101
|
Tonini R, Ciardo S, Cerovic M, Rubino T, Parolaro D, Mazzanti M, Zippel R. ERK-dependent modulation of cerebellar synaptic plasticity after chronic Delta9-tetrahydrocannabinol exposure. J Neurosci 2006; 26:5810-8. [PMID: 16723539 PMCID: PMC6675260 DOI: 10.1523/jneurosci.5469-05.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic exposure to Delta9-tetrahydrocannabinol (THC) induces tolerance to cannabinoid-induced locomotor effects, which are mediated by cannabinoid receptors (CB1Rs) located in motor control regions, including the cerebellum. There is substantial evidence of cerebellar CB1R molecular adaptation and modifications in receptor signaling after prolonged cannabinoid exposure. However, very little is known about the effects of chronic cannabinoid administration on cerebellar synaptic plasticity, which may contribute to the development of cannabinoid behavioral tolerance. In the cerebellar cortex, activation of CB1R inhibits excitatory synaptic transmission at parallel fiber (PF)-Purkinje cell (PC) synapses by decreasing neurotransmitter release. Our study aimed to investigate the neurophysiological adaptive responses occurring at cerebellar PF-PC cell synapses after repeated THC exposure. In THC-tolerant mice, an increase of the basal release probability was found at PF-PC synapses, in parallel with a facilitation of slow mGluR1 (metabotropic glutamate receptor type 1)-mediated excitatory postsynaptic currents and a reduced sensitivity to the inhibitory effects of the CB1R agonist CP55,940 [(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol]. Additionally, after repeated THC exposures, presynaptic PF-PC long-term potentiation was blocked by A1R (adenosine receptor-1) activation. Inhibition of the extracellular signal regulated kinase (ERK) pathway prevented these alterations of cerebellar synaptic transmission and plasticity. In summary, we provide evidence for ERK-dependent modulatory mechanisms at PF-PC synapses after chronic THC administration. This contributes to generation of forms of pathological synaptic plasticity that might play a role in cannabinoid dependence.
Collapse
Affiliation(s)
- Raffaella Tonini
- Department of Cellular and Developmental Biology, University La Sapienza, 00185 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
102
|
Rancz EA, Häusser M. Dendritic calcium spikes are tunable triggers of cannabinoid release and short-term synaptic plasticity in cerebellar Purkinje neurons. J Neurosci 2006; 26:5428-37. [PMID: 16707795 PMCID: PMC5886360 DOI: 10.1523/jneurosci.5284-05.2006] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Understanding the relationship between dendritic excitability and synaptic plasticity is vital for determining how dendrites regulate the input-output function of the neuron. Dendritic calcium spikes have been associated with the induction of long-term changes in synaptic efficacy. Here we use direct recordings from cerebellar Purkinje cell dendrites to show that synaptically activated local dendritic calcium spikes are potent triggers of cannabinoid release, producing a profound and short-term reduction in synaptic efficacy at parallel fiber synapses. Enhancing dendritic excitability by modulating dendritic large-conductance calcium-activated potassium (BK) channels improves the spread of dendritic calcium spikes and enhances cannabinoid release at the expense of spatial specificity. Our findings reveal that dendritic calcium spikes provide a local and tunable coincidence detection mechanism that readjusts synaptic gain when synchronous activity reaches a threshold, and they reveal a tight link between the regulation of dendritic excitability and the induction of synaptic plasticity.
Collapse
Affiliation(s)
- Ede A Rancz
- Wolfson Institute for Biomedical Research, Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
103
|
Yoshida T, Fukaya M, Uchigashima M, Miura E, Kamiya H, Kano M, Watanabe M. Localization of diacylglycerol lipase-alpha around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J Neurosci 2006; 26:4740-51. [PMID: 16672646 PMCID: PMC6674155 DOI: 10.1523/jneurosci.0054-06.2006] [Citation(s) in RCA: 277] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
2-arachidonoyl-glycerol (2-AG) is an endocannabinoid that is released from postsynaptic neurons, acts retrogradely on presynaptic cannabinoid receptor CB1, and induces short- and long-term suppression of transmitter release. To understand the mechanisms of the 2-AG-mediated retrograde modulation, we investigated subcellular localization of a major 2-AG biosynthetic enzyme, diacylglycerol lipase-alpha (DAGLalpha), by using immunofluorescence and immunoelectron microscopy in the mouse brain. In the cerebellum, DAGLalpha was predominantly expressed in Purkinje cells. DAGLalpha was detected on the dendritic surface and occasionally on the somatic surface, with a distal-to-proximal gradient from spiny branchlets toward somata. DAGLalpha was highly concentrated at the base of spine neck and also accumulated with much lower density on somatodendritic membrane around the spine neck. However, DAGLalpha was excluded from the main body of spine neck and head. In hippocampal pyramidal cells, DAGLalpha was also accumulated in spines. In contrast to the distribution in Purkinje cells, DAGLalpha was distributed in the spine head, neck, or both, whereas somatodendritic membrane was labeled very weakly. These results indicate that DAGLalpha is essentially targeted to postsynaptic spines in cerebellar and hippocampal neurons, but its fine distribution within and around spines is differently regulated between the two neurons. The preferential spine targeting should enable efficient 2-AG production on excitatory synaptic activity and its swift retrograde modulation onto nearby presynaptic terminals expressing CB1. Furthermore, different fine localization within and around spines suggests that the distance between postsynaptic 2-AG production site and presynaptic CB1 is differentially controlled depending on neuron types.
Collapse
|
104
|
Duguid I, Sjöström PJ. Novel presynaptic mechanisms for coincidence detection in synaptic plasticity. Curr Opin Neurobiol 2006; 16:312-22. [PMID: 16713246 DOI: 10.1016/j.conb.2006.05.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 05/05/2006] [Indexed: 11/28/2022]
Abstract
Long-term plasticity typically relies on postsynaptic NMDA receptors to detect the coincidence of pre- and postsynaptic activity. Recent studies, however, have revealed forms of plasticity that depend on coincidence detection by presynaptic NMDA receptors. In the amygdala, cortical afferent associative presynaptic long-term potentiation (LTP) requires activation of presynaptic NMDA receptors by simultaneous thalamic and cortical afferents. Surprisingly, both types of afferent can also undergo postsynaptically induced NMDA-receptor-dependent LTP. In the neocortex, spike-timing-dependent long-term depression (LTD) requires simultaneous activation of presynaptic NMDA autoreceptors and retrograde signalling by endocannabinoids. In cerebellar LTD, presynaptic NMDA receptor activation suggests that similar presynaptic mechanisms may exist. Recent studies also indicate the existence of presynaptic coincidence detection that is independent of NMDA receptors, suggesting that such mechanisms have a widespread role in plasticity.
Collapse
Affiliation(s)
- Ian Duguid
- Wolfson Institute for Biomedical Research and Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
105
|
Carta M, Mameli M, Valenzuela CF. Alcohol potently modulates climbing fiber-->Purkinje neuron synapses: role of metabotropic glutamate receptors. J Neurosci 2006; 26:1906-12. [PMID: 16481422 PMCID: PMC6674936 DOI: 10.1523/jneurosci.4430-05.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Consumption of alcoholic beverages produces alterations in motor coordination and equilibrium that are responsible for millions of accidental deaths. Studies indicate that ethanol produces these alterations by affecting the cerebellum, a brain region involved in the control of motor systems. Purkinje neurons of the cerebellar cortex have been shown to be particularly important targets of ethanol. However, its mechanism of action at these neurons is poorly understood. We hypothesized that ethanol could modulate Purkinje neuron function by altering the excitatory input provided by the climbing fiber from the inferior olive, which evokes a powerful all-or-none response denoted as the complex spike. To test this hypothesis, we performed whole-cell patch-clamp electrophysiological and Ca2+ imaging experiments in acute slices from rat cerebella. We found that ethanol potently inhibits the late phase of the complex spike and that this effect is the result of inhibition of type-1 metabotropic glutamate receptor-dependent responses at the postsynaptic level. Moreover, ethanol inhibited climbing fiber long-term depression, a form of synaptic plasticity that also depends on activation of these metabotropic receptors. Our findings identify the climbing fiber-->Purkinje neuron synapse as an important target of ethanol in the cerebellar cortex and indicate that ethanol significantly affects cerebellar circuits even at concentrations as low as 10 mm (legal blood alcohol level in the United States is below 0.08 g/dl = 17 mm).
Collapse
|
106
|
Kawamura Y, Fukaya M, Maejima T, Yoshida T, Miura E, Watanabe M, Ohno-Shosaku T, Kano M. The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci 2006; 26:2991-3001. [PMID: 16540577 PMCID: PMC6673964 DOI: 10.1523/jneurosci.4872-05.2006] [Citation(s) in RCA: 358] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Endocannabinoids work as retrograde messengers and contribute to short-term and long-term modulation of synaptic transmission via presynaptic cannabinoid receptors. It is generally accepted that the CB1 cannabinoid receptor (CB1) mediates the effects of endocannabinoid in inhibitory synapses. For excitatory synapses, however, contributions of CB1, "CB3," and some other unidentified receptors have been suggested. In the present study we used electrophysiological and immunohistochemical techniques and examined the type(s) of cannabinoid receptor functioning at hippocampal and cerebellar excitatory synapses. Our electrophysiological data clearly demonstrate the predominant contribution of CB1. At hippocampal excitatory synapses on pyramidal neurons the cannabinoid-induced synaptic suppression was reversed by a CB1-specific antagonist, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), and was absent in CB1 knock-out mice. At climbing fiber (CF) and parallel fiber (PF) synapses on cerebellar Purkinje cells the cannabinoid-dependent suppression was absent in CB1 knock-out mice. The presence of CB1 at presynaptic terminals was confirmed by immunohistochemical experiments with specific antibodies against CB1. In immunoelectron microscopy the densities of CB1-positive signals in hippocampal excitatory terminals and cerebellar PF terminals were much lower than in inhibitory terminals but were clearly higher than the background. Along the long axis of PFs, the CB1 was localized at a much higher density on the perisynaptic membrane than on the extrasynaptic and synaptic regions. In contrast, CB1 density was low in CF terminals and was not significantly higher than the background. Despite the discrepancy between the electrophysiological and morphological data for CB1 expression on CFs, these results collectively indicate that CB1 is responsible for cannabinoid-dependent suppression of excitatory transmission in the hippocampus and cerebellum.
Collapse
MESH Headings
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Action Potentials/drug effects
- Animals
- Benzoxazines
- Cerebellar Cortex/cytology
- Cerebellar Cortex/physiology
- Female
- Hippocampus/cytology
- Hippocampus/physiology
- Male
- Membrane Potentials
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Immunoelectron
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Patch-Clamp Techniques
- Piperidines/pharmacology
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/physiology
- Purkinje Cells/drug effects
- Purkinje Cells/physiology
- Pyramidal Cells/drug effects
- Pyramidal Cells/physiology
- Pyrazoles/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/physiology
- Rimonabant
- Species Specificity
- Subcellular Fractions/chemistry
- Synaptic Membranes/chemistry
- Synaptic Membranes/ultrastructure
Collapse
Affiliation(s)
- Yoshinobu Kawamura
- Department of Cellular Neuroscience, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Satake S, Song SY, Cao Q, Satoh H, Rusakov DA, Yanagawa Y, Ling EA, Imoto K, Konishi S. Characterization of AMPA receptors targeted by the climbing fiber transmitter mediating presynaptic inhibition of GABAergic transmission at cerebellar interneuron-Purkinje cell synapses. J Neurosci 2006; 26:2278-89. [PMID: 16495455 PMCID: PMC3375000 DOI: 10.1523/jneurosci.4894-05.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The climbing fiber (CF) neurotransmitter not only excites the postsynaptic Purkinje cell (PC) but also suppresses GABA release from inhibitory interneurons converging onto the same PC depending on AMPA-type glutamate receptor (AMPAR) activation. Although the CF-/AMPAR-mediated inhibition of GABA release provides a likely mechanism boosting the CF input-derived excitation, how the CF transmitter reaches target AMPARs to elicit this action remains unknown. Here, we report that the CF transmitter diffused from its release sites directly targets GluR2/GluR3 AMPARs on interneuron terminals to inhibit GABA release. A weak GluR3-AMPAR agonist, bromohomoibotenic acid, produced excitatory currents in the postsynaptic PCs without presynaptic inhibitory effect on GABAergic transmission. Conversely, a specific inhibitor of the GluR2-lacking/Ca2+-permeable AMPARs, philanthotoxin-433, did not affect the CF-induced inhibition but suppressed AMPAR-mediated currents in Bergmann glia. A low-affinity GluR antagonist, gamma-D-glutamylglycine, or retardation of neurotransmitter diffusion by dextran reduced the inhibitory action of CF-stimulation, whereas blockade of glutamate transporters enhanced the CF-induced inhibition. The results suggest that the CF transmitter released after repeated stimulation overwhelms local glutamate uptake and thereby diffuses from the release site to reach GluR2/GluR3 AMPARs on nearby interneuron terminals. Double immunostaining showed that GluR2/3 subunits and glutamate decarboxylase or synaptophysin are colocalized at the perisomatic GABAergic processes surrounding PCs. Finally, electron microscopy detected specific immunoreactivity for GluR2/3 at the presynaptic terminals of symmetric axosomatic synapses on the PC. These findings demonstrate that the CF transmitter directly inhibits GABA release from interneurons to the PC, relying on extrasynaptic diffusion and local heterogeneity in AMPAR subunit compositions.
Collapse
|
108
|
Narushima M, Hashimoto K, Kano M. Endocannabinoid-mediated short-term suppression of excitatory synaptic transmission to medium spiny neurons in the striatum. Neurosci Res 2006; 54:159-64. [PMID: 16413076 DOI: 10.1016/j.neures.2005.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2005] [Revised: 12/08/2005] [Accepted: 12/09/2005] [Indexed: 11/22/2022]
Abstract
Medium spiny neurons in the dorsal striatum receive glutamatergic excitatory synaptic inputs from the cerebral cortex. These synapses undergo long-term depression that requires release of endocannabinoids from medium spiny neurons and activation of cannabinoid CB1 receptors. However, it remains unclear how cortico-striatal synapses exhibit endocannabinoid-mediated short-term suppression, which has been found in various brain regions including the hippocampus and cerebellum. Endocannabinoids are released from postsynaptic neurons by strong depolarization and resultant Ca2+ elevation or activation of postsynaptic Gq/11-coupled receptors such as group I metabotropic glutamate receptors (mGluRs) and M1/M3 muscarinic acetylcholine receptors. Moreover, endocannabioids are effectively released when weak depolarization is combined with Gq/11-coupled receptor activation. We found that muscarinic activation induced transient suppression of excitatory synaptic transmission to medium spiny neurons, which was independent of retrograde endocannabinoid signaling but was mediated directly by presynaptic muscarinic receptors. Neither postsynaptic depolarization alone nor depolarization and muscarinic activation caused suppression of cortico-striatal synapses. In contrast, activation of group I mGluRs readily suppressed cortico-striatal excitatory synaptic transmission. Furthermore, postsynaptic depolarization induced clear suppression when combined with group I mGluR activation. These results indicate that group I mGluRs but not muscarinic receptors contribute to endocannabinoid-mediated short-term suppression of cortico-striatal excitatory synaptic transmission.
Collapse
Affiliation(s)
- Madoka Narushima
- Department of Cellular Neurophysiology, Graduate School of Medical Science, Kanazawa University, Takara-machi, Kanazawa 920-8640, Japan
| | | | | |
Collapse
|
109
|
Canepari M, Ogden D. Kinetic, pharmacological and activity-dependent separation of two Ca2+ signalling pathways mediated by type 1 metabotropic glutamate receptors in rat Purkinje neurones. J Physiol 2006; 573:65-82. [PMID: 16497716 PMCID: PMC1779706 DOI: 10.1113/jphysiol.2005.103770] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Type 1 metabotropic glutamate receptors (mGluR1) in Purkinje neurones (PNs) are important for motor learning and coordination. Here, two divergent mGluR1 Ca2+-signalling pathways and the associated membrane conductances were distinguished kinetically and pharmacologically after activation by 1-ms photorelease of L-glutamate or by bursts of parallel fibre (PF) stimulation. A new, mGluR1-mediated transient K+ conductance was seen prior to the slow EPSC (sEPSC). It was seen only in PNs previously allowed to fire spontaneously or held at depolarized potentials for several seconds and was slowly inhibited by agatoxin IVA, which blocks P/Q-type Ca2+ channels. It peaked in 148 ms, had well-defined kinetics and, unlike the sEPSC, was abolished by the phospholipase C (PLC) inhibitor U73122. It was blocked by the BK Ca2+-activated K+ channel blocker iberiotoxin and unaffected by apamin, indicating selective activation of BK channels by PLC-dependent store-released Ca2+. The K+ conductance and underlying transient Ca2+ release showed a highly reproducible delay of 99.5 ms following PF burst stimulation, with a precision of 1-2 ms in repeated responses of the same PN, and a subsequent fast rise and fall of Ca2+ concentration. Analysis of Ca2+ signals showed that activation of the K+ conductance by Ca2+ release occurred in small dendrites and subresolution structures, most probably spines. The results show that PF burst stimulation activates two pathways of mGluR1 signalling in PNs. First, transient, PLC-dependent Ca2+ release from stores with precisely reproducible timing and second, slower Ca2+ influx in the cation-permeable sEPSC channel. The priming by prior Ca2+ influx in P/Q-type Ca2+ channels may determine the path of mGluR1 signalling. The precise timing of PLC-mediated store release may be important for interactions of PF mGluR1 signalling with other inputs to the PN.
Collapse
Affiliation(s)
- Marco Canepari
- National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | |
Collapse
|
110
|
Maejima T, Oka S, Hashimotodani Y, Ohno-Shosaku T, Aiba A, Wu D, Waku K, Sugiura T, Kano M. Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum. J Neurosci 2006; 25:6826-35. [PMID: 16033892 PMCID: PMC6725357 DOI: 10.1523/jneurosci.0945-05.2005] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endocannabinoids mediate retrograde signaling and modulate synaptic transmission in various regions of the CNS. Depolarization-induced elevation of intracellular Ca2+ concentration causes endocannabinoid-mediated suppression of excitatory/inhibitory synaptic transmission. Activation of G(q/11)-coupled receptors including group I metabotropic glutamate receptors (mGluRs) also causes endocannabinoid-mediated suppression of synaptic transmission. However, precise mechanisms of endocannabinoid production initiated by physiologically relevant synaptic activity remain to be determined. To address this problem, we made whole-cell recordings from Purkinje cells (PCs) in mouse cerebellar slices and examined their excitatory synapses arising from climbing fibers (CFs) and parallel fibers (PFs). We first characterized three distinct modes to induce endocannabinoid release by analyzing CF to PC synapses. The first mode is strong activation of mGluR subtype 1 (mGluR1)-phospholipase C (PLC) beta4 cascade without detectable Ca2+ elevation. The second mode is Ca2+ elevation to a micromolar range without activation of the mGluR1-PLCbeta4 cascade. The third mode is the Ca2+-assisted mGluR1-PLCbeta4 cascade that requires weak mGluR1 activation and Ca2+ elevation to a submicromolar range. By analyzing PF to PC synapses, we show that the third mode is essential for effective endocannabinoid release from PCs by excitatory synaptic activity. Furthermore, our biochemical analysis demonstrates that combined weak mGluR1 activation and mild depolarization in PCs effectively produces 2-arachidonoylglycerol (2-AG), a candidate of endocannabinoid, whereas either stimulus alone did not produce detectable 2-AG. Our results strongly suggest that under physiological conditions, excitatory synaptic inputs to PCs activate the Ca2+-assisted mGluR1-PLCbeta4 cascade, and thereby produce 2-AG, which retrogradely modulates synaptic transmission to PCs.
Collapse
Affiliation(s)
- Takashi Maejima
- Department of Cellular Neurophysiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Kreitzer AC, Malenka RC. Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum. J Neurosci 2006; 25:10537-45. [PMID: 16280591 PMCID: PMC6725809 DOI: 10.1523/jneurosci.2959-05.2005] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endocannabinoids are important mediators of short- and long-term synaptic plasticity, but the mechanisms of endocannabinoid release have not been studied extensively outside the hippocampus and cerebellum. Here, we examined the mechanisms of endocannabinoid-mediated long-term depression (eCB-LTD) in the dorsal striatum, a brain region critical for motor control and reinforcement learning. Unlike other cell types, strong depolarization of medium spiny neurons was not sufficient to yield detectable endocannabinoid release. However, when paired with postsynaptic depolarization sufficient to activate L-type calcium channels, activation of postsynaptic metabotropic glutamate receptors (mGluRs), either by high-frequency tetanic stimulation or an agonist, induced eCB-LTD. Pairing bursts of afferent stimulation with brief subthreshold membrane depolarizations that mimicked down-state to up-state transitions also induced eCB-LTD, which not only required activation of mGluRs and L-type calcium channels but also was bidirectionally modulated by dopamine D2 receptors. Consistent with network models, these results demonstrate that dopamine regulates the induction of a Hebbian form of long-term synaptic plasticity in the striatum. However, this gating of plasticity by dopamine is accomplished via an unexpected mechanism involving the regulation of mGluR-dependent endocannabinoid release.
Collapse
Affiliation(s)
- Anatol C Kreitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Palo Alto, California 94305, USA
| | | |
Collapse
|
112
|
Safo PK, Regehr WG. Endocannabinoids control the induction of cerebellar LTD. Neuron 2006; 48:647-59. [PMID: 16301180 DOI: 10.1016/j.neuron.2005.09.020] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 07/25/2005] [Accepted: 09/21/2005] [Indexed: 12/20/2022]
Abstract
The long-term depression (LTD) of parallel fiber (PF) synapses onto Purkinje cells plays a central role in motor learning. Endocannabinoid release and LTD induction both depend upon activation of the metabotropic glutamate receptor mGluR1, require postsynaptic calcium increases, are synapse specific, and have a similar dependence on the associative activation of PF and climbing fiber synapses. These similarities suggest that endocannabinoid release could account for many features of cerebellar LTD. Here we show that LTD induction is blocked by a cannabinoid receptor (CB1R) antagonist, by inhibiting the synthesis of the endocannabinoid 2-arachidonyl glycerol (2-AG), and is absent in mice lacking the CB1R. Although CB1Rs are prominently expressed presynaptically at PF synapses, LTD is expressed postsynaptically. In contrast, a previously described transient form of inhibition mediated by endocannabinoids is expressed presynaptically. This indicates that Purkinje cells release 2-AG that activates CB1Rs to both transiently inhibit release and induce a postsynaptic form of LTD.
Collapse
Affiliation(s)
- Patrick K Safo
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
113
|
Abstract
Postsynaptic release of endocannabinoids can inhibit presynaptic neurotransmitter release on short and long timescales. This retrograde inhibition occurs at both excitatory and inhibitory synapses and may provide a mechanism for synaptic gain control, short-term associative plasticity, reduction of synaptic crosstalk, and metaplasticity.
Collapse
Affiliation(s)
- Anatol C Kreitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94305, USA
| |
Collapse
|
114
|
Silberberg G, Grillner S, LeBeau FEN, Maex R, Markram H. Synaptic pathways in neural microcircuits. Trends Neurosci 2005; 28:541-51. [PMID: 16122815 DOI: 10.1016/j.tins.2005.08.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/29/2005] [Accepted: 08/10/2005] [Indexed: 11/21/2022]
Abstract
The functions performed by different neural microcircuits depend on the anatomical and physiological properties of the various synaptic pathways connecting neurons. Neural microcircuits across various species and brain regions are similar in terms of their repertoire of neurotransmitters, their synaptic kinetics, their short-term and long-term plasticity, and the target-specificity of their synaptic connections. However, microcircuits can be fundamentally different in terms of the precise recurrent design used to achieve a specific functionality. In this review, which is part of the TINS Microcircuits Special Feature, we compare the connectivity designs in spinal, hippocampal, neocortical and cerebellar microcircuits, and discuss the different computational challenges that each microcircuit faces.
Collapse
Affiliation(s)
- Gilad Silberberg
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
115
|
Abstract
Powerful synapses between climbing fibers (CF) and Purkinje cells are crucial to cerebellar motor learning. In this issue of Neuron, Lin and colleagues provide compelling evidence for the existence of direct synaptic contacts between CFs and NG2-expressing glia cells, adding to the intrigue of neuro-glial interactions.
Collapse
Affiliation(s)
- Michael Beierlein
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
116
|
Carey MR, Medina JF, Lisberger SG. Instructive signals for motor learning from visual cortical area MT. Nat Neurosci 2005; 8:813-9. [PMID: 15908949 PMCID: PMC2430765 DOI: 10.1038/nn1470] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 04/25/2005] [Indexed: 11/09/2022]
Abstract
Sensory error signals have long been proposed to act as instructive signals to guide motor learning. Here we have exploited the temporal specificity of learning in smooth pursuit eye movements and the well-defined anatomical structure of the neural circuit for pursuit to identify a part of sensory cortex that provides instructive signals for motor learning in monkeys. We show that electrical microstimulation in the motion-sensitive middle temporal area (MT) of extrastriate visual cortex instructs learning in smooth eye movements in a way that closely mimics the learning instructed by real visual motion. We conclude that MT provides instructive signals for motor learning in smooth pursuit eye movements under natural conditions, suggesting a similar role for sensory cortices in many kinds of learned behaviors.
Collapse
Affiliation(s)
- Megan R Carey
- Howard Hughes Medical Institute, W.M. Keck Foundation Center for Integrative Neuroscience, Neuroscience Graduate Program, and Department of Physiology, University of California, San Francisco, California 94143-0444, USA.
| | | | | |
Collapse
|
117
|
Marcaggi P, Attwell D. Endocannabinoid signaling depends on the spatial pattern of synapse activation. Nat Neurosci 2005; 8:776-81. [PMID: 15864304 PMCID: PMC2629534 DOI: 10.1038/nn1458] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 04/07/2005] [Indexed: 11/09/2022]
Abstract
The brain's endocannabinoid retrograde messenger system decreases presynaptic transmitter release, but its physiological function is uncertain. We show that endocannabinoid signaling is absent when spatially dispersed synapses are activated on rodent cerebellar Purkinje cells but that it reduces presynaptic glutamate release when nearby synapses are active. This switching of signaling according to the spatial pattern of activity is controlled by postsynaptic type I metabotropic glutamate receptors, which are activated disproportionately when glutamate spillover between synapses produces synaptic crosstalk. When spatially distributed synapses are activated, endocannabinoid inhibition of transmitter release can be rescued by inhibiting glutamate uptake to increase glutamate spillover. Endocannabinoid signaling initiated by type I metabotropic glutamate receptors is a homeostatic mechanism that detects synaptic crosstalk and downregulates glutamate release in order to promote synaptic independence.
Collapse
Affiliation(s)
- Païkan Marcaggi
- Department of Physiology, University College London, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
118
|
Bari M, Paradisi A, Pasquariello N, Maccarrone M. Cholesterol-dependent modulation of type 1 cannabinoid receptors in nerve cells. J Neurosci Res 2005; 81:275-83. [PMID: 15920744 DOI: 10.1002/jnr.20546] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Type 1 cannabinoid receptors (CB1R) are G-protein-coupled receptors that mediate several actions of the endocannabinoid anandamide (N-arachidonoylethanolamine; AEA) in the central nervous system. Here we show that cholesterol enrichment of rat C6 glioma cell membranes reduces by approximately twofold the binding efficiency (i.e., the ratio between maximum binding and dissociation constant) of CB1R and that activation of CB1R by AEA leads to approximately twofold lower [(35)S]GTPgammaS binding in cholesterol-treated cells than in controls. In addition, we show that CB1R-dependent signaling via adenylate cyclase and p42/p44 mitogen-activated protein kinase is almost halved by cholesterol enrichment. Unlike CB1R, the other AEA-binding receptor TRPV1, the AEA synthetase NAPE-PLD, and the AEA hydrolase FAAH are not modulated by cholesterol, whereas the catalytic efficiency (i.e., the ratio between maximal velocity and Michaelis-Menten constant) of the AEA membrane transporter AMT is almost doubled compared with control cells. These data demonstrate that, among the proteins of the "endocannabinoid system," only CB1R and AMT critically depend on membrane cholesterol content. This observation may have important implications for the role of CB1R in protecting nerve cells against (endo)cannabinoid-induced apoptosis.
Collapse
Affiliation(s)
- Monica Bari
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
| | | | | | | |
Collapse
|