101
|
Shen H, Yu X, Yang F, Zhang Z, Shen J, Sun J, Choksi S, Jitkaew S, Shu Y. Reprogramming of Normal Fibroblasts into Cancer-Associated Fibroblasts by miRNAs-Mediated CCL2/VEGFA Signaling. PLoS Genet 2016; 12:e1006244. [PMID: 27541266 PMCID: PMC4991802 DOI: 10.1371/journal.pgen.1006244] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs), the most common constituent of the tumor stoma, are known to promote tumor initiation, progression and metastasis. However, the mechanism of how cancer cells transform normal fibroblasts (NFs) into CAFs is largely unknown. In this study, we determined the contribution of miRNAs in the transformation of NFs into CAFs. We found that miR-1 and miR-206 were down-regulated, whereas miR-31 was up-regulated in lung CAFs when compared with matched NFs. Importantly, modifying the expression of these three deregulated miRNAs induced a functional conversion of NFs into CAFs and vice versa. When the miRNA-reprogrammed NFs and CAFs were co-cultured with lung cancer cells (LCCs), a similar pattern of cytokine expression profiling were observed between two groups. Using a combination of cytokine expression profiling and miRNAs algorithms, we identified VEGFA/CCL2 and FOXO3a as direct targets of miR-1, miR-206 and miR-31, respectively. Importantly, systemic delivery of anti-VEGFA/CCL2 or pre-miR-1, pre-miR-206 and anti-miR-31 significantly inhibited tumor angiogenesis, TAMs accumulation, tumor growth and lung metastasis. Our results show that miRNAs-mediated FOXO3a/VEGF/CCL2 signaling plays a prominent role in LCCs-mediated NFs into CAFs, which may have clinical implications for providing novel biomarker(s) and potential therapeutic target(s) of lung cancer in the future. During tumorigenesis, normal fibroblasts (NFs) within the tumor stroma acquire a modified phenotype and become cancer-associated fibroblasts (CAFs). CAFs provide oncogenic signals to facilitate tumor initiation, progression, and metastasis. Here, we set out to determine the factors that mediate the conversion of NFs into CAFs, focusing on miRNAs and secreted factors. Down-regulation of miR-1 and miR-206 and upregulation of miR-31 were found in CAFs derived from human lung cancer compared to paired NFs. Dysregulation of miR-1, miR-206 and miR-31 expression promotes the conversion of NFs into CAFs through regulating VEGFA, CCL2 and FOXO3a expression. In addition, down-regulation of miR-1 and miR-206 and up-regulation of miR-31 has been observed in lung cancer patient plasma. More importantly, we demonstrated that systemic delivery of anti-VEGFA/CCL2 or pre-miR-1, pre-miR-206 and anti-miR-31 dramatically decreased tumor angiogenesis, TAMs accumulation, tumor growth and lung metastasis. In conclusion, our data showed that miRNAs-mediated FOXO3a/VEGF/CCL2 signaling plays a prominent role in transforming NFs into CAFs, thus providing further support for the development of new diagnostic and therapeutic approaches to lung cancer.
Collapse
Affiliation(s)
- Hua Shen
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaobo Yu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fengming Yang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhihua Zhang
- Department of Respiration, First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Jianxin Shen
- Department of Clinical Laborotory, First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Jin Sun
- Department of Nuclear Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Swati Choksi
- National Institutes of Health, Bethesda, Maryland, United States of America
| | - Siriporn Jitkaew
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Yongqian Shu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
102
|
Chanmee T, Ontong P, Itano N. Hyaluronan: A modulator of the tumor microenvironment. Cancer Lett 2016; 375:20-30. [DOI: 10.1016/j.canlet.2016.02.031] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/15/2022]
|
103
|
Hermetet F, Jacquin E, Launay S, Gaiffe E, Couturier M, Hirchaud F, Sandoz P, Prétet JL, Mougin C. Efferocytosis of apoptotic human papillomavirus-positive cervical cancer cells by human primary fibroblasts. Biol Cell 2016; 108:189-204. [DOI: 10.1111/boc.201500090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/21/2016] [Indexed: 12/13/2022]
Affiliation(s)
- François Hermetet
- EA3181, SFR FED4234, Université de Franche-Comté; COMUE Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021; F-25030 Besançon Cedex France
| | - Elise Jacquin
- EA3181, SFR FED4234, Université de Franche-Comté; COMUE Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021; F-25030 Besançon Cedex France
- Signalling Programme; The Babraham Institute; Babraham Research Campus; Cambridge CB22 3AT U.K
| | - Sophie Launay
- EA3181, SFR FED4234, Université de Franche-Comté; COMUE Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021; F-25030 Besançon Cedex France
| | - Emilie Gaiffe
- EA3181, SFR FED4234, Université de Franche-Comté; COMUE Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021; F-25030 Besançon Cedex France
| | - Mélanie Couturier
- UMR 1098; INSERM; Etablissement Français du Sang Bourgogne Franche-Comté; Université de Franche-Comté; COMUE Université Bourgogne Franche-Comté; SFR FED4234, LabEx LipSTIC ANR-11-LABX-0021, BP 1937; F-25020 Besançon Cedex France
| | - Fabienne Hirchaud
- EA3181, SFR FED4234, Université de Franche-Comté; COMUE Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021; F-25030 Besançon Cedex France
| | - Patrick Sandoz
- UMR 6174; Institut FEMTO-ST, CNRS, Université de Franche-Comté; COMUE Université Bourgogne Franche-Comté; F-25044 Besançon Cedex France
| | - Jean-Luc Prétet
- EA3181, SFR FED4234, Université de Franche-Comté; COMUE Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021; F-25030 Besançon Cedex France
- Centre Hospitalier Régional Universitaire; F-25030 Besançon Cedex France
| | - Christiane Mougin
- EA3181, SFR FED4234, Université de Franche-Comté; COMUE Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021; F-25030 Besançon Cedex France
- Centre Hospitalier Régional Universitaire; F-25030 Besançon Cedex France
| |
Collapse
|
104
|
Freynet O, Marchal-Sommé J, Jean-Louis F, Mailleux A, Crestani B, Soler P, Michel L. Human lung fibroblasts may modulate dendritic cell phenotype and function: results from a pilot in vitro study. Respir Res 2016; 17:36. [PMID: 27044262 PMCID: PMC4820963 DOI: 10.1186/s12931-016-0345-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/09/2016] [Indexed: 01/14/2023] Open
Abstract
In human lung fibrotic lesions, fibroblasts were shown to be closely associated with immature dendritic cell (DC) accumulation. The aim of the present pilot study was to characterize the role of pulmonary fibroblasts on DC phenotype and function, using co-culture of lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) and from control patients, with a DC cell line MUTZ-3. We observed that co-culture of lung control and IPF fibroblasts with DCs reduced the expression of specific DC markers and down-regulated their T-cell stimulatory activity. This suggests that pulmonary fibroblasts might sustain chronic inflammation in the fibrotic lung by maintaining in situ a pool of immature DCs.
Collapse
Affiliation(s)
- Olivia Freynet
- Inserm U 1152, 46, rue Henri Huchard, Paris, 75018, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,DHU FIRE, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, Paris, France
| | - Joëlle Marchal-Sommé
- Inserm U 1152, 46, rue Henri Huchard, Paris, 75018, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,DHU FIRE, Paris, France
| | - Francette Jean-Louis
- Inserm UMR-S 976, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Saint Louis, Paris, France
| | - Arnaud Mailleux
- Inserm U 1152, 46, rue Henri Huchard, Paris, 75018, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,DHU FIRE, Paris, France
| | - Bruno Crestani
- Inserm U 1152, 46, rue Henri Huchard, Paris, 75018, France. .,Université Paris Diderot, Sorbonne Paris Cité, Paris, France. .,DHU FIRE, Paris, France. .,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, Paris, France. .,Service de Pneumologie, Hôpital Bichat, 46, rue Henri Huchard, Paris cedex 18, 75018, France.
| | - Paul Soler
- Inserm U 1152, 46, rue Henri Huchard, Paris, 75018, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,DHU FIRE, Paris, France
| | - Laurence Michel
- Inserm UMR-S 976, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Saint Louis, Paris, France. .,Inserm UMR-S 976, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75475, Paris, 75010, France.
| |
Collapse
|
105
|
Del Rey MJ, Faré R, Usategui A, Cañete JD, Bravo B, Galindo M, Criado G, Pablos JL. CD271(+) stromal cells expand in arthritic synovium and exhibit a proinflammatory phenotype. Arthritis Res Ther 2016; 18:66. [PMID: 26980374 PMCID: PMC4791981 DOI: 10.1186/s13075-016-0966-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/29/2016] [Indexed: 12/27/2022] Open
Abstract
Background CD271+ stromal cells (SCs) with multipotent stem cell capacity have been identified in synovial tissues, but their functional significance is unknown. We analyzed the distribution of CD271+ cells in inflammatory synovial tissues as well as their ex vivo immunomodulatory and inflammatory phenotypes. Methods CD271 expression was analyzed by immunohistochemistry in synovial tissues and by flow cytometry in primary adherent synovial cell cultures from rheumatoid arthritis (RA), osteoarthritis (OA), and non-inflammatory control tissues. Isolation of CD271+ synovial SCs was carried out by magnetic cell sorting. Allogeneic T-cell/SC cocultures were performed to analyze the regulatory capacity of these cells on T-cell proliferation and cytokine production. The production of inflammatory mediators was analyzed in cultures of sorted CD271+/− SCs. The capacity of CD271+/− SCs to induce inflammatory cell recruitment in vivo was evaluated in subcutaneous implants in immunodeficient mice. Results CD271+ SC were detected in non-inflammatory as well as in arthritic synovial tissues with a specific perivascular distribution. CD271+ SC density was increased in RA and OA compared with normal synovial tissues. T-cell proliferation and cytokine synthesis were similarly modified by CD271+ and CD271− SCs. Sorted CD271+ SCs from OA synovial tissues released significantly more interleukin (IL)-6, matrix metalloproteinase (MMP)-1, and MMP-3 than CD271− SCs. In immunodeficient mice, implants of CD271+ SCs induced significantly higher myeloid cell infiltration than CD271− SCs. Conclusions Our results demonstrate that CD271+ perivascular SCs expand in RA and OA synovial tissues. CD271+ cells showed enhanced proinflammatory properties ex vivo and in vivo, whereas immunoregulatory properties were equivalent in CD271+ and CD271− SC. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0966-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuel J Del Rey
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041, Madrid, Spain
| | - Regina Faré
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041, Madrid, Spain
| | - Alicia Usategui
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041, Madrid, Spain
| | - Juan D Cañete
- Unitat d'Artritis, Servei de Reumatologia, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pí i Sunyer, Barcelona, Spain
| | - Beatriz Bravo
- Servicio de Cirugía Ortopédica y Traumatología, Hospital 12 de Octubre, Madrid, Spain
| | - María Galindo
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041, Madrid, Spain
| | - Gabriel Criado
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041, Madrid, Spain
| | - José L Pablos
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041, Madrid, Spain.
| |
Collapse
|
106
|
Fernandes IR, Russo FB, Pignatari GC, Evangelinellis MM, Tavolari S, Muotri AR, Beltrão-Braga PCB. Fibroblast sources: Where can we get them? Cytotechnology 2016; 68:223-8. [PMID: 25060709 PMCID: PMC4754245 DOI: 10.1007/s10616-014-9771-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/08/2014] [Indexed: 01/01/2023] Open
Abstract
Fibroblasts are cells widely used in cell culture, both for transient primary cell culture or permanent as transformed cell lines. Lately, fibroblasts become cell sources for use in disease modeling after cell reprogramming because it is easily accessible in the body. Fibroblasts in patients will maintain all genetic background during reprogramming into induced pluripotent stem cells. In spite of their large use, fibroblasts are obtained after an invasive procedure, a superficial punch skin biopsy, collected under patient's local anesthesia. Taking into consideration the minimum patient's discomfort during and after the biopsy procedure, as well as the aesthetics aspect, it is essential to reflect on the best site of the body for the biopsy procedure combined with the success of getting robust fibroblast cultures in the lab. For this purpose, we compared the efficiency of four biopsy sites of the body (skin from eyelid, back of the ear, abdominal cesarean scar and groin). Cell proliferation assays and viability after cryopreservation were measured. Our results revealed that scar tissue provided fibroblasts with higher proliferative rates. Also, fibroblasts from scar tissues presented a higher viability after the thawing process.
Collapse
Affiliation(s)
- I R Fernandes
- Stem Cell Lab, Surgery Department, School of Veterinary Medicine, University of São Paulo, 87 Prof. Dr. Orlando Marques de Paiva Av, São Paulo, 05508-270, Brazil
- Center for Cellular and Molecular Therapy (NETCEM), School of Medicine, University of São Paulo, 455 Dr Arnaldo Av., São Paulo, 01246-903, Brazil
| | - F B Russo
- Stem Cell Lab, Surgery Department, School of Veterinary Medicine, University of São Paulo, 87 Prof. Dr. Orlando Marques de Paiva Av, São Paulo, 05508-270, Brazil
- Center for Cellular and Molecular Therapy (NETCEM), School of Medicine, University of São Paulo, 455 Dr Arnaldo Av., São Paulo, 01246-903, Brazil
| | - G C Pignatari
- Stem Cell Lab, Surgery Department, School of Veterinary Medicine, University of São Paulo, 87 Prof. Dr. Orlando Marques de Paiva Av, São Paulo, 05508-270, Brazil
- Center for Cellular and Molecular Therapy (NETCEM), School of Medicine, University of São Paulo, 455 Dr Arnaldo Av., São Paulo, 01246-903, Brazil
| | - M M Evangelinellis
- Stem Cell Lab, Surgery Department, School of Veterinary Medicine, University of São Paulo, 87 Prof. Dr. Orlando Marques de Paiva Av, São Paulo, 05508-270, Brazil
- Center for Cellular and Molecular Therapy (NETCEM), School of Medicine, University of São Paulo, 455 Dr Arnaldo Av., São Paulo, 01246-903, Brazil
| | - S Tavolari
- Stem Cell Lab, Surgery Department, School of Veterinary Medicine, University of São Paulo, 87 Prof. Dr. Orlando Marques de Paiva Av, São Paulo, 05508-270, Brazil
| | - A R Muotri
- Stem Cell Program, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92093, MC 0695, USA
| | - P C B Beltrão-Braga
- Stem Cell Lab, Surgery Department, School of Veterinary Medicine, University of São Paulo, 87 Prof. Dr. Orlando Marques de Paiva Av, São Paulo, 05508-270, Brazil.
- Center for Cellular and Molecular Therapy (NETCEM), School of Medicine, University of São Paulo, 455 Dr Arnaldo Av., São Paulo, 01246-903, Brazil.
- Obstetrics Department, School of Arts, Sciences and Humanities, University of São Paulo, 100 Arlindo Betio Av, São Paulo, 03828-100, Brazil.
| |
Collapse
|
107
|
Tseng SCG, He H, Zhang S, Chen SY. Niche Regulation of Limbal Epithelial Stem Cells: Relationship between Inflammation and Regeneration. Ocul Surf 2016; 14:100-12. [PMID: 26769483 DOI: 10.1016/j.jtos.2015.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/17/2015] [Accepted: 12/24/2015] [Indexed: 02/07/2023]
Abstract
Human limbal palisades of Vogt are the ideal site for studying and practicing regenerative medicine due to their accessibility. Nonresolving inflammation in limbal stroma is common manifestation of limbal stem cell (SC) deficiency and presents as a threat to the success of transplanted limbal epithelial SCs. This pathologic process can be overcome by transplantation of cryopreserved human amniotic membrane (AM), which exerts anti-inflammatory, antiscarring and anti-angiogenic action to promote wound healing. To determine how AM might exert anti-inflammation and promote regeneration, we have purified a novel matrix, HC-HA/PTX3, responsible for the efficacy of AM efficacy. HC-HA complex is covalently formed by hyaluronan (HA) and heavy chain 1 (HC1) of inter-α-trypsin inhibitor by the catalytic action of tumor necrosis factor-stimulated gene-6 (TSG-6) and are tightly associated with pentraxin 3 (PTX3) to form HC-HA/PTX3. In vitro reconstitution of the limbal niche can be established by reunion between limbal epithelial progenitors and limbal niche cells on different substrates. In 3-dimensional Matrigel, clonal expansion indicative of SC renewal is correlated with activation of canonical Wnt signaling and suppression of canonical bone morphogenetic protein (BMP) signaling. In contrast, SC quiescence can be achieved in HC-HA/PTX3 by activation of canonical BMP signaling and non-canonical planar cell polarity (PCP) Wnt signaling, but suppression of canonical Wnt signaling. HC-HA/PTX3 is a novel matrix mitigating nonresolving inflammation and restoring SC quiescence in the niche for various applications in regenerative medicine.
Collapse
Affiliation(s)
- Scheffer C G Tseng
- R&D Department, TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research and Education Foundation, Miami, Florida, USA.
| | - Hua He
- R&D Department, TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research and Education Foundation, Miami, Florida, USA
| | - Suzhen Zhang
- R&D Department, TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research and Education Foundation, Miami, Florida, USA
| | - Szu-Yu Chen
- R&D Department, TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research and Education Foundation, Miami, Florida, USA
| |
Collapse
|
108
|
Bujak M, Ratkaj I, Markova-Car E, Jurišić D, Horvatić A, Vučinić S, Lerga J, Baus-Lončar M, Pavelić K, Kraljević Pavelić S. Inflammatory Gene Expression Upon TGF-β1-Induced p38 Activation in Primary Dupuytren's Disease Fibroblasts. Front Mol Biosci 2015; 2:68. [PMID: 26697433 PMCID: PMC4672058 DOI: 10.3389/fmolb.2015.00068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Inflammation is an underlying mechanism behind fibrotic processes and differentiation of cells into myofibroblasts. Presented study therefore provides new data on activation of autoimmune and inflammatory immune response genes that accompany activation of p38 and cell differentiation in primary cells derived from Dupuytren's disease (DD) patients. METHODS Primary non-Dupuytren's disease cells (ND) were isolated from macroscopically unaffected palmar fascia adjacent to diseased tissue obtained from patients diagnosed with the last stage of DD and cultured in vitro. Gene expression, collagen gel contraction assay and analysis of secreted proteins were performed in ND cells treated with TGF-β1 and/or inhibitor of p38 phosphorylation. RESULTS During differentiation of ND fibroblasts, increased expression of immune response genes PAI-1, TIMP-1, CCL11, and IL-6 was found. These changes were accompanied by increased cell contractility and activation of p38 and its target kinase MK2. Inhibition of p38 phosphorylation reversed these processes in vitro. CONCLUSIONS TGF-β1 induced p38 phosphorylation in ND cells grown from macroscopically unaffected palmar fascia adjacent to diseased tissue from DD patients. This was accompanied by activation of the cytokine genes CCL-11 and IL-6 and secretion of extracellular matrix regulatory proteins PAI-1 and TIMP-1. A combined approach directed toward inflammation and p38 MAPK-mediated processes in DD might be considered for improving management of DD patients and prevention of recurrence.
Collapse
Affiliation(s)
- Maro Bujak
- Division of Molecular Medicine, Ruer Bošković Institute Zagreb, Croatia
| | - Ivana Ratkaj
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka Rijeka, Croatia
| | - Elitza Markova-Car
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka Rijeka, Croatia
| | - Davor Jurišić
- Clinic for Surgery, Department for Plastic and Reconstructive Surgery, University Hospital Centre Rijeka Rijeka, Croatia
| | - Anita Horvatić
- Division of Molecular Medicine, Ruer Bošković Institute Zagreb, Croatia
| | - Srđan Vučinić
- Division of Molecular Medicine, Ruer Bošković Institute Zagreb, Croatia
| | - Jonatan Lerga
- Faculty of Engineering and Centre for Advanced Computing and Modelling, University of Rijeka Rijeka, Croatia ; Centre for Advanced Computing and Modelling, University of Rijeka Rijeka, Croatia
| | | | - Krešimir Pavelić
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka Rijeka, Croatia
| | - Sandra Kraljević Pavelić
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka Rijeka, Croatia
| |
Collapse
|
109
|
Sun L, Sun C, Liang Z, Li H, Chen L, Luo H, Zhang H, Ding P, Sun X, Qin Z, Zhao Y. FSP1(+) fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells. Sci Rep 2015; 5:14871. [PMID: 26445893 PMCID: PMC4597222 DOI: 10.1038/srep14871] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/10/2015] [Indexed: 12/11/2022] Open
Abstract
Thymic epithelial cells (TECs) form a 3-dimentional network supporting thymocyte development and maturation. Besides epithelium and thymocytes, heterogeneous fibroblasts are essential components in maintaining thymic microenvironments. However, thymic fibroblast characteristics, development and function remain to be determined. We herein found that thymic non-hematopoietic CD45(-)FSP1(+) cells represent a unique Fibroblast specific protein 1 (FSP1)(-)fibroblast-derived cell subset. Deletion of these cells in FSP1-TK transgenic mice caused thymus atrophy due to the loss of TECs, especially mature medullary TECs (MHCII(high), CD80(+) and Aire(+)). In a cyclophosphamide-induced thymus injury and regeneration model, lack of non-hematopoietic CD45(-)FSP1(+) fibroblast subpopulation significantly delayed thymus regeneration. In fact, thymic FSP1(+) fibroblasts released more IL-6, FGF7 and FSP1 in the culture medium than their FSP1(-) counterparts. Further experiments showed that the FSP1 protein could directly enhance the proliferation and maturation of TECs in the in vitro culture systems. FSP1 knockout mice had significantly smaller thymus size and less TECs than their control. Collectively, our studies reveal that thymic CD45(-)FSP1(+) cells are a subpopulation of fibroblasts, which is crucial for the maintenance and regeneration of TECs especially medullary TECs through providing IL-6, FGF7 and FSP1.
Collapse
Affiliation(s)
- Lina Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chenming Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongran Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lin Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haiying Luo
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongmei Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengbo Ding
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoning Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhihai Qin
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
110
|
Abstract
PURPOSE OF REVIEW Synovial fibroblasts continue to grow in prominence both as the subjects of research into the pathogenesis of rheumatoid arthritis and as novel therapeutic targets. This timely review aims to integrate the most recent findings with existing paradigms of fibroblast-related mechanisms of disease. RECENT FINDINGS Linking the role of synovial fibroblasts as innate sentinels expressing pattern recognition receptors such as toll-like receptors to their effector roles in joint damage and interactions with leukocyte subpopulations has continued to advance. Understanding of the mechanisms underlying increased fibroblast survival in the inflamed synovium has led to therapeutic strategies such as cyclin-dependent kinase inhibition. Major advances have taken place in understanding of the interactions between epigenetic and micro-RNA regulation of transcription in synovial fibroblasts, improving our understanding of the unique pathological phenotype of these cells. Finally, the impact of new markers for fibroblast subpopulations is beginning to become apparent, offering the potential for targeting of pathological cells as the roles of different populations become clearer. SUMMARY Over the past 2 years, major advances have continued to emerge in understanding of the relationship between synovial fibroblasts and the regulation of inflammatory pathways in the rheumatoid arthritis synovium.
Collapse
|
111
|
Ishikawa S, Takemitsu H, Habara M, Mori N, Yamamoto I, Arai T. Sirtuin 1 suppresses nuclear factor κB induced transactivation and pro-inflammatory cytokine expression in cat fibroblast cells. J Vet Med Sci 2015; 77:1681-4. [PMID: 26165138 PMCID: PMC4710730 DOI: 10.1292/jvms.15-0245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nuclear factor κB (NF-κB) is a key factor in the development of chronic inflammation and
is deeply involved in age-related and metabolic diseases development. These diseases have
become a serious problem in cats. Sirtuin 1 (SIRT1) is associated with aging and
metabolism through maintaining inflammation via NF-κB. In addition, fibroblasts are
considered an important factor in the development of chronic inflammation. Therefore, we
aimed to examine the effect of cat SIRT1 (cSIRT1) on NF-κB in cat fibroblast cells. The
up-regulation of NF-κB transcriptional activity and pro-inflammatory cytokine mRNA
expression by p65 subunit of NF-κB and lipopolysaccharide was suppressed by cSIRT1 in cat
fibroblast cells. Our findings show that cSIRT1 is involved in the suppression of
inflammation in cat fibroblast cells.
Collapse
Affiliation(s)
- Shingo Ishikawa
- Department of Basic Veterinary Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
| | | | | | | | | | | |
Collapse
|
112
|
Díaz-Araya G, Vivar R, Humeres C, Boza P, Bolivar S, Muñoz C. Cardiac fibroblasts as sentinel cells in cardiac tissue: Receptors, signaling pathways and cellular functions. Pharmacol Res 2015; 101:30-40. [PMID: 26151416 DOI: 10.1016/j.phrs.2015.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/24/2022]
Abstract
Cardiac fibroblasts (CF) not only modulate extracellular matrix (ECM) proteins homeostasis, but also respond to chemical and mechanical signals. CF express a variety of receptors through which they modulate the proliferation/cell death, autophagy, adhesion, migration, turnover of ECM, expression of cytokines, chemokines, growth factors and differentiation into cardiac myofibroblasts (CMF). Differentiation of CF to CMF involves changes in the expression levels of various receptors, as well as, changes in cell phenotype and their associated functions. CF and CMF express the β2-adrenergic receptor, and its stimulation activates PKA and EPAC proteins, which differentially modulate the CF and CMF functions mentioned above. CF and CMF also express different levels of Angiotensin II receptors, in particular, AT1R activation increases collagen synthesis and cell proliferation, but its overexpression activates apoptosis. CF and CMF express different levels of B1 and B2 kinin receptors, whose stimulation by their respective agonists activates common signaling transduction pathways that decrease the synthesis and secretion of collagen through nitric oxide and prostacyclin I2 secretion. Besides these classical functions, CF can also participate in the inflammatory response of cardiac repair, through the expression of receptors commonly associated to immune cells such as Toll like receptor 4, NLRP3 and interferon receptor. The activation by their respective agonists modulates the cellular functions already described and the release of cytokines and chemokines. Thus, CF and CMF act as sentinel cells responding to a plethora of stimulus, modifying their own behavior, and that of neighboring cells.
Collapse
Affiliation(s)
- G Díaz-Araya
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile.
| | - R Vivar
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - C Humeres
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - P Boza
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - S Bolivar
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - C Muñoz
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| |
Collapse
|
113
|
Sheridan JA, Zago M, Nair P, Li PZ, Bourbeau J, Tan WC, Hamid Q, Eidelman DH, Benedetti AL, Baglole CJ. Decreased expression of the NF-κB family member RelB in lung fibroblasts from Smokers with and without COPD potentiates cigarette smoke-induced COX-2 expression. Respir Res 2015; 16:54. [PMID: 25943190 PMCID: PMC4427974 DOI: 10.1186/s12931-015-0214-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/21/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Heightened inflammation, including expression of COX-2, is associated with COPD pathogenesis. RelB is an NF-κB family member that attenuates COX-2 in response to cigarette smoke by a mechanism that may involve the miRNA miR-146a. There is no information on the expression of RelB in COPD or if RelB prevents COX-2 expression through miR-146a. METHODS RelB, Cox-2 and miR-146a levels were evaluated in lung fibroblasts and blood samples derived from non-smokers (Normal) and smokers (At Risk) with and without COPD by qRT-PCR. RelB and COX-2 protein levels were evaluated by western blot. Human lung fibroblasts from Normal subjects and smokers with and without COPD, along with RelB knock-down (siRNA) in Normal cells, were exposed to cigarette smoke extract (CSE) in vitro and COX-2 mRNA/protein and miR-146a levels assessed. RESULTS Basal expression of RelB mRNA and protein were significantly lower in lung cells derived from smokers with and without COPD, the latter of which expressed more Cox-2 mRNA and protein in response to CSE. Knock-down of RelB in Normal fibroblasts increased Cox-2 mRNA and protein induction by CSE. Basal miR-146a levels were not different between the three groups, and only Normal fibroblasts increased miR-146a expression in response to smoke. There was a positive correlation between systemic RelB and Cox-2 mRNA levels and circulating miR-146a levels were higher only in GOLD stage I subjects. CONCLUSIONS Our data indicate that RelB attenuates COX-2 expression in lung structural cells, such that loss of pulmonary RelB may be an important determinant in the aberrant, heightened inflammation associated with COPD pathogenesis.
Collapse
Affiliation(s)
- Jared A Sheridan
- Department of Medicine, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| | - Michela Zago
- Department of Medicine, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| | | | - Pei Z Li
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University, Montreal, QC, Canada.
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University, Montreal, QC, Canada.
| | - Wan C Tan
- The UBC James Hogg Research Centre, University of British Columbia, Vancouver, BC, Canada.
| | - Qutayba Hamid
- Department of Medicine, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| | - David H Eidelman
- Department of Medicine, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| | - Andrea L Benedetti
- Department of Epidemiology and Biostatistics, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| | - Carolyn J Baglole
- Department of Medicine, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
114
|
De Bari C. Are mesenchymal stem cells in rheumatoid arthritis the good or bad guys? Arthritis Res Ther 2015; 17:113. [PMID: 25929877 PMCID: PMC4416346 DOI: 10.1186/s13075-015-0634-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The advancements in our understanding of the inflammatory and immune mechanisms in rheumatoid arthritis (RA) have fuelled the development of targeted therapies that block cytokine networks and pathogenic immune cells, leading to a considerable improvement in the management of RA patients. Nonetheless, no therapy is curative and clinical remission does not necessarily correspond to non-progression of joint damage. Hence, the biomedical community has redirected scientific efforts and resources towards the investigation of other biological aspects of the disease, including the mechanisms driving tissue remodelling and repair. In this regard, stem cell research has attracted extraordinary attention, with the ultimate goal to develop interventions for the biological repair of damaged tissues in joint disorders, including RA. The recent evidence that mesenchymal stem cells (MSCs) with the ability to differentiate into cartilage are present in joint tissues raises an opportunity for therapeutic interventions via targeting intrinsic repair mechanisms. Under physiological conditions, MSCs in the joint are believed to contribute to the maintenance and repair of joint tissues. In RA, however, the repair function of MSCs appears to be repressed by the inflammatory milieu. In addition to being passive targets, MSCs could interact with the immune system and play an active role in the perpetuation of arthritis and progression of joint damage. Like MSCs, fibroblast-like synoviocytes (FLSs) are part of the stroma of the synovial membrane. During RA, FLSs undergo proliferation and contribute to the formation of the deleterious pannus, which mediates damage to articular cartilage and bone. Both FLSs and MSCs are contained within the mononuclear cell fraction in vitro, from which they can be culture expanded as plastic-adherent fibroblast-like cells. An important question to address relates to the relationship between MSCs and FLSs. MSCs and FLSs could be the same cell type with functional specialisation or represent different functional stages of the same stromal lineage. This review will discuss the roles of MSCs in RA and will address current knowledge of the relative identity between MSCs and FLSs. It will also examine the immunomodulatory properties of the MSCs and the potential to harness such properties for the treatment of RA.
Collapse
Affiliation(s)
- Cosimo De Bari
- Regenerative Medicine Group, Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
115
|
Buckley CD, Barone F, Nayar S, Bénézech C, Caamaño J. Stromal Cells in Chronic Inflammation and Tertiary Lymphoid Organ Formation. Annu Rev Immunol 2015; 33:715-45. [DOI: 10.1146/annurev-immunol-032713-120252] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christopher D. Buckley
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Francesca Barone
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Saba Nayar
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Cecile Bénézech
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Jorge Caamaño
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
116
|
Ji T, Ding Y, Zhao Y, Wang J, Qin H, Liu X, Lang J, Zhao R, Zhang Y, Shi J, Tao N, Qin Z, Nie G. Peptide assembly integration of fibroblast-targeting and cell-penetration features for enhanced antitumor drug delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1865-73. [PMID: 25651789 DOI: 10.1002/adma.201404715] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/14/2015] [Indexed: 05/20/2023]
Affiliation(s)
- Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Qiu LQ, Lai WS, Bradbury A, Zeldin DC, Blackshear PJ. Tristetraprolin (TTP) coordinately regulates primary and secondary cellular responses to proinflammatory stimuli. J Leukoc Biol 2015; 97:723-36. [PMID: 25657290 DOI: 10.1189/jlb.3a0214-106r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
TTP is an anti-inflammatory protein that acts by binding to AREs in its target mRNAs, such as Tnf mRNA, and promoting their deadenylation and decay. TNF released from inflammatory cells can then stimulate gene expression in tissue cells, such as fibroblasts. To determine whether TTP could affect the decay of TNF-induced transcripts in fibroblasts, we exposed primary embryonic fibroblasts and stable fibroblast cell lines, derived from WT and TTP KO mice, to TNF. The decay rates of transcripts encoded by several early-response genes, including Cxcl1, Cxcl2, Ier3, Ptgs2, and Lif, were significantly slowed in TTP-deficient fibroblasts after TNF stimulation. These changes were associated with TTP-dependent increases in CXCL1, CXCL2, and IER3 protein levels. The TTP-susceptible transcripts contained multiple, conserved, closely spaced, potential TTP binding sites in their 3'-UTRs. WT TTP, but not a nonbinding TTP zinc finger mutant, bound to RNA probes that were based on the mRNA sequences of Cxcl1, Cxcl2, Ptgs2, and Lif. TTP-promoted decay of transcripts encoding chemokines and other proinflammatory mediators is thus a critical post-transcriptional regulatory mechanism in the response of secondary cells, such as fibroblasts, to TNF released from primary immune cells.
Collapse
Affiliation(s)
- Lian-Qun Qiu
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Wi S Lai
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Alyce Bradbury
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Darryl C Zeldin
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Perry J Blackshear
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
118
|
Munir H, Rainger GE, Nash GB, McGettrick H. Analyzing the effects of stromal cells on the recruitment of leukocytes from flow. J Vis Exp 2015:e52480. [PMID: 25590557 DOI: 10.3791/52480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stromal cells regulate the recruitment of circulating leukocytes during inflammation through cross-talk with neighboring endothelial cells. Here we describe two in vitro "vascular" models for studying the recruitment of circulating neutrophils from flow by inflamed endothelial cells. A major advantage of these models is the ability to analyze each step in the leukocyte adhesion cascade in order, as would occur in vivo. We also describe how both models can be adapted to study the role of stromal cells, in this case mesenchymal stem cells (MSC), in regulating leukocyte recruitment. Primary endothelial cells were cultured alone or together with human MSC in direct contact on Ibidi microslides or on opposite sides of a Transwell filter for 24 hr. Cultures were stimulated with tumor necrosis factor alpha (TNFα) for 4 hr and incorporated into a flow-based adhesion assay. A bolus of neutrophils was perfused over the endothelium for 4 min. The capture of flowing neutrophils and their interactions with the endothelium was visualized by phase-contrast microscopy. In both models, cytokine-stimulation increased endothelial recruitment of flowing neutrophils in a dose-dependent manner. Analysis of the behavior of recruited neutrophils showed a dose-dependent decrease in rolling and a dose-dependent increase in transmigration through the endothelium. In co-culture, MSC suppressed neutrophil adhesion to TNFα-stimulated endothelium. Our flow based-adhesion models mimic the initial phases of leukocyte recruitment from the circulation. In addition to leukocytes, they can be used to examine the recruitment of other cell types, such as therapeutically administered MSC or circulating tumor cells. Our multi-layered co-culture models have shown that MSC communicate with endothelium to modify their response to pro-inflammatory cytokines, altering the recruitment of neutrophils. Further research using such models is required to fully understand how stromal cells from different tissues and conditions (inflammatory disorders or cancer) influence the recruitment of leukocytes during inflammation.
Collapse
Affiliation(s)
- Hafsa Munir
- School of Clinical and Experimental Medicine, University of Birmingham; College of Medical and Dental Sciences, University of Birmingham
| | - G Ed Rainger
- School of Clinical and Experimental Medicine, University of Birmingham; College of Medical and Dental Sciences, University of Birmingham
| | - Gerard B Nash
- School of Clinical and Experimental Medicine, University of Birmingham; College of Medical and Dental Sciences, University of Birmingham
| | - Helen McGettrick
- College of Medical and Dental Sciences, University of Birmingham; School of Immunity and Infection, University of Birmingham;
| |
Collapse
|
119
|
Huang L, Xu AM, Liu S, Liu W, Li TJ. Cancer-associated fibroblasts in digestive tumors. World J Gastroenterol 2014; 20:17804-17818. [PMID: 25548479 PMCID: PMC4273131 DOI: 10.3748/wjg.v20.i47.17804] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/22/2014] [Accepted: 07/11/2014] [Indexed: 02/07/2023] Open
Abstract
The significant influence of tumor stroma on malignant cells has been extensively investigated in this era of targeted therapy. The tumor microenvironment, as a dynamic system, is orchestrated by various cells including tumor vascular composing cells, inflammatory cells and fibroblasts. As a major and important component in tumor stroma, increasing evidence has shown that spindle-shaped cancer-associated fibroblasts (CAFs) are a significant modifier of cancer evolution, and promote tumorigenesis, tumor invasion and metastasis by stimulating angiogenesis, malignant cell survival, epithelial-mesenchymal transition (EMT) and proliferation via direct cell-to-cell contact or secretion of soluble factors in most digestive solid tumors. CAFs are thought to be activated, characterized by the expression of α-smooth muscle actin, fibroblast activated protein, fibroblast specific protein, vimentin, fibronectin, etc. They are hypothesized to originate from normal or aged fibroblasts, bone marrow-derived mesenchymal cells, or vascular endothelial cells. EMT may also be an important process generating CAFs, and most probably, CAFs may originate from multiple cells. A close link exists between EMT, tumor stem cells, and chemo-resistance of tumor cells, which is largely orchestrated by CAFs. CAFs significantly induce immunosuppression, and may be a prognostic marker in various malignancies. Targeted therapy toward CAFs has displayed promising anticancer efficacy, which further reinforces the necessity to explore the relationship between CAFs and their hosts.
Collapse
|
120
|
Gilbane AJ, Denton CP, Holmes AM. Scleroderma pathogenesis: a pivotal role for fibroblasts as effector cells. Arthritis Res Ther 2014; 15:215. [PMID: 23796020 PMCID: PMC4060542 DOI: 10.1186/ar4230] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Scleroderma (systemic sclerosis; SSc) is characterised by fibrosis of the skin and internal organs in the context of autoimmunity and vascular perturbation. Overproduction of extracellular matrix components and loss of specialised epithelial structures are analogous to the process of scar formation after tissue injury. Fibroblasts are the resident cells of connective tissue that become activated at sites of damage and are likely to be important effector cells in SSc. Differentiation into myofibroblasts is a hallmark process, although the mechanisms and cellular origins of this important fibroblastic cell are still unclear. This article reviews fibroblast biology in the context of SSc and highlights the potentially important place of fibroblast effector cells in fibrosis. Moreover, the heterogeneity of fibroblast properties, multiplicity of regulatory pathways and diversity of origin for myofibroblasts may underpin clinical diversity in SSc, and provide novel avenues for targeted therapy.
Collapse
|
121
|
Driskell RR, Watt FM. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol 2014; 25:92-9. [PMID: 25455110 DOI: 10.1016/j.tcb.2014.10.001] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 01/06/2023]
Abstract
Fibroblasts are found in most tissues, yet they remain poorly characterised. Different fibroblast subpopulations with distinct functions have been identified in the skin. This functional heterogeneity reflects the varied fibroblast lineages that arise from a common embryonic precursor. In addition to autocrine signals, fibroblasts are highly responsive to Wnt-regulated signals from the overlying epidermis, which can act both locally, via extracellular matrix (ECM) deposition, and via secreted factors that impact the behaviour of fibroblasts in different dermal locations. These findings may explain some of the changes that occur in connective tissue during wound healing and cancer progression.
Collapse
Affiliation(s)
- Ryan R Driskell
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital Campus, London SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital Campus, London SE1 9RT, UK.
| |
Collapse
|
122
|
Chen Z, Li W, Ning Y, Liu T, Shao J, Wang Y. Ski diminishes TGF-β1-induced myofibroblast phenotype via up-regulating Meox2 expression. Exp Mol Pathol 2014; 97:542-9. [PMID: 25445500 DOI: 10.1016/j.yexmp.2014.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/26/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The aim of the present work was to investigate the mechanism of transforming growth factor (TGF)-β1 and Sloan-Kettering Institute (Ski) in the pathogenesis of hypertrophic scars (HS). BACKGROUND Wound healing is an inherent process, but the aberrant wound healing of skin injury may lead to HS. There has been growing evidence suggesting a role for TGF-β1 and Ski in the pathogenesis of fibrosis. MATERIAL AND METHODS The MTT assay was used to detect the cell proliferation induced by TGF-β1. The Ski gene was transduced into cells with an adenovirus, and then the function of Ski in cell proliferation and differentiation was observed. Ski mRNA levels were measured by RT-PCR. Western blotting was used to detect the protein expression of α-SMA, E-cadherin, Meox1, Meox2, Zeb1 and Zeb2. RESULTS TGF-β1 can promote human skin fibroblast (HSF) cell proliferation in a time-dependent manner, but the promoting effect could be suppressed by Ski. TGF-β1 also induces the formation of the myofibroblast phenotype and the effect of TGF-β1 could be diminished by Ski. Also, Ski modulates the cardiac myofibroblast phenotype and function through suppression of Zeb2 by up-regulating the expression of Meox2. CONCLUSIONS Ski diminishes the myofibroblast phenotype induced by TGF-β1 through the suppression of Zeb2 by up-regulating the expression of Meox2.
Collapse
Affiliation(s)
- Zhaowei Chen
- Department of Burns and Plastic Surgery, Liao Cheng Hospital, Liao Cheng 252000, China.
| | - Wenjing Li
- Department of Burns and Plastic Surgery, Liao Cheng Hospital, Liao Cheng 252000, China
| | - Yan Ning
- Department of Burns and Plastic Surgery, Liao Cheng Hospital, Liao Cheng 252000, China
| | - Tong Liu
- Department of Burns and Plastic Surgery, Liao Cheng Hospital, Liao Cheng 252000, China
| | - Jingxiang Shao
- Department of Burns and Plastic Surgery, Liao Cheng Hospital, Liao Cheng 252000, China
| | - Yaojun Wang
- Department of Burns and Skin Surgery, Xi Jing Hospital, Xian 710032, China
| |
Collapse
|
123
|
Barminko JA, Nativ NI, Schloss R, Yarmush ML. Fractional factorial design to investigate stromal cell regulation of macrophage plasticity. Biotechnol Bioeng 2014; 111:2239-51. [PMID: 24891120 PMCID: PMC5928506 DOI: 10.1002/bit.25282] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 12/23/2022]
Abstract
Understanding the regulatory networks which control specific macrophage phenotypes is essential in identifying novel targets to correct macrophage mediated clinical disorders, often accompanied by inflammatory events. Since mesenchymal stromal cells (MSCs) have been shown to play key roles in regulating immune functions predominantly via a large number of secreted products, we used a fractional factorial approach to streamline experimental evaluation of MSC mediated inflammatory macrophage regulation. Our macrophage reprogramming metrics, human bone marrow MSC attenuation of macrophage pro-inflammatory M1 TNFα secretion and simultaneous enhanced expression of the M2 macrophage marker, CD206, were used as analysis endpoints. Objective evaluation of a panel of MSC secreted mediators indicated that PGE2 alone was sufficient in facilitating macrophage reprogramming, while IL4 only provided partial reprogramming. Inhibiting stromal cell PGE2 secretion with Indomethacin, reversed the macrophage reprogramming effect. PGE2 reprogramming was mediated through the EP4 receptor and indirectly through the CREB signaling pathway as GSK3 specific inhibitors induced M1 macrophages to express CD206. This reprogramming pathway functioned independently from the M1 suppression pathway, as neither CREB nor GSK3 inhibition reversed PGE2 TNF-α secretion attenuation. In conclusion, fractional factorial experimental design identified stromal derived PGE2 as the factor most important in facilitating macrophage reprogramming, albeit via two unique pathways.
Collapse
Affiliation(s)
- Jeffrey A Barminko
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey, 08854
| | | | | | | |
Collapse
|
124
|
Nanovesicles engineered from ES cells for enhanced cell proliferation. Biomaterials 2014; 35:9302-10. [PMID: 25132601 DOI: 10.1016/j.biomaterials.2014.07.047] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/23/2014] [Indexed: 01/09/2023]
Abstract
Extracellular vesicles (Exosomes and microvesicles) have drawn wide attentions in both diagnostic and therapeutic applications, since they are considered to shuttle biological signals intercellularly. However, further research on exosomes is limited by their rarity and heterogeneity even after lengthy isolation processes. In particular, these limitations are challenging in therapeutic applications. To meet these demands, cell-derived nanovesicles that mimic exosomes were generated by extruding living embryonic stem cells through micro-filters. These nanovesicles have an enclosed lipid bilayer and contain cellular contents. The present study investigated the ability of these nanovesicles to improve proliferation by treating primary murine skin fibroblasts with the nanovesicles. The treated skin fibroblasts showed higher expression levels of mRNA, VEGF-α, protein levels of TGF-β collagen I, PCNA, and Ki-67, as well as enhanced cell proliferation rate and number, compared to non-treated cells. The results indicate that treatment with the nanovesicles could potentially contribute to recovery or wound healing process of tissues.
Collapse
|
125
|
Oyer SL, Nagel W, Mulligan JK. Differential expression of adhesion molecules by sinonasal fibroblasts among control and chronic rhinosinusitis patients. Am J Rhinol Allergy 2014; 27:381-6. [PMID: 24119601 DOI: 10.2500/ajra.2013.27.3934] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is characterized by inflammatory cell migration into sinus tissue with resultant inflammation fueled by a milieu of cytokines. Fibroblasts may contribute to inflammation through expression of leukocyte adhesion molecules such as vascular cell adhesion molecule (VCAM) and intercellular adhesion molecule (ICAM). VCAM attracts eosinophils and mast cells contributing to Th2 skewing, and ICAM attracts neutrophils and to a lesser degree, eosinophils, and contributes to mixed Th1/Th2 skewing. The purpose of this study was to compare sinus fibroblast adhesion molecule expression ex vivo among CRS subtypes and in vitro after cytokine stimulation. METHODS Sinus biopsy specimens were taken from control patients (n = 13), CRS without nasal polyposis (CRSsNP, n = 6), and CRS with nasal polyposis (CRSwNP, n = 15). ex vivo levels of VCAM and ICAM were measured by flow cytometry from single cell suspensions of tissue biopsy specimens. Changes in VCAM and ICAM expression to cytokine exposure were assessed using in vitro cultured sinonasal fibroblasts treated with tumor necrosis factor (TNF)-α, interleukin (IL)-4, or interferon (IFN)-γ. RESULTS ex vivo VCAM expression was lowest in controls, higher in CRSsNP, and highest in CRSwNP. in vitro stimulation with TNF-α and IL-4, but not IFN-γ, increased VCAM among CRSsNP, while expression in CRSwNP remained elevated with all treatments except IFN-γ. ex vivo ICAM expression was elevated in both CRS subtypes. in vitro stimulation with TNF-α and IFN-γ, but not IL-4, increased ICAM expression in all patients with the largest effects among the CRSsNP subgroup. CONCLUSION Sinonasal fibroblast expression of adhesion molecules in sinusitis varies by disease state and is selectively influenced by exposure to inflammatory cytokines.
Collapse
Affiliation(s)
- Samuel L Oyer
- Division of Rhinology and Sinus Surgery, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | |
Collapse
|
126
|
Häkkinen L, Larjava H, Fournier BPJ. Distinct phenotype and therapeutic potential of gingival fibroblasts. Cytotherapy 2014; 16:1171-86. [PMID: 24934304 DOI: 10.1016/j.jcyt.2014.04.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/13/2014] [Accepted: 04/04/2014] [Indexed: 01/15/2023]
Abstract
Gingiva of the oral mucosa provides a practical source to isolate fibroblasts for therapeutic purposes because the tissue is easily accessible, tissue discards are common during routine clinical procedures and wound healing after biopsy is fast and results in complete wound regeneration with very little morbidity or scarring. In addition, gingival fibroblasts have unique traits, including neural crest origin, distinct gene expression and synthetic properties and potent immunomodulatory functions. These characteristics may provide advantages for certain therapeutic approaches over other more commonly used cells, including skin fibroblasts, both in intraoral and extra-oral sites. However, identity and phenotype of gingival fibroblasts, like other fibroblasts, are still not completely understood. Gingival fibroblasts are phenotypically heterogeneous, and these…fibroblast subpopulations may play different roles in tissue maintenance, regeneration and pathologies. The purpose of this review is to summarize what is currently known about gingival fibroblasts, their distinct potential for tissue regeneration and their potential therapeutic uses in the future.
Collapse
Affiliation(s)
- Lari Häkkinen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada.
| | - Hannu Larjava
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Benjamin P J Fournier
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada; Paris Diderot University, Dental School, Rotschild Hospital, AP-HP, Paris, France; UMRS872, Team 5, Molecular Oral Physiopathology, CRC Les Cordeliers, Paris, 75006, INSERM UMRS872, Pierre et Marie Curie University, Paris Descartes University, Paris, France
| |
Collapse
|
127
|
Le Brocq ML, Fraser AR, Cotton G, Woznica K, McCulloch CV, Hewitt KD, McKimmie CS, Nibbs RJB, Campbell JDM, Graham GJ. Chemokines as novel and versatile reagents for flow cytometry and cell sorting. THE JOURNAL OF IMMUNOLOGY 2014; 192:6120-6130. [PMID: 24850722 DOI: 10.4049/jimmunol.1303371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell therapy regimens are frequently compromised by low-efficiency cell homing to therapeutic niches. Improvements in this regard would enhance effectiveness of clinically applicable cell therapy. The major regulators of tissue-specific cellular migration are chemokines, and therefore selection of therapeutic cellular populations for appropriate chemokine receptor expression would enhance tissue-homing competence. A number of practical considerations preclude the use of Abs in this context, and alternative approaches are required. In this study, we demonstrate that appropriately labeled chemokines are at least as effective in detecting their cognate receptors as commercially available Abs. We also demonstrate the utility of biotinylated chemokines as cell-sorting reagents. Specifically, we demonstrate, in the context of CCR7 (essential for lymph node homing of leukocytes), the ability of biotinylated CCL19 with magnetic bead sorting to enrich for CCR7-expressing cells. The sorted cells demonstrate improved CCR7 responsiveness and lymph node-homing capability, and the sorting is effective for both T cells and dendritic cells. Importantly, the ability of chemokines to detect CCR7, and sort for CCR7 positivity, crosses species being effective on murine and human cells. This novel approach to cell sorting is therefore inexpensive, versatile, and applicable to numerous cell therapy contexts. We propose that this represents a significant technological advance with important therapeutic implications.
Collapse
Affiliation(s)
- Michelle L Le Brocq
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Alasdair R Fraser
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Graham Cotton
- Almac Sciences (Scotland) Ltd, Elvingston Science Centre, By Gladsmuir, East Lothian EH33 1EH, UK
| | - Kerry Woznica
- Almac Sciences (Scotland) Ltd, Elvingston Science Centre, By Gladsmuir, East Lothian EH33 1EH, UK
| | - Clare V McCulloch
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Kay D Hewitt
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Clive S McKimmie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Robert J B Nibbs
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - John D M Campbell
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.,Clinical Science and Cell Analysis Group, Miltenyi Biotec Ltd
| | - Gerard J Graham
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| |
Collapse
|
128
|
Peverill W, Powell LW, Skoien R. Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci 2014; 15:8591-638. [PMID: 24830559 PMCID: PMC4057750 DOI: 10.3390/ijms15058591] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/20/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterised by hepatic steatosis and inflammation and, in some patients, progressive fibrosis leading to cirrhosis. An understanding of the pathogenesis of NASH is still evolving but current evidence suggests multiple metabolic factors critically disrupt homeostasis and induce an inflammatory cascade and ensuing fibrosis. The mechanisms underlying these changes and the complex inter-cellular interactions that mediate fibrogenesis are yet to be fully elucidated. Lipotoxicity, in the setting of excess free fatty acids, obesity, and insulin resistance, appears to be the central driver of cellular injury via oxidative stress. Hepatocyte apoptosis and/or senescence contribute to activation of the inflammasome via a variety of intra- and inter-cellular signalling mechanisms leading to fibrosis. Current evidence suggests that periportal components, including the ductular reaction and expansion of the hepatic progenitor cell compartment, may be involved and that the Th17 response may mediate disease progression. This review aims to provide an overview of the pathogenesis of NASH and summarises the evidence pertaining to key mechanisms implicated in the transition from steatosis and inflammation to fibrosis. Currently there are limited treatments for NASH although an increasing understanding of its pathogenesis will likely improve the development and use of interventions in the future.
Collapse
Affiliation(s)
- William Peverill
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| | - Lawrie W Powell
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| | - Richard Skoien
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| |
Collapse
|
129
|
Van Linthout S, Miteva K, Tschöpe C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res 2014; 102:258-69. [PMID: 24728497 DOI: 10.1093/cvr/cvu062] [Citation(s) in RCA: 410] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fibroblasts, which are traditionally recognized as a quiescent cell responsible for extracellular matrix production, are more and more appreciated as an active key player of the immune system. This review describes how fibroblasts and immune cells reciprocally influence the pathogenesis of fibrosis. An overview is given how fibroblasts are triggered by components of the innate and adaptive immunity on the one hand and how fibroblasts modulate immune cell behaviour via conditioning the cellular and cytokine microenvironment on the other hand. Finally, latest insights into the role of cardiac fibroblasts in the orchestration of inflammatory cell infiltration in the heart, and their impact on heart failure, are outlined.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow Clinic, Berlin, Germany
| | | | | |
Collapse
|
130
|
Giese C, Marx U. Human immunity in vitro - solving immunogenicity and more. Adv Drug Deliv Rev 2014; 69-70:103-22. [PMID: 24447895 DOI: 10.1016/j.addr.2013.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/19/2013] [Accepted: 12/28/2013] [Indexed: 12/24/2022]
Abstract
It has been widely recognised that the phylogenetic distance between laboratory animals and humans limits the former's predictive value for immunogenicity testing of biopharmaceuticals and nanostructure-based drug delivery and adjuvant systems. 2D in vitro assays have been established in conventional culture plates with little success so far. Here, we detail the status of various 3D approaches to emulate innate immunity in non-lymphoid organs and adaptive immune response in human professional lymphoid immune organs in vitro. We stress the tight relationship between the necessarily changing architecture of professional lymphoid organs at rest and when activated by pathogens, and match it with the immunity identified in vitro. Recommendations for further improvements of lymphoid tissue architecture relevant to the development of a sustainable adaptive immune response in vitro are summarized. In the end, we sketch a forecast of translational innovations in the field to model systemic innate and adaptive immunity in vitro.
Collapse
Affiliation(s)
| | - Uwe Marx
- Technische Universität Berlin, Institute of Biotechnology, Department Medical Biotechnology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| |
Collapse
|
131
|
Jonczyk MS, Simon M, Kumar S, Fernandes VE, Sylvius N, Mallon AM, Denny P, Andrew PW. Genetic factors regulating lung vasculature and immune cell functions associate with resistance to pneumococcal infection. PLoS One 2014; 9:e89831. [PMID: 24594938 PMCID: PMC3940657 DOI: 10.1371/journal.pone.0089831] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 01/27/2014] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae is an important human pathogen responsible for high mortality and morbidity worldwide. The susceptibility to pneumococcal infections is controlled by as yet unknown genetic factors. To elucidate these factors could help to develop new medical treatments and tools to identify those most at risk. In recent years genome wide association studies (GWAS) in mice and humans have proved successful in identification of causal genes involved in many complex diseases for example diabetes, systemic lupus or cholesterol metabolism. In this study a GWAS approach was used to map genetic loci associated with susceptibility to pneumococcal infection in 26 inbred mouse strains. As a result four candidate QTLs were identified on chromosomes 7, 13, 18 and 19. Interestingly, the QTL on chromosome 7 was located within S. pneumoniae resistance QTL (Spir1) identified previously in a linkage study of BALB/cOlaHsd and CBA/CaOlaHsd F2 intercrosses. We showed that only a limited number of genes encoded within the QTLs carried phenotype-associated polymorphisms (22 genes out of several hundred located within the QTLs). These candidate genes are known to regulate TGFβ signalling, smooth muscle and immune cells functions. Interestingly, our pulmonary histopathology and gene expression data demonstrated, lung vasculature plays an important role in resistance to pneumococcal infection. Therefore we concluded that the cumulative effect of these candidate genes on vasculature and immune cells functions as contributory factors in the observed differences in susceptibility to pneumococcal infection. We also propose that TGFβ-mediated regulation of fibroblast differentiation plays an important role in development of invasive pneumococcal disease. Gene expression data submitted to the NCBI Gene Expression Omnibus Accession No: GSE49533 SNP data submitted to NCBI dbSNP Short Genetic Variation http://www.ncbi.nlm.nih.gov/projects/SNP/snp_viewTable.cgi?handle=MUSPNEUMONIA.
Collapse
Affiliation(s)
- Magda S. Jonczyk
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Michelle Simon
- MRC Harwell, Mammalian Genetics Unit, Oxford, United Kingdom
| | - Saumya Kumar
- MRC Harwell, Mammalian Genetics Unit, Oxford, United Kingdom
| | - Vitor E. Fernandes
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Nicolas Sylvius
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | | | - Paul Denny
- MRC Harwell, Mammalian Genetics Unit, Oxford, United Kingdom
| | - Peter W. Andrew
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
132
|
Tsujiuchi T, Hirane M, Dong Y, Fukushima N. Diverse effects of LPA receptors on cell motile activities of cancer cells. J Recept Signal Transduct Res 2014; 34:149-53. [DOI: 10.3109/10799893.2013.876042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
133
|
Regulation of chemokine CCL5 synthesis in human peritoneal fibroblasts: a key role of IFN-γ. Mediators Inflamm 2014; 2014:590654. [PMID: 24523572 PMCID: PMC3913084 DOI: 10.1155/2014/590654] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/08/2013] [Accepted: 12/12/2013] [Indexed: 01/11/2023] Open
Abstract
Peritonitis is characterized by a coordinated influx of various leukocyte subpopulations. The pattern of leukocyte recruitment is controlled by chemokines secreted primarily by peritoneal mesothelial cells and macrophages. We have previously demonstrated that some chemokines may be also produced by human peritoneal fibroblasts (HPFB). Aim of our study was to assess the potential of HPFB in culture to release CCL5, a potent chemoattractant for mononuclear leukocytes. Quiescent HPFB released constitutively no or trace amounts of CCL5. Stimulation of HPFB with IL-1β and TNF-α resulted in a time- (up to 96 h) and dose-dependent increase in CCL5 expression and release. IFN-γ alone did not induce CCL5 secretion over a wide range of concentrations (0.01–100 U/mL). However, it synergistically amplified the effects of TNF-α and IL-1β through upregulation of CCL5 mRNA. Moreover, pretreatment of cells with IFN-γ upregulated CD40 receptor, which enabled HPFB to respond to a recombinant ligand of CD40 (CD40L). Exposure of IFN-γ-treated HPFB, but not of control cells, to CD40L resulted in a dose-dependent induction of CCL5. These data demonstrate that HPFB synthesise CCL5 in response to inflammatory mediators present in the inflamed peritoneal cavity. HPFB-derived CCL5 may thus contribute to the intraperitoneal recruitment of mononuclear leukocytes during peritonitis.
Collapse
|
134
|
Slavin S, Yeh CR, Da J, Yu S, Miyamoto H, Messing EM, Guancial E, Yeh S. Estrogen receptor α in cancer-associated fibroblasts suppresses prostate cancer invasion via modulation of thrombospondin 2 and matrix metalloproteinase 3. Carcinogenesis 2013; 35:1301-9. [PMID: 24374826 DOI: 10.1093/carcin/bgt488] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The prostate cancer (PCa) microenvironment contains active stromal cells known as cancer-associated fibroblasts (CAF) that may play important roles in influencing tumor progression. Here we studied the role of CAF estrogen receptor alpha (ERα) and found that it could protect against PCa invasion. Immunohistochemistry on prostatectomy specimens showed that PCa patients with ERα-positive stroma had a significantly lower risk for biochemical recurrence. In vitro invasion assays further confirmed that the stromal ERα was able to reduce PCa cell invasion. Dissection of the molecular mechanism revealed that the CAF ERα could function through a CAF-epithelial interaction via selectively upregulating thrombospondin 2 (Thbs2) and downregulating matrix metalloproteinase 3 (MMP3) at the protein and messenger RNA levels. Chromatin immunoprecipitation assays further showed that ERα could bind to an estrogen response element on the promoter of Thbs2. Importantly, knockdown of Thbs2 led to increased MMP3 expression and interruption of the ERα mediated invasion suppression, providing further evidence of an ERα-Thbs2-MMP3 axis in CAF. In vivo studies using athymic nude mice injected with CWR22Rv1 (22Rv1) PCa epithelial cells and CAF cells ± ERα also confirmed that mice coimplanted with PCa cells and CAF ERα+ cells had less tumor foci in the pelvic lymph nodes, less metastases, and tumors showed less angiogenesis, MMP3, and MMP9 (an MMP3 downstream target) positive staining. Together, these data suggest that CAF ERα could play protective roles in suppressing PCa metastasis. Our results may lead to developing new and alternative therapeutic approaches to battle PCa via controlling ERα signaling in CAF.
Collapse
Affiliation(s)
- Spencer Slavin
- Departments of Urology and Pathology, University of Rochester Medical Center Rochester, 601 Elmwood Avenue, NY 14642, USA
| | - Chiuan-Ren Yeh
- Departments of Urology and Pathology, University of Rochester Medical Center Rochester, 601 Elmwood Avenue, NY 14642, USA
| | - Jun Da
- Departments of Urology and Pathology, University of Rochester Medical Center Rochester, 601 Elmwood Avenue, NY 14642, USA, Department of Urology, Shanghai Jaotong University, Shanghai, China and
| | - Shengqiang Yu
- Departments of Urology and Pathology, University of Rochester Medical Center Rochester, 601 Elmwood Avenue, NY 14642, USA
| | - Hiroshi Miyamoto
- Departments of Urology and Pathology, University of Rochester Medical Center Rochester, 601 Elmwood Avenue, NY 14642, USA
| | - Edward M Messing
- Departments of Urology and Pathology, University of Rochester Medical Center Rochester, 601 Elmwood Avenue, NY 14642, USA
| | - Elizabeth Guancial
- Departments of Hematology and Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shuyuan Yeh
- Departments of Urology and Pathology, University of Rochester Medical Center Rochester, 601 Elmwood Avenue, NY 14642, USA,
| |
Collapse
|
135
|
Datta A, Alexander R, Sulikowski MG, Nicholson AG, Maher TM, Scotton CJ, Chambers RC. Evidence for a functional thymic stromal lymphopoietin signaling axis in fibrotic lung disease. THE JOURNAL OF IMMUNOLOGY 2013; 191:4867-79. [PMID: 24081992 DOI: 10.4049/jimmunol.1300588] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) recently has emerged as a key cytokine in the development of type 2 immune responses. Although traditionally associated with allergic inflammation, type 2 responses are also recognized to contribute to the pathogenesis of tissue fibrosis. However, the role of TSLP in the development of non-allergen-driven diseases, characterized by profibrotic type 2 immune phenotypes and excessive fibroblast activation, remains underexplored. Fibroblasts represent the key effector cells responsible for extracellular matrix production but additionally play important immunoregulatory roles, including choreographing immune cell recruitment through chemokine regulation. The aim of this study was to examine whether TSLP may be involved in the pathogenesis of a proto-typical fibrotic disease, idiopathic pulmonary fibrosis (IPF). We combined the immunohistochemical analysis of human IPF biopsy material with signaling studies by using cultured primary human lung fibroblasts and report for the first time, to our knowledge, that TSLP and its receptor (TSLPR) are highly upregulated in IPF. We further show that lung fibroblasts represent both a novel cellular source and target of TSLP and that TSLP induces fibroblast CCL2 release (via STAT3) and subsequent monocyte chemotaxis. These studies extend our understanding of TSLP as a master regulator of type 2 immune responses beyond that of allergic inflammatory conditions and suggest a novel role for TSLP in the context of chronic fibrotic lung disease.
Collapse
Affiliation(s)
- Arnab Datta
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
136
|
Berchtold CM, Coughlin A, Kasper Z, Thibeault SL. Paracrine potential of fibroblasts exposed to cigarette smoke extract with vascular growth factor induction. Laryngoscope 2013; 123:2228-36. [PMID: 23494588 PMCID: PMC4113205 DOI: 10.1002/lary.24052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/07/2013] [Accepted: 01/22/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVES/HYPOTHESIS Nicotine, a major constituent of cigarette smoke, can activate the cholinergic anti-inflammatory pathway by binding to α7-nicotinic acetylcholine receptor (α7nAChR) expressed on the surface of certain cells. Here, we ask whether cigarette smoke extract induced different paracrine factors compared to the in vivo regulator of inflammation, tumor necrosis factor-α, in human vocal fold fibroblasts (hVFFs) shown to express low levels of α7nAChR. STUDY DESIGN In vitro. METHODS α7nAChR was detected by nested polymerase chain reaction and immunohistochemistry. γH2AX, a marker for DNA double-stand breaks, was measured by immunofluorescence. Cigarette smoke extract was prepared in accordance with investigators studying effects of cigarette smoke. hVFFs treated for 3 hours had media replaced for an additional 24 hours. Cytokine, chemokine, and growth factor levels in media were assessed by multiplex analysis. RESULTS α7nAChR expression levels decreased with the passage number of fibroblasts. Tumor necrosis factor-α induced a significantly different profile of cytokines, chemokines, and growth factor compared to cigarette smoke extract exposure. Cigarette smoke extract at a concentration not associated with induction of γH2AX nuclear foci significantly increased vascular endothelial growth factor. CONCLUSIONS Cigarette smoke extract elicited a response important for regulation of angiogenesis and vascular permeability during inflammation, without evidence of DNA double-stand breaks associated with carcinogenesis. hVFFs are capable of participating in paracrine regulation of pathological blood vessel formation associated with cigarette smoking-related diseases (ie, Reinke edema). These cells express α7nAChR, an essential component of the cholinergic anti-inflammatory pathway regulated by the vagus nerve in certain tissues and a target of therapeutic agents.
Collapse
Affiliation(s)
- Craig M Berchtold
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, U.S.A
| | | | | | | |
Collapse
|
137
|
Séguier S, Tartour E, Guérin C, Couty L, Lemitre M, Lallement L, Folliguet M, El Naderi S, Terme M, Badoual C, Lafont A, Coulomb B. Inhibition of the differentiation of monocyte-derived dendritic cells by human gingival fibroblasts. PLoS One 2013; 8:e70937. [PMID: 23936476 PMCID: PMC3732252 DOI: 10.1371/journal.pone.0070937] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/24/2013] [Indexed: 12/18/2022] Open
Abstract
We investigated whether gingival fibroblasts (GFs) can modulate the differentiation and/or maturation of monocyte-derived dendritic cells (DCs) and analyzed soluble factors that may be involved in this immune modulation. Experiments were performed using human monocytes in co-culture with human GFs in Transwell® chambers or using monocyte cultures treated with conditioned media (CM) from GFs of four donors. The four CM and supernatants from cell culture were assayed by ELISA for cytokines involved in the differentiation of dendritic cells, such as IL-6, VEGF, TGFβ1, IL-13 and IL-10. The maturation of monocyte-derived DCs induced by LPS in presence of CM was also studied. Cell surface phenotype markers were analyzed by flow cytometry. In co-cultures, GFs inhibited the differentiation of monocyte-derived DCs and the strength of this blockade correlated with the GF/monocyte ratio. Conditioned media from GFs showed similar effects, suggesting the involvement of soluble factors produced by GFs. This inhibition was associated with a lower stimulatory activity in MLR of DCs generated with GFs or its CM. Neutralizing antibodies against IL-6 and VEGF significantly (P<0.05) inhibited the inhibitory effect of CM on the differentiation of monocytes-derived DCs and in a dose dependent manner. Our data suggest that IL-6 is the main factor responsible for the inhibition of DCs differentiation mediated by GFs but that VEGF is also involved and constitutes an additional mechanism.
Collapse
Affiliation(s)
- Sylvie Séguier
- Inserm U970 Team Laboratory of Arterial Repair, Université Paris Descartes, Sorbonne Paris Cité, PARCC/Hopital Européen Georges Pompidou, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Ji T, Zhao Y, Ding Y, Nie G. Using functional nanomaterials to target and regulate the tumor microenvironment: diagnostic and therapeutic applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3508-25. [PMID: 23703805 DOI: 10.1002/adma.201300299] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Indexed: 05/20/2023]
Abstract
Malignant tumors remain a major health burden throughout the world and effective therapeutic strategies are urgently needed. Cancer nanotechnology, as an integrated platform, has the potential to dramatically improve cancer diagnosis, imaging, and therapy, while reducing the toxicity associated with the current approaches. Tumor microenvironment is an ensemble performance of various stromal cells and extracellular matrix. The recent progress in understanding the critical roles and the underlying mechanisms of the tumor microenvironment on tumor progression has resulted in emerging diagnostic and therapeutic nanomaterials designed and engineered specifically targeting the microenvironment components. Meanwhile, the bio-physicochemical differences between tumor and normal tissues have recently been exploited to achieve specific tumor-targeting for cancer diagnosis and treatment. Here, the major players in the tumor microenvironment and their biochemical properties, which can be utilized for the design of multifunctional nanomaterials with the potential to target and regulate this niche, are summarized. The recent progress in engineering intelligent and versatile nanomaterials for targeting and regulating the tumor microenvironment is emphasized. Although further investigations are required to develop robust methods for more specific tumor-targeting and well-controlled nanomaterials, the applications of tumor microenvironment regulation-based nanotechnology for safer and more effective anticancer nanomedicines have been proven successful and will eventually revolutionize the current landscape of cancer therapy.
Collapse
Affiliation(s)
- Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | | | | | | |
Collapse
|
139
|
Langenhan T, Aust G, Hamann J. Sticky Signaling--Adhesion Class G Protein-Coupled Receptors Take the Stage. Sci Signal 2013; 6:re3. [DOI: 10.1126/scisignal.2003825] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
140
|
Discovery of endothelium and mesenchymal properties of primo vessels in the mesentery. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:205951. [PMID: 23662116 PMCID: PMC3639629 DOI: 10.1155/2013/205951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/22/2013] [Accepted: 01/30/2013] [Indexed: 12/20/2022]
Abstract
Recent evidences demonstrated that endothelial-to-mesenchymal transition (EndMT) has a crucial role in cancer and is recognized as a unique source of cancer-associated fibroblasts (CAFs). Primo vascular system (PVS) is a new circulatory system which may play an important role in cancer metastasis and regeneration. In the current study, we applied previously established time-saving method to identify primo vessels and further investigated the immunocytochemical properties of primo vessels. Both primo vessels and primary primo vessel cells in the mesentery expressed endothelial markers and fibroblast markers. Double-labeling experiments demonstrated that endothelial and fibroblast markers are coexpressed in primo vessels. In addition, under the stimulation of TGF-β1 in vitro, primary primo vessel cells differentiated into fibroblasts. Therefore, we found that primo vessels in the mesentery had a transitional structure between endothelium and mesenchymal. This is a new finding of EndMT in normal postnatal animals.
Collapse
|
141
|
Pula B, Witkiewicz W, Dziegiel P, Podhorska-Okolow M. Significance of podoplanin expression in cancer-associated fibroblasts: a comprehensive review. Int J Oncol 2013; 42:1849-57. [PMID: 23588876 DOI: 10.3892/ijo.2013.1887] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/14/2013] [Indexed: 11/05/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are well-known to be part of the tumor microenvironment. This heterogeneous population of cells of the tumor microenvironment via secretion of various growth factors and cytokines was shown to contribute to increased cancer cell proliferation rate, migration, invasiveness and other key processes such as angiogenesis and lymphangiogenesis. Recent studies identified podoplanin as a marker of CAFs in various malignancies and its expression in these cells was shown to influence cancer progression. In some studies it yielded a prognostic impact on patient survival which was strongly dependent on the entity of the tumor. This review summarizes recent findings concerning the biology of podoplanin in cancer progression with particular emphasis on its expression in CAFs.
Collapse
Affiliation(s)
- Bartosz Pula
- Regional Specialist Hospital, Research and Development Center, 51-124 Wroclaw, Poland
| | | | | | | |
Collapse
|
142
|
Raz Y, Erez N. An inflammatory vicious cycle: Fibroblasts and immune cell recruitment in cancer. Exp Cell Res 2013; 319:1596-603. [PMID: 23567181 DOI: 10.1016/j.yexcr.2013.03.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/12/2013] [Accepted: 03/16/2013] [Indexed: 01/07/2023]
Abstract
Cancer-associated fibroblasts (CAFs) have been established as a key component of the crosstalk between tumor cells and their microenvironment. The ability of CAFs to orchestrate tumor-promoting inflammation is central to their role in facilitating tumor growth, invasion, and metastasis. Here we review pathways by which CAFs and their soluble mediators provide multiple complex signals that modulate the recruitment, functional activation status, and retention of immune cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Yael Raz
- Lis Maternity Hospital, Tel Aviv Sorasky Medical Center, affiliated to Sackler School of Medicine, Tel Aviv, Israel; Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel.
| |
Collapse
|
143
|
Barczyk MM, Lu N, Popova SN, Bolstad AI, Gullberg D. α11β1 integrin-mediated MMP-13-dependent collagen lattice contraction by fibroblasts: evidence for integrin-coordinated collagen proteolysis. J Cell Physiol 2013; 228:1108-19. [PMID: 23065814 DOI: 10.1002/jcp.24261] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 10/03/2012] [Indexed: 02/01/2023]
Abstract
We have previously determined that integrin α11β1 is required on mouse periodontal ligament (PDL) fibroblasts to generate the force needed for incisor eruption. As part of the phenotype of α11(-/-) mice, the incisor PDL (iPDL) is thickened, due to disturbed matrix remodeling. To determine the molecular mechanism behind the disturbed matrix dynamics in the PDL we crossed α11(-/-) mice with the Immortomouse and isolated immortalized iPDL cells. Microarray analysis of iPDL cells cultured inside a 3D collagen gel demonstrated downregulated expression of a number of genes in α11-deficient iPDL cells, including matrix metalloproteinase-13 (MMP-13) and cathepsin K. α11(-/-) iPDL cells in vitro displayed disturbed interactions with collagen I during contraction of attached and floating collagen lattices and furthermore displayed reduced MMP-13 protein expression levels. The MMP-13 specific inhibitor WAY 170523 and the Cathepsin K Inhibitor II both blocked part of the α11 integrin-mediated collagen remodeling. In summary, our data demonstrate that in iPDL fibroblasts the mechanical strain generated by α11β1 integrin regulates molecules involved in collagen matrix dynamics. The positive regulation of α11β1-dependent matrix remodeling, involving MMP-13 and cathepsin K, might also occur in other types of fibroblasts and be an important regulatory mechanism for coordinated extracellular and intracellular collagen turnover in tissue homeostasis.
Collapse
|
144
|
Zhang J, Chen L, Liu X, Kammertoens T, Blankenstein T, Qin Z. Fibroblast-specific protein 1/S100A4-positive cells prevent carcinoma through collagen production and encapsulation of carcinogens. Cancer Res 2013; 73:2770-81. [PMID: 23539447 DOI: 10.1158/0008-5472.can-12-3022] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stromal restraints to cancer are critical determinants of disease but they remain incompletely understood. Here, we report a novel mechanism for host surveillance against cancer contributed by fibroblast-specific protein 1 (FSP1)+ /S100A4+ fibroblasts. Mechanistic studies of fibrosarcoma formation caused by subcutaneous injection of the carcinogen methylcholanthrene (MCA) had suggested that IFN-γ receptor signaling may restrict MCA diffusion by inducing expression of collagen (foreign body reaction). We tested the hypothesis that this reaction encapsulated MCA and limited carcinogenesis by determining whether its ability to induce fibrosarcomas was impaired in the absence of proliferating fibroblasts. We found that FSP1+ /S100A4+ fibroblasts accumulated around the carcinogen where they produced collagens, encapsulating MCA and protecting epithelial cells from DNA damage. Ablation of these cells at the site of MCA injection by local administration of ganciclovir in FSP-TK transgenic mice altered tumor morphology to an epithelial phenotype, indicating that, in the absence of encapsulating fibroblasts, MCA targeted epithelial cells. Notably, we showed that destruction of the fibrous capsule around the MCA by local injection of collagenase induced rapid tumor development in mice that were otherwise durably tumor free. Our findings demonstrate that the FSP1+ /S100A4+ fibroblasts prevent epithelial malignancy and that collagen encapsulation of carcinogens protects against tumor development. Together, this study provides a novel mechanism for host surveillance against cancer.
Collapse
Affiliation(s)
- Jinhua Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Beijing, China
| | | | | | | | | | | |
Collapse
|
145
|
Barone F, Nayar S, Buckley CD. The role of non-hematopoietic stromal cells in the persistence of inflammation. Front Immunol 2013; 3:416. [PMID: 23335923 PMCID: PMC3543945 DOI: 10.3389/fimmu.2012.00416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/20/2012] [Indexed: 11/13/2022] Open
Abstract
Inflammation results from the complex interaction between hematopoietic and stromal cells and growing evidence supports a key role for the stroma in driving the switch from acute resolving to persistence in chronic inflammatory diseases. Stromal cells have also been shown to play a critical role in cancer biology, being involved in cancer growth, dissemination, and inhibition of the autologous immune response, ultimately favoring persistence and metastatic spread. Similarly, blood and lymphatic endothelial cells contribute to tissue homeostasis during physiological inflammation but also lead to discorded leukocyte and tumor cell accumulation in pathological inflammation and cancer. This review aims to summarize the role that pathogenic stroma plays in the pathogenesis of diseases such as cancer and chronic inflammation.
Collapse
Affiliation(s)
- Francesca Barone
- Centre for Translational Inflammation Research, Arthritis Research UK, Rheumatology Research Group, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital Birmingham, UK
| | | | | |
Collapse
|
146
|
Graham GJ, Locati M. Regulation of the immune and inflammatory responses by the 'atypical' chemokine receptor D6. J Pathol 2013; 229:168-75. [PMID: 23125030 DOI: 10.1002/path.4123] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/03/2012] [Accepted: 10/03/2012] [Indexed: 01/19/2023]
Abstract
Chemokines and their receptors are key regulators of leukocyte migration and intra-tissue accumulation under both homeostatic and inflammatory conditions. Regulation of chemokine-dependent responses, particularly those relating to inflammation, is essential to avoid the development of inflammatory and autoimmune pathologies. Recently, a new subfamily of chemokine receptors referred to as the 'atypical' chemokine receptors has emerged, members of which have been shown to play important roles in controlling in vivo chemokine biology. Here we review the basic biology of the chemokine and chemokine receptor family, introduce the topic of 'atypical' chemokine receptor biology and focus specifically on the best-characterized of the 'atypical' chemokine receptors, D6. D6 is a 'scavenging' receptor for inflammatory CC chemokines and plays a central role in the resolution of in vivo inflammatory responses. We describe the biology, biochemistry and pathological relevance of D6 and outline emerging data suggesting that it has additional important roles in integrating innate and adaptive immune responses.
Collapse
Affiliation(s)
- Gerard J Graham
- Institute of Infection, Immunity and Inflammation, University of Glasgow, UK.
| | | |
Collapse
|
147
|
Naylor AJ, Filer A, Buckley CD. The role of stromal cells in the persistence of chronic inflammation. Clin Exp Immunol 2013; 171:30-5. [PMID: 23199320 PMCID: PMC3530092 DOI: 10.1111/j.1365-2249.2012.04634.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2012] [Indexed: 01/11/2023] Open
Abstract
Inflammation is an unstable state; it either resolves or persists. Inflammatory reactions often have a propensity for specific anatomical sites. Why inflammation persists with specific tissue tropism remains obscure. Increasing evidence suggests that stromal cells which define tissue architecture are the key cells involved, and therefore make attractive therapeutic targets. Research on stromal cells in general and fibroblasts in particular has so far been hampered by a lack of fibroblast-specific cell markers. This review highlights our increasing understanding of the role of fibroblasts in inflammation, and suggests that these cells provide the cellular basis for site specific chronic inflammation.
Collapse
Affiliation(s)
- A J Naylor
- Rheumatology Research Group, Centre for Translational Inflammation Research, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK
| | | | | |
Collapse
|
148
|
Watnick RS. The role of the tumor microenvironment in regulating angiogenesis. Cold Spring Harb Perspect Med 2012; 2:a006676. [PMID: 23209177 DOI: 10.1101/cshperspect.a006676] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The tumor-associated stroma has been shown to play a significant role in cancer formation. Paracrine signaling interactions between epithelial tumor cells and stromal cells are a key component in the transformation and proliferation of tumors in several organs. Whereas the intracellular signaling pathways regulating the expression of several pro- and antiangiogenic proteins have been well characterized in human cancer cells, the intercellular signaling that takes place between tumor cells and the surrounding tumor-associated stroma has not been as extensively studied with regard to the regulation of angiogenesis. In this chapter we define the key players in the regulation of angiogenesis and examine how their expression is regulated in the tumor-associated stroma. The resulting analysis is often seemingly paradoxical, underscoring the complexity of intercellular signaling within tumors and the need to better understand the environmental context underlying these signaling mechanisms.
Collapse
Affiliation(s)
- Randolph S Watnick
- Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
149
|
Buckley CD, Gilroy DW, Serhan CN, Stockinger B, Tak PP. The resolution of inflammation. Nat Rev Immunol 2012. [PMID: 23197111 DOI: 10.1038/nri3362] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In 2012, Nature Reviews Immunology organized a conference that brought together scientists and clinicians from both academia and industry to discuss one of the most pressing questions in medicine--how do we turn off rampant, undesirable inflammation? There is a growing appreciation that, similarly to the initiation of inflammation, the resolution of inflammation is an intricate and active process. Can we therefore harness the mediators involved in resolution responses to treat patients with chronic inflammatory or autoimmune diseases? Here, we ask five of the speakers from the conference to share their thoughts on this emerging field.
Collapse
Affiliation(s)
- Christopher D Buckley
- Rheumatology Research Group at the Centre for Translational Inflammation Research, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WD, UK.
| | | | | | | | | |
Collapse
|
150
|
Common threads in cardiac fibrosis, infarct scar formation, and wound healing. FIBROGENESIS & TISSUE REPAIR 2012; 5:19. [PMID: 23114500 PMCID: PMC3534582 DOI: 10.1186/1755-1536-5-19] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/04/2012] [Indexed: 12/19/2022]
Abstract
Wound healing, cardiac fibrosis, and infarct scar development, while possessing distinct features, share a number of key functional similarities, including extracellular matrix synthesis and remodeling by fibroblasts and myofibroblasts. Understanding the underlying mechanisms that are common to these processes may suggest novel therapeutic approaches for pathologic situations such as fibrosis, or defective wound healing such as hypertrophic scarring or keloid formation. This manuscript will briefly review the major steps of wound healing, and will contrast this process with how cardiac infarct scar formation or interstitial fibrosis occurs. The feasibility of targeting common pro-fibrotic growth factor signaling pathways will be discussed. Finally, the potential exploitation of novel regulators of wound healing and fibrosis (ski and scleraxis), will be examined.
Collapse
|