101
|
Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B. Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 2011; 54:773-94. [PMID: 21145849 DOI: 10.1016/j.jhep.2010.11.006] [Citation(s) in RCA: 384] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/05/2010] [Accepted: 11/09/2010] [Indexed: 02/08/2023]
Abstract
Numerous investigations have shown that mitochondrial dysfunction is a major mechanism of drug-induced liver injury, which involves the parent drug or a reactive metabolite generated through cytochromes P450. Depending of their nature and their severity, the mitochondrial alterations are able to induce mild to fulminant hepatic cytolysis and steatosis (lipid accumulation), which can have different clinical and pathological features. Microvesicular steatosis, a potentially severe liver lesion usually associated with liver failure and profound hypoglycemia, is due to a major inhibition of mitochondrial fatty acid oxidation (FAO). Macrovacuolar steatosis, a relatively benign liver lesion in the short term, can be induced not only by a moderate reduction of mitochondrial FAO but also by an increased hepatic de novo lipid synthesis and a decreased secretion of VLDL-associated triglycerides. Moreover, recent investigations suggest that some drugs could favor lipid deposition in the liver through primary alterations of white adipose tissue (WAT) homeostasis. If the treatment is not interrupted, steatosis can evolve toward steatohepatitis, which is characterized not only by lipid accumulation but also by necroinflammation and fibrosis. Although the mechanisms involved in this aggravation are not fully characterized, it appears that overproduction of reactive oxygen species by the damaged mitochondria could play a salient role. Numerous factors could favor drug-induced mitochondrial and metabolic toxicity, such as the structure of the parent molecule, genetic predispositions (in particular those involving mitochondrial enzymes), alcohol intoxication, hepatitis virus C infection, and obesity. In obese and diabetic patients, some drugs may induce acute liver injury more frequently while others may worsen the pre-existent steatosis (or steatohepatitis).
Collapse
Affiliation(s)
- Karima Begriche
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | | | |
Collapse
|
102
|
Cai S, Huang C, Ji B, Zhou F, Wise ML, Zhang D, Yang P. In vitro antioxidant activity and inhibitory effect, on oleic acid-induced hepatic steatosis, of fractions and subfractions from oat (Avena sativa L.) ethanol extract. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
103
|
Hooper AJ, Adams LA, Burnett JR. Genetic determinants of hepatic steatosis in man. J Lipid Res 2011; 52:593-617. [PMID: 21245030 DOI: 10.1194/jlr.r008896] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic steatosis is one of the most common liver disorders in the general population. The main cause of hepatic steatosis is nonalcoholic fatty liver disease (NAFLD), representing the hepatic component of the metabolic syndrome, which is characterized by type 2 diabetes, obesity, and dyslipidemia. Insulin resistance and excess adiposity are considered to play key roles in the pathogenesis of NAFLD. Although the risk factors for NAFLD are well established, the genetic basis of hepatic steatosis is largely unknown. Here we review recent progress on genomic variants and their association with hepatic steatosis and discuss the potential impact of these genetic studies on clinical practice. Identifying the genetic determinants of hepatic steatosis will lead to a better understanding of the pathogenesis and progression of NAFLD.
Collapse
Affiliation(s)
- Amanda J Hooper
- Department of Core Clinical Pathology and Biochemistry, Royal Perth Hospital, Perth, Australia
| | | | | |
Collapse
|
104
|
Ono M, Okamoto N, Saibara T. The latest idea in NAFLD/NASH pathogenesis. Clin J Gastroenterol 2010; 3:263-70. [PMID: 26190482 DOI: 10.1007/s12328-010-0182-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 09/29/2010] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a metabolic disorder characterized by fatty accumulation in the liver without alcohol consumption. NAFLD ranges from simple steatosis to nonalcoholic steatohepatitis (NASH), which may progress to end-stage liver disease. The prevalence of NAFLD is rising because of an increasing prevalence of obesity and metabolic syndrome. The progression of these diseases is considered to be related to metabolic syndrome, which is characterized by obesity, glucose impairment, dyslipidemia, hypertension, and adipocytokine impairment. In addition, the pathogenesis of NAFLD/NASH is considered to be multifactorial and complex and is influenced by lifestyle habits, nutritional factors, and genetics. In particular, the PNPLA3 gene has been recently recognized as the most important functional gene polymorphism in the progression of NASH. Disruption in hepatic lipid metabolism is closely related to the development of fatty liver. Accumulation of excess triglycerides (TGs) induces hepatic steatosis. However, TG accumulation itself is not harmful to hepatocytes and may instead act as a protective mechanism against free fatty acid (FFA)-induced lipotoxicity. Excess FFAs also contribute to hepatotoxicity in NAFLD/NASH because oxidation of FFAs in hepatic microsomes generates excessive oxidative stress. Oxidative stress is considered one of the most important pathogenic factors in the development of NASH. Mitochondrial abnormalities, which are frequently observed in NASH-affected livers, are associated with impaired electron transport and result in further oxidative stress formation. The aims of this review are to assess the mechanisms of lipid metabolism and hepatic steatosis, the background of the disease, and the potential molecular mechanisms involved.
Collapse
Affiliation(s)
- Masafumi Ono
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan.
| | - Nobuto Okamoto
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Toshiji Saibara
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
105
|
Abstract
BACKGROUND The hepatocellular carcinoma is one of the most common malignant tumors and carries a poor survival rate. The management of patients at risk for developing HCC remains intricate. METHODS A literature search identified potential markers for hepatocellular carcinoma. These markers were analysed and justification was provided for these factors' inclusion to (or exclusion from) the markers of hepatocellular carcinoma (HCC). A search of the literature was made using cancer literature and the PubMed database for the following keywords: "markers and HCC," "Lens culinaris agglutinin reactive AFP (AFP-L3) and HCC," "Des-γ-carboxy prothrombin (DCP) and HCC," "Glypican-3 and HCC," "Chromogranin A and HCC," "Transforming growth factor β1(TGF) and HCC," "α-l-fucosidase (AFU) and HCC," "Golgi protein-73 (GP73) and HCC," "Hepatocyte growth factor (HGF) and HCC," "Nervous growth factor (NGF) and HCC." CONCLUSIONS Despite the large number of studies devoted to the immunohistochemistry of HCC, at the present time, the absolute positive and negative markers for HCC are still lacking, and even those characterized by very high sensitivity and specificity do not have an universal diagnostic usefulness. Given the poor response to current therapies, a better understanding of the molecular pathways active in this disease could potentially provide new targets for therapy. However, AFP shows a low sensitivity, therefore other biomarkers have been developed to make an early diagnosis and improve patients' prognosis.
Collapse
|
106
|
Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 2010; 52:774-88. [PMID: 20683968 DOI: 10.1002/hep.23719] [Citation(s) in RCA: 833] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A significant body of evidence now forces us to rethink the causes of NASH. Once thought to be a disease caused by triglyceride accumulation in hepatocytes with subsequent oxidant stress and lipid peroxidation causing inflammation and fibrosis, new data from animal studies and a limited number of human studies now provide convincing evidence that triglyceride accumulation does not cause insulin resistance or cellular injury in the liver. The lipotoxic liver injury hypothesis for the pathogenesis of NASH suggests that we need to focus our therapeutic efforts on reducing the burden of fatty acids going to the liver or being synthesized in the liver. This can be accomplished by improving insulin sensitivity at the level of adipose tissue to prevent inappropriate peripheral lipolysis and by preventing unnecessary de novo lipogenesis in the liver. Excess carbohydrates are the major substrates for de novo lipogenesis, and thus, reducing carbohydrate consumption through dietary changes and increasing muscle glucose uptake through exercise remain important cornerstones of treatment and prevention of lipotoxic liver injury, a disease hitherto called NASH.
Collapse
|
107
|
Graham RM, Chua ACG, Carter KW, Delima RD, Johnstone D, Herbison CE, Firth MJ, O'Leary R, Milward EA, Olynyk JK, Trinder D. Hepatic iron loading in mice increases cholesterol biosynthesis. Hepatology 2010; 52:462-71. [PMID: 20683946 DOI: 10.1002/hep.23712] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Iron and cholesterol are both essential metabolites in mammalian systems, and too much or too little of either can have serious clinical consequences. In addition, both have been associated with steatosis and its progression, contributing, inter alia, to an increase in hepatic oxidative stress. The interaction between iron and cholesterol is unclear, with no consistent evidence emerging with respect to changes in plasma cholesterol on the basis of iron status. We sought to clarify the role of iron in lipid metabolism by studying the effects of iron status on hepatic cholesterol synthesis in mice with differing iron status. Transcripts of seven enzymes in the cholesterol biosynthesis pathway were significantly up-regulated with increasing hepatic iron (R(2) between 0.602 and 0.164), including those of the rate-limiting enzyme, 3-hydroxy-3-methylglutarate-coenzyme A reductase (Hmgcr; R(2) = 0.362, P < 0.002). Hepatic cholesterol content correlated positively with hepatic iron (R(2) = 0.255, P < 0.007). There was no significant relationship between plasma cholesterol and either hepatic cholesterol or iron (R(2) = 0.101 and 0.014, respectively). Hepatic iron did not correlate with a number of known regulators of cholesterol synthesis, including sterol-regulatory element binding factor 2 (Srebf2; R(2) = 0.015), suggesting that the increases seen in the cholesterol biosynthesis pathway are independent of Srebf2. Transcripts of genes involved in bile acid synthesis, transport, or regulation did not increase with increasing hepatic iron. CONCLUSION This study suggests that hepatic iron loading increases liver cholesterol synthesis and provides a new and potentially important additional mechanism by which iron could contribute to the development of fatty liver disease or lipotoxicity.
Collapse
Affiliation(s)
- Ross M Graham
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Kathirvel E, Chen P, Morgan K, French SW, Morgan TR. Oxidative stress and regulation of anti-oxidant enzymes in cytochrome P4502E1 transgenic mouse model of non-alcoholic fatty liver. J Gastroenterol Hepatol 2010; 25:1136-43. [PMID: 20594230 DOI: 10.1111/j.1440-1746.2009.06196.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Reactive oxygen species produced by cytochrome P4502E1 (CYP2E1) are believed to play a role in pathophysiology of non-alcoholic fatty liver disease (NAFLD). However, little is known about the expression, protein content and activity of anti-oxidant enzymes and the role of inducible nitric oxide synthase (iNOS), a source of reactive nitrogen species, in NAFLD. In the present study, we evaluate gene expression, protein content and activity of anti-oxidant enzymes, and iNOS, in a CYP2E1 overexpressing model of non-alcoholic fatty liver (NAFL). METHODS Non-transgenic (nTg) and CYP2E1 transgenic (Tg) mice were fed rodent chow for 8 months. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver triglycerides, malondialdehyde and protein carbonyls were measured. Gene expression of NF-E2-related factor (Nrf2), superoxide dismutase-1, -2 (SOD-1,2), catalase (CAT), glutathione peroxidase (GPx), heme oxygenase-1 (HO-1) and iNOS were determined. Protein content, activity and nitrosylation of the enzymes were also measured. RESULTS Tg mice had greater CYP2E1 activity and histological liver injury. MDA and protein carbonyls were increased, indicating insufficient anti-oxidant response. Gene expression of Nrf2, CAT, GPx, HO-1 and iNOS were significantly increased. Protein content and enzyme activities of most anti-oxidant enzymes were not correspondingly increased. iNOS activity and nitrosylation of CAT and SOD was greater in Tg mice liver. CONCLUSION Hepatocyte-specific CYP2E1 overexpression results in increased oxidative stress and nitrosative stress. Several anti-oxidant enzymes are upregulated. Failure of corresponding increase in total protein and activity of anti-oxidant enzymes suggests modification/degradation, possibly by nitrosylation, due to increased iNOS activity in a CYP2E1 overexpressing NAFL mouse model.
Collapse
Affiliation(s)
- Elango Kathirvel
- Research Service, VA Long Beach Healthcare System, Long Beach, California 90822, USA
| | | | | | | | | |
Collapse
|
109
|
Yao HT, Lii CK, Chou RH, Lin JH, Yang HT, Chiang MT. Effect of chitosan on hepatic drug-metabolizing enzymes and oxidative stress in rats fed low- and high-fat diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:5187-5193. [PMID: 20334365 DOI: 10.1021/jf903857m] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Chitosan is sold worldwide as a lipid-lowering functional food and may be taken with certain medications. To investigate the effect of chitosan on drug-metabolizing enzymes and oxidative stress in the liver, male Wistar rats were fed a low- or high-fat diet with cellulose or chitosan for 4 weeks. A significant decrease in cytochrome P450 (CYP) 3A-catalyzed testosterone 6beta-hydroxylation in liver microsomes was observed in rats fed the chitosan with low- and high-fat diets. The expression of CYP 3A1 and 3A2, however, was suppressed by chitosan in rats fed the low-fat diet only. Furthermore, rats fed the low-fat diet with chitosan had lower hepatic glutathione S-transferase (GST) activity and superoxide dismutase activity and higher total tissue and microsomal lipid hydroperoxides. Hepatic alpha-tocopherol was lower in rats fed the chitosan-containing diet. The results suggest that chitosan is likely to modulate CYP 3A activity and protein expression and GST activity partially in a dietary fat-dependent manner. This change may cause a decrease in the metabolism of drugs catalyzed by these enzymes in liver tissues. Moreover, decrease of alpha-tocopherol level and SOD activity by chitosan partly accounts for the increase of hepatic lipid peroxidation.
Collapse
Affiliation(s)
- Hsien-Tsung Yao
- Department of Nutrition, China Medical University, Taichung 404, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
110
|
Inoue M, Tazuma S, Kanno K, Hyogo H, Igarashi K, Chayama K. Bach1 gene ablation reduces steatohepatitis in mouse MCD diet model. J Clin Biochem Nutr 2010; 48:161-6. [PMID: 21373270 PMCID: PMC3045690 DOI: 10.3164/jcbn.09-122gfr] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/11/2010] [Indexed: 12/22/2022] Open
Abstract
Bach1 is a transcriptional repressor of heme oxygenase-1 (HO-1, a.k.a. HSP-32), which is an inducible enzyme and has anti-oxidation/anti-inflammatory properties shown in various models of organ injuries. Since oxidative stress plays a pivotal role in the pathogenesis of nonalcoholic steatohepatitis (NASH), HO-1 induction would be expected to prevent the development of NASH. In this study, we investigated the influence of Bach1 ablation in mice on the progression of NASH in methionine-choline deficient (MCD) diet model. Bach1 ablation resulted in significant induction of HO-1 mRNA and its activity in the liver. When fed MCD diet, Bach1(-/-) mice exhibited negligible hepatic steatosis compared to pronounced steatohepatitis in wild type mice with 6-fold increase in hepatic triglyceride content. Whereas feeding of MCD diet decreased mRNA expressions of peroxisome proliferator-activated receptor (PPAR) α and microsomal triglyceride transfer protein (MTP) in wild type mice, there were no change in Bach1(-/-) mice. In addition, hepatic concentration of malondialdehyde (MDA), a biomarker for oxidative stress as well as plasma alanine aminotransferase (ALT) was significantly lower in Bach1(-/-) mice. These findings suggest that Bach1 ablation exerts hepatoprotective effect against steatohepatitis presumably via HO-1 induction and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Motoki Inoue
- Department of Medicine and Molecular Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | |
Collapse
|
111
|
Wang J, Ma H, Boor PJ, Sadagopa Ramanujam VM, Ansari G, Khan MF. Up-regulation of heme oxygenase-1 in rat spleen after aniline exposure. Free Radic Biol Med 2010; 48:513-8. [PMID: 19969074 PMCID: PMC2818702 DOI: 10.1016/j.freeradbiomed.2009.11.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/13/2009] [Accepted: 11/24/2009] [Indexed: 11/18/2022]
Abstract
The splenic toxicity of aniline is characterized by vascular congestion, hyperplasia, fibrosis, and the development of a variety of sarcomas in rats. However, the underlying mechanisms by which aniline elicits splenotoxic response are not well understood. Previously we have shown that aniline exposure causes oxidative damage to the spleen. To further explore the oxidative mechanism of aniline toxicity, we evaluated the potential contribution of heme oxygenase-1 (HO-1), which catalyzes heme degradation and releases free iron. Male SD rats were given 1 mmol/kg/day aniline in water by gavage for 1, 4, or 7 days, and respective controls received water only. Aniline exposure led to significant increases in HO-1 mRNA expression in the spleen (2-and 2.4-fold at days 4 and 7, respectively) with corresponding increases in protein expression, as confirmed by ELISA and Western blot analysis. Furthermore, immunohistochemical assessment of spleen showed stronger immunostaining for HO-1 in the spleens of rats treated for 7 days, confined mainly to the red pulp areas. No changes were observed in mRNA and protein levels of HO-1 after 1 day exposure. The increase in HO-1 expression was associated with increases in total iron (2.4-and 2.7-fold), free iron (1.9-and 3.5-fold), and ferritin levels (1.9-and 2.1-fold) at 4 and 7 days of aniline exposure. Our data suggest that HO-1 up-regulation in aniline-induced splenic toxicity could be a contributing pro-oxidant mechanism, mediated through iron release, and leading to oxidative damage.
Collapse
Affiliation(s)
- Jianling Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Huaxian Ma
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Paul J. Boor
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - V. M. Sadagopa Ramanujam
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX, USA
| | - G.A.S. Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - M. Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Address for Correspondence: M. Firoze Khan, Ph.D., Professor, Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0438, Tel: 409-772-6881, Fax: 409-747-1763,
| |
Collapse
|
112
|
Yu J, Chu ESH, Wang R, Wang S, Wu CW, Wong VWS, Chan HLY, Farrell GC, Sung JJY. Heme oxygenase-1 protects against steatohepatitis in both cultured hepatocytes and mice. Gastroenterology 2010; 138:694-704, 704.e1. [PMID: 19818781 DOI: 10.1053/j.gastro.2009.09.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Revised: 09/03/2009] [Accepted: 09/20/2009] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Heme oxygenase-1 (HO-1), an antioxidant defense enzyme, has been shown to protect against oxidant-induced tissue injury. We investigated the role of HO-1 in nutritional steatohepatitis in vitro and in vivo. METHODS AML-12 hepatocytes were cultured in methionine- and choline-deficient (MCD) medium. Cells were transfected with an adenovirus vector that expressed HO-1 (Ad-HO-1) or incubated with the HO-1 inducer hemin or the HO-1 inhibitor stannic mesoporphyrin for 24 hours. C57BL6 mice and db/db mice were fed MCD or control diets, with or without hemin, for up to 4 weeks. RESULTS AML-12 cells exposed to MCD medium developed significant steatosis, increased release of alanine aminotransferase, and showed signs of oxidative injury. Incubation with hemin induced HO-1 protein, suppressed steatosis, and reduced levels of alanine aminotransferase and lipid peroxidation. A comparable effect was observed in cells transfected with Ad-HO-1, whereas incubation of these cells with stannic mesoporphyrin completely abolished the Ad-HO-1- or hemin-mediated protection of hepatocytes. Mice injected with hemin significantly attenuated MCD-induced steatohepatitis and increased HO-1 protein and activity. This effect was associated with up-regulation of antioxidant chaperones and enzymes, down-regulation of proinflammatory cytokines, and up-regulation of the anti-inflammatory interleukin-22. Moreover, the reduction in steatosis caused by hemin was affected by up-regulation of peroxisome proliferator-activated receptor-alpha and by down-regulation of sterol regulatory element binding protein-1c. CONCLUSIONS HO-1 can interrupt progression of nutritional steatohepatitis by inducing an antioxidant pathway, suppressing production of cytokines, and modifying fatty acid turnover. Induction of HO-1 might provide a new approach for treatment of steatohepatitis.
Collapse
Affiliation(s)
- Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Sugimoto H, Okada K, Shoda J, Warabi E, Ishige K, Ueda T, Taguchi K, Yanagawa T, Nakahara A, Hyodo I, Ishii T, Yamamoto M. Deletion of nuclear factor-E2-related factor-2 leads to rapid onset and progression of nutritional steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol 2010; 298:G283-94. [PMID: 19926817 DOI: 10.1152/ajpgi.00296.2009] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidative stress is a critical mediator in liver injury of steatohepatitis. The transcription factor Nrf2 serves as a cellular stress sensor and is a key regulator for induction of hepatic detoxification and antioxidative stress systems. The involvement of Nrf2 in defense against the development of steatohepatitis remains unknown. We aimed to investigate the protective roles of Nrf2 in nutritional steatohepatitis using wild-type (WT) and Nrf2 gene-null (Nrf2-null) mice. WT and Nrf2-null mice were fed a methionine- and choline-deficient (MCD) diet for 3 and 6 wk, and the liver tissues were analyzed for pathology and for expression levels of detoxifying enzymes and antioxidative stress genes via the Nrf2 transcriptional pathway. In WT mice fed an MCD diet, Nrf2 was potently activated in the livers, and steatohepatitis did not develop over the observation periods. However, in Nrf2-null mice fed an MCD diet, the pathological state of the steatohepatitis was aggravated in terms of fatty changes, inflammation, fibrosis, and iron accumulation. In the livers of the Nrf2-null mice, oxidative stress was significantly increased compared with that of WT mice based on the increased levels of 4-hydroxy-2-nonenal and malondialdehyde. This change was associated with the decreased levels of glutathione, detoxifying enzymes, catalase, and superoxide dismutase activity. Correlating well with the liver pathology, the mRNA levels of factors involved in fatty acid metabolism, inflammatory cytokines, and fibrogenesis-related genes were significantly increased in the livers of the Nrf2-null mice. These findings demonstrate that Nrf2 deletion in mice leads to rapid onset and progression of nutritional steatohepatitis induced by an MCD diet. Activation of Nrf2 could be a promising target toward developing new options for prevention and treatment of steatohepatitis.
Collapse
Affiliation(s)
- Hirokazu Sugimoto
- Department of Gastroenterology,Graduate School of Comprehensive Human Sciences, The University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Lin YC, Chang PF, Hu FC, Chang MH, Ni YH. Variants in the UGT1A1 gene and the risk of pediatric nonalcoholic fatty liver disease. Pediatrics 2009; 124:e1221-7. [PMID: 19948621 DOI: 10.1542/peds.2008-3087] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Oxidative stress is increased in nonalcoholic fatty liver disease (NAFLD). Variants in the UGT1A1 gene contribute to increased bilirubin levels, and bilirubin can act as an antioxidant. We hypothesize that variant UGT1A1 genotypes reduce the risk for NAFLD development. METHODS Two hundred thirty-four obese children 6 to 13 years of age were recruited. NAFLD was determined through liver ultrasonography. The UGT1A1 genotypes UGT1A1*6 and UGT1A1*28 were detected. We assessed the effects of UGT1A1 genotypes on pediatric NAFLD. RESULTS In total, 12% of the obese children had NAFLD. The subjects with NAFLD had lower serum total bilirubin levels (0.25 +/- 0.30 mg/dL) than did those without NAFLD (0.36 +/- 0.38 mg/dL; P = .021). With conditioning on the effects of age- and gender-adjusted BMI, waist/hip ratio, and adiponectin levels, variant UGT1A1*6 genotypes were a protecting factor for NAFLD, with an estimated adjusted odds ratio of 0.31 (95% confidence interval: 0.11-0.91; P = .033), but variant UGT1A1*28 genotypes were not significantly associated with the occurrence of NAFLD. CONCLUSIONS Variant UGT1A1*6 genotypes are associated with a lower risk of NAFLD in obese Taiwanese children. The UGT1A1 genotype is a new risk factor for pediatric NAFLD.
Collapse
Affiliation(s)
- Yu-Cheng Lin
- Department of Pediatrics, Far Eastern Memorial Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
115
|
Licata A, Nebbia ME, Cabibbo G, Iacono GL, Barbaria F, Brucato V, Alessi N, Porrovecchio S, Di Marco V, Craxì A, Cammà C. Hyperferritinemia is a risk factor for steatosis in chronic liver disease. World J Gastroenterol 2009. [PMID: 19418586 DOI: 10.3748/wjg.15.2132.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
AIM To investigate the relationship between ferritin and steatosis in patients with chronically abnormal liver function tests (LFTs) and high ferritin level. METHODS One hundred and twenty-four consecutive patients with hyperferritinemia (male > 300 ng/mL, female > 200 ng/mL) were evaluated; clinical, biochemical and serological data, iron status parameters, HFE gene mutations and homeostasis model assessment score were obtained. Steatosis was graded by ultrasound as absent or present. Histology was available in 53 patients only. RESULTS Mean level of ferritin was 881 +/- 77 ng/mL in men and 549 +/- 82 ng/mL in women. The diagnosis was chronic hepatitis C in 53 (42.7%), non-alcoholic fatty liver disease/non-alcoholic steatohepatitis in 57 (45.9%), and cryptogenic liver damage in 14 (11.3%). None was diagnosed as hereditary hemochromatosis (HH). Hepatic siderosis on liver biopsy was present in 17 of 54 (32%) patients; grade 1 in eight and grade 2 in nine. Overall, 92 patients (74.2%) had steatosis. By logistic regression, ferritin and gamma-glutamyltransferase were independent predictors of steatosis. Ferritin levels were significantly related to low platelet count, steatosis and hepatitis C virus infection. CONCLUSION In a non-obese cohort of non-alcoholic patients with chronically abnormal LFTs without HH, high serum ferritin level is a risk factor for steatosis.
Collapse
Affiliation(s)
- Anna Licata
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, University of Palermo, 90127 Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Licata A, Nebbia ME, Cabibbo G, Iacono GL, Barbaria F, Brucato V, Alessi N, Porrovecchio S, Di Marco V, Craxì A, Cammà C. Hyperferritinemia is a risk factor for steatosis in chronic liver disease. World J Gastroenterol 2009; 15:2132-8. [PMID: 19418586 PMCID: PMC2678584 DOI: 10.3748/wjg.15.2132] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between ferritin and steatosis in patients with chronically abnormal liver function tests (LFTs) and high ferritin level.
METHODS: One hundred and twenty-four consecutive patients with hyperferritinemia (male > 300 ng/mL, female > 200 ng/mL) were evaluated; clinical, biochemical and serological data, iron status parameters, HFE gene mutations and homeostasis model assessment score were obtained. Steatosis was graded by ultrasound as absent or present. Histology was available in 53 patients only.
RESULTS: Mean level of ferritin was 881 ± 77 ng/mL in men and 549 ± 82 ng/mL in women. The diagnosis was chronic hepatitis C in 53 (42.7%), non-alcoholic fatty liver disease/non-alcoholic steatohepatitis in 57 (45.9%), and cryptogenic liver damage in 14 (11.3%). None was diagnosed as hereditary hemochromatosis (HH). Hepatic siderosis on liver biopsy was present in 17 of 54 (32%) patients; grade 1 in eight and grade 2 in nine. Overall, 92 patients (74.2%) had steatosis. By logistic regression, ferritin and γ-glutamyltransferase were independent predictors of steatosis. Ferritin levels were significantly related to low platelet count, steatosis and hepatitis C virus infection.
CONCLUSION: In a non-obese cohort of non-alcoholic patients with chronically abnormal LFTs without HH, high serum ferritin level is a risk factor for steatosis.
Collapse
|
117
|
Malaguarnera M, Di Rosa M, Nicoletti F, Malaguarnera L. Molecular mechanisms involved in NAFLD progression. J Mol Med (Berl) 2009; 87:679-95. [PMID: 19352614 DOI: 10.1007/s00109-009-0464-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/26/2009] [Accepted: 03/18/2009] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging metabolic-related disorder characterized by fatty infiltration of the liver in the absence of alcohol consumption. NAFLD ranges from simple steatosis to non-alcoholic steatohepatitis (NASH), which might progress to end-stage liver disease. This progression is related to the insulin resistance, which is strongly linked to the metabolic syndrome consisting of central obesity, diabetes mellitus, and hypertension. Earlier, the increased concentration of intracellular fatty acids within hepatocytes leads to steatosis. Subsequently, multifactorial complex interactions between nutritional factors, lifestyle, and genetic determinants promote necrosis, inflammation, fibrosis, and hepatocellular damage. Up to now, many studies have revealed the mechanism associated with insulin resistance, whereas the mechanisms related to the molecular components have been incompletely characterized. This review aims to assess the potential molecular mediators initiating and supporting the progression of NASH to establish precocious diagnosis and to plan more specific treatment for this disease.
Collapse
|
118
|
Begriche K, Knockaert L, Massart J, Robin MA, Fromenty B. Mitochondrial dysfunction in nonalcoholic steatohepatitis (NASH): are there drugs able to improve it? ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.ddmec.2009.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
119
|
Volti GL, Sacerdoti D, Giacomo CD, Barcellona ML, Scacco A, Murabito P, Biondi A, Basile F, Gazzolo D, Abella R, Frigiola A, Galvano F. Natural heme oxygenase-1 inducers in hepatobiliary function. World J Gastroenterol 2008; 14:6122-6132. [PMID: 18985801 PMCID: PMC2761572 DOI: 10.3748/wjg.14.6122] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 07/23/2008] [Accepted: 07/30/2008] [Indexed: 02/07/2023] Open
Abstract
Many physiological effects of natural antioxidants, their extracts or their major active components, have been reported in recent decades. Most of these compounds are characterized by a phenolic structure, similar to that of alpha-tocopherol, and present antioxidant properties that have been demonstrated both in vitro and in vivo. Polyphenols may increase the capacity of endogenous antioxidant defences and modulate the cellular redox state. Changes in the cellular redox state may have wide-ranging consequences for cellular growth and differentiation. The majority of in vitro and in vivo studies conducted so far have attributed the protective effect of bioactive polyphenols to their chemical reactivity toward free radicals and their capacity to prevent the oxidation of important intracellular components. However, in recent years a possible novel aspect in the mode of action of these compounds has been suggested; that is, the ultimate stimulation of the heme oxygenase-1 (HO-1) pathway is likely to account for the established and powerful antioxidant/anti-inflammatory properties of these polyphenols. The products of the HO-catalyzed reaction, particularly carbon monoxide (CO) and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression by means of natural compounds contributes to protection against liver damage in various experimental models. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against various stressors in several pathological conditions.
Collapse
|
120
|
Begriche K, Massart J, Abbey-Toby A, Igoudjil A, Lettéron P, Fromenty B. Beta-aminoisobutyric acid prevents diet-induced obesity in mice with partial leptin deficiency. Obesity (Silver Spring) 2008; 16:2053-67. [PMID: 19186330 DOI: 10.1038/oby.2008.337] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Beta-Aminoisobutyric acid (BAIBA), a thymine catabolite, increases fatty acid oxidation (FAO) in liver and reduces the gain of body fat mass in Swiss (lean) mice fed a standard chow. We determined whether BAIBA could prevent obesity and related metabolic disorders in different murine models. To this end, BAIBA (100 or 500 mg/kg/day) was administered for 4 months in mice totally deficient in leptin (ob/ob). BAIBA (100 mg/kg/day) was also given for 4 months in wild-type (+/+) mice and mice partially deficient in leptin (ob/+) fed a high-calorie (HC) diet. BAIBA did not limit obesity and hepatic steatosis in ob/ob mice, but reduced liver cytolysis and inflammation. In ob/+ mice fed the HC diet, BAIBA fully prevented, or limited, the gain of body fat, steatosis and necroinflammation, glucose intolerance, and hypertriglyceridemia. Plasma beta-hydroxybutyrate was increased, whereas expression of carnitine palmitoyltransferase-1 was augmented in liver and white adipose tissue. Acetyl-CoA carboxylase was more phosphorylated, and de novo lipogenesis was less induced in liver. These favorable effects of BAIBA in ob/+ mice were associated with a restoration of plasma leptin levels. The reduction of body adiposity afforded by BAIBA was less marked in +/+ mice. Finally, BAIBA significantly stimulated the secretion of leptin in isolated ob/+ adipose cells, but not in +/+ cells. Thus, BAIBA could limit triglyceride accretion in tissues through a leptin-dependent stimulation of FAO. As partial leptin deficiency is not uncommon in the general population, supplementation with BAIBA may help to prevent diet-induced obesity and related metabolic disorders in low leptin secretors.
Collapse
Affiliation(s)
- Karima Begriche
- INSERM, U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Paris, France
| | | | | | | | | | | |
Collapse
|
121
|
Ackerman Z, Oron-Herman M, Rosenthal T, Pappo O, Link G, Sela BA, Grozovski M. Effects of amlodipine, captopril, and bezafibrate on oxidative milieu in rats with fatty liver. Dig Dis Sci 2008; 53:777-84. [PMID: 17710547 DOI: 10.1007/s10620-007-9911-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 06/20/2007] [Indexed: 02/08/2023]
Abstract
Oxidative stress may initiate significant hepatocyte injury in subjects with fatty liver. We characterized changes in hepatic oxidative anti-oxidative parameters in rats given a fructose-enriched diet (FED) with and without medications to reduce blood pressure or plasma triglycerides. FED rats had an increase in malondialdehyde (MDA) concentration, a reduction in alpha-tocopherol concentration, a reduction in paraoxonase (PON) activity, an increase in glutathione peroxidase (GSH-Px), and glutathione reductase (GSSG-R) activity. Amlodipine increased PON and GSH-Px, but decreased GSSG-R activity and alpha-tocopherol concentration. Captopril decreased MDA concentration and the activity of both GSH-Px and GSSG-R, but increased alpha-tocopherol concentration and PON activity. Bezafibrate increased alpha-tocopherol concentration and PON activity, but decreased the activity of GSSG-R. Animals with fatty liver exhibit an increase in peroxidative stress but also a defect in anti-oxidative pathways. Drugs administered to treat hypertension and hypertriglyceridemia could lead to a variety of changes in the hepatic oxidative, anti-oxidative milieu.
Collapse
Affiliation(s)
- Zvi Ackerman
- Department of Medicine, Hadassah-Hebrew University Medical Center, Mount Scopus Campus, Jerusalem 91240, Israel.
| | | | | | | | | | | | | |
Collapse
|
122
|
Zhang SJ, Chen ZX, Jiang KP, Cheng YH, Gu YL. The effect of QuYuHuaTanTongLuo Decoction on the non-alcoholic steatohepatitis. Complement Ther Med 2008; 16:192-8. [PMID: 18638709 DOI: 10.1016/j.ctim.2007.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Revised: 07/09/2007] [Accepted: 08/16/2007] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Non-alcoholic steatohepatitis (NASH) is the most common cause of cryptogenic cirrhosis, is becoming more prevalent in China. However, there is as yet no clearly established therapy for reversing fatty liver. Our aim is to explore the effect of traditional Chinese herbs QuYuHuaTanTongLuo Decoction (QYHTTLD) on non-alcoholic steatohepatitis. Sixty-nine non-alcoholic steatohepatitis patients were randomly divided into two groups. One group of 35 patients were treated by QYHTTLD, another group of 34 patients were treated by Ursodeoxycholic acid (UDCA). The TNF-alpha, IL-8, MDA level, SOD activity and liver function, as well as B ultrasonic image were detected before and after being treated. The results showed: after 6 months treatment, MBI of the treatment group was obviously decreased (p<0.05). The levels of TC, TG and LDL-C were significantly decreased whereas the level of HDL-C increased (p<0.01, p<0.05, p<0.05, and p<0.05, respectively) in the treatment group, the levels of TC, TG, LDL-C and HDL-C had no significant difference in the control group (p>0.05). The levels of TNF-alpha, IL-8 and MDA were significantly decreased whereas SOD activity was significantly increased (p<0.01, p<0.05, p<0.01, and p<0.01, respectively) in the treatment group, the level of MDA was significantly decreased in the control group (p<0.05). B ultrasonic images were ameliorated in different degree (p<0.01 and p<0.01, respectively). Both QYHTTLD and UDCA had the effect in improving the scores of symptoms and signs of patients, however, the difference value of the scores in treatment group were significantly higher than that in control group after being treated for 6 months (p<0.05). CONCLUSION QYHTTLD is effective for treating non-alcoholic steatohepatitis, and its effect seems to relate with the ways of QYHTTL down-regulating inflammation cytokine IL-8 level and relieving lipid peroxidation of liver.
Collapse
Affiliation(s)
- Shi-Jun Zhang
- Department of Gastroenterology of Traditional Chinese Medicine, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| | | | | | | | | |
Collapse
|
123
|
Kheirandish-Gozal L, Sans Capdevila O, Kheirandish E, Gozal D. Elevated Serum Aminotransferase Levels in Children at Risk for Obstructive Sleep Apnea. Chest 2008; 133:92-9. [DOI: 10.1378/chest.07-0773] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
124
|
Lickteig AJ, Fisher CD, Augustine LM, Cherrington NJ. Genes of the antioxidant response undergo upregulation in a rodent model of nonalcoholic steatohepatitis. J Biochem Mol Toxicol 2007; 21:216-20. [PMID: 17721935 DOI: 10.1002/jbt.20177] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nonalcoholic fatty liver disease encompasses a spectrum of hepatic pathologies ranging from simple fatty liver to an inflammatory state known as nonalcoholic steatohepatitis (NASH). NASH is also characterized by severe hepatic oxidative stress. The goal of this study was to determine whether genes of the antioxidant response are induced in rodent models of nonalcoholic fatty liver disease. To simulate simple fatty liver and NASH, respectively, male Sprague-Dawley rats were fed a high-fat (HF) or a methionine and choline-deficient (MCD) diet for 8 weeks. Key marker genes of the antioxidant response that are known to undergo upregulation via activation of Nuclear Factor Erythroid 2-Related Factor 2 were measured using the branched DNA signal amplification assay. Messenger RNA levels of the antioxidant response, including NAD(P)H:quinone oxidoreductase-1 (Nqo1), Glutamate cysteine ligase catalytic (Gclc), and Heme oxygenase-1 (Ho-1), were significantly induced in MCD rat liver but not in HF rat liver. Furthermore, Nqo1 protein expression and activity underwent significant upregulation in MCD rat liver but not in HF rat liver. These data strongly indicate that the pathology induced by the MCD dietary model of NASH results in upregulation of the antioxidant response in rats.
Collapse
Affiliation(s)
- Andrew J Lickteig
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
125
|
Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J. Iron overload and cofactors with special reference to alcohol, hepatitis C virus infection and steatosis/insulin resistance. World J Gastroenterol 2007; 13:4699-706. [PMID: 17729391 PMCID: PMC4611191 DOI: 10.3748/wjg.v13.i35.4699] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There are several cofactors which affect body iron metabolism and accelerate iron overload. Alcohol and hepatic viral infections are the most typical examples for clarifying the role of cofactors in iron overload. In these conditions, iron is deposited in hepatocytes and Kupffer cells and reactive oxygen species (ROS) produced through Fenton reaction have key role to facilitate cellular uptake of transferrin-bound iron. Furthermore, hepcidin, antimicrobial peptide produced mainly in the liver is also responsible for intestinal iron absorption and reticuloendothelial iron release. In patients with ceruloplasmin deficiency, anemia and secondary iron overload in liver and neurodegeneration are reported. Furthermore, there is accumulating evidence that fatty acid accumulation without alcohol and obesity itself modifies iron overload states. Ineffective erythropoiesis is also an important factor to accelerate iron overload, which is associated with diseases such as thalassemia and myelodysplastic syndrome. When this condition persists, the dietary iron absorption is increased due to the increment of bone marrow erythropoiesis and tissue iron overload will thereafter occurs. In porphyria cutanea tarda, iron is secondarily accumulated in the liver.
Collapse
Affiliation(s)
- Yutaka Kohgo
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical College, Midorigaoka-higashi 2-1, Asahikawa 078-8510, Japan.
| | | | | | | | | |
Collapse
|
126
|
Froh M, Conzelmann L, Walbrun P, Netter S, Wiest R, Wheeler MD, Lehnert M, Uesugi T, Scholmerich J, Thurman RG. Heme oxygenase-1 overexpression increases liver injury after bile duct ligation in rats. World J Gastroenterol 2007; 13:3478-86. [PMID: 17659695 PMCID: PMC4146784 DOI: 10.3748/wjg.v13.i25.3478] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of heme oxygenase-1 (HO-1) against oxidant-induced injury caused by bile duct ligation (BDL).
METHODS: Either cobalt protoporphyrin (CoPP), a HO-1 inducer, or saline were injected intraperitoneally in male SD-rats. Three days later, BDL or sham-operations were performed. Rats were sacrificed 3 wk after BDL and livers were harvested for histology. Fibrosis was evaluated by sirius red staining and image analysis. Alpha-smooth muscular actin, which indicates activation of stellate cells, was detected by immunohistochemical staining, and cytokine and collagen-Iα (Col-Iα) mRNA expression was detected using RNase protection assays.
RESULTS: Serum alanine transaminase increased 8-fold above normal levels one day after BDL. Surprisingly, enzyme release was not reduced in rats receiving CoPP. Liver fibrosis was evaluated 3 wk after BDL and the sirius red-positive area was found to be increased to about 7.8%. However, in CoPP pretreated rats sirius red-positive areas were increased to about 11.7% after BDL. Collagen-Iα and TGF-β mRNA increased significantly by BDL. Again, this effect was increased by HO-1 overexpression.
CONCLUSION: Hepatic fibrosis due to BDL is not reduced by the HO-1 inducer CoPP. In contrast, HO-1 overexpression increases liver injury in rats under conditions of experimental chronic cholestasis.
Collapse
Affiliation(s)
- Matthias Froh
- Department of Internal Medicine, University of Regensburg, Regensburg 93042, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Kallin A, Johannessen LE, Cani PD, Marbehant CY, Essaghir A, Foufelle F, Ferré P, Heldin CH, Delzenne NM, Demoulin JB. SREBP-1 regulates the expression of heme oxygenase 1 and the phosphatidylinositol-3 kinase regulatory subunit p55 gamma. J Lipid Res 2007; 48:1628-36. [PMID: 17452746 DOI: 10.1194/jlr.m700136-jlr200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sterol-regulatory element binding proteins (SREBPs) control the expression of genes involved in fatty acid and cholesterol biosynthesis. Using microarrays, we observed that mature SREBP-1 also induced the expression of genes unrelated to lipid metabolism, such as heme oxygenase 1 (HMOX1), plasma glutathione peroxidase, the phosphatidylinositol-3 kinase regulatory subunit p55 gamma, synaptic vesicle glycoprotein 2A, and COTE1. The expression of these genes was repressed upon addition of sterols, which block endogenous SREBP cleavage, and was induced by the statin drug mevinolin. Stimulation of fibroblasts with platelet-derived growth factor, which activates SREBP-1, had a similar effect. Fasted mice that were refed with a high-carbohydrate diet presented an increased expression of HMOX1 and p55 gamma in the liver. Overall, the transcriptional signature of SREBP-1 in fibroblasts stimulated by growth factors was very similar to that described in liver cells. We analyzed the HMOX1 promoter and found one SREBP binding site of the E-box type, which was required for regulation by SREBP-1a and SREBP-1c but was insensitive to SREBP-2. In conclusion, our data suggest that SREBP-1 regulates the expression of stress response and signaling genes, which could contribute to the metabolic response to insulin and growth factors in various tissues.
Collapse
Affiliation(s)
- Anders Kallin
- Université catholique de Louvain, Christian de Duve Institute of Cellular Pathology, Experimental Medicine Unit, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
Heme oxygenase (HO), the rate limiting enzyme in the breakdown of heme into carbon monoxide (CO), iron and bilirubin, has recently received overwhelming research attention. To date three mammalian HO isozymes have been identified, and the only inducible form is HO-1 while HO-2 and HO-3 are constitutively expressed. Advances in unveiling signal transduction network indicate that a battery of redox-sensitive transcription factors, such as activator protein-1 (AP-1), nuclear factor-kappa B (NF-kappaB) and nuclear factor E2-related factor-2 (Nrf2), and their upstream kinases including mitogen-activated protein kinases play an important regulatory role in HO-1 gene induction. The products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression contributes to protection against liver damage induced by several chemical compounds such as acetaminophen, carbon tetrachloride and heavy metals, suggesting HO-1 induction as an important cellular endeavor for hepatoprotection. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect against chemically-induced liver injury as well as hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ebenezer Olatunde Farombi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | | |
Collapse
|
129
|
Boverhof DR, Burgoon LD, Tashiro C, Sharratt B, Chittim B, Harkema JR, Mendrick DL, Zacharewski TR. Comparative toxicogenomic analysis of the hepatotoxic effects of TCDD in Sprague Dawley rats and C57BL/6 mice. Toxicol Sci 2006; 94:398-416. [PMID: 16960034 DOI: 10.1093/toxsci/kfl100] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In an effort to further characterize conserved and species-specific mechanisms of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated toxicity, comparative temporal and dose-response microarray analyses were performed on hepatic tissue from immature, ovariectomized Sprague Dawley rats and C57BL/6 mice. For temporal studies, rats and mice were gavaged with 10 or 30 microg/kg of TCDD, respectively, and sacrificed after 2, 4, 8, 12, 18, 24, 72, or 168 h while dose-response studies were performed at 24 h. Hepatic gene expression profiles were monitored using custom cDNA microarrays containing 8567 (rat) or 13,361 (mouse) cDNA clones. Affymetrix data from male rats treated with 40 microg/kg TCDD were also included to expand the species comparison. In total, 3087 orthologous genes were represented in the cross-species comparison. Comparative analysis identified 33 orthologous genes that were commonly regulated by TCDD as well as 185 rat-specific and 225 mouse-specific responses. Functional annotation using Gene Ontology identified conserved gene responses associated with xenobiotic/chemical stress and amino acid and lipid metabolism. Rat-specific gene expression responses were associated with cellular growth and lipid metabolism while mouse-specific responses were associated with lipid uptake/metabolism and immune responses. The common and species-specific gene expression responses were also consistent with complementary histopathology, clinical chemistry, hepatic lipid analyses, and reports in the literature. These data expand our understanding of TCDD-mediated gene expression responses and indicate that species-specific toxicity may be mediated by differences in gene expression which may help explain the wide range of species sensitivities and will have important implications in risk assessment strategies.
Collapse
Affiliation(s)
- Darrell R Boverhof
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Yim HJ, Hussain M, Liu Y, Wong SN, Fung SK, Lok ASF. Evolution of multi-drug resistant hepatitis B virus during sequential therapy. Hepatology 2006; 44:703-12. [PMID: 16941700 DOI: 10.1002/hep.21290] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multi-drug resistant hepatitis B virus (HBV) has been reported in hepatitis B patients who received sequential antiviral therapy. In vitro studies showed that HBV constructs with mutations resistant to lamivudine and adefovir have marked reduction in sensitivity to combination of lamivudine and adefovir, whereas constructs with mutations resistant to either drug remain sensitive to the other drug. We conducted this study to determine whether mutations conferring resistance to multiple antiviral agents co-locate on the same HBV genome in vivo and to describe the evolution of these mutations. Sera from six patients who had been found to have multi-drug resistant HBV mutations to lamivudine+adefovir, lamivudine+hepatitis B immunoglobulin (HBIG), or lamivudine+entecavir on direct sequencing were cloned after nested polymerase chain reaction (PCR). Analysis of 215 clones from 11 samples with multi-drug resistant mutations on direct sequencing showed that 183 (85%) clones had mutations to both therapies on the same genome; 31 clones had lamivudine-resistant mutants only. Clonal analysis of serial samples from three patients showed progressive evolution from all clones with lamivudine-resistant HBV mutations only to mixtures of clones that have multi-drug resistant mutations and clones that have lamivudine-resistant HBV mutations only, and ultimately all clones having multi-drug resistant HBV mutations. In conclusion, mutations conferring resistance to multiple antiviral agents co-locate on the same viral genome, suggesting that combination therapy directed against mutants resistant to each treatment may not be adequate in suppressing multi-drug resistant HBV. De novo combination therapy may prevent the emergence of multi-drug resistant mutants.
Collapse
Affiliation(s)
- Hyung Joon Yim
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109-0362, USA
| | | | | | | | | | | |
Collapse
|
131
|
Malaguarnera L, Di Rosa M, Rosa MD, Zambito AM, dell'Ombra N, Di Marco R, Marco RD, Malaguarnera M. Potential role of chitotriosidase gene in nonalcoholic fatty liver disease evolution. Am J Gastroenterol 2006; 101:2060-9. [PMID: 16848812 DOI: 10.1111/j.1572-0241.2006.00680.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is a liver disease characterized by steatosis and periportal and lobular inflammation. The molecular mechanisms involved in the anomalous behavior of liver cells have only partially been disclosed. Human Chitotriosidase (Chit) is a member of the chitinase family that it is mainly synthesized by activated macrophages. We investigated chitotriosidase gene expression in Kupffer cells to determine the potential implication of this enzyme in the inflammation and in the progression from uncomplicated steatosis to steatohepatitis with progressive fibrosis. METHODS Seventy-five liver biopsies from 40 subjects with NASH, 20 with simple steatosis, and 15 controls were used to detect CHIT expression, tumor necrosis factor-alpha (TNF-alpha), alpha-smooth muscle actin (alpha-SMA), and lipid peroxidation. RESULTS CHIT was expressed exclusively by Kupffer cells. The levels of CHIT expression were significantly higher in NASH patients than in simple steatosis patients and in the control group. In addition, we found that CHIT over-expression influenced hepatic stellate cells activation, as demonstrated by the significant correlation between CHIT and alpha-SMA expression in NASH patients. A significant correlation was observed also between CHIT, TNF-alpha and lipid peroxidation in both NASH and simple steatosis. CONCLUSION These results suggest that CHIT over-produced by Kupffer cells may contribute to the progression of hepatic fibrosis.
Collapse
|
132
|
Natarajan SK, Thomas S, Ramamoorthy P, Basivireddy J, Pulimood AB, Ramachandran A, Balasubramanian KA. Oxidative stress in the development of liver cirrhosis: a comparison of two different experimental models. J Gastroenterol Hepatol 2006; 21:947-57. [PMID: 16724977 DOI: 10.1111/j.1440-1746.2006.04231.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND/AIMS Oxidative stress has been implicated in liver cirrhosis. Carbon tetrachloride and thioacetamide are the most widely used models to develop cirrhosis in rats and the present study compares oxidative stress in the liver induced by these compounds at different stages of cirrhosis development. METHODS Twice-weekly intragastric or intraperitoneal administration of carbon tetrachloride or thioacetamide, respectively, produced liver cirrhosis after 3 months. Histology, serum markers and hepatic hydroxy proline content confirmed the cirrhosis. RESULTS An increase in oxidative stress parameters was seen in mitochondria, peroxisomes and microsomes from the liver after carbon tetrachloride or thioacetamide treatment. Oxidative stress was more severe in carbon tetrachloride treated animals than thioacetamide. Mild oxidative stress was evident at 1 and 2 months of treatment and a significant increase was seen by 3 months of treatment with either compound. By this time, frank liver cirrhosis was also observed. CONCLUSIONS These results suggest that evidence of oxygen free radicals is also found early in the development of fibrosis and cirrhosis in both models.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India.
| | | | | | | | | | | | | |
Collapse
|
133
|
Bonnefont-Rousselot D, Ratziu V, Giral P, Charlotte F, Beucler I, Poynard T. Blood oxidative stress markers are unreliable markers of hepatic steatosis. Aliment Pharmacol Ther 2006; 23:91-8. [PMID: 16393285 DOI: 10.1111/j.1365-2036.2006.02719.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) and viral hepatitis are associated with hepatic oxidative stress, which is partially dependent on the amount of hepatic fat. AIM To determine whether the circulating lipid and oxidative stress parameters could be non-invasive markers of hepatic steatosis. METHODS Sixty-four patients with NAFLD or viral hepatitis were tested for lipid peroxidation products and antioxidant defence systems, lipid parameters and liver function tests. RESULTS Hepatic steatosis was correlated with lipids, gamma-glutamyltranspeptidase, thiobarbituric acid-reactive substances, superoxide dismutase and superoxide dismutase/erythrocyte glutathione peroxidase ratio. gamma-Glutamyltranspeptidase, triglycerides and low-density lipoprotein cholesterol were significantly higher in the presence of steatosis. No difference in blood oxidative stress markers was observed according to the presence or absence of steatosis except for the superoxide dismutase/erythrocyte glutathione peroxidase ratio. Total cholesterol, triglycerides and low-density lipoprotein cholesterol were significantly higher in the NAFLD group (n = 17, 60% mean steatosis grade) than in the viral hepatitis group (n = 20, 13% mean steatosis grade). Only superoxide dismutase was lower and vitamin E higher in NAFLD than in viral hepatitis patients. CONCLUSIONS Standard blood oxidative stress markers do not predict the extent of hepatic steatosis as they probably do not accurately reflect intrahepatic oxidative stress. Serum lipid levels were best correlated with hepatic steatosis.
Collapse
Affiliation(s)
- D Bonnefont-Rousselot
- Laboratoire des Lipides, Groupe Hosptalier Pitie-Salpetriere (AP-HP), Paris, France.
| | | | | | | | | | | |
Collapse
|