101
|
Srivastava AK, Shankar A, Nalini Chandran AK, Sharma M, Jung KH, Suprasanna P, Pandey GK. Emerging concepts of potassium homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:608-619. [PMID: 31624829 DOI: 10.1093/jxb/erz458] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Potassium (K+) is an essential cation in all organisms that influences crop production and ecosystem stability. Although most soils are rich in K minerals, relatively little K+ is present in forms that are available to plants. Moreover, leaching and run-off from the upper soil layers contribute to K+ deficiencies in agricultural soils. Hence, the demand for K fertilizer is increasing worldwide. K+ regulates multiple processes in cells and organs, with K+ deficiency resulting in decreased plant growth and productivity. Here, we discuss the complexity of the reactive oxygen species-calcium-hormone signalling network that is responsible for the sensing of K+ deficiency in plants, together with genetic approaches using K+ transporters that have been used to increase K+ use efficiency (KUE) in plants, particularly under environmental stress conditions such as salinity and heavy metal contamination. Publicly available rice transcriptome data are used to demonstrate the two-way relationship between K+ and nitrogen nutrition, highlighting how each nutrient can regulate the uptake and root to shoot translocation of the other. Future research directions are discussed in terms of this relationship, as well as prospects for molecular approaches for the generation of improved varieties and the implementation of new agronomic practices. An increased knowledge of the systems that sense and take up K+, and their regulation, will not only improve current understanding of plant K+ homeostasis but also facilitate new research and the implementation of measures to improve plant KUE for sustainable food production.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Alka Shankar
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Anil Kumar Nalini Chandran
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Manisha Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Girdhar K Pandey
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| |
Collapse
|
102
|
Zhang Y, Wang Y, Xing J, Wan J, Wang X, Zhang J, Wang X, Li Z, Zhang M. Copalyl Diphosphate Synthase Mutation Improved Salt Tolerance in Maize ( Zea mays. L) via Enhancing Vacuolar Na + Sequestration and Maintaining ROS Homeostasis. FRONTIERS IN PLANT SCIENCE 2020; 11:457. [PMID: 32477376 PMCID: PMC7237720 DOI: 10.3389/fpls.2020.00457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/27/2020] [Indexed: 05/13/2023]
Abstract
Salinity stress impairs plant growth and causes crops to yield losses worldwide. Reduction of in vivo gibberellin acid (GA) level is known to repress plant size but is beneficial to plant salt tolerance. However, the mechanisms of in vivo GA deficiency-enhanced salt tolerance in maize are still ambiguous. In this study, we generated two independent maize knockout mutant lines of ent-copalyl diphosphate synthase (one of the key enzymes for early steps of GA biosynthesis), zmcps-1 and zmcps-7, to explore the role of GA in maize salt tolerance. The typical dwarf phenotype with lower GA content and delayed leaf senescence under salinity was observed in the mutant plants. The leaf water potential and cell turgor potential were significantly higher in zmcps-1 and zmcps-7 than in the wild type (WT) under salt stress. The mutant plants exhibited a lower superoxide anion production rate in leaves and also a downregulated relative expression level of NAPDH oxidase ZmRbohA-C than the WT maize under salt stress. Also, the mutant plants had higher enzymatic activities of superoxide dismutase (SOD) and catalase (CAT) and higher content of soluble sugars and proline under salt stress. The Na+/K+ ratio was not significantly different between the mutant maize plants and WT plants under salt stress conditions, but the Na+ and K+ content was increased in zmcps-1 and zmcps-7 leaves and shoots. Na+ fluorescent dye staining showed that the mutant leaves have significantly higher vacuolar Na+ intensity than the WT maize. The expression level of vacuolar Na+/H+ exchanger gene ZmNHX1 and vacuolar proton pump genes ZmVP1-1 and ZmVP2 were upregulated in the zmcps-1 and zmcps-7 plants under salinity, further proving that in vivo GA deficiency enhanced vacuolar Na+ sequestration in zmcps-1 and zmcps-7 leaves cells to avoid Na+ cytotoxicity. Together, our results suggested that maintaining ROS homeostasis and enhancing vacuolar Na+ sequestration could be involved in GA deficiency-improved maize salt tolerance.
Collapse
Affiliation(s)
- Yushi Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yubin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiapeng Xing
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiachi Wan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xilei Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Juan Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaodong Wang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhaohu Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mingcai Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
103
|
Deolu-Ajayi AO, Meyer AJ, Haring MA, Julkowska MM, Testerink C. Genetic Loci Associated with Early Salt Stress Responses of Roots. iScience 2019; 21:458-473. [PMID: 31707259 PMCID: PMC6849332 DOI: 10.1016/j.isci.2019.10.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/16/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022] Open
Abstract
Salinity is a devastating abiotic stress accounting for major crop losses yearly. Plant roots can strikingly grow away from high-salt patches. This response is termed halotropism and occurs through auxin redistribution in roots in response to a salt gradient. Here, a natural variation screen for the early and NaCl-specific halotropic response of 333 Arabidopsis accessions revealed quantitative differences in the first 24 h. These data were successfully used to identify genetic components associated with the response through Genome-Wide Association Study (GWAS). Follow-up characterization of knockout mutants in Col-0 background confirmed the role of transcription factor WRKY25, cation-proton exchanger CHX13, and a gene of unknown function DOB1 (Double Bending 1) in halotropism. In chx13 and dob1 mutants, ion accumulation and shoot biomass under salt stress were also affected. Thus, our GWAS has identified genetic components contributing to main root halotropism that provide insight into the genetic architecture underlying plant salt responses.
Collapse
Affiliation(s)
- Ayodeji O Deolu-Ajayi
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB Wageningen, the Netherlands; Plant Physiology, Swammerdam Institute of Life Sciences, University of Amsterdam, 1098XH Amsterdam, the Netherlands
| | - A Jessica Meyer
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB Wageningen, the Netherlands
| | - Michel A Haring
- Plant Physiology, Swammerdam Institute of Life Sciences, University of Amsterdam, 1098XH Amsterdam, the Netherlands
| | - Magdalena M Julkowska
- Department of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900 Thuwal-Jeddah, Kingdom of Saudi Arabia
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB Wageningen, the Netherlands.
| |
Collapse
|
104
|
Huang Y, Cao H, Yang L, Chen C, Shabala L, Xiong M, Niu M, Liu J, Zheng Z, Zhou L, Peng Z, Bie Z, Shabala S. Tissue-specific respiratory burst oxidase homolog-dependent H2O2 signaling to the plasma membrane H+-ATPase confers potassium uptake and salinity tolerance in Cucurbitaceae. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5879-5893. [PMID: 31290978 PMCID: PMC6812723 DOI: 10.1093/jxb/erz328] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 05/02/2023]
Abstract
Potassium (K+) is a critical determinant of salinity tolerance, and H2O2 has been recognized as an important signaling molecule that mediates many physiological responses. However, the details of how H2O2 signaling regulates K+ uptake in the root under salt stress remain elusive. In this study, salt-sensitive cucumber and salt-tolerant pumpkin which belong to the same family, Cucurbitaceae, were used to answer the above question. We show that higher salt tolerance in pumpkin was related to its superior ability for K+ uptake and higher H2O2 accumulation in the root apex. Transcriptome analysis showed that salinity induced 5816 (3005 up- and 2811 down-) and 4679 (3965 up- and 714 down-) differentially expressed genes (DEGs) in cucumber and pumpkin, respectively. DEGs encoding NADPH oxidase (respiratory burst oxidase homolog D; RBOHD), 14-3-3 protein (GRF12), plasma membrane H+-ATPase (AHA1), and potassium transporter (HAK5) showed higher expression in pumpkin than in cucumber under salinity stress. Treatment with the NADPH oxidase inhibitor diphenylene iodonium resulted in lower RBOHD, GRF12, AHA1, and HAK5 expression, reduced plasma membrane H+-ATPase activity, and lower K+ uptake, leading to a loss of the salinity tolerance trait in pumpkin. The opposite results were obtained when the plants were pre-treated with exogenous H2O2. Knocking out of RBOHD in pumpkin by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9] editing of coding sequences resulted in lower root apex H2O2 and K+ content and GRF12, AHA1, and HAK5 expression, ultimately resulting in a salt-sensitive phenotype. However, ectopic expression of pumpkin RBOHD in Arabidopsis led to the opposite effect. Taken together, this study shows that RBOHD-dependent H2O2 signaling in the root apex is important for pumpkin salt tolerance and suggests a novel mechanism that confers this trait, namely RBOHD-mediated transcriptional and post-translational activation of plasma membrane H+-ATPase operating upstream of HAK5 K+ uptake transporters.
Collapse
Affiliation(s)
- Yuan Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Haishun Cao
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Li Yang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Chen Chen
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Lana Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Mu Xiong
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Mengliang Niu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Juan Liu
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Zuhua Zheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Lijian Zhou
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Zhaowen Peng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, PR China
| |
Collapse
|
105
|
Coetzee ZA, Walker RR, Liao S, Barril C, Deloire AJ, Clarke SJ, Tyerman SD, Rogiers SY. Expression Patterns of Genes Encoding Sugar and Potassium Transport Proteins Are Simultaneously Upregulated or Downregulated When Carbon and Potassium Availability Is Modified in Shiraz (Vitis vinifera L.) Berries. PLANT & CELL PHYSIOLOGY 2019; 60:2331-2342. [PMID: 31290973 DOI: 10.1093/pcp/pcz130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/27/2019] [Indexed: 05/18/2023]
Abstract
A link between the accumulation of sugar and potassium has previously been described for ripening grape berries. The functional basis of this link has, as of yet, not been elucidated but could potentially be associated with the integral role that potassium has in phloem transport. An experiment was conducted on Shiraz grapevines in a controlled environment. The accumulation of berry sugar was curtailed by reducing the leaf photoassimilation rate, and the availability of potassium was increased through soil fertilization. The study characterizes the relationship between the accumulation of sugar and potassium into the grape berry and describes how their accumulation patterns are related to the expression patterns of their transporter proteins. A strong connection was observed between the accumulation of sugar and potassium in the grape berry pericarp, irrespective of the treatment. The relative expression of proteins associated with sugar and potassium transport across the tonoplast and plasma membrane was closely correlated, suggesting transcriptional coregulation leading to the simultaneous translocation and storage of potassium and sugar in the grape berry cell.
Collapse
Affiliation(s)
- Zelmari A Coetzee
- National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, PMB 1, Glen Osmond, Adelaide, Australia
| | - Rob R Walker
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, PMB 1, Glen Osmond, Adelaide, Australia
- CSIRO Agriculture and Food, PMB 2, Glen Osmond, Adelaide, Australia
| | - Siyang Liao
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, PMB 1, Glen Osmond, Adelaide, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, Australia
| | - Celia Barril
- National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, Australia
| | - Alain J Deloire
- National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, PMB 1, Glen Osmond, Adelaide, Australia
| | - Simon J Clarke
- National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, PMB 1, Glen Osmond, Adelaide, Australia
| | - Stephen D Tyerman
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, PMB 1, Glen Osmond, Adelaide, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, Australia
| | - Suzy Y Rogiers
- National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, PMB 1, Glen Osmond, Adelaide, Australia
- NSW Department of Primary Industries, Wagga Wagga, Australia
| |
Collapse
|
106
|
Cai K, Gao H, Wu X, Zhang S, Han Z, Chen X, Zhang G, Zeng F. The Ability to Regulate Transmembrane Potassium Transport in Root Is Critical for Drought Tolerance in Barley. Int J Mol Sci 2019; 20:E4111. [PMID: 31443572 PMCID: PMC6747136 DOI: 10.3390/ijms20174111] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/11/2019] [Accepted: 08/20/2019] [Indexed: 01/26/2023] Open
Abstract
In this work, the effect of drought on K+ uptake in root and its translocation from root to shoot was investigated using six barley genotypes contrasting in drought tolerance. Results showed that drought conditions caused significant changes in K+ uptake and translocation in a time- and genotype-specific manner, which consequently resulted in a significant difference in tissue K+ contents and drought tolerance levels between the contrasting barley genotypes. The role of K+ transporters and channels and plasma membrane (PM) H+-ATPase in barley's adaptive response to drought stress was further investigated at the transcript level. The expression of genes conferring K+ uptake (HvHAK1, HvHAK5, HvKUP1, HvKUP2 and HvAKT1) and xylem loading (HvSKOR) in roots were all affected by drought stress in a time- and genotype-specific manner, indicating that the regulation of these K+ transporters and channels is critical for root K+ uptake and root to shoot K+ translocation in barley under drought stress. Furthermore, the barley genotypes showed a strong correlation between H+ efflux and K+ influx under drought stress, which was further confirmed by the significant up-regulation of HvHA1 and HvHA2. These results suggested an important role of plasma membrane H+-ATPase activity and/or expression in regulating the activity of K+ transporters and channels under drought stress. Taken together, it may be concluded that the genotypic difference in drought stress tolerance in barley is conferred by the difference in the ability to regulate K+ transporters and channels in root epidermis and stele.
Collapse
Affiliation(s)
- Kangfeng Cai
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Huaizhou Gao
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaojian Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuo Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Zhigang Han
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Chen
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Fanrong Zeng
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
107
|
Gallardo K, Besson A, Klein A, Le Signor C, Aubert G, Henriet C, Térézol M, Pateyron S, Sanchez M, Trouverie J, Avice JC, Larmure A, Salon C, Balzergue S, Burstin J. Transcriptional Reprogramming of Pea Leaves at Early Reproductive Stages. FRONTIERS IN PLANT SCIENCE 2019; 10:1014. [PMID: 31440268 PMCID: PMC6693388 DOI: 10.3389/fpls.2019.01014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Pea (Pisum sativum L.) is an important source of dietary proteins. Nutrient recycling from leaves contributes to the accumulation of seed proteins and is a pivotal determinant of protein yields in this grain legume. The aim of this study was to unveil the transcriptional regulations occurring in pea leaves before the sharp decrease in chlorophyll breakdown. As a prelude to this study, a time-series analysis of 15N translocation at the whole plant level was performed, which indicated that nitrogen recycling among organs was highly dynamic during this period and varied depending on nitrate availability. Leaves collected on vegetative and reproductive nodes were further analyzed by transcriptomics. The data revealed extensive transcriptome changes in leaves of reproductive nodes during early seed development (from flowering to 14 days after flowering), including an up-regulation of genes encoding transporters, and particularly of sulfate that might sustain sulfur metabolism in leaves of the reproductive part. This developmental period was also characterized by a down-regulation of cell wall-associated genes in leaves of both reproductive and vegetative nodes, reflecting a shift in cell wall structure. Later on, 27 days after flowering, genes potentially switching the metabolism of leaves toward senescence were pinpointed, some of which are related to ribosomal RNA processing, autophagy, or transport systems. Transcription factors differentially regulated in leaves between stages were identified and a gene co-expression network pointed out some of them as potential regulators of the above-mentioned biological processes. The same approach was conducted in Medicago truncatula to identify shared regulations with this wild legume species. Altogether the results give a global view of transcriptional events in leaves of legumes at early reproductive stages and provide a valuable resource of candidate genes that could be targeted by reverse genetics to improve nutrient remobilization and/or delay catabolic processes leading to senescence.
Collapse
Affiliation(s)
- Karine Gallardo
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Alicia Besson
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Anthony Klein
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Christine Le Signor
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Grégoire Aubert
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Charlotte Henriet
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Morgane Térézol
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Stéphanie Pateyron
- IPS2, Institute of Plant Sciences Paris-Saclay (Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay), POPS-Transcriptomic Platform, Saclay Plant Sciences (SPS), Orsay, France
| | - Myriam Sanchez
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Jacques Trouverie
- Normandie Université, Institut National de la Recherche Agronomique, Université de Caen Normandie, UMR INRA–UCBN 950 Ecophysiologie Végétale et Agronomie, SFR Normandie Végétal FED 4277, Caen, France
| | - Jean-Christophe Avice
- Normandie Université, Institut National de la Recherche Agronomique, Université de Caen Normandie, UMR INRA–UCBN 950 Ecophysiologie Végétale et Agronomie, SFR Normandie Végétal FED 4277, Caen, France
| | - Annabelle Larmure
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Christophe Salon
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Sandrine Balzergue
- IPS2, Institute of Plant Sciences Paris-Saclay (Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay), POPS-Transcriptomic Platform, Saclay Plant Sciences (SPS), Orsay, France
| | - Judith Burstin
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
108
|
Koch M, Busse M, Naumann M, Jákli B, Smit I, Cakmak I, Hermans C, Pawelzik E. Differential effects of varied potassium and magnesium nutrition on production and partitioning of photoassimilates in potato plants. PHYSIOLOGIA PLANTARUM 2019; 166:921-935. [PMID: 30288757 DOI: 10.1111/ppl.12846] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 05/03/2023]
Affiliation(s)
- Mirjam Koch
- Department for Crop Sciences, Division Quality of Plant Products, University of Göttingen, 37075, Göttingen, Germany
| | - Matthies Busse
- Department for Crop Sciences, Division Quality of Plant Products, University of Göttingen, 37075, Göttingen, Germany
| | - Marcel Naumann
- Department for Crop Sciences, Division Quality of Plant Products, University of Göttingen, 37075, Göttingen, Germany
| | - Bálint Jákli
- Institute of Applied Plant Nutrition, 37075, Göttingen, Germany
| | - Inga Smit
- Department for Crop Sciences, Division Quality of Plant Products, University of Göttingen, 37075, Göttingen, Germany
| | - Ismail Cakmak
- Institute of Applied Plant Nutrition, 37075, Göttingen, Germany
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University Tuzla, Istanbul, Turkey
| | - Christian Hermans
- Laboratory of Plant Physiology and Molecular Genetics, Interfaculty School of Bioengineers, Université libre de Bruxelles, 1050, Brussels, Belgium
| | - Elke Pawelzik
- Department for Crop Sciences, Division Quality of Plant Products, University of Göttingen, 37075, Göttingen, Germany
| |
Collapse
|
109
|
Feng H, Tang Q, Cai J, Xu B, Xu G, Yu L. Rice OsHAK16 functions in potassium uptake and translocation in shoot, maintaining potassium homeostasis and salt tolerance. PLANTA 2019; 250:549-561. [PMID: 31119363 DOI: 10.1007/s00425-019-03194-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/16/2019] [Indexed: 05/27/2023]
Abstract
OsHAK16 mediates K uptake and root-to-shoot translocation in a broad range of external K concentrations, thereby contributing to the maintenance of K homeostasis and salt tolerance in the rice shoot. The HAK/KUP/KT transporters have been widely associated with potassium (K) transport across membranes in both microbes and plants. Here, we report the physiological function of OsHAK16, a member belonging to the HAK/KUP/KT family in rice (Oryza sativa L.). Transcriptional expression of OsHAK16 was up-regulated by K deficiency or salt stress. OsHAK16 is localized at the plasma membrane. OsHAK16 knockout (KO) dramatically reduced root K net uptake rate and growth at both 0.1 mM and 1 mM K supplies, while OsHAK16 overexpression (OX) increased total K uptake and growth only at 0.1 mM K level. OsHAK16-KO decreased the rate of rubidium (Rb) uptake and translocation compared to WT at both 0.2 mM and 1 mM Rb levels. OsHAK16 disruption decreased while its overexpression increased K concentration in root slightly but in shoot remarkably. The relative distribution of total K between shoot and root decreased by 30% in OsHAK16-KO lines and increased by 30% in its OX lines compared to WT. OsHAK16-KO diminished K uptake and K/Na ratio, while OsHAK16-OX improved K uptake and translocation from root to shoot, resulting in increased sensitivity and tolerance to salt stress, respectively. Expression of OsHAK16 enhanced the growth of high salt-sensitive yeast mutant by increasing its K but no Na content. Taking all these together, we conclude that OsHAK16 plays crucial roles in maintaining K homeostasis and salt tolerance in rice shoot.
Collapse
Affiliation(s)
- Huimin Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiang Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Benchao Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
110
|
Vishwakarma K, Mishra M, Patil G, Mulkey S, Ramawat N, Pratap Singh V, Deshmukh R, Kumar Tripathi D, Nguyen HT, Sharma S. Avenues of the membrane transport system in adaptation of plants to abiotic stresses. Crit Rev Biotechnol 2019; 39:861-883. [DOI: 10.1080/07388551.2019.1616669] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kanchan Vishwakarma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Mitali Mishra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Gunvant Patil
- Department of Agronomy and Plant Genetics, University of Minnesota St. Paul, Minnesota, MN, USA
| | - Steven Mulkey
- Department of Agronomy and Plant Genetics, University of Minnesota St. Paul, Minnesota, MN, USA
| | - Naleeni Ramawat
- Amity Institute of Organic Agriculture, Amity University, Uttar Pradesh, Noida, India
| | - Vijay Pratap Singh
- Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | | | - Henry T. Nguyen
- Department of Agronomy and Plant Genetics, University of Minnesota St. Paul, Minnesota, MN, USA
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
111
|
Ye X, Wang H, Cao X, Jin X, Cui F, Bu Y, Liu H, Wu W, Takano T, Liu S. Transcriptome profiling of Puccinellia tenuiflora during seed germination under a long-term saline-alkali stress. BMC Genomics 2019; 20:589. [PMID: 31315555 PMCID: PMC6637651 DOI: 10.1186/s12864-019-5860-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/29/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Puccinellia tenuiflora is the most saline-alkali tolerant plant in the Songnen Plain, one of the three largest soda saline-alkali lands worldwide. Here, we investigated the physicochemical properties of saline-alkali soils from the Songnen Plain and sequenced the transcriptomes of germinated P. tenuiflora seedlings under long-term treatment (from seed soaking) with saline-alkali soil extracts. RESULTS We found that the soils from Songnen Plain were reasonably rich in salts and alkali; moreover, the soils were severely deficient in nitrogen [N], phosphorus [P], potassium [K] and several other mineral elements. This finding demonstrated that P. tenuiflora can survive from not only high saline-alkali stress but also a lack of essential mineral elements. To explore the saline-alkali tolerance mechanism, transcriptional analyses of P. tenuiflora plants treated with water extracts from the saline-alkali soils was performed. Interestingly, unigenes involved in the uptake of N, P, K and the micronutrients were found to be significantly upregulated, which indicated the existence of an efficient nutrition-uptake system in P. tenuiflora. Compared with P. tenuiflora, the rice Oryza sativa was hypersensitive to saline-alkali stress. The results obtained using a noninvasive microtest techniques confirmed that the uptake of NO3- and NH4+ and the regulatory flux of Na+ and H+ were significantly higher in the roots of P. tenuiflora than in those of O. sativa. In the corresponding physiological experiments, the application of additional nutrition elements significantly eliminated the sensitive symptoms of rice to saline-alkali soil extracts. CONCLUSIONS Our results imply that the survival of P. tenuiflora in saline-alkali soils is due to a combination of at least two regulatory mechanisms and the high nutrient uptake capacity of P. tenuiflora plays a pivotal role in its adaptation to those stress. Taken together, our results highlight the role of nutrition uptake in saline-alkali stress tolerance in plants.
Collapse
Affiliation(s)
- Xiaoxue Ye
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040 China
| | - Hao Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040 China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Yuanyuan Bu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040 China
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo, 188-0002 Japan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| |
Collapse
|
112
|
Albaqami M, Laluk K, Reddy ASN. The Arabidopsis splicing regulator SR45 confers salt tolerance in a splice isoform-dependent manner. PLANT MOLECULAR BIOLOGY 2019; 100:379-390. [PMID: 30968308 DOI: 10.1007/s11103-019-00864-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/28/2019] [Indexed: 05/08/2023]
Abstract
Functions of most splice isoforms that are generated by alternative splicing are unknown. We show that two splice variants that encode proteins differing in only eight amino acids have distinct functions in a stress response. Serine/arginine-rich (SR) and SR-like proteins, a conserved family of RNA binding proteins across eukaryotes, play important roles in pre-mRNA splicing and other post-transcriptional processes. Pre-mRNAs of SR and SR-like proteins undergo extensive alternative splicing in response to diverse stresses and produce multiple splice isoforms. However, the functions of most splice isoforms remain elusive. Alternative splicing of pre-mRNA of Arabidopsis SR45, which encodes an SR-like splicing regulator, generates two isoforms (long-SR45.1 and short-SR45.2). The proteins encoded by these two isoforms differ in eight amino acids. Here, we investigated the role of SR45 and its splice variants in salt stress tolerance. The loss of SR45 resulted in enhanced sensitivity to salt stress and changes in expression and splicing of genes involved in regulating salt stress response. Interestingly, only the long isoform (SR45.1) rescued the salt-sensitive phenotype as well as the altered gene expression and splicing patterns in the mutant. These results suggest that SR45 positively regulates salt tolerance. Furthermore, only the long isoform is required for SR45-mediated salt tolerance.
Collapse
Affiliation(s)
- Mohammed Albaqami
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Mecca, 21955, Kingdom of Saudi Arabia
| | - K Laluk
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
113
|
Ployet R, Veneziano Labate MT, Regiani Cataldi T, Christina M, Morel M, San Clemente H, Denis M, Favreau B, Tomazello Filho M, Laclau JP, Labate CA, Chaix G, Grima-Pettenati J, Mounet F. A systems biology view of wood formation in Eucalyptus grandis trees submitted to different potassium and water regimes. THE NEW PHYTOLOGIST 2019; 223:766-782. [PMID: 30887522 DOI: 10.1111/nph.15802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/28/2019] [Indexed: 05/02/2023]
Abstract
Wood production in fast-growing Eucalyptus grandis trees is highly dependent on both potassium (K) fertilization and water availability but the molecular processes underlying wood formation in response to the combined effects of these two limiting factors remain unknown. E. grandis trees were submitted to four combinations of K-fertilization and water supply. Weighted gene co-expression network analysis and MixOmics-based co-regulation networks were used to integrate xylem transcriptome, metabolome and complex wood traits. Functional characterization of a candidate gene was performed in transgenic E. grandis hairy roots. This integrated network-based approach enabled us to identify meaningful biological processes and regulators impacted by K-fertilization and/or water limitation. It revealed that modules of co-regulated genes and metabolites strongly correlated to wood complex traits are in the heart of a complex trade-off between biomass production and stress responses. Nested in these modules, potential new cell-wall regulators were identified, as further confirmed by the functional characterization of EgMYB137. These findings provide new insights into the regulatory mechanisms of wood formation under stressful conditions, pointing out both known and new regulators co-opted by K-fertilization and/or water limitation that may potentially promote adaptive wood traits.
Collapse
Affiliation(s)
- Raphael Ployet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Mônica T Veneziano Labate
- Max Feffer Laboratory for Plant Genetics, Department of Genetics, College of Agriculture 'Luiz de Queiroz', University of São Paulo, Av. Pádua Dias 11, PO Box 09, Piracicaba-SP, 13418-900, Brazil
| | - Thais Regiani Cataldi
- Max Feffer Laboratory for Plant Genetics, Department of Genetics, College of Agriculture 'Luiz de Queiroz', University of São Paulo, Av. Pádua Dias 11, PO Box 09, Piracicaba-SP, 13418-900, Brazil
| | - Mathias Christina
- CIRAD, UMR ECO&SOLS, F-34398, Montpellier, France
- Department of Forest Resource, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias N° 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Marie Morel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Marie Denis
- CIRAD, UMR AGAP, 34395, Montpellier, Cedex 9, France
- UMR AGAP, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Bénédicte Favreau
- CIRAD, UMR AGAP, 34395, Montpellier, Cedex 9, France
- UMR AGAP, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Mario Tomazello Filho
- Department of Forest Resource, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias N° 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Jean-Paul Laclau
- CIRAD, UMR ECO&SOLS, F-34398, Montpellier, France
- Department of Forest Resource, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias N° 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Carlos Alberto Labate
- Max Feffer Laboratory for Plant Genetics, Department of Genetics, College of Agriculture 'Luiz de Queiroz', University of São Paulo, Av. Pádua Dias 11, PO Box 09, Piracicaba-SP, 13418-900, Brazil
| | - Gilles Chaix
- Department of Forest Resource, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias N° 11, Piracicaba, São Paulo, 13418-900, Brazil
- CIRAD, UMR AGAP, 34395, Montpellier, Cedex 9, France
- UMR AGAP, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Fabien Mounet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, 31326, Castanet-Tolosan, France
| |
Collapse
|
114
|
Sharif I, Aleem S, Farooq J, Rizwan M, Younas A, Sarwar G, Chohan SM. Salinity stress in cotton: effects, mechanism of tolerance and its management strategies. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:807-820. [PMID: 31402811 PMCID: PMC6656830 DOI: 10.1007/s12298-019-00676-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/15/2019] [Accepted: 05/13/2019] [Indexed: 05/21/2023]
Abstract
Cotton is classified as moderately salt tolerant crop with salinity threshold level of 7.7 dS m-1. Salinity is a serious threat for cotton growth, yield and fiber quality. The sensitivity to salt stress depends upon growth stage and type of salt. Understanding of cotton response to salinity, its resistance mechanism and looking into management techniques may assist in formulating strategies to improve cotton performance under saline condition. The studies have showed that germination, emergence and seedling stages are more sensitive to salinity stress as compared to later stages. Salt stress results in delayed flowering, less fruiting positions, fruit shedding and reduced boll weight which ultimately affect seed cotton yield. Depressed activities of metabolic enzymes viz: acidic invertase, alkaline invertase and sucrose phophate synthase lead to fiber quality deterioration in salinity. Excessive sodium exclusion or its compartmentation is the main adaptive mechanism in cotton under salt stress. Up regulation of enzymatic and non-enzymatic antioxidants genes offer important adaptive potential to develop salt tolerant cotton varieties. Seed priming is also an effective approach for improving cotton germination in saline soils. Intra and inter variation in cotton germplasm could be used to develop salt tolerant varieties with the aid of marker assisted selection. Furthermore, transgenic approach could be the promising option for enhancing cotton production under saline condition. It is suggested that future research may be carried out with the combination of conventional and advance molecular technology to develop salt tolerant cultivars.
Collapse
Affiliation(s)
- Iram Sharif
- Cotton Research Station, AARI, Faisalabad, Pakistan
| | - Saba Aleem
- Vegetable Research Institute, AARI, Faisalabad, Pakistan
| | | | | | - Abia Younas
- Cotton Research Station, AARI, Faisalabad, Pakistan
| | | | | |
Collapse
|
115
|
Favreau B, Denis M, Ployet R, Mounet F, Peireira da Silva H, Franceschini L, Laclau JP, Labate C, Carrer H. Distinct leaf transcriptomic response of water deficient Eucalyptus grandis submitted to potassium and sodium fertilization. PLoS One 2019; 14:e0218528. [PMID: 31220144 PMCID: PMC6586347 DOI: 10.1371/journal.pone.0218528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/04/2019] [Indexed: 01/06/2023] Open
Abstract
While potassium fertilization increases growth yield in Brazilian eucalyptus plantations, it could also increase water requirements, making trees more vulnerable to drought. Sodium fertilization, which has been shown to promote eucalyptus growth compared to K-deficient trees, could partially mitigate this adverse effect of potassium. However, little is known about the influence of K and Na fertilization on the tree metabolic response to water deficit. The aim of the present study was thus to analyze the transcriptome of leaves sampled from Eucalyptus grandis trees subjected to 37% rainfall reduction, and fertilized with potassium (K), sodium (Na), compared to control trees (C). The multifactorial experiment was set up in a field with a throughfall exclusion system. Transcriptomic analysis was performed on leaves from two-year-old trees, and data analyzed using multifactorial statistical analysis and weighted gene co-expression network analysis (WGCNA). Significant sets of genes were seen to respond to rainfall reduction, in interaction with K or Na fertilization, or to fertilization only (regardless of the water supply regime). The genes were involved in stress signaling, primary and secondary metabolism, secondary cell wall formation and photosynthetic activity. Our focus on key genes related to cation transporters and aquaporins highlighted specific regulation of ion homeostasis, and plant adjustment to water deficit. While water availability significantly affects the transcriptomic response of eucalyptus species, this study points out that the transcriptomic response is highly dependent on the fertilization regime. Our study is based on the first large-scale field trial in a tropical region, specifically designed to study the interaction between water availability and nutrition in eucalyptus. To our knowledge, this is the first global transcriptomic analysis to compare the influence of K and Na fertilization on tree adaptive traits in water deficit conditions.
Collapse
Affiliation(s)
- Bénédicte Favreau
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Marie Denis
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Raphael Ployet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Fabien Mounet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Hana Peireira da Silva
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | - Livia Franceschini
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | | | - Carlos Labate
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
116
|
Guo J, Dong X, Han G, Wang B. Salt-Enhanced Reproductive Development of Suaeda salsa L. Coincided With Ion Transporter Gene Upregulation in Flowers and Increased Pollen K + Content. FRONTIERS IN PLANT SCIENCE 2019; 10:333. [PMID: 30984214 PMCID: PMC6449877 DOI: 10.3389/fpls.2019.00333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/04/2019] [Indexed: 05/06/2023]
Abstract
Halophytes are adapted to saline environments and demonstrate optimal reproductive growth under high salinity. To gain insight into the salt tolerance mechanism and effects of salinity in the halophyte Suaeda salsa, the number of flowers and seeds, seed size, anther development, ion content, and flower transcript profiles, as well as the relative expression levels of genes involved in ion transport, were analyzed in S. salsa plants treated with 0 or 200 mM NaCl. The seed size, flower number, seed number per leaf axil, and anther fertility were all significantly increased by 200 mM NaCl treatment. The Na+ and Cl- contents in the leaves, stems, and pollen of NaCl-treated plants were all markedly higher, and the K+ content in the leaves and stems was significantly lower, than those in untreated control plants. By contrast, the K+ content in pollen grains did not decrease, but rather increased, upon NaCl treatment. Genes related to Na+, K+ and, Cl- transport, such as SOS1, KEA, AKT1, NHX1, and CHX, showed increased expression in the flowers of NaCl-treated plants. These results suggest that ionic homeostasis in reproductive organs, especially in pollen grains under salt-treated conditions, involves increased expression of ion transport-related genes.
Collapse
Affiliation(s)
| | | | | | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
117
|
Liu Y, Yu Y, Sun J, Cao Q, Tang Z, Liu M, Xu T, Ma D, Li Z, Sun J. Root-zone-specific sensitivity of K+-and Ca2+-permeable channels to H2O2 determines ion homeostasis in salinized diploid and hexaploid Ipomoea trifida. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1389-1405. [PMID: 30689932 PMCID: PMC6382330 DOI: 10.1093/jxb/ery461] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 05/13/2023]
Abstract
Polyploids generally possess superior K+/Na+ homeostasis under saline conditions compared with their diploid progenitors. In this study, we identified the physiological mechanisms involved in the ploidy-related mediation of K+/Na+ homeostasis in the roots of diploid (2x) and hexaploid (6x; autohexaploid) Ipomoea trifida, which is the closest relative of cultivated sweet potato. Results showed that 6x I. trifida retained more K+ and accumulated less Na+ in the root and leaf tissues under salt stress than 2x I. trifida. Compared with its 2x ancestor, 6x I. trifida efficiently prevents K+ efflux from the meristem root zone under salt stress through its plasma membrane (PM) K+-permeable channels, which have low sensitivity to H2O2. Moreover, 6x I. trifida efficiently excludes Na+ from the elongation and mature root zones under salt stress because of the high sensitivity of PM Ca2+-permeable channels to H2O2. Our results suggest the root-zone-specific sensitivity to H2O2 of PM K+- and Ca2+-permeable channels in the co-ordinated control of K+/Na+ homeostasis in salinized 2x and 6x I. trifida. This work provides new insights into the improved maintenance of K+/Na+ homeostasis of polyploids under salt stress.
Collapse
Affiliation(s)
- Yang Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yicheng Yu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jianying Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Qinghe Cao
- Sweet Potato Research Institute (CAAS), Jiangsu Xuzhou Sweet Potato Research Institute, MOA Key Laboratory of Biology and Genetic Improvement of Sweet Potato, Xuzhou, Jiangsu, China
| | - Zhonghou Tang
- Sweet Potato Research Institute (CAAS), Jiangsu Xuzhou Sweet Potato Research Institute, MOA Key Laboratory of Biology and Genetic Improvement of Sweet Potato, Xuzhou, Jiangsu, China
| | - Meiyan Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Tao Xu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Daifu Ma
- Sweet Potato Research Institute (CAAS), Jiangsu Xuzhou Sweet Potato Research Institute, MOA Key Laboratory of Biology and Genetic Improvement of Sweet Potato, Xuzhou, Jiangsu, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
- Correspondence: or
| | - Jian Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
- Correspondence: or
| |
Collapse
|
118
|
Isayenkov SV, Maathuis FJM. Plant Salinity Stress: Many Unanswered Questions Remain. FRONTIERS IN PLANT SCIENCE 2019; 10:80. [PMID: 30828339 PMCID: PMC6384275 DOI: 10.3389/fpls.2019.00080] [Citation(s) in RCA: 406] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/18/2019] [Indexed: 05/19/2023]
Abstract
Salinity is a major threat to modern agriculture causing inhibition and impairment of crop growth and development. Here, we not only review recent advances in salinity stress research in plants but also revisit some basic perennial questions that still remain unanswered. In this review, we analyze the physiological, biochemical, and molecular aspects of Na+ and Cl- uptake, sequestration, and transport associated with salinity. We discuss the role and importance of symplastic versus apoplastic pathways for ion uptake and critically evaluate the role of different types of membrane transporters in Na+ and Cl- uptake and intercellular and intracellular ion distribution. Our incomplete knowledge regarding possible mechanisms of salinity sensing by plants is evaluated. Furthermore, a critical evaluation of the mechanisms of ion toxicity leads us to believe that, in contrast to currently held ideas, toxicity only plays a minor role in the cytosol and may be more prevalent in the vacuole. Lastly, the multiple roles of K+ in plant salinity stress are discussed.
Collapse
Affiliation(s)
- Stanislav V. Isayenkov
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics NAS of Ukraine, Kyiv, Ukraine
| | | |
Collapse
|
119
|
The Complex Fine-Tuning of K⁺ Fluxes in Plants in Relation to Osmotic and Ionic Abiotic Stresses. Int J Mol Sci 2019; 20:ijms20030715. [PMID: 30736441 PMCID: PMC6387338 DOI: 10.3390/ijms20030715] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
As the main cation in plant cells, potassium plays an essential role in adaptive responses, especially through its involvement in osmotic pressure and membrane potential adjustments. K+ homeostasis must, therefore, be finely controlled. As a result of different abiotic stresses, especially those resulting from global warming, K⁺ fluxes and plant distribution of this ion are disturbed. The hormone abscisic acid (ABA) is a key player in responses to these climate stresses. It triggers signaling cascades that ultimately lead to modulation of the activities of K⁺ channels and transporters. After a brief overview of transcriptional changes induced by abiotic stresses, this review deals with the post-translational molecular mechanisms in different plant organs, in Arabidopsis and species of agronomical interest, triggering changes in K⁺ uptake from the soil, K⁺ transport and accumulation throughout the plant, and stomatal regulation. These modifications involve phosphorylation/dephosphorylation mechanisms, modifications of targeting, and interactions with regulatory partner proteins. Interestingly, many signaling pathways are common to K⁺ and Cl-/NO3- counter-ion transport systems. These cross-talks are also addressed.
Collapse
|
120
|
Gill MB, Zeng F, Shabala L, Zhang G, Yu M, Demidchik V, Shabala S, Zhou M. Identification of QTL Related to ROS Formation under Hypoxia and Their Association with Waterlogging and Salt Tolerance in Barley. Int J Mol Sci 2019; 20:E699. [PMID: 30736310 PMCID: PMC6387252 DOI: 10.3390/ijms20030699] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 01/19/2023] Open
Abstract
Waterlogging is a serious environmental problem that limits agricultural production in low-lying rainfed areas around the world. The major constraint that plants face in a waterlogging situation is the reduced oxygen availability. Accordingly, all previous efforts of plant breeders focused on traits providing adequate supply of oxygen to roots under waterlogging conditions, such as enhanced aerenchyma formation or reduced radial oxygen loss. However, reduced oxygen concentration in waterlogged soils also leads to oxygen deficiency in plant tissues, resulting in an excessive accumulation of reactive oxygen species (ROS) in plants. To the best of our knowledge, this trait has never been targeted in breeding programs and thus represents an untapped resource for improving plant performance in waterlogged soils. To identify the quantitative trait loci (QTL) for ROS tolerance in barley, 187 double haploid (DH) lines from a cross between TX9425 and Naso Nijo were screened for superoxide anion (O₂•-) and hydrogen peroxide (H₂O₂)-two major ROS species accumulated under hypoxia stress. We show that quantifying ROS content after 48 h hypoxia could be a fast and reliable approach for the selection of waterlogging tolerant barley genotypes. The same QTL on chromosome 2H was identified for both O₂•- (QSO.TxNn.2H) and H₂O₂ (QHP.TxNn.2H) contents. This QTL was located at the same position as the QTL for the overall waterlogging and salt tolerance reported in previous studies, explaining 23% and 24% of the phenotypic variation for O₂•- and H₂O2 contents, respectively. The analysis showed a causal association between ROS production and both waterlogging and salt stress tolerance. Waterlogging and salinity are two major abiotic factors affecting crop production around the globe and frequently occur together. The markers associated with this QTL could potentially be used in future breeding programs to improve waterlogging and salinity tolerance.
Collapse
Affiliation(s)
- Muhammad Bilal Gill
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Fanrong Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Min Yu
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
| | - Vadim Demidchik
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 222030 Minsk, Belarus.
| | - Sergey Shabala
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| |
Collapse
|
121
|
Cui YN, Xia ZR, Ma Q, Wang WY, Chai WW, Wang SM. The synergistic effects of sodium and potassium on the xerophyte Apocynum venetum in response to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:489-498. [PMID: 30447942 DOI: 10.1016/j.plaphy.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/27/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Apocynum venetum is an eco-economic plant species with high adaptability to saline and arid environments. Our previous work has found that A. venetum could absorb large amount of Na+ and maintain high K+ level under saline conditions. To investigate whether K+ and Na+ could simultaneously enhance drought resistance in A. venetum, seedlings were exposed to osmotic stress (-0.2 MPa) in the presence or absence of additional 25 mM NaCl under low (0.01 mM) and normal (2.5 mM) K+ supplying conditions, respectively. The results showed that A. venetum should be considered as a typical K+-efficient species since its growth was unimpaired and possessed a strong K+ uptake and prominent K+ utilization efficiency under K+ deficiency condition. Leaf K+ concentration remained stable or was even significantly increased under osmotic stress in the presence or absence of NaCl, compared with that under control condition, regardless of whether the K+ supply was sufficient or not, and the contribution of K+ to leaf osmotic potential consistently exceeded 37%, indicating K+ is the uppermost contributor to osmotic adjustment of A. venetum. Under osmotic stress, the addition of 25 mM NaCl significantly increase Na+ accumulation in leaves and the contribution of Na+ to osmotic adjustment, thus improving the relative water content, concomitantly, promoting the photosynthetic activity resulting in an enhancement of overall plant growth. These findings suggested that, K+ and Na+ simultaneously play crucial roles in the osmotic adjustment and the maintenance of water status and photosynthetic activity, which is beneficial for A. venetum to cope with drought stress.
Collapse
Affiliation(s)
- Yan-Nong Cui
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Zeng-Run Xia
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China; Ankang R&D Center of Se-enriched Products, Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture, Ankang, Shaanxi, 725000, PR China
| | - Qing Ma
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Wen-Ying Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Wei-Wei Chai
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
122
|
Cui J, Abadie C, Carroll A, Lamade E, Tcherkez G. Responses to K deficiency and waterlogging interact via respiratory and nitrogen metabolism. PLANT, CELL & ENVIRONMENT 2019; 42:647-658. [PMID: 30242853 DOI: 10.1111/pce.13450] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 05/24/2023]
Abstract
K deficiency and waterlogging are common stresses that can occur simultaneously and impact on crop development and yield. They are both known to affect catabolism, with rather opposite effects: inhibition of glycolysis and higher glycolytic fermentative flux, respectively. But surprisingly, the effect of their combination on plant metabolism has never been examined precisely. Here, we applied a combined treatment (K availability and waterlogging) to sunflower (Helianthus annuus L.) plants under controlled greenhouse conditions and performed elemental quantitation, metabolomics, and isotope analyses at different sampling times. Whereas separate K deficiency and waterlogging caused well-known effects such as polyamines production and sugar accumulation, respectively, waterlogging altered K-induced respiration enhancement (via the C5 -branched acid pathway) and polyamine production, and K deficiency tended to suppress waterlogging-induced accumulation of Krebs cycle intermediates in leaves. Furthermore, the natural 15 N/14 N isotope composition (δ15 N) in leaf compounds shows that there was a change in nitrate circulation, with less nitrate influx to leaves under low K availablity combined with waterlogging and more isotopic dilution of lamina nitrates under high K. Our results show that K deficiency and waterlogging effects are not simply additive, reshape respiration as well as nitrogen metabolism and partitioning, and are associated with metabolomic and isotopic biomarkers of potential interest for crop monitoring.
Collapse
Affiliation(s)
- Jing Cui
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Cyril Abadie
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Adam Carroll
- Joint Mass Spectrometry Facility, Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Emmanuelle Lamade
- Unité PERSYST, UPR34, Système de pérennes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Guillaume Tcherkez
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
123
|
Wu H, Li Z. The Importance of Cl - Exclusion and Vacuolar Cl - Sequestration: Revisiting the Role of Cl - Transport in Plant Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:1418. [PMID: 31781141 PMCID: PMC6857526 DOI: 10.3389/fpls.2019.01418] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/11/2019] [Indexed: 05/20/2023]
Abstract
Salinity threatens agricultural production systems across the globe. While the major focus of plant researchers working in the field of salinity stress tolerance has always been on sodium and potassium, the transport patterns and physiological roles of Cl- in plant salt stress responses are studied much less. In recent years, the role of Cl- in plant salinity stress tolerance has been revisited and has received more attention. This review attempts to address the gap in knowledge of the role of Cl- transport in plant salinity stress tolerance. Cl- transport, Cl- exclusion, vacuolar Cl- sequestration, the specificity of mechanisms employed in different plant species to control shoot Cl- accumulation, and the identity of channels and transporters involved in Cl- transport in salt stressed plants are discussed. The importance of the electrochemical gradient across the tonoplast, for vacuolar Cl- sequestration, is highlighted. The toxicity of Cl- from CaCl2 is briefly reviewed separately to that of Cl- from NaCl.
Collapse
Affiliation(s)
- Honghong Wu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Department of Botany and Plant Sciences, University of California, Riverside, CA, United States
- *Correspondence: Honghong Wu, ; Zhaohu Li,
| | - Zhaohu Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Honghong Wu, ; Zhaohu Li,
| |
Collapse
|
124
|
Förster S, Schmidt LK, Kopic E, Anschütz U, Huang S, Schlücking K, Köster P, Waadt R, Larrieu A, Batistič O, Rodriguez PL, Grill E, Kudla J, Becker D. Wounding-Induced Stomatal Closure Requires Jasmonate-Mediated Activation of GORK K+ Channels by a Ca2+ Sensor-Kinase CBL1-CIPK5 Complex. Dev Cell 2019; 48:87-99.e6. [DOI: 10.1016/j.devcel.2018.11.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/28/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
|
125
|
Li N, Du C, Ma B, Gao Z, Wu Z, Zheng L, Niu Y, Wang Y. Functional Analysis of Ion Transport Properties and Salt Tolerance Mechanisms of RtHKT1 from the Recretohalophyte Reaumuria trigyna. PLANT & CELL PHYSIOLOGY 2019; 60:85-106. [PMID: 30239906 DOI: 10.1093/pcp/pcy187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Indexed: 05/13/2023]
Abstract
Reaumuria trigyna is an endangered recretohalophyte and a small archaic feral shrub that is endemic to arid and semi-arid plateau regions of Inner Mongolia, China. Based on transcriptomic data, we isolated a high-affinity potassium transporter gene (RtHKT1) from R. trigyna, which encoded a plasma membrane-localized protein. RtHKT1 was rapidly up-regulated by high Na+ or low K+ and exhibited different tissue-specific expression patterns before and after stress treatment. Transgenic yeast showed tolerance to high Na+ or low K+, while transgenic Arabidopsis exhibited tolerance to high Na+ and sensitivity to high K+, or high Na+-low K+, confirming that Na+ tolerance in transgenic Arabidopsis depends on a sufficient external K+ concentration. Under external high Na+, high K+ and low K+ conditions, transgenic yeast accumulated more Na+-K+, Na+ and K+, while transgenic Arabidopsis accumulated less Na+-more K+, more Na+ and more Na+-K+, respectively, indicating that the ion transport properties of RtHKT1 depend on the external Na+-K+ environment. Salt stress induced up-regulation of some ion transporter genes (AtSOS1/AtHAK5/AtKUP5-6), as well as down-regulation of some genes (AtNHX1/AtAVP1/AtKUP9-12), revealing that multi-ion-transporter synergism maintains Na+/K+ homeostasis under salt stress in transgenic Arabidopsis. Overexpression of RtHKT1 enhanced K+ accumulation and prevented Na+ transport from roots to shoots, improved biomass accumulation and Chl content in salt-stressed transgenic Arabidopsis. The proline content and relative water content increased significantly, and some proline biosynthesis genes (AtP5CS1 and AtP5CS2) were also up-regulated in salt-stressed transgenic plants. These results suggest that RtHKT1 confers salt tolerance on transgenic Arabidopsis by maintaining Na+/K+ homeostasis and osmotic homeostasis.
Collapse
Affiliation(s)
- Ningning Li
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Chao Du
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Binjie Ma
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Ziqi Gao
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Zhigang Wu
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Linlin Zheng
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Yiding Niu
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Yingchun Wang
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| |
Collapse
|
126
|
Gvozdevaite A, Oliveras I, Domingues TF, Peprah T, Boakye M, Afriyie L, da Silva Peixoto K, de Farias J, Almeida de Oliveira E, Almeida Farias CC, Dos Santos Prestes NCC, Neyret M, Moore S, Schwantes Marimon B, Marimon Junior BH, Adu-Bredu S, Malhi Y. Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest-savanna boundaries in Ghana and Brazil. TREE PHYSIOLOGY 2018; 38:1912-1925. [PMID: 30388271 DOI: 10.1093/treephys/tpy117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Forest-savanna boundaries extend across large parts of the tropics but the variability of photosynthetic capacity in relation to soil and foliar nutrients across these transition zones is poorly understood. For this reason, we compared photosynthetic capacity (maximum rate of carboxylation of Rubisco at 25 C° (Vcmax25), leaf mass, nitrogen (N), phosphorus (P) and potassium (K) per unit leaf area (LMA, Narea, Parea and Karea, respectively), in relation to respective soil nutrients from 89 species at seven sites along forest-savanna ecotones in Ghana and Brazil. Contrary to our expectations, edaphic conditions were not reflected in foliar nutrient concentrations but LMA was slightly higher in lower fertility soils. Overall, each vegetation type within the ecotones demonstrated idiosyncratic and generally weak relationships between Vcmax25 and Narea, Parea and Karea. Species varied significantly in their Vcmax25 ↔ Narea relationship due to reduced investment of total Narea in photosynthetic machinery with increasing LMA. We suggest that studied species in the forest-savanna ecotones do not maximize Vcmax25 per given total Narea due to adaptation to intermittent water availability. Our findings have implications for global modeling of Vcmax25 and forest-savanna ecotone productivity.
Collapse
Affiliation(s)
- Agne Gvozdevaite
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Imma Oliveras
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Tomas Ferreira Domingues
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Theresa Peprah
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, KNUST, Ghana
| | - Mickey Boakye
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, KNUST, Ghana
| | - Lydia Afriyie
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, KNUST, Ghana
| | - Karine da Silva Peixoto
- Departamento de Ciências Biológicas Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil
| | - Josenilton de Farias
- Departamento de Ciências Biológicas Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil
| | - Edmar Almeida de Oliveira
- Departamento de Ciências Biológicas Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil
| | | | | | - Margot Neyret
- Centre IRD France Nord - iEES Paris, 32, av. Henri Varagnat BONDY cedex, France
| | - Sam Moore
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Beatriz Schwantes Marimon
- Departamento de Ciências Biológicas Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil
| | - Ben Hur Marimon Junior
- Departamento de Ciências Biológicas Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil
| | - Stephen Adu-Bredu
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, KNUST, Ghana
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| |
Collapse
|
127
|
Zhu H, Zhao S, Lu X, He N, Gao L, Dou J, Bie Z, Liu W. Genome duplication improves the resistance of watermelon root to salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 133:11-21. [PMID: 30384081 DOI: 10.1016/j.plaphy.2018.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/26/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Salinity is a major abiotic stress factor that affects crop productivity. Roots play an important role in salt stress in plants. Watermelon is a salt-sensitive crop; however, tetraploid watermelon seedlings are more tolerant to salt stress than their homogenotype diploid ancestors. To obtain insights into the reasons underlying the differences in salt tolerance with respect to the ploidy of plants, self-grafted and cross-grafted diploid and tetraploid watermelon seedlings were exposed to 300 mM NaCl for 8 days. After the treatment, the tetraploid rootstock-grafted watermelon plants showed higher salt stress tolerance than the diploid plants. There were no significant differences in the physiological effects between the rootstocks with the same ploidy. The tetraploid rootstock-grafted watermelon plants exhibited higher net photosynthetic rate, leaf stomatal conductance and transpiration rate than the diploid rootstock-grafted watermelon plants throughout the salt treatment process. The activities of antioxidant enzymes and contents of osmoregulatory compounds in the roots were higher in the tetraploid rootstock-grafted watermelon plants than in the diploid plants during the entire salt response process. Higher Na+/K+ ratio was found in all parts of diploid rootstock-grafted watermelon, especially in the roots, K+ and Na+ were preferentially accumulated in the aerial parts (leaves and stem) than in the roots, which might be driven by the Na+/H+ antiporter, as evidenced by the higher transcript levels for SOS, PMA1, HKT1 and NHX1 in the roots. Taken together, our results suggest that genome duplication improves the resistance of watermelon root to salt stress.
Collapse
Affiliation(s)
- Hongju Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Shengjie Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China.
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China.
| | - Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China.
| | - Lei Gao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China.
| | - Junling Dou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China.
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China.
| |
Collapse
|
128
|
Zhang H, Xiao W, Yu W, Yao L, Li L, Wei J, Li R. Foxtail millet SiHAK1 excites extreme high-affinity K + uptake to maintain K + homeostasis under low K + or salt stress. PLANT CELL REPORTS 2018; 37:1533-1546. [PMID: 30030611 DOI: 10.1007/s00299-018-2325-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
This is the first evidence that SiHAK1 acts as a K+ transporter and is modulated by internal and external K+, which expands our understanding of the significant physiological roles of large HAK/KUP/KT transporters in crops. Crop genomes have shown the richness of K+ transporters in HAK/KUP/KT (High Affinity K+/K+ Uptake Proteins/K+ Transporter) family, and much progress have been achieved toward understanding the diverse roles of K+ uptake and translocation, and abiotic stresses resistance in this family. The HAK/KUP/KT family has increasingly been recognized to be at a pivotal status in the mediation of K+ translocation and long-term transport; however, our understanding of the molecular mechanisms remains limited. Foxtail millet is an ideal plant for studying long-distance potassium (K) transport because of its small diploid genome and better adaptability to arid lands. Here, we identified 29 putative HAK/KUP/KT proteins from the Setaria italica genome database. These genes were distributed in seven chromosomes of foxtail millet and divided into five clusters. SiHAK1 exhibited widespread expression in various tissues and significant up-regulation in the shoots under low K condition. SiHAK1 was localized in the cell membrane and low K elicited SiHAK1-meidated high-affinity K+ uptake activity in Cy162 yeast cells and Arabidopsis athak5 mutants. The transport activity of SiHAK1 was coordinately modulated by external K+ supply and internal K+ content in the cell under low K and high salt environment. Our findings reveal the K uptake mechanisms of SiHAK1 and indicated that it may be involved in the mediation of K homeostasis in S. italica under K+-deficiency and salt stress.
Collapse
Affiliation(s)
- Haiwen Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wen Xiao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wenwen Yu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Lei Yao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Legong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jianhua Wei
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ruifen Li
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
129
|
Xiong X, Liu N, Wei YQ, Bi YX, Luo JC, Xu RX, Zhou JQ, Zhang YJ. Effects of non-uniform root zone salinity on growth, ion regulation, and antioxidant defense system in two alfalfa cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:434-444. [PMID: 30290335 DOI: 10.1016/j.plaphy.2018.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/31/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
A split-root system was established to investigate the effects of uniform (0/0, 50/50, and 200/200 mM salt [NaCl]) and non-uniform (0/200 and 50/200 mM NaCl) salt stress on growth, ion regulation, and the antioxidant defense system of alfalfa (Medicago sativa) by comparing a salt-tolerant (Zhongmu No.1) and salt-sensitive (Algonquin) cultivar. We found that non-uniform salinity was associated with greater plant growth rate and shoot dry weight, lower leaf Na+ concentration, higher leaf potassium cation (K+) concentration, lower lipid peroxidation, and greater superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), and peroxidase (EC 1.11.1.7) activities, compared to uniform salt stress in both alfalfa cultivars. Under non-uniform salinity, a significant increase in Na+ concentration and Na+ efflux and a decline in K+ efflux in the no-saline or low-saline part of the roots alleviated salt damage. Our results also demonstrated that proline and antioxidant enzymes accumulated in both the no- or low-saline and high-saline roots, revealing that osmotic adjustment and antioxidant defense had systemic rather than localized effects in alfalfa plants, and there was a functional equilibrium within the root system under non-uniform salt stress. The salt-tolerant cultivar Zhongmu No.1 exhibited greater levels of growth compared to Algonquin under both uniform and non-uniform salt stress, with Na+ tolerance and efflux abilities more effective and greater antioxidant defense capacity evident for cultivar Zhongmu No.1.
Collapse
Affiliation(s)
- Xue Xiong
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China; Hebei Normal University for Nationalities, Chengde, 067000, China
| | - Nan Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Yu-Qi Wei
- College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Yi-Xian Bi
- College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Jian-Chuan Luo
- Institute of Grassland Research of CAAS, Huhhot, 010010, China
| | - Rui-Xuan Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Ji-Qiong Zhou
- Department of Grassland Science, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ying-Jun Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China; Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture, Beijing, 100094, China.
| |
Collapse
|
130
|
Tanveer M, Shahzad B, Sharma A, Biju S, Bhardwaj R. 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:69-79. [PMID: 29966934 DOI: 10.1016/j.plaphy.2018.06.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/09/2018] [Accepted: 06/23/2018] [Indexed: 05/24/2023]
Abstract
Salt stress is one of most dramatic abiotic stresses, reduces crop yield significantly. Application of hormones proved effective salt stress ameliorating approach. 24-Epibrassinolide (EBL), an active by-product from brassinolide biosynthesis shows significant salt stress tolerance in plants. EBL application improves plant growth and development under salt stress by playing as signalling compound in different metabolic and physiological processes. This article compiles all identified ways by which EBL improves plant growth and enhances crop yield. Furthermore, EBL enhances photosynthetic rate, reduces ROS production and plays important role in ionic homeostasis. Furthermore EBL-induced salt stress tolerance suggest that complex transcriptional and translational reprogramming occurs in response to EBL and salt stress therefore transcriptional and translational changes in response to EBL application are also discussed in this article.
Collapse
Affiliation(s)
- Mohsin Tanveer
- School of Land and Food, University of Tasmania Hobart 2007, Tasmania, Australia.
| | - Babar Shahzad
- School of Land and Food, University of Tasmania Hobart 2007, Tasmania, Australia
| | - Anket Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Sajitha Biju
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, 3010, Australia
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| |
Collapse
|
131
|
Liu S, Yang R, Tripathi DK, Li X, Jiang M, Lv B, Ma M, Chen Q. Signalling cross-talk between nitric oxide and active oxygen in Trifolium repens L. plants responses to cadmium stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:53-68. [PMID: 29649760 DOI: 10.1016/j.envpol.2018.03.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/09/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The significant influence of •NO on the stress response is well established; however, the precise metabolic pathways of •NO and RNS under metal stresses remain unclear. Here, the key components of ROS and RNS metabolism under Cd stress were investigated with multi-level approaches using high-quality forage white clover (Trifolium repens L.) plants. For the studied plants, Cd disturbed the redox homeostasis, affected the absorption of minerals, and exacerbated the degree of lipid peroxidation, thus triggering oxidative stress. However, •NO was also involved in regulating mineral absorption, ROS-scavenger levels and mRNA expression in Cd-treated white clover plants. In addition, GSNOR activity was up-regulated by Cd with the simultaneous depletion of •NO generation and GSNO but was counteracted by the •NO donor sodium nitroprusside. Response to Cd-stressed SNOs was involved in generating ONOO- and NO2-Tyr in accordance with the regulation of •NO-mediated post-translational modifications in the ASC-GSH cycle, selected amino acids and NADPH-generating dehydrogenases, thereby provoking nitrosative stress. Taken together, our data provide comprehensive metabolite evidence that clearly confirms the relationships between ROS and RNS in Cd-stressed plants, supporting their regulatory roles in response to nitro-oxidative stress and providing an in-depth understanding of the interaction between two families subjected to metal stresses.
Collapse
Affiliation(s)
- Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Rongjie Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Durgesh Kumar Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, 211004, India
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bingyang Lv
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingdong Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
132
|
Ali A, Khan IU, Jan M, Khan HA, Hussain S, Nisar M, Chung WS, Yun DJ. The High-Affinity Potassium Transporter EpHKT1;2 From the Extremophile Eutrema parvula Mediates Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2018; 9:1108. [PMID: 30105045 PMCID: PMC6077265 DOI: 10.3389/fpls.2018.01108] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/09/2018] [Indexed: 05/23/2023]
Abstract
To survive salt stress, plants must maintain a balance between sodium and potassium ions. High-affinity potassium transporters (HKTs) play a key role in reducing Na+ toxicity through K+ uptake. Eutrema parvula (formerly known as Thellungiella parvula), a halophyte closely related to Arabidopsis, has two HKT1 genes that encode EpHKT1;1 and EpHKT1;2. In response to high salinity, the EpHKT1;2 transcript level increased rapidly; by contrast, the EpHKT1;1 transcript increased more slowly in response to salt treatment. Yeast cells expressing EpHKT1;2 were able to tolerate high concentrations of NaCl, whereas EpHKT1;1-expressing yeast cells remained sensitive to NaCl. Amino acid sequence alignment with other plant HKTs showed that EpHKT1;1 contains an asparagine residue (Asn-213) in the second pore-loop domain, but EpHKT1;2 contains an aspartic acid residue (Asp-205) at the same position. Yeast cells expressing EpHKT1;1, in which Asn-213 was substituted with Asp, were able to tolerate high concentrations of NaCl. In contrast, substitution of Asp-205 by Asn in EpHKT1;2 did not enhance salt tolerance and rather resulted in a similar function to that of AtHKT1 (Na+ influx but no K+ influx), indicating that the presence of Asn or Asp determines the mode of cation selectivity of the HKT1-type transporters. Moreover, Arabidopsis plants (Col-gl) overexpressing EpHKT1;2 showed significantly higher tolerance to salt stress and accumulated less Na+ and more K+ compared to those overexpressing EpHKT1;1 or AtHKT1. Taken together, these results suggest that EpHKT1;2 mediates tolerance to Na+ ion toxicity in E. parvula and is a major contributor to its halophytic nature.
Collapse
Affiliation(s)
- Akhtar Ali
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Irfan Ullah Khan
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Division of Applied Life Science (BK21plus program), Gyeongsang National University, Jinju, South Korea
| | - Masood Jan
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Division of Applied Life Science (BK21plus program), Gyeongsang National University, Jinju, South Korea
| | - Haris Ali Khan
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Shah Hussain
- Division of Applied Life Science (BK21plus program), Gyeongsang National University, Jinju, South Korea
| | - Muhammad Nisar
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Department of Botany, University of Malakand, Chakdara, Pakistan
| | - Woo Sik Chung
- Division of Applied Life Science (BK21plus program), Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| |
Collapse
|
133
|
Heydarian Z, Gruber M, Glick BR, Hegedus DD. Gene Expression Patterns in Roots of Camelina sativa With Enhanced Salinity Tolerance Arising From Inoculation of Soil With Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression the Corresponding acdS Gene. Front Microbiol 2018; 9:1297. [PMID: 30013518 PMCID: PMC6036250 DOI: 10.3389/fmicb.2018.01297] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/28/2018] [Indexed: 12/19/2022] Open
Abstract
Camelina sativa treated with plant growth-promoting bacteria (PGPB) producing 1-aminocyclopropane-1-carboxylate deaminase (acdS) or transgenic lines expressing acdS exhibit increased salinity tolerance. AcdS reduces the level of stress ethylene to below the point where it is inhibitory to plant growth. The study determined that several mechanisms appear to be responsible for the increased salinity tolerance and that the effect of acdS on gene expression patterns in C. sativa roots during salt stress is a function of how it is delivered. Growth in soil treated with the PGPB (Pseudomonas migulae 8R6) mostly affected ethylene- and abscisic acid-dependent signaling in a positive way, while expression of acdS in transgenic lines under the control of the broadly active CaMV 35S promoter or the root-specific rolD promoter affected auxin, jasmonic acid and brassinosteroid signaling and/biosynthesis. The expression of genes involved in minor carbohydrate metabolism were also up-regulated, mainly in roots of lines expressing acdS. Expression of acdS also affected the expression of genes involved in modulating the level of reactive oxygen species (ROS) to prevent cellular damage, while permitting ROS-dependent signal transduction. Though the root is not a photosynthetic tissue, acdS had a positive effect on the expression of genes involved in photosynthesis.
Collapse
Affiliation(s)
- Zohreh Heydarian
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.,Department of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.,Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
134
|
Elsawy HIA, Mekawy AMM, Elhity MA, Abdel-Dayem SM, Abdelaziz MN, Assaha DVM, Ueda A, Saneoka H. Differential responses of two Egyptian barley (Hordeum vulgare L.) cultivars to salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:425-435. [PMID: 29684827 DOI: 10.1016/j.plaphy.2018.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/20/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Although barley (Hordeum vulgare L.) is considered a salt tolerant crop species, productivity of barley is affected differently by ionic, osmotic, and oxidative stresses resulting from a salty rhizosphere. The current study was conducted to elucidate the mechanism of salt tolerance in two barley cultivars, Giza128 and Giza126. The two cultivars were exposed to 200 mM NaCl hydroponically for 12 days. Although both cultivars accumulated a large amount of Na+ in their leaves with similar concentrations, the growth of Giza128 was much better than that of Giza126, as measured by maintaining a higher dry weight, relative growth rate, leaf area, and plant height. To ascertain the underlying mechanisms of this differential tolerance, first, the relative expression patterns of the genes encoding Na+/H+ antiporters (NHX) and the associated proton pumps (V-PPase and V-ATPase) as well as the gene encoding the plasma membrane PM H+-ATPase were analyzed in leaf tissues. Salt stress induced higher HvNHX1 expression in Giza128 (3.3-fold) than in Giza126 (1.9-fold), whereas the expression of the other two genes, HvNHX2 and HvNHX3, showed no induction in either cultivar. The expression of HvHVP1 and HvHVA was higher in Giza128 (3.8- and 2.1-fold, respectively) than in Giza126 (1.6- and 1.1-fold, respectively). The expression of the PM H+-ATPase (ha1) gene was induced more in Giza128 (8.8-fold) than in Giza126 (1.8-fold). Second, the capacity for ROS detoxification was assessed using the oxidative stress biomarkers electrolyte leakage ratio (ELR) and the concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and these parameters sharply increased in Giza126 leaves by 66.5%, 42.8% and 50.0%, respectively, compared with those in Giza128 leaves. The antioxidant enzyme (CAT, APX, sPOD, GR, and SOD) activities were significantly elevated by salt treatment in Giza128 leaves, whereas in Giza126, these activities were not significantly altered. Overall, the results indicate that the superior salt tolerance of Giza128 is primarily the result of the ability to counter Na+-induced oxidative stress by increasing antioxidant enzyme levels and possibly by increasing vacuolar Na+ sequestration and prevention of cellular K+ leakage.
Collapse
Affiliation(s)
- Hayam I A Elsawy
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan; Field Crops Research Institute, Agriculture Research Center, Kafrelsheikh, Egypt
| | - Ahmad Mohammad M Mekawy
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan; Department of Botany and Microbiology, Faculty of Science, Minia University, El-Minia, 61519, Egypt
| | - Mahmoud A Elhity
- Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | - Maha Nagy Abdelaziz
- Graduate School for International Development and Cooperation, Hiroshima University, Higashi-Hiroshima, 739-8529, Japan
| | - Dekoum V M Assaha
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Akihiro Ueda
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Hirofumi Saneoka
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
135
|
Manishankar P, Wang N, Köster P, Alatar AA, Kudla J. Calcium Signaling during Salt Stress and in the Regulation of Ion Homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5003005. [PMID: 29800460 DOI: 10.1093/jxb/ery201] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Indexed: 05/20/2023]
Abstract
Soil composition largely defines the living conditions of plants and represents one of their most relevant, dynamic and complex environmental cues. The effective concentrations of many either tolerated or essential ions and compounds in the soil usually differ from the optimum that would be most suitable for plants. In this regard, salinity - caused by excess of NaCl - represents a widespread adverse growth condition but also shortage of ions like K+, NO3- and Fe2+ restrains plant growth. During the past years many components and mechanisms that function in the sensing and establishment of ion homeostasis have been identified and characterized. Here, we reflect on recent insights that extended our understanding of components and mechanisms, which govern and fine-tune plant salt stress tolerance and ion homeostasis. We put special emphasis on mechanisms that allow for interconnection of the salt overly sensitivity pathway with plant development and discuss newly emerging functions of Ca2+ signaling in salinity tolerance. Moreover, we review and discuss accumulating evidence for a central and unifying role of Ca2+ signaling and Ca2+ dependent protein phosphorylation in regulating sensing, uptake, transport and storage processes of various ions. Finally, based on this cross-field inventory, we deduce emerging concepts and arising questions for future research.
Collapse
Affiliation(s)
- P Manishankar
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - N Wang
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - P Köster
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - A A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
136
|
De Luca A, Pardo JM, Leidi EO. Pleiotropic effects of enhancing vacuolar K/H exchange in tomato. PHYSIOLOGIA PLANTARUM 2018; 163:88-102. [PMID: 29076168 DOI: 10.1111/ppl.12656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 05/27/2023]
Abstract
Cation antiporters of the NHX family are widely regarded as determinants of salt tolerance due to their capacity to drive sodium (Na) and sequester it into vacuoles. Recent work shows, however, that NHX transporters are primarily involved in vacuolar potassium (K) storage. Over-expression of the K/H antiporter AtNHX1 in tomato increases K accumulation into vacuoles and plant sensitivity to K deprivation. Here we show that the appearance of early leaf symptoms of K deficiency was associated with higher concentration of polyamines. Transgenic roots exhibited a greater sensitivity than shoots to K deprivation with changes in the composition of the free amino acids pool, total sugars and organic acids. Concentrations of amides (glutamine), amino acids (arginine) and sugars significantly increased in root, together with a reduction in malate and succinate concentrations. The concentration of pyruvate and the activity of pyruvate kinase were greater in the transgenic roots before K withdrawal although both parameters were depressed by K deprivation and approached wild-type levels. In the longer term, the over-expression of the NHX1 antiporter affected root growth and biomass partitioning (shoot/root ratio). Greater ethylene release produced longer stem internodes and leaf curling in the transgenic line. Our data show that enhanced sequestration of K by the NHX antiporter in the vacuoles altered cellular K homeostasis and had deeper physiological consequences than expected. Early metabolic changes lead later on to profound morphological and physiological adjustments resulting eventually in the loss of nutrient use efficiency.
Collapse
Affiliation(s)
- Anna De Luca
- Department of Plant Biotechnology, IRNAS-CSIC, Reina Mercedes 10, Seville, 41012, Spain
| | - José M Pardo
- Institute of Plant Biochemistry and Photosynthesis, IBVF-CSIC, Americo Vespucio 49, Seville, 41092, Spain
| | - Eduardo O Leidi
- Department of Plant Biotechnology, IRNAS-CSIC, Reina Mercedes 10, Seville, 41012, Spain
| |
Collapse
|
137
|
Guerrero-Galán C, Delteil A, Garcia K, Houdinet G, Conéjéro G, Gaillard I, Sentenac H, Zimmermann SD. Plant potassium nutrition in ectomycorrhizal symbiosis: properties and roles of the three fungal TOK potassium channels in Hebeloma cylindrosporum. Environ Microbiol 2018; 20:1873-1887. [PMID: 29614209 DOI: 10.1111/1462-2920.14122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/11/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Ectomycorrhizal fungi play an essential role in the ecology of boreal and temperate forests through the improvement of tree mineral nutrition. Potassium (K+ ) is an essential nutrient for plants and is needed in high amounts. We recently demonstrated that the ectomycorrhizal fungus Hebeloma cylindrosporum improves the K+ nutrition of Pinus pinaster under shortage conditions. Part of the transport systems involved in K+ uptake by the fungus has been deciphered, while the molecular players responsible for the transfer of this cation towards the plant remain totally unknown. Analysis of the genome of H. cylindrosporum revealed the presence of three putative tandem-pore outward-rectifying K+ (TOK) channels that could contribute to this transfer. Here, we report the functional characterization of these three channels through two-electrode voltage-clamp experiments in oocytes and yeast complementation assays. The expression pattern and physiological role of these channels were analysed in symbiotic interaction with P. pinaster. Pine seedlings colonized by fungal transformants overexpressing two of them displayed a larger accumulation of K+ in shoots. This study revealed that TOK channels have distinctive properties and functions in axenic and symbiotic conditions and suggested that HcTOK2.2 is implicated in the symbiotic transfer of K+ from the fungus towards the plant.
Collapse
Affiliation(s)
- Carmen Guerrero-Galán
- BPMP, Université de Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | - Amandine Delteil
- BPMP, Université de Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | - Kevin Garcia
- BPMP, Université de Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France.,Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007, USA
| | - Gabriella Houdinet
- BPMP, Université de Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | - Geneviève Conéjéro
- BPMP, Université de Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France.,Plateforme Histocytologie et Imagerie Cellulaire Végétale, INRA-CIRAD, Montpellier, France
| | - Isabelle Gaillard
- BPMP, Université de Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | - Hervé Sentenac
- BPMP, Université de Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | | |
Collapse
|
138
|
Kaleem F, Shabir G, Aslam K, Rasul S, Manzoor H, Shah SM, Khan AR. An Overview of the Genetics of Plant Response to Salt Stress: Present Status and the Way Forward. Appl Biochem Biotechnol 2018; 186:306-334. [PMID: 29611134 DOI: 10.1007/s12010-018-2738-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/15/2018] [Indexed: 01/24/2023]
Abstract
Salinity is one of the major threats faced by the modern agriculture today. It causes multidimensional effects on plants. These effects depend upon the plant growth stage, intensity, and duration of the stress. All these lead to stunted growth and reduced yield, ultimately inducing economic loss to the farming community in particular and to the country in general. The soil conditions of agricultural land are deteriorating at an alarming rate. Plants assess the stress conditions, transmit the specific stress signals, and then initiate the response against that stress. A more complete understanding of plant response mechanisms and their practical incorporation in crop improvement is an essential step towards achieving the goal of sustainable agricultural development. Literature survey shows that investigations of plant stresses response mechanism are the focus area of research for plant scientists. Although these efforts lead to reveal different plant response mechanisms against salt stress, yet many questions still need to be answered to get a clear picture of plant strategy to cope with salt stress. Moreover, these studies have indicated the presence of a complicated network of different integrated pathways. In order to work in a progressive way, a review of current knowledge is critical. Therefore, this review aims to provide an overview of our understanding of plant response to salt stress and to indicate some important yet unexplored dynamics to improve our knowledge that could ultimately lead towards crop improvement.
Collapse
Affiliation(s)
- Fawad Kaleem
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Ghulam Shabir
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Kashif Aslam
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sumaira Rasul
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamid Manzoor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Shahid Masood Shah
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Abdul Rehman Khan
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan.
| |
Collapse
|
139
|
Potassium: A Vital Regulator of Plant Responses and Tolerance to Abiotic Stresses. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8030031] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Among the plant nutrients, potassium (K) is one of the vital elements required for plant growth and physiology. Potassium is not only a constituent of the plant structure but it also has a regulatory function in several biochemical processes related to protein synthesis, carbohydrate metabolism, and enzyme activation. Several physiological processes depend on K, such as stomatal regulation and photosynthesis. In recent decades, K was found to provide abiotic stress tolerance. Under salt stress, K helps to maintain ion homeostasis and to regulate the osmotic balance. Under drought stress conditions, K regulates stomatal opening and helps plants adapt to water deficits. Many reports support the notion that K enhances antioxidant defense in plants and therefore protects them from oxidative stress under various environmental adversities. In addition, this element provides some cellular signaling alone or in association with other signaling molecules and phytohormones. Although considerable progress has been made in understanding K-induced abiotic stress tolerance in plants, the exact molecular mechanisms of these protections are still under investigation. In this review, we summarized the recent literature on the biological functions of K, its uptake, its translocation, and its role in plant abiotic stress tolerance.
Collapse
|
140
|
Hedrich R, Neher E. Venus Flytrap: How an Excitable, Carnivorous Plant Works. TRENDS IN PLANT SCIENCE 2018; 23:220-234. [PMID: 29336976 DOI: 10.1016/j.tplants.2017.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 05/02/2023]
Abstract
The carnivorous plant Dionaea possesses very sensitive mechanoreceptors. Upon contact with prey an action potential is triggered which, via an electrical network - comparable to the nervous system of vertebrates - rapidly closes its bivalved trap. The 'hunting cycle' comprises a constitutively activated mechanism for the rapid capture of prey, followed by a well-orchestrated sequence of activation of genes responsible for tight trap closure, digestion of the prey, and uptake of nutrients. Decisions on the step-by-step activation are based on 'counting' the number of stimulations of sensory organs. These remarkable animal-like skills in the carnivore are achieved not by taking over genes from its prey but by modifying and rearranging the functions of genes that are ubiquitous in plants.
Collapse
Affiliation(s)
- Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany.
| | - Erwin Neher
- Department for Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
141
|
Yu Y, Wang A, Li X, Kou M, Wang W, Chen X, Xu T, Zhu M, Ma D, Li Z, Sun J. Melatonin-Stimulated Triacylglycerol Breakdown and Energy Turnover under Salinity Stress Contributes to the Maintenance of Plasma Membrane H +-ATPase Activity and K +/Na + Homeostasis in Sweet Potato. FRONTIERS IN PLANT SCIENCE 2018; 9:256. [PMID: 29535758 PMCID: PMC5835075 DOI: 10.3389/fpls.2018.00256] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/12/2018] [Indexed: 05/20/2023]
Abstract
Melatonin (MT) is a multifunctional molecule in animals and plants and is involved in defense against salinity stress in various plant species. In this study, MT pretreatment was simultaneously applied to the roots and leaves of sweet potato seedlings [Ipomoea batatas (L.) Lam.], which is an important food and industry crop worldwide, followed by treatment of 150 mM NaCl. The roles of MT in mediating K+/Na+ homeostasis and lipid metabolism in salinized sweet potato were investigated. Exogenous MT enhanced the resistance to NaCl and improved K+/Na+ homeostasis in sweet potato seedlings as indicated by the low reduced K+ content in tissues and low accumulation of Na+ content in the shoot. Electrophysiological experiments revealed that exogenous MT significantly suppressed NaCl-induced K+ efflux in sweet potato roots and mesophyll tissues. Further experiments showed that MT enhanced the plasma membrane (PM) H+-ATPase activity and intracellular adenosine triphosphate (ATP) level in the roots and leaves of salinized sweet potato. Lipidomic profiling revealed that exogenous MT completely prevented salt-induced triacylglycerol (TAG) accumulation in the leaves. In addition, MT upregulated the expression of genes related to TAG breakdown, fatty acid (FA) β-oxidation, and energy turnover. Chemical inhibition of the β-oxidation pathway led to drastic accumulation of lipid droplets in the vegetative tissues of NaCl-stressed sweet potato and simultaneously disrupted the MT-stimulated energy state, PM H+-ATPase activity, and K+/Na+ homeostasis. Results revealed that exogenous MT stimulated TAG breakdown, FA β-oxidation, and energy turnover under salinity conditions, thereby contributing to the maintenance of PM H+-ATPase activity and K+/Na+ homeostasis in sweet potato.
Collapse
Affiliation(s)
- Yicheng Yu
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Aimin Wang
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiang Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Meng Kou
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, China
| | - Wenjun Wang
- Beijing Qiji Biotechnology Co., Ltd., Beijing, China
| | - Xianyang Chen
- Beijing Qiji Biotechnology Co., Ltd., Beijing, China
| | - Tao Xu
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Daifu Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jian Sun
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
142
|
Li W, Xu G, Alli A, Yu L. Plant HAK/KUP/KT K+ transporters: Function and regulation. Semin Cell Dev Biol 2018; 74:133-141. [DOI: 10.1016/j.semcdb.2017.07.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022]
|
143
|
Arabbeigi M, Arzani A, Majidi MM, Sayed-Tabatabaei BE, Saha P. Expression pattern of salt tolerance-related genes in Aegilops cylindrica. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:61-73. [PMID: 29398839 PMCID: PMC5787114 DOI: 10.1007/s12298-017-0483-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/19/2017] [Accepted: 10/29/2017] [Indexed: 05/02/2023]
Abstract
Aegilops cylindrica, a salt-tolerant gene pool of wheat, is a useful plant model for understanding mechanism of salt tolerance. A salt-tolerant USL26 and a salt-sensitive K44 genotypes of A. cylindrica, originating from Uremia Salt Lake shores in Northwest Iran and a non-saline Kurdestan province in West Iran, respectively, were identified based on screening evaluation and used for this work. The objective of the current study was to investigate the expression patterns of four genes related to ion homeostasis in this species. Under treatment of 400 mM NaCl, USL26 showed significantly higher root and shoot dry matter levels and K+ concentrations, together with lower Na+ concentrations than K44 genotype. A. cylindrica HKT1;5 (AecHKT1;5), SOS1 (AecSOS1), NHX1 (AecNHX1) and VP1 (AecVP1) were partially sequenced to design each gene specific primer. Quantitative real-time PCR showed a differential expression pattern of these genes between the two genotypes and between the root and shoot tissues. Expressions of AecHKT1;5 and AecSOS1 was greater in the roots than in the shoots of USL26 while AecNHX1 and AecVP1 were equally expressed in both tissues of USL26 and K44. The higher transcripts of AecHKT1;5 in the roots versus the shoots could explain both the lower Na+ in the shoots and the much lower Na+ and higher K+ concentrations in the roots/shoots of USL26 compared to K44. Therefore, the involvement of AecHKT1;5 in shoot-to-root handover of Na+ in possible combination with the exclusion of excessive Na+ from the root in the salt-tolerant genotype are suggested.
Collapse
Affiliation(s)
- Mahbube Arabbeigi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111 Iran
| | - Ahmad Arzani
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111 Iran
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
| | - Mohammad Mahdi Majidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111 Iran
| | | | - Prasenjit Saha
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
144
|
Gill MB, Zeng F, Shabala L, Böhm J, Zhang G, Zhou M, Shabala S. The ability to regulate voltage-gated K+-permeable channels in the mature root epidermis is essential for waterlogging tolerance in barley. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:667-680. [PMID: 29301054 PMCID: PMC5853535 DOI: 10.1093/jxb/erx429] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/17/2017] [Indexed: 05/19/2023]
Abstract
Oxygen depletion under waterlogged conditions results in a compromised operation of H+-ATPase, with strong implications for membrane potential maintenance, cytosolic pH homeostasis, and transport of all nutrients across membranes. The above effects, however, are highly tissue specific and time dependent, and the causal link between hypoxia-induced changes to the cell's ionome and plant adaptive responses to hypoxia is not well established. This work aimed to fill this gap and investigate the effects of oxygen deprivation on K+ signalling and homeostasis in plants, and potential roles of GORK (depolarization-activated outward-rectifying potassium) channels in adaptation to oxygen-deprived conditions in barley. A significant K+ loss was observed in roots exposed to hypoxic conditions; this loss correlated with the cell's viability. Stress-induced K+ loss was stronger in the root apex immediately after stress onset, but became more pronounced in the root base as the stress progressed. The amount of K+ in shoots of plants grown in waterlogged soil correlated strongly with K+ flux under hypoxia measured in laboratory experiments. Hypoxia induced membrane depolarization; the severity of this depolarization was less pronounced in the tolerant group of cultivars. The expression of GORK was down-regulated by 1.5-fold in mature root but it was up-regulated by 10-fold in the apex after 48 h hypoxia stress. Taken together, our results suggest that the GORK channel plays a central role in K+ retention and signalling under hypoxia stress, and measuring hypoxia-induced K+ fluxes from the mature root zone may be used as a physiological marker to select waterlogging-tolerant varieties in breeding programmes.
Collapse
Affiliation(s)
- Muhammad Bilal Gill
- Department of Agronomy, Zhejiang University, Hangzhou, China
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| | - Fanrong Zeng
- Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| | - Jennifer Böhm
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| | - Guoping Zhang
- Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
145
|
Transcriptomic Profiling and Physiological Analysis of Haloxylon ammodendron in Response to Osmotic Stress. Int J Mol Sci 2017; 19:ijms19010084. [PMID: 29286291 PMCID: PMC5796034 DOI: 10.3390/ijms19010084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/23/2017] [Accepted: 12/25/2017] [Indexed: 11/17/2022] Open
Abstract
Haloxylon ammodendron, a perennial xero-halophyte, is an essential species for investigating the effects of drought on desert tree. To gain a comprehensive knowledge on the responses of H. ammodendron to drought stress, we specially performed the molecular and physiological analysis of H. ammodendron in response to -0.75 MPa osmotic stress for six and 24 h in lab condition via RNA-seq and digital gene expression (DGE). In total, 87,109 unigenes with a mean length of 680 bp and 13,486 potential simple sequence repeats (SSRs) were generated, and 3353 differentially expressed genes (DEGs) in shoots and 4564 in roots were identified under stress. These DEGs were mainly related to ion transporters, signal transduction, ROS-scavenging, photosynthesis, cell wall organization, membrane stabilization and hormones. Moreover, the physiological changes of inorganic ions and organic solute content, peroxidase (POD) activity and osmotic potential were in accordance with dynamic transcript profiles of the relevant genes. In this study, a detailed investigation of the pathways and candidate genes identified promote the research on the molecular mechanisms of abiotic stress tolerance in the xero-halophytic species. Our data provides valuable genetic resources for future improvement of forage and crop species for better adaptation to abiotic stresses.
Collapse
|
146
|
Kumar S, Kalita A, Srivastava R, Sahoo L. Co-expression of Arabidopsis NHX1 and bar Improves the Tolerance to Salinity, Oxidative Stress, and Herbicide in Transgenic Mungbean. FRONTIERS IN PLANT SCIENCE 2017; 8:1896. [PMID: 29163616 PMCID: PMC5673651 DOI: 10.3389/fpls.2017.01896] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/19/2017] [Indexed: 05/11/2023]
Abstract
Mungbean is an important pulse crop extensively cultivated in Southeast Asia for supply of easily digestible protein. Salinity severely limits the growth and productivity of mungbean, and weeding poses nutritional and disease constraints to mungbean cultivation. To pyramid both salt tolerance and protection against herbicide in mungbean, the AtNHX1 encoding tonoplast Na+/H+ antiporter from Arabidopsis, and bar gene associated with herbicide resistance were co-expressed through Agrobacterium-mediated transformation. Stress inducible expression of AtNHX1 significantly improved tolerance under salt stress to ionic, osmotic, and oxidative stresses in transgenic mungbean plants compared to the wild type (WT) plants, whereas constitutive expression of bar provided resistance to herbicide. Compared to WT, transgenic mungbean plants grew better with higher plant height, foliage, dry mass and seed yield under high salt stress (200 mM NaCl) in the greenhouse. The improved performance of transgenic plants under salt stress was associated with enhanced sequestration of Na+ in roots by vacuolar Na+/H+ antiporter and limited transport of toxic Na+ to shoots, possibly by restricting Na+ influx into shoots. Transgenic plants showed better intracellular ion homeostasis, osmoregulation, reduced cell membrane damage, improved photosynthetic capacity, and transpiration rate as compared to WT when subjected to salt stress. Reduction in hydrogen peroxide and oxygen radical production indicated enhanced protection of transgenic plants to both salt- and methyl vialogen (MV)-induced oxidative stress. This study laid a firm foundation for improving mungbean yield in saline lands in Southeast Asia.
Collapse
Affiliation(s)
| | | | | | - Lingaraj Sahoo
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
147
|
Adem GD, Roy SJ, Huang Y, Chen ZH, Wang F, Zhou M, Bowman JP, Holford P, Shabala S. Expressing Arabidopsis thaliana V-ATPase subunit C in barley (Hordeum vulgare) improves plant performance under saline condition by enabling better osmotic adjustment. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:1147-1159. [PMID: 32480640 DOI: 10.1071/fp17133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/28/2017] [Indexed: 06/11/2023]
Abstract
Salinity is a global problem affecting agriculture that results in an estimated US$27 billion loss in revenue per year. Overexpression of vacuolar ATPase subunits has been shown to be beneficial in improving plant performance under saline conditions. Most studies, however, have not shown whether overexpression of genes encoding ATPase subunits results in improvements in grain yield, and have not investigated the physiological mechanisms behind the improvement in plant growth. In this study, we constitutively expressed Arabidopsis Vacuolar ATPase subunit C (AtVHA-C) in barley. Transgenic plants were assessed for agronomical and physiological characteristics, such as fresh and dry biomass, leaf pigment content, stomatal conductance, grain yield, and leaf Na+ and K+ concentration, when grown in either 0 or 300mM NaCl. When compared with non-transformed barley, AtVHA-C expressing barley lines had a smaller reduction in both biomass and grain yield under salinity stress. The transgenic lines accumulated Na+ and K+ in leaves for osmotic adjustment. This in turn saves energy consumed in the synthesis of organic osmolytes that otherwise would be needed for osmotic adjustment.
Collapse
Affiliation(s)
- Getnet D Adem
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Stuart J Roy
- Australian Centre for Plant Functional Genomics, Private Mail Bag 1, Glen Osmond, SA 5064, Australia
| | - Yuqing Huang
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Feifei Wang
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - John P Bowman
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Paul Holford
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| |
Collapse
|
148
|
Zhou C, Li F, Xie Y, Zhu L, Xiao X, Ma Z, Wang J. Involvement of abscisic acid in microbe-induced saline-alkaline resistance in plants. PLANT SIGNALING & BEHAVIOR 2017; 12:e1367465. [PMID: 28829675 PMCID: PMC5647978 DOI: 10.1080/15592324.2017.1367465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Soil salinity-alkalinity is one of abiotic stresses that lead to plant growth inhibition and yield loss. It has recently been indicated that plant growth promoting rhizobacteria (PGPR) can enhance the capacity of plants to counteract negative effects caused by adverse environments. However, whether PGPR confers increased saline-alkaline resistance of plants and the underlying mechanisms remain unclear. We thus investigated the effects of Bacillus licheniformis (strain SA03) on Chrysanthemum plants grown under saline-alkaline conditions. Soil inoculation with SA03 significantly mitigated saline-alkaline stress in plants with augmented photosynthesis, biomass and survival rates. Moreover, the inoculated plants accumulated more Fe and less Na+ content than the non-inoculated plants under the stress. However, the inoculation with SA03 failed to trigger a series of saline-alkaline stress responses in abscisic acid (ABA)- and nitric oxide (NO)-deficient plants. Furthermore, NO acted as a secondary messenger of ABA to regulate the stress responses and tolerance in Chrysanthemum plants. Therefore, these findings indicated that B. licheniformis SA03 could be employed to improve saline-alkaline tolerance of plants by mediating cellular ABA levels.
Collapse
Affiliation(s)
- Cheng Zhou
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Feiyue Li
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu, China
| | - Yue Xie
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu, China
| | - Lin Zhu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xin Xiao
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu, China
| | - Zhongyou Ma
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu, China
| | - Jianfei Wang
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu, China
- CONTACT Jianfei Wang No.9 Donghua Road, Fengyang Count 233100, Chuzhou City, China
| |
Collapse
|
149
|
Ben Othman A, Ellouzi H, Planchais S, De Vos D, Faiyue B, Carol P, Abdelly C, Savouré A. Phospholipases Dζ1 and Dζ2 have distinct roles in growth and antioxidant systems in Arabidopsis thaliana responding to salt stress. PLANTA 2017; 246:721-735. [PMID: 28667438 DOI: 10.1007/s00425-017-2728-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 06/26/2017] [Indexed: 05/28/2023]
Abstract
Phospholipases Dζ play different roles in Arabidopsis salt tolerance affecting the regulation of ion transport and antioxidant responses. Lipid signalling mediated by phospholipase D (PLD) plays essential roles in plant growth including stress and hormonal responses. Here we show that PLDζ1 and PLDζ2 have distinct effects on Arabidopsis responses to salinity. A transcriptome analysis of a double pldζ1pldζ2 mutant revealed a cluster of genes involved in abiotic and biotic stresses, such as the high salt-stress responsive genes DDF1 and RD29A. Another cluster of genes with a common expression pattern included ROS detoxification genes involved in electron transport and biotic and abiotic stress responses. Total superoxide dismutase (SOD) activity was induced early in the shoots and roots of all pldζ mutants exposed to mild or severe salinity with the highest SOD activity measured in pldζ2 at 14 days. Lipid peroxidation in shoots and roots was higher in the pldζ1 mutant upon salt treatment and pldζ1 accumulated H2O2 earlier than other genotypes in response to salt. Salinity caused less deleterious effects on K+ accumulation in shoots and roots of the pldζ2 mutant than of wild type, causing only a slight variation in Na+/K+ ratio. Relative growth rates of wild-type plants, pldζ1, pldζ2 and pldζ1pldζ2 mutants were similar in control conditions, but strongly affected by salt in WT and pldζ1. The efficiency of photosystem II, estimated by measuring the ratio of chlorophyll fluorescence (F v/F m ratio), was strongly decreased in pldζ1 under salt stress. In conclusion, PLDζ2 plays a key role in determining Arabidopsis sensitivity to salt stress allowing ion transport and antioxidant responses to be finely regulated.
Collapse
Affiliation(s)
- Ahlem Ben Othman
- Sorbonne Universités, UPMC Univ Paris 06, iEES, UMR 7618 (UPMC, UPEC, CNRS, IRD, INRA, Paris Diderot), Case 237, 4 Place Jussieu, 75252, Paris Cedex 05, France
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, 2050, Hammam-Lif, Tunisia
| | - Hasna Ellouzi
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, 2050, Hammam-Lif, Tunisia
| | - Séverine Planchais
- Sorbonne Universités, UPMC Univ Paris 06, iEES, UMR 7618 (UPMC, UPEC, CNRS, IRD, INRA, Paris Diderot), Case 237, 4 Place Jussieu, 75252, Paris Cedex 05, France
| | - Delphine De Vos
- Sorbonne Universités, UPMC Univ Paris 06, iEES, UMR 7618 (UPMC, UPEC, CNRS, IRD, INRA, Paris Diderot), Case 237, 4 Place Jussieu, 75252, Paris Cedex 05, France
- Institut Jean-Pierre Bourgin, UMR 1318, INRA-AgroParisTech, Centre INRA Versailles, 78026, Versailles Cedex, France
| | - Bualuang Faiyue
- Sorbonne Universités, UPMC Univ Paris 06, iEES, UMR 7618 (UPMC, UPEC, CNRS, IRD, INRA, Paris Diderot), Case 237, 4 Place Jussieu, 75252, Paris Cedex 05, France
- Department of Biology, Mahidol Wittayanusorn School, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Pierre Carol
- Sorbonne Universités, UPMC Univ Paris 06, iEES, UMR 7618 (UPMC, UPEC, CNRS, IRD, INRA, Paris Diderot), Case 237, 4 Place Jussieu, 75252, Paris Cedex 05, France
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, 2050, Hammam-Lif, Tunisia
| | - Arnould Savouré
- Sorbonne Universités, UPMC Univ Paris 06, iEES, UMR 7618 (UPMC, UPEC, CNRS, IRD, INRA, Paris Diderot), Case 237, 4 Place Jussieu, 75252, Paris Cedex 05, France.
| |
Collapse
|
150
|
Abdelaziz ME, Kim D, Ali S, Fedoroff NV, Al-Babili S. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na +/K + homeostasis under salt stress conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:107-115. [PMID: 28818365 DOI: 10.1016/j.plantsci.2017.07.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/05/2017] [Accepted: 07/08/2017] [Indexed: 05/08/2023]
Abstract
The mutualistic, endophytic fungus Piriformospora indica has been shown to confer biotic and abiotic stress tolerance to host plants. In this study, we investigated the impact of P. indica on the growth of Arabidopsis plants under normal and salt stress conditions. Our results demonstrate that P. indica colonization increases plant biomass, lateral roots density, and chlorophyll content under both conditions. Colonization with P. indica under salt stress was accompanied by a lower Na+/K+ ratio and less pronounced accumulation of anthocyanin, compared to control plants. Moreover, P. indica colonized roots under salt stress showed enhanced transcript levels of the genes encoding the high Affinity Potassium Transporter 1 (HKT1) and the inward-rectifying K+ channels KAT1 and KAT2, which play key roles in regulating Na+ and K+ homeostasis. The effect of P. indica colonization on AtHKT1;1 expression was also confirmed in the Arabidopsis line gl1-HKT:AtHKT1;1 that expresses an additional AtHKT1;1 copy driven by the native promoter. Colonization of the gl1-HKT:AtHKT1;1 by P. indica also increased lateral roots density and led to a better Na+/K+ ratio, which may be attributed to the observed increase in KAT1 and KAT2 transcript levels. Our findings demonstrate that P. indica colonization promotes Arabidopsis growth under salt stress conditions and that this effect is likely caused by modulation of the expression levels of the major Na+ and K+ ion channels, which allows establishing a balanced ion homeostasis of Na+/K+ under salt stress conditions.
Collapse
Affiliation(s)
- Mohamed E Abdelaziz
- King Abdullah University of Science and Technology (KAUST), BESE Division, 23955-6900 Thuwal, Saudi Arabia; Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Dongjin Kim
- King Abdullah University of Science and Technology (KAUST), BESE Division, 23955-6900 Thuwal, Saudi Arabia; Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Shawkat Ali
- King Abdullah University of Science and Technology (KAUST), BESE Division, 23955-6900 Thuwal, Saudi Arabia
| | - Nina V Fedoroff
- King Abdullah University of Science and Technology (KAUST), BESE Division, 23955-6900 Thuwal, Saudi Arabia
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST), BESE Division, 23955-6900 Thuwal, Saudi Arabia.
| |
Collapse
|