can be either helpful or harmful in cancer development and progression. Tissue niche seems to play an important role in modulating ILC function and conversion, as observed at the transcriptional level. In the past, these cell populations have been classified by the presence of specific cellular receptor markers; more recently, due to the advent of single-cell RNA sequencing (scRNA-seq), it has been possible to also explore them at the transcriptomic level. In this article we review studies on ILC (and NK cell) classification, function and their involvement in cancer. We also summarize the potential application of NK cells in cancer therapy and give an overview of the most recent studies involving ILCs and NKs at scRNA-seq, focusing on cancer. Finally, we provide a resource for those who wish to start single-cell transcriptomic analysis on the context of these innate lymphoid cell populations.
Collapse
|
139
|
Inhibiting endocytosis in CGRP + nociceptors attenuates inflammatory pain-like behavior. Nat Commun 2021; 12:5812. [PMID: 34608164 PMCID: PMC8490418 DOI: 10.1038/s41467-021-26100-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
The advantage of locally applied anesthetics is that they are not associated with the many adverse effects, including addiction liability, of systemically administered analgesics. This therapeutic approach has two inherent pitfalls: specificity and a short duration of action. Here, we identified nociceptor endocytosis as a promising target for local, specific, and long-lasting treatment of inflammatory pain. We observed preferential expression of AP2α2, an α-subunit isoform of the AP2 complex, within CGRP+/IB4- nociceptors in rodents and in CGRP+ dorsal root ganglion neurons from a human donor. We utilized genetic and pharmacological approaches to inhibit nociceptor endocytosis demonstrating its role in the development and maintenance of acute and chronic inflammatory pain. One-time injection of an AP2 inhibitor peptide significantly reduced acute and chronic pain-like behaviors and provided prolonged analgesia. We evidenced sexually dimorphic recovery responses to this pharmacological approach highlighting the importance of sex differences in pain development and response to analgesics. The authors show the endocytotic adaptor subunit called AP2A2 is differentially expressed in CGRP+ nociceptors. Locally inhibiting nociceptor endocytosis with a lipidated AP2 inhibitor peptide reduces acute and chronic pain-like behaviour in mice and rats, indicating prolonged analgesia.
Collapse
|
140
|
Xu C, Gulinello M, Frenette PS. Nociceptors protect sickle cell disease mice from vaso-occlusive episodes and chronic organ damage. J Exp Med 2021; 218:182184. [PMID: 33045060 PMCID: PMC7534906 DOI: 10.1084/jem.20200065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/17/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022] Open
Abstract
Sickle cell disease (SCD) is a common hereditary hematologic disorder. SCD patients suffer from acute vaso-occlusive episodes (VOEs), chronic organ damage, and premature death, with few therapeutic options. Although severe pain is a major clinical manifestation of SCD, it remains unknown whether nociception plays a role in SCD pathogenesis. To address this question, we generated nociceptor-deficient SCD mice and found, unexpectedly, that the absence of nociception led to more severe and more lethal VOE, indicating that somatosensory nerves protect SCD mice from VOE. Mechanistically, the beneficial effects of sensory nerves were induced by the neuropeptide calcitonin gene–related peptide (CGRP), which acted on hematopoietic cells. Additionally, oral capsaicin consumption, which can activate somatosensory nerves by binding to TRPV1, dramatically alleviated acute VOE and significantly prevented chronic liver and kidney damage in SCD mice. Thus, the manipulation of nociception may provide a promising approach to treat SCD.
Collapse
Affiliation(s)
- Chunliang Xu
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Maria Gulinello
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
| | - Paul S Frenette
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
141
|
Nagashima R, Iyoda M. The Roles of Kidney-Resident ILC2 in Renal Inflammation and Fibrosis. Front Immunol 2021; 12:688647. [PMID: 34381446 PMCID: PMC8350317 DOI: 10.3389/fimmu.2021.688647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a recently discovered lymphocyte population with high cytokine productive capacity. Type-2 ILCs (ILC2s) are the most studied, and they exert a rapid type-2 immune response to eliminate helminth infections. Massive and sustainable ILC2 activation induces allergic tissue inflammation, so it is important to maintain correct ILC2 activity for immune homeostasis. The ILC2-activating cytokine IL-33 is released from epithelial cells upon tissue damage, and it is upregulated in various kidney disease mouse models and in kidney disease patients. Various kidney diseases eventually lead to renal fibrosis, which is a common pathway leading to end-stage renal disease and is a chronic kidney disease symptom. The progression of renal fibrosis is affected by the innate immune system, including renal-resident ILC2s; however, the roles of ILC2s in renal fibrosis are not well understood. In this review, we summarize renal ILC2 function and characterization in various kidney diseases and highlight the known and potential contributions of ILC2s to kidney fibrosis.
Collapse
Affiliation(s)
- Ryuichi Nagashima
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
142
|
Jakob MO, Kofoed-Branzk M, Deshpande D, Murugan S, Klose CSN. An Integrated View on Neuronal Subsets in the Peripheral Nervous System and Their Role in Immunoregulation. Front Immunol 2021; 12:679055. [PMID: 34322118 PMCID: PMC8312561 DOI: 10.3389/fimmu.2021.679055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
The peripheral nervous system consists of sensory circuits that respond to external and internal stimuli and effector circuits that adapt physiologic functions to environmental challenges. Identifying neurotransmitters and neuropeptides and the corresponding receptors on immune cells implies an essential role for the nervous system in regulating immune reactions. Vice versa, neurons express functional cytokine receptors to respond to inflammatory signals directly. Recent advances in single-cell and single-nuclei sequencing have provided an unprecedented depth in neuronal analysis and allowed to refine the classification of distinct neuronal subsets of the peripheral nervous system. Delineating the sensory and immunoregulatory capacity of different neuronal subsets could inform a better understanding of the response happening in tissues that coordinate physiologic functions, tissue homeostasis and immunity. Here, we summarize current subsets of peripheral neurons and discuss neuronal regulation of immune responses, focusing on neuro-immune interactions in the gastrointestinal tract. The nervous system as a central coordinator of immune reactions and tissue homeostasis may predispose for novel promising therapeutic approaches for a large variety of diseases including but not limited to chronic inflammation.
Collapse
Affiliation(s)
- Manuel O Jakob
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Kofoed-Branzk
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Divija Deshpande
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shaira Murugan
- Department of BioMedical Research, Group of Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
143
|
Mikami Y, Tsunoda J, Kiyohara H, Taniki N, Teratani T, Kanai T. Vagus nerve-mediated intestinal immune regulation: therapeutic implications for inflammatory bowel diseases. Int Immunol 2021; 34:97-106. [PMID: 34240133 DOI: 10.1093/intimm/dxab039] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
The pathophysiology of inflammatory bowel disease (IBD) involves immunological, genetic and environmental factors. Through its ability to sense environmental stimuli, the autonomic nervous system plays a key role in the development and persistence of IBD. The vagus nerve (VN), which contains sensory and motor neurons, travels throughout the body to innervate the gut and other visceral organs in the thoracic and abdominopelvic cavities. Recent studies show that the VN has anti-inflammatory effects via the release of acetylcholine, in what is known as the cholinergic anti-inflammatory pathway (CAIP). In the gut immune system, the CAIP is proposed to be activated directly by signals from the gut and indirectly by signals from the liver, which receives gut-derived bioactive substances via the portal vein and senses the status of the gut. The gut-brain axis and liver-brain-gut reflex arc regulate a wide variety of peripheral immune cells to maintain homeostasis in the gut. Therefore, targeting the neural reflex by methods such as VN stimulation is now under investigation for suppressing intestinal inflammation associated with IBD. In this review, we describe the role of the VN in the regulation of intestinal immunity, and we discuss novel therapeutic approaches for IBD that target neuroimmune interactions.
Collapse
Affiliation(s)
- Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine
| | - Junya Tsunoda
- Department of Surgery, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hiroki Kiyohara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
144
|
Falquet M, Ercolano G, Jandus P, Jandus C, Trabanelli S. Healthy and Patient Type 2 Innate Lymphoid Cells are Differently Affected by in vitro Culture Conditions. J Asthma Allergy 2021; 14:773-783. [PMID: 34239308 PMCID: PMC8259735 DOI: 10.2147/jaa.s304126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Background Type 2 innate lymphoid cells (ILC2s) have emerged as key players in the development of type 2 driven diseases such as allergy and asthma. Due to their low number in the circulation, in vitro expansion is needed to unravel their mechanisms of action. Purpose The aim of this study is to assess the impact of different culture conditions and address whether the method of expansion may distinctly affect healthy donor or patient-derived ILC2s. Methods Here, we described the impact of six different culture conditions on the proliferation, phenotype and function of human ILC2s freshly obtained from healthy donors (healthy ILC2s) and allergic patients (patient ILC2s). Results We showed that the cytokine cocktail or the PHA induced the highest proliferation of healthy ILC2s and patient ILC2s, respectively. We observed that the stromal cells OP9, used as ILC2 feeders, did not boost their proliferation, but impaired the activation marker expression and the function of patient ILC2s. Furthermore, we demonstrated that the culture conditions differently impacted the activation state of c-Kithigh and c-Kitlow ILC2s, in both healthy donors and allergic patients. Last, we also observed that ILC2s expanded only with IL-2 and IL-7 were the most prone to secrete IL-5 and IL-13 upon IL-33 stimulation. In contrast, in patients, the addition of OP9 cells during the expansion restrained their type 2 cytokine secretory functions. Conclusion This report highlights that culture conditions distinctly impacted on the healthy or patient ILC2 behavior, with important consequences for their study in disease settings.
Collapse
Affiliation(s)
- Maryline Falquet
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Giuseppe Ercolano
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peter Jandus
- Division of Immunology and Allergology, University Hospital and Medical Faculty, Geneva, Switzerland
| | - Camilla Jandus
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sara Trabanelli
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
145
|
Flayer CH, Perner C, Sokol CL. A decision tree model for neuroimmune guidance of allergic immunity. Immunol Cell Biol 2021; 99:936-948. [PMID: 34115905 DOI: 10.1111/imcb.12486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022]
Abstract
The immune system defends the body from infectious and non-infectious threats. Distinct recognition strategies have evolved to generate antigen-specific immunity against pathogens or toxins versus antigen-independent tissue repair. Structural recognition, or the sensing of conserved motifs, guides the immune response to viruses, bacteria, fungi, and unicellular parasites. Functional recognition, which is sensing that is based on the activities of an input, guides antigen-independent tissue healing and antigen-specific Type 2 immunity to toxins, allergens, and helminth parasites. Damage-associated molecular patterns (DAMPs), released from damaged and dying cells, permit functional recognition by immune cells. However, the DAMP paradigm alone does not explain how functional recognition can lead to such disparate immune responses, namely wound healing and Type 2 immunity. Recent work established that sensory neurons release neuropeptides in response to a variety of toxins and allergens. These neuropeptides act on local innate immune cells, stimulating or inhibiting their activities. By integrating our knowledge on DAMP function with new information on the role of neuropeptides in innate immune activation in Type 2 immunity, we describe a decision tree model of functional recognition. In this model, neuropeptides complement or antagonize DAMPs to guide the development of antigen-specific Type 2 immunity through the activation of innate immune cells. We discuss why this decision tree system evolved and its implications to allergic diseases.
Collapse
Affiliation(s)
- Cameron H Flayer
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline Perner
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline L Sokol
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
146
|
Wirtz S, Schulz-Kuhnt A, Neurath MF, Atreya I. Functional Contribution and Targeted Migration of Group-2 Innate Lymphoid Cells in Inflammatory Lung Diseases: Being at the Right Place at the Right Time. Front Immunol 2021; 12:688879. [PMID: 34177944 PMCID: PMC8222800 DOI: 10.3389/fimmu.2021.688879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
During the last decade, group-2 innate lymphoid cells (ILC2s) have been discovered and successfully established as crucial mediators of lung allergy, airway inflammation and fibrosis, thus affecting the pathogenesis and clinical course of many respiratory diseases, like for instance asthma, cystic fibrosis and chronic rhinosinusitis. As an important regulatory component in this context, the local pulmonary milieu at inflammatory tissue sites does not only determine the activation status of lung-infiltrating ILC2s, but also influences their motility and migratory behavior. In general, many data collected in recent murine and human studies argued against the former concept of a very strict tissue residency of innate lymphoid cells (ILCs) and instead pointed to a context-dependent homing capacity of peripheral blood ILC precursors and the inflammation-dependent capacity of specific ILC subsets for interorgan trafficking. In this review article, we provide a comprehensive overview of the so far described molecular mechanisms underlying the pulmonary migration of ILC2s and thereby the numeric regulation of local ILC2 pools at inflamed or fibrotic pulmonary tissue sites and discuss their potential to serve as innovative therapeutic targets in the treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Stefan Wirtz
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Anja Schulz-Kuhnt
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
147
|
Sensory modulation of airways immunity. Neurosci Lett 2021; 760:136042. [PMID: 34118306 DOI: 10.1016/j.neulet.2021.136042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023]
Abstract
The airways are constantly exposed to a multitude of inhaled particles and, as such, require a finely tuned discrimination between harmful or potentially threatening stimuli, and discrete responses to maintain homeostasis. Both the immune and nervous systems have the ability to sense environmental (and internal) signals, to integrate the obtained information and to initiate a protective reaction. Lung immunity and innervation are known to be individually involved in these processes, but it is becoming clear that they can also influence one another via a multitude of complex mechanisms. Here, we specifically describe how sensory innervation affects airways immunity with a focus on pathological conditions such as asthma or infections, describing cellular and molecular mechanisms, and highlighting potentially novel therapeutic targets.
Collapse
|
148
|
Poholek AC. Tissue-Specific Contributions to Control of T Cell Immunity. Immunohorizons 2021; 5:410-423. [PMID: 34103371 PMCID: PMC10876086 DOI: 10.4049/immunohorizons.2000103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022] Open
Abstract
T cells are critical for orchestrating appropriate adaptive immune responses and maintaining homeostasis in the face of persistent nonpathogenic Ags. T cell function is controlled in part by environmental signals received upon activation and derived from the tissue environment in which Ag is encountered. Indeed, tissue-specific environments play important roles in controlling the T cell response to Ag, and recent evidence suggests that tissue draining lymph nodes can mirror those local differences. Thus, tissue-specific immunity may begin at priming in secondary lymph nodes, where local signals have an important role in T cell fate. In this study, we discuss the tissue-specific signals that may impact T cell differentiation and function, including the microbiome, metabolism, and tissue-specific innate cell imprinting. We argue that these individual contributions create tissue-specific niches that likely play important roles in T cell differentiation and function controlling the outcome of the response to Ags.
Collapse
Affiliation(s)
- Amanda C Poholek
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA; and Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
149
|
Klose CSN, Veiga-Fernandes H. Neuroimmune interactions in peripheral tissues. Eur J Immunol 2021; 51:1602-1614. [PMID: 33895990 DOI: 10.1002/eji.202048812] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
Neuroimmune interactions have been revealed to be at the centre stage of tissue defence, organ homeostasis, and organismal physiology. Neuronal and immune cell subsets have been shown to colocalize in discrete tissue environments, forming neuroimmune cell units that constitute the basis for bidirectional interactions. These multitissue units drive coordinated neuroimmune responses to local and systemic signals, which represents an important challenge to our current views of mucosal physiology and immune regulation. In this review, we focus on the impact of reciprocal neuroimmune interactions, focusing on the anatomy of neuronal innervation and on the neuronal regulation of immune cells in peripheral tissues. Finally, we shed light on recent studies that explore how neuroimmune interactions maximise sensing and integration of environmental aggressions, modulating immune function in health and disease.
Collapse
Affiliation(s)
- Christoph S N Klose
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, 12203, Germany
| | | |
Collapse
|
150
|
Chen W, Lai D, Li Y, Wang X, Pan Y, Fang X, Fan J, Shu Q. Neuronal-Activated ILC2s Promote IL-17A Production in Lung γδ T Cells During Sepsis. Front Immunol 2021; 12:670676. [PMID: 33995408 PMCID: PMC8119647 DOI: 10.3389/fimmu.2021.670676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/15/2021] [Indexed: 01/13/2023] Open
Abstract
Background Studies have revealed important roles for IL-17A in the development of acute lung injury (ALI) following sepsis. However, the mechanism underlying the regulation of lung IL-17A remains to be fully addressed. Recent studies suggested the effect of neuromedin U (NMU) on immune cell activation and the role of group 2 innate lymphoid cells (ILC2s) in the modulation of IL-17A production. We aimed to gain in-depth insight into the mechanism underlying sepsis-induced lung IL-17A production, particularly, the role of NMU in mediating neuronal regulation of ILC2s and IL-17A-producing γδ T cells activation in sepsis. Methods Wild type mice were subjected to cecal ligation and puncture (CLP) to induce sepsis with or without intraperitoneal injection of NMU. The levels of ILC2s, γδ T cells, IL-17A, NMU and NMU receptor 1 (NMUR1) in the lung were then measured. In order to determine the role of NMU signaling in ILC2 activation and the role of ILC2-released IL-9 in ILC2-γδ T cell interaction, ILC2s were sorted, and the genes of nmur1 and il9 in the ILC2s were knocked down using CRISPR/Cas9. The genetically manipulated ILC2s were then co-cultured with lung γδ T cells, and the levels of IL-17A from co-culture systems were measured. Results In septic mice, the levels of NMU, IL-17A, ILC2s, and IL-17A-producing γδ T cells in the lung are significantly increased, and the expression of NMUR1 in ILC2s is increased as well. Exogenous NMU further augments these increases. The main source of IL-17A in response to CLP is γδ T cells, and lung nmur1 is specifically expressed in ILC2s. In vitro co-culture of ILC2s and γδ T cells leads to increased number of γδ T cells and higher production of IL-17A from γδ T cells, and these alterations are further augmented by septic treatment and exogenous NMU. Genetic knockdown of nmur1 or il9 in ILC2s attenuated the upregulation of γδ T cells and IL-17A production. Conclusion In sepsis, NMU acting through NMUR1 in lung ILC2s initiates the ILC2 activation, which, in turn, promote IL-17A-producing γδ T cell expansion and secretion of IL-17A. ILC2-derived IL-9 plays an important role in mediating γδ T cell expansion and IL-17A production. This study explores a new mechanism underlying neuronal regulation of innate immunity in sepsis.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Thoracic and Cardiovascular Surgery, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Dengming Lai
- Department of Thoracic and Cardiovascular Surgery, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Xueke Wang
- Department of Thoracic and Cardiovascular Surgery, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihang Pan
- Department of Thoracic and Cardiovascular Surgery, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|