101
|
Synthesis and Biological Evaluation of Hydroxylated Monocarbonyl Curcumin Derivatives as Potential Inducers of Neprilysin Activity. Biomedicines 2021; 9:biomedicines9080955. [PMID: 34440159 PMCID: PMC8394082 DOI: 10.3390/biomedicines9080955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) involves impairment of Aβ clearance. Neprilysin (NEP) is the most efficient Aβ peptidase. Enhancement of the activity or expression of NEP may provide a prominent therapeutic strategy against AD. AIMS Ten hydroxylated monocarbonyl curcumin derivatives were designed, synthesized and evaluated for their NEP upregulating potential using sensitive fluorescence-based Aβ digestion and inhibition assays. RESULTS Compound 4 was the most active one, resulting in a 50% increase in Aβ cleavage activity. Cyclohexanone-bearing derivatives exhibited higher activity enhancement compared to their acetone counterparts. Inhibition experiments with the NEP-specific inhibitor thiorphan resulted in dramatic cleavage reduction. Conclusion: The increased Aβ cleavage activity and the ease of synthesis of 4 renders it an extremely attractive lead compound.
Collapse
|
102
|
Liu Z, Li H, Pan S. Discovery and Validation of Key Biomarkers Based on Immune Infiltrates in Alzheimer's Disease. Front Genet 2021; 12:658323. [PMID: 34276768 PMCID: PMC8281057 DOI: 10.3389/fgene.2021.658323] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As the most common neurodegenerative disease, Alzheimer's disease (AD) leads to progressive loss of cognition and memory. Presently, the underlying pathogenic genes of AD patients remain elusive, and effective disease-modifying therapy is not available. This study explored novel biomarkers that can affect diagnosis and treatment in AD based on immune infiltration. METHODS The gene expression profiles of 139 AD cases and 134 normal controls were obtained from the NCBI GEO public database. We applied the computational method CIBERSORT to bulk gene expression profiles of AD to quantify 22 subsets of immune cells. Besides, based on the use of the Least Absolute Shrinkage Selection Operator (LASSO), this study also applied SVM-RFE analysis to screen key genes. GO-based semantic similarity and logistic regression model analyses were applied to explore hub genes further. RESULTS There was a remarkable significance in the infiltration of immune cells between the subgroups. The proportions for monocytes, M0 macrophages, and dendritic cells in the AD group were significantly higher than those in the normal group, while the proportion of some cells was lower than that of the normal group, such as NK cell resting, T-cell CD4 naive, T-cell CD4 memory activation, and eosinophils. Additionally, seven genes (ABCA2, CREBRF, CD72, CETN2, KCNG1, NDUFA2, and RPL36AL) were identified as hub genes. Then we performed the analysis of immune factor correlation, gene set enrichment analysis (GSEA), and GO based on seven hub genes. The AUC of ROC prediction model in test and validation sets were 0.845 and 0.839, respectively. Eventually, the mRNA expression analysis of ABCA2, NDUFA2, CREBRF, and CD72 revealed significant differences among the seven hub genes and then was confirmed by RT-PCR. CONCLUSION A model based on immune cell infiltration might be used to forecast AD patients' diagnosis, and it provided a new perspective for AD treatment targets.
Collapse
Affiliation(s)
- Zhuohang Liu
- The Fifth Clinical Medical College of Anhui Medical University, Beijing, China
- Department of Hyperbaric Oxygen, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hang Li
- Department of Hyperbaric Oxygen, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuyi Pan
- The Fifth Clinical Medical College of Anhui Medical University, Beijing, China
- Department of Hyperbaric Oxygen, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
103
|
Feringa FM, van der Kant R. Cholesterol and Alzheimer's Disease; From Risk Genes to Pathological Effects. Front Aging Neurosci 2021; 13:690372. [PMID: 34248607 PMCID: PMC8264368 DOI: 10.3389/fnagi.2021.690372] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
While the central nervous system compromises 2% of our body weight, it harbors up to 25% of the body's cholesterol. Cholesterol levels in the brain are tightly regulated for physiological brain function, but mounting evidence indicates that excessive cholesterol accumulates in Alzheimer's disease (AD), where it may drive AD-associated pathological changes. This seems especially relevant for late-onset AD, as several of the major genetic risk factors are functionally associated with cholesterol metabolism. In this review we discuss the different systems that maintain brain cholesterol metabolism in the healthy brain, and how dysregulation of these processes can lead, or contribute to, Alzheimer's disease. We will also discuss how AD-risk genes might impact cholesterol metabolism and downstream AD pathology. Finally, we will address the major outstanding questions in the field and how recent technical advances in CRISPR/Cas9-gene editing and induced pluripotent stem cell (iPSC)-technology can aid to study these problems.
Collapse
Affiliation(s)
- Femke M. Feringa
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
104
|
Fitz NF, Nam KN, Wolfe CM, Letronne F, Playso BE, Iordanova BE, Kozai TDY, Biedrzycki RJ, Kagan VE, Tyurina YY, Han X, Lefterov I, Koldamova R. Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer's disease. Nat Commun 2021; 12:3416. [PMID: 34099706 PMCID: PMC8184801 DOI: 10.1038/s41467-021-23762-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
APOE and Trem2 are major genetic risk factors for Alzheimer's disease (AD), but how they affect microglia response to Aβ remains unclear. Here we report an APOE isoform-specific phospholipid signature with correlation between human APOEε3/3 and APOEε4/4 AD brain and lipoproteins from astrocyte conditioned media of APOE3 and APOE4 mice. Using preclinical AD mouse models, we show that APOE3 lipoproteins, unlike APOE4, induce faster microglial migration towards injected Aβ, facilitate Aβ uptake, and ameliorate Aβ effects on cognition. Bulk and single-cell RNA-seq demonstrate that, compared to APOE4, cortical infusion of APOE3 lipoproteins upregulates a higher proportion of genes linked to an activated microglia response, and this trend is augmented by TREM2 deficiency. In vitro, lack of TREM2 decreases Aβ uptake by APOE4-treated microglia only, suggesting TREM2-APOE interaction. Our study elucidates phenotypic and transcriptional differences in microglial response to Aβ mediated by APOE3 or APOE4 lipoproteins in preclinical models of AD.
Collapse
Affiliation(s)
- Nicholas F Fitz
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kyong Nyon Nam
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cody M Wolfe
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Florent Letronne
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brittany E Playso
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bistra E Iordanova
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richard J Biedrzycki
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yulia Y Tyurina
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Iliya Lefterov
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Radosveta Koldamova
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
105
|
Wei Z, Qi X, Zhai S, Chen Y, Xia X, Zheng B, Sun X, Zhang G, Wang L, Zhang Q, Xu C, Jiang S, Li X, Xie B, Liao X, Ai Z, Li X. Down-regulation of SORL1 is associated with Alzheimer's disease through activating ABC transporter pathway. ACTA ACUST UNITED AC 2021; 76:187-192. [PMID: 33909958 DOI: 10.1515/znc-2019-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 10/31/2020] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease with high morbidity among elderly people. A genetic attribution has been extensively proved. Here, we propose to further prioritize genes that harbor single nucleotide variation (SNV) or structural variation (SV) for AD and explore the underlying potential mechanisms through exploiting their expression and methylation spectra. A high-confidence AD-associated candidate gene list was obtained from the ClinVar and Human Gene Mutation Database (HGMD). Genome-wide methylation and expression profiles of AD and normal subjects were downloaded from the Gene Expression Omnibus (GEO). Through comprehensive comparison of expression and methylation levels between AD and normal samples, as well as different stages of AD samples, SORL1 was identified as the most plausible gene for AD incidence and progression. Gene Set Enrichment Analysis (GSEA) revealed significant activation of the ABC (ATP binding cassette) transporter with the aberrant up-regulation of SORL1 within AD samples. This study unfolds the expression and methylation spectra of previously probed genes with SNV or SV in AD for the first time, and reports an aberrant activation of the ABC transporter pathway that might contribute to AD progression. This should shed some light on AD diagnosis and precision treatment.
Collapse
Affiliation(s)
- Zhiqiang Wei
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China
| | - Xingdi Qi
- Public Administration, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China
| | - Shijun Zhai
- Department of Nuclear Medicine, Putuo People's Hospital, Tongji University, Shanghai200060, P.R. China
| | - Yan Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China
| | - Boyu Zheng
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Xugang Sun
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Guangming Zhang
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Ling Wang
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Qi Zhang
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Chen Xu
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Shihe Jiang
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Xiulian Li
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Bingxin Xie
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Xiaohui Liao
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Zhu Ai
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China
| |
Collapse
|
106
|
Qi LFR, Liu S, Liu YC, Li P, Xu X. Ganoderic Acid A Promotes Amyloid-β Clearance (In Vitro) and Ameliorates Cognitive Deficiency in Alzheimer's Disease (Mouse Model) through Autophagy Induced by Activating Axl. Int J Mol Sci 2021; 22:ijms22115559. [PMID: 34074054 PMCID: PMC8197357 DOI: 10.3390/ijms22115559] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is thought to be caused by amyloid-β (Aβ) accumulation in the central nervous system due to deficient clearance. The aim of the present study was to investigate the effect of ganoderic acid A (GAA) on Aβ clearance in microglia and its anti-AD activity. Aβ degradation in BV2 microglial cells was determined using an intracellular Aβ clearance assay. GAA stimulated autophagosome formation via the Axl receptor tyrosine kinase (Axl)/RAC/CDC42-activated kinase 1 (Pak1) pathway was determined by Western blot analyses, and fluorescence-labeled Aβ42 was localized in lysosomes in confocal laser microscopy images. The in vivo anti-AD activity of GAA was evaluated by object recognition and Morris water maze (MWM) tests in an AD mouse model following intracerebroventricular injection of aggregated Aβ42. The autophagy level in the hippocampus was assayed by immunohistochemical assessment against microtubule-associated proteins 1A/1B light-chain 3B (LC3B). Intracellular Aβ42 levels were significantly reduced by GAA treatment in microglial cells. Additionally, GAA activated autophagy according to increased LC3B-II levels, with this increased autophagy stimulated by upregulating Axl and Pak1 phosphorylation. The effect of eliminating Aβ by GAA through autophagy was reversed by R428, an Axl inhibitor, or IPA-3, a Pak1 inhibitor. Consistent with the cell-based assay, GAA ameliorated cognitive deficiency and reduced Aβ42 levels in an AD mouse model. Furthermore, LC3B expression in the hippocampus was up-regulated by GAA treatment, with these GAA-specific effects abolished by R428. GAA promoted Aβ clearance by enhancing autophagy via the Axl/Pak1 signaling pathway in microglial cells and ameliorated cognitive deficiency in an AD mouse model.
Collapse
Affiliation(s)
- Li-Feng-Rong Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
| | - Shuai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Ci Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: ; Tel.: +86-2583271203
| |
Collapse
|
107
|
Wu D, Hu Y, Song M, Li G. Dichlorodiphenyltrichloroethane Impairs Amyloid Beta Clearance by Decreasing Liver X Receptor α Expression. Front Aging Neurosci 2021; 13:634948. [PMID: 34045954 PMCID: PMC8144330 DOI: 10.3389/fnagi.2021.634948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
Abnormal amyloid beta (Aβ) clearance is a distinctive pathological mechanism for Alzheimer’s disease (AD). ATP-binding cassette transporter A1 (ABCA1), which mediates the lipidation of apolipoprotein E, plays a critical role in Aβ clearance. As an environmental factor for AD, dichlorodiphenyltrichloroethane (DDT) can decrease ATP-binding cassette transporter A1 (ABCA1) expression and disrupt Aβ clearance. Liver X receptor α (LXRα) is an autoregulatory transcription factor for ABCA1 and a target of some environmental pollutants, such as organophosphate pesticides. In this study, we aimed to investigate whether DDT could affect Aβ clearance by targeting LXRα. The DDT-pretreated H4 human neuroglioma cells and immortalized astrocytes were incubated with exogenous Aβ to evaluate Aβ consumption. Meanwhile, cytotoxicity and LXRα expression were determined in the DDT-treated cells. Subsequently, the antagonism of DDT on LXRα agonist T0901317 was determined in vitro. The interaction between DDT and LXRα was predicted by molecular docking and molecular dynamics simulation technology. We observed that DDT could inhibit Aβ clearance and decrease the levels of LXRα mRNA and LXRα protein. Moreover, DDT is supposed to strongly bind to LXRα and exert antagonistic effects on LXRα. In conclusion, this study firstly presented that DDT could inhibit LXRα expression, which would contribute to Aβ clearance decline in vitro. It provides an experimental basis to search for potential therapeutic targets of AD.
Collapse
Affiliation(s)
- Dongmei Wu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Hu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Song
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gongbo Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
108
|
Liu X, Zeng Q, Luo X, Li K, Hong H, Wang S, Guan X, Wu J, Zhang R, Zhang T, Li Z, Fu Y, Wang T, Wang C, Xu X, Huang P, Zhang M. Effects of APOE ε2 on the Fractional Amplitude of Low-Frequency Fluctuation in Mild Cognitive Impairment: A Study Based on the Resting-State Functional MRI. Front Aging Neurosci 2021; 13:591347. [PMID: 33994988 PMCID: PMC8117101 DOI: 10.3389/fnagi.2021.591347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/10/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Apolipoprotein E (APOE) ε2 is a protective genetic factor for Alzheimer's disease (AD). However, the potential interaction effects between the APOE ε2 allele and disease status on the intrinsic brain activity remain elusive. METHODS We identified 73 healthy control (HC) with APOE ε3/ε3, 61 mild cognitive impairment (MCI) subjects with APOE ε3/ε3, 24 HC with APOE ε2/ε3, and 10 MCI subjects with APOE ε2/ε3 from the ADNI database. All subjects underwent a resting-state functional MRI and Fluoro-deoxy-glucose positron emission tomography (FDG-PET). We used a fractional amplitude of low-frequency fluctuation (fALFF) to explore the spontaneous brain activity. Based on the mixed-effects analysis, we explored the interaction effects between the APOE ε2 allele versus disease status on brain activity and metabolism in a voxel-wise fashion (GRF corrected, p < 0.01), followed by post hoc two-sample t-tests (Bonferroni corrected, p < 0.05). We then investigated the relationship between the mean imaging metrics and cognitive abilities. RESULTS There are no significant differences in gender, age, or education among the four groups. The interaction effect on brain activity was located in the inferior parietal lobule (IPL). Post hoc analysis showed that APOE ε2/ε3 MCI had an increased IPL fALFF than APOE ε3/ε3 MCI. Regarding the APOE ε2 allele effects, we found that ε2 carriers had a decreased fALFF in the transverse temporal gyrus than non-carriers. Also, FDG-PET results showed a lower SUVR of the frontal lobe in APOE ε2 carriers than non-carriers. Furthermore, fALFF of IPL was correlated with the visuospatial function (r = -0.16, p < 0.05). CONCLUSION APOE ε2 carriers might have a better brain reservation when coping with AD-related pathologies.
Collapse
Affiliation(s)
- Xiaocao Liu
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyi Zhang
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zheyu Li
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanv Fu
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Wang
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wang
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | |
Collapse
|
109
|
Dash R, Mitra S, Ali MC, Oktaviani DF, Hannan MA, Choi SM, Moon IS. Phytosterols: Targeting Neuroinflammation in Neurodegeneration. Curr Pharm Des 2021; 27:383-401. [PMID: 32600224 DOI: 10.2174/1381612826666200628022812] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/02/2020] [Indexed: 11/22/2022]
Abstract
Plant-derived sterols, phytosterols, are well known for their cholesterol-lowering activity in serum and their anti-inflammatory activities. Recently, phytosterols have received considerable attention due to their beneficial effects on various non-communicable diseases, and recommended use as daily dietary components. The signaling pathways mediated in the brain by phytosterols have been evaluated, but little is known about their effects on neuroinflammation, and no clinical studies have been undertaken on phytosterols of interest. In this review, we discuss the beneficial roles of phytosterols, including their attenuating effects on inflammation, blood cholesterol levels, and hallmarks of the disease, and their regulatory effects on neuroinflammatory disease pathways. Despite recent advancements made in phytosterol pharmacology, some critical questions remain unanswered. Therefore, we have tried to highlight the potential of phytosterols as viable therapeutics against neuroinflammation and to direct future research with respect to clinical applications.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sarmistha Mitra
- Plasma Bioscience Research Center, Plasma Bio-display, Kwangwoon University, Seoul-01897, Korea
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia-7003, Bangladesh
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju-38066, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| |
Collapse
|
110
|
Zhang S, Guaglianone G, Morris MA, Yoo S, Howitz WJ, Xing L, Zheng JG, Jusuf H, Huizar G, Lin J, Kreutzer AG, Nowick JS. Expression of N-Terminal Cysteine Aβ 42 and Conjugation to Generate Fluorescent and Biotinylated Aβ 42. Biochemistry 2021; 60:1191-1200. [PMID: 33793198 PMCID: PMC9059633 DOI: 10.1021/acs.biochem.1c00105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescent derivatives of the β-amyloid peptides (Aβ) are valuable tools for studying the interactions of Aβ with cells. Facile access to labeled expressed Aβ offers the promise of Aβ with greater sequence and stereochemical integrity, without impurities from amino acid deletion and epimerization. Here, we report methods for the expression of Aβ42 with an N-terminal cysteine residue, Aβ(C1-42), and its conjugation to generate Aβ42 bearing fluorophores or biotin. The methods rely on the hitherto unrecognized observation that expression of the Aβ(MC1-42) gene yields the Aβ(C1-42) peptide, because the N-terminal methionine is endogenously excised by Escherichia coli. Conjugation of Aβ(C1-42) with maleimide-functionalized fluorophores or biotin affords the N-terminally labeled Aβ42. The expression affords ∼14 mg of N-terminal cysteine Aβ from 1 L of bacterial culture. Subsequent conjugation affords ∼3 mg of labeled Aβ from 1 L of bacterial culture with minimal cost for labeling reagents. High-performance liquid chromatography analysis indicates the N-terminal cysteine Aβ to be >97% pure and labeled Aβ peptides to be 94-97% pure. Biophysical studies show that the labeled Aβ peptides behave like unlabeled Aβ and suggest that labeling of the N-terminus does not substantially alter the properties of the Aβ. We further demonstrate applications of the fluorophore-labeled Aβ peptides by using fluorescence microscopy to visualize their interactions with mammalian cells and bacteria. We anticipate that these methods will provide researchers convenient access to useful N-terminally labeled Aβ, as well as Aβ with an N-terminal cysteine that enables further functionalization.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Gretchen Guaglianone
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Michael A. Morris
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Stan Yoo
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - William J. Howitz
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Li Xing
- Irvine Materials Research Institute (IMRI), University of California-Irvine, Irvine, California 92697-2575, United States
| | - Jian-Guo Zheng
- Irvine Materials Research Institute (IMRI), University of California-Irvine, Irvine, California 92697-2575, United States
| | - Hannah Jusuf
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Grace Huizar
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Jonathan Lin
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Adam G. Kreutzer
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - James S. Nowick
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
111
|
Casali BT, Reed-Geaghan EG. Microglial Function and Regulation during Development, Homeostasis and Alzheimer's Disease. Cells 2021; 10:957. [PMID: 33924200 PMCID: PMC8074610 DOI: 10.3390/cells10040957] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Microglia are the resident immune cells of the brain, deriving from yolk sac progenitors that populate the brain parenchyma during development. During development and homeostasis, microglia play critical roles in synaptogenesis and synaptic plasticity, in addition to their primary role as immune sentinels. In aging and neurodegenerative diseases generally, and Alzheimer's disease (AD) specifically, microglial function is altered in ways that significantly diverge from their homeostatic state, inducing a more detrimental inflammatory environment. In this review, we discuss the receptors, signaling, regulation and gene expression patterns of microglia that mediate their phenotype and function contributing to the inflammatory milieu of the AD brain, as well as strategies that target microglia to ameliorate the onset, progression and symptoms of AD.
Collapse
Affiliation(s)
| | - Erin G. Reed-Geaghan
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
| |
Collapse
|
112
|
Vidal V, Puente A, García-Cerro S, García Unzueta MT, Rueda N, Riancho J, Martínez-Cué C. Bexarotene Impairs Cognition and Produces Hypothyroidism in a Mouse Model of Down Syndrome and Alzheimer's Disease. Front Pharmacol 2021; 12:613211. [PMID: 33935706 PMCID: PMC8082148 DOI: 10.3389/fphar.2021.613211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
All individuals with Down syndrome (DS) eventually develop Alzheimer's disease (AD) neuropathology, including neurodegeneration, increases in β-amyloid (Aβ) expression, and aggregation and neurofibrillary tangles, between the third and fourth decade of their lives. There is currently no effective treatment to prevent AD neuropathology and the associated cognitive degeneration in DS patients. Due to evidence that the accumulation of Aβ aggregates in the brain produces the neurodegenerative cascade characteristic of AD, many strategies which promote the clearance of Aβ peptides have been assessed as potential therapeutics for this disease. Bexarotene, a member of a subclass of retinoids that selectively activates retinoid receptors, modulates several pathways essential for cognitive performance and Aβ clearance. Consequently, bexarotene might be a good candidate to treat AD-associated neuropathology. However, the effects of bexarotene treatment in AD remain controversial. In the present study, we aimed to elucidate whether chronic bexarotene treatment administered to the most commonly used murine model of DS, the Ts65Dn (TS) mouse could reduce Aβ expression in their brains and improve their cognitive abilities. Chronic administration of bexarotene to aged TS mice and their CO littermates for 9 weeks diminished the reference, working, and spatial learning and memory of TS mice, and the spatial memory of CO mice in the Morris water maze. This treatment also produced marked hypoactivity in the plus maze, open field, and hole board tests in TS mice, and in the open field and hole board tests in CO mice. Administration of bexarotene reduced the expression of Aβ1-40, but not of Aβ1-42, in the hippocampi of TS mice. Finally, bexarotene increased Thyroid-stimulating hormone levels in TS mice and reduced Thyroid-stimulating hormone levels in CO mice, while animals of both karyotypes displayed reduced thyroxine levels after bexarotene administration. The bexarotene-induced hypothyroidism could be responsible for the hypoactivity of TS and CO mice and their diminished performance in the Morris water maze. Together, these results do not provide support for the use of bexarotene as a potential treatment of AD neuropathology in the DS population.
Collapse
Affiliation(s)
- Verónica Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Alba Puente
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Susana García-Cerro
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain.,CIBERSAM, Madrid, Spain
| | | | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Javier Riancho
- Neurology Service, Hospital Sierrallana-IDIVAL, Torrelavega, Spain.,Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain.,CIBERNED, Madrid, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
113
|
Martens N, Schepers M, Zhan N, Leijten F, Voortman G, Tiane A, Rombaut B, Poisquet J, Sande NVD, Kerksiek A, Kuipers F, Jonker JW, Liu H, Lütjohann D, Vanmierlo T, Mulder MT. 24(S)-Saringosterol Prevents Cognitive Decline in a Mouse Model for Alzheimer's Disease. Mar Drugs 2021; 19:190. [PMID: 33801706 PMCID: PMC8065937 DOI: 10.3390/md19040190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
We recently found that dietary supplementation with the seaweed Sargassum fusiforme, containing the preferential LXRβ-agonist 24(S)-saringosterol, prevented memory decline and reduced amyloid-β (Aβ) deposition in an Alzheimer's disease (AD) mouse model without inducing hepatic steatosis. Here, we examined the effects of 24(S)-saringosterol as a food additive on cognition and neuropathology in AD mice. Six-month-old male APPswePS1ΔE9 mice and wildtype C57BL/6J littermates received 24(S)-saringosterol (0.5 mg/25 g body weight/day) (APPswePS1ΔE9 n = 20; C57BL/6J n = 19) or vehicle (APPswePS1ΔE9 n = 17; C57BL/6J n = 19) for 10 weeks. Cognition was assessed using object recognition and object location tasks. Sterols were analyzed by gas chromatography/mass spectrometry, Aβ and inflammatory markers by immunohistochemistry, and gene expression by quantitative real-time PCR. Hepatic lipids were quantified after Oil-Red-O staining. Administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1ΔE9 mice without affecting the Aβ plaque load. Moreover, 24(S)-saringosterol prevented the increase in the inflammatory marker Iba1 in the cortex of APPswePS1ΔE9 mice (p < 0.001). Furthermore, 24(S)-saringosterol did not affect the expression of lipid metabolism-related LXR-response genes in the hippocampus nor the hepatic neutral lipid content. Thus, administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1ΔE9 mice independent of effects on Aβ load and without adverse effects on liver fat content. The anti-inflammatory effects of 24(S)-saringosterol may contribute to the prevention of cognitive decline.
Collapse
Affiliation(s)
- Nikita Martens
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, BE 3590 Hasselt, Belgium
| | - Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, BE 3590 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
| | - Na Zhan
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Frank Leijten
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Gardi Voortman
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Assia Tiane
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, BE 3590 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
| | - Ben Rombaut
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, BE 3590 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
| | - Janne Poisquet
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, BE 3590 Hasselt, Belgium
| | - Nienke van de Sande
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53105 Bonn, Germany
| | - Folkert Kuipers
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Johan W Jonker
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Hongbing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53105 Bonn, Germany
| | - Tim Vanmierlo
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, BE 3590 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| |
Collapse
|
114
|
Zhang H, Fan J, Zhao Z, Wang C, Wan LQ. Effects of Alzheimer's Disease-Related Proteins on the Chirality of Brain Endothelial Cells. Cell Mol Bioeng 2021; 14:231-240. [PMID: 34109002 DOI: 10.1007/s12195-021-00669-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/11/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction Cell chirality is an intrinsic cellular property that determines the directionality of cellular polarization along the left-right axis. We recently show that endothelial cell chirality can influence intercellular junction formation and alter trans-endothelial permeability, depending on the uniformity of the chirality of adjacent cells, which suggests a potential role for cell chirality in neurodegenerative diseases with blood-brain barrier (BBB) dysfunctions, such as Alzheimer's disease (AD). In this study, we determined the effects of AD-related proteins amyloid-β (Aβ), tau, and apolipoprotein E4 (ApoE4) on the chiral bias of the endothelial cell component in BBB. Methods We first examined the chiral bias and effects of protein kinase C (PKC)-mediated chiral alterations of human brain microvascular endothelial cells (hBMECs) using the ring micropattern chirality assay. We then investigated the effects of Aβ, tau, and ApoE4 on hBMEC chirality using chirality assay and biased organelle positions. Results The hBMECs have a strong clockwise chiral bias, which can be reversed by protein kinase C (PKC) activation. Treatment with tau significantly disrupted the chiral bias of hBMECs with altered cellular polarization. In contrast, neither ApoE4 nor Aβ-42 caused significant changes in cell chirality. Conclusions We conclude that tau might cause BBB dysfunction by disrupting cell polarization and chiral morphogenesis, while the effects of ApoE4 and Aβ-42 on BBB integrity might be chirality-independent. The potential involvement of chiral morphogenesis in tau-mediated BBB dysfunction in AD provides a novel perspective in vascular dysfunction in tauopathies such as AD, chronic traumatic encephalopathy, progressive supranuclear palsy, and frontotemporal dementia. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00669-w.
Collapse
Affiliation(s)
- Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Jie Fan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Zhen Zhao
- Department of Physiology and Neuroscience, The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033 USA
| | - Chunyu Wang
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| |
Collapse
|
115
|
Liu Y, Song JH, Xu W, Hou XH, Li JQ, Yu JT, Tan L, Chi S. The Associations of Cerebrospinal Fluid ApoE and Biomarkers of Alzheimer's Disease: Exploring Interactions With Sex. Front Neurosci 2021; 15:633576. [PMID: 33746700 PMCID: PMC7968417 DOI: 10.3389/fnins.2021.633576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/25/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Sex-related difference in Alzheimer's disease (AD) has been proposed, and apolipoprotein E (ApoE) isoforms have been suggested to be involved in the pathogenesis of AD. OBJECTIVE We aimed to explore whether cerebrospinal fluid (CSF) ApoE is associated with AD biomarkers and whether the associations are different (between sexes). METHODS Data of 309 participants [92 with normal cognition, 148 with mild cognitive impairment (MCI), and 69 with AD dementia] from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were cross-sectionally evaluated with the multiple linear regression model and longitudinally with the multivariate linear mixed-effects model for the associations of CSF ApoE with AD biomarkers. Sex-ApoE interaction was used to estimate whether sex moderates the associations of CSF ApoE and AD biomarkers. RESULTS Significant interactions between CSF ApoE and sex on AD biomarkers were observed [amyloid-β (Aβ): p = 0.0169 and phosphorylated-tau (p-tau): p = 0.0453]. In women, baseline CSF ApoE levels were significantly associated with baseline Aβ (p = 0.0135) and total-tau (t-tau) (p < 0.0001) as well as longitudinal changes of the biomarkers (Aβ: p = 0.0104; t-tau: p = 0.0110). In men, baseline CSF ApoE levels were only correlated with baseline p-tau (p < 0.0001) and t-tau (p < 0.0001) and did not aggravate AD biomarkers longitudinally. CONCLUSION The associations between CSF ApoE and AD biomarkers were sex-specific. Elevated CSF ApoE was associated with longitudinal changes of AD biomarkers in women, which indicates that CSF ApoE might be involved in the pathogenesis of AD pathology in a sex-specific way.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing-Hui Song
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jie-Qiong Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Song Chi
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | |
Collapse
|
116
|
Mallick S, Marshall PA, Wagner CE, Heck MC, Sabir ZL, Sabir MS, Dussik CM, Grozic A, Kaneko I, Jurutka PW. Evaluating Novel RXR Agonists That Induce ApoE and Tyrosine Hydroxylase in Cultured Human Glioblastoma Cells. ACS Chem Neurosci 2021; 12:857-871. [PMID: 33570383 DOI: 10.1021/acschemneuro.0c00707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is considerable interest in identifying effective and safe drugs for neurodegenerative disorders. Cell culture and animal model work have demonstrated that modulating gene expression through RXR-mediated pathways may mitigate or reverse cognitive decline. However, because RXR is a dimeric partner for several transcription factors, activating off-target transcription is a concern with RXR ligands (rexinoids). This off-target gene modulation leads to unwanted side effects that can include low thyroid function and significant hyperlipidemia. There is a need to develop rexinoids that have binding specificity for subsets of RXR heterodimers, to drive desired gene modulation, but that do not induce spurious effects. Herein, we describe experiments in which we analyze a series of novel and previously reported rexinoids for their ability to modulate specific gene pathways implicated in neurodegenerative disorders employing a U87 cell culture model. We demonstrate that, compared to the FDA-approved rexinoid bexarotene (1), several of these compounds are equally or more effective at stimulating gene expression via LXREs or Nurr1/NBREs and are superior at inducing ApoE and/or tyrosine hydroxylase (TH) gene and protein expression, including analogs 8, 9, 13, 14, 20, 23, and 24, suggesting a possible therapeutic role for these compounds in Alzheimer's or Parkinson's disease (PD). A subset of these potent RXR agonists can synergize with a presumed Nurr1 ligand and antimalarial drug (amodiaquine) to further enhance Nurr1/NBREs-directed transcription. This novel discovery has potential clinical implications for treatment of PD since it suggests that the combination of an RXR agonist and a Nurr1 ligand can significantly enhance RXR-Nurr1 heterodimer activity and drive enhanced therapeutic expression of the TH gene to increase endogenous synthesis of dopamine. These data indicate that is it possible and prudent to develop novel rexinoids for testing of gene expression and side effect profiles for use in potential treatment of neurodegenerative disorders, as individual rexinoids can have markedly different gene expression profiles but similar structures.
Collapse
Affiliation(s)
- Sanchita Mallick
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Pamela A. Marshall
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Carl E. Wagner
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Michael C. Heck
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Zhela L. Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Marya S. Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Christoper M. Dussik
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Aleksandra Grozic
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Ichiro Kaneko
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Peter W. Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| |
Collapse
|
117
|
Domingues R, Pereira C, Cruz MT, Silva A. Therapies for Alzheimer's disease: a metabolic perspective. Mol Genet Metab 2021; 132:162-172. [PMID: 33549409 DOI: 10.1016/j.ymgme.2021.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia in the elderly. Currently, there are over 50 million cases of dementia worldwide and it is expected that it will reach 136 million by 2050. AD is described as a neurodegenerative disease that gradually compromises memory and learning capacity. Patients often exhibit brain glucose hypometabolism and are more susceptible to develop type 2 diabetes or insulin resistance in comparison with age-matched controls. This suggests that there is a link between both pathologies. Glucose metabolism and the tricarboxylic acid cycle are tightly related to mitochondrial performance and energy production. Impairment of both these pathways can evoke oxidative damage on mitochondria and key proteins linked to several hallmarks of AD. Glycation is also another type of post-translational modification often reported in AD, which might impair the function of proteins that participate in metabolic pathways thought to be involved in this illness. Despite needing further research, therapies based on insulin treatment, usage of anti-diabetes drugs or some form of dietary intervention, have shown to be promising therapeutic approaches for AD in its early stages of progression and will be unveiled in this paper.
Collapse
Affiliation(s)
- Raquel Domingues
- Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal
| | - Claúdia Pereira
- Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3000-548, Portugal
| | - Maria Teresa Cruz
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3000-548, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3000-548, Portugal.
| |
Collapse
|
118
|
Stringa N, van Schoor NM, Milaneschi Y, Ikram MA, Del Panta V, Koolhaas CM, Voortman T, Bandinelli S, Wolters FJ, Huisman M. Physical Activity as Moderator of the Association Between APOE and Cognitive Decline in Older Adults: Results from Three Longitudinal Cohort Studies. J Gerontol A Biol Sci Med Sci 2021; 75:1880-1886. [PMID: 32110803 PMCID: PMC7518558 DOI: 10.1093/gerona/glaa054] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 01/18/2023] Open
Abstract
Background Previous studies have suggested that the association between APOE ɛ 4 and dementia is moderated by physical activity (PA), but the results remain inconclusive and longitudinal data on cognitive decline are missing. In this study, we examine whether there is a gene–environment interaction between APOE and PA on cognitive decline in older adults using 9-year follow-up data of three cohort studies. Methods We followed 7,176 participants from three longitudinal cohort studies: Longitudinal Aging Study Amsterdam (LASA), InCHIANTI, and Rotterdam Study for 9 years. PA was assessed with self-reported questionnaires and was categorized in low, moderate, and high PA. Cognitive function was assessed with the Mini-Mental State Examination (MMSE) and cognitive decline was defined as a decrease of three points or more on the MMSE during 3 years follow-up. We fitted logistic regression models using generalized estimating equations adjusting for age, sex, education, depressive symptoms, and number of chronic disease. Interaction between APOE and PA was tested on multiplicative and additive scale. Results Cohorts were similar in most aspects but InCHIANTI participants were on average older and had lower education. APOE ɛ 4 carriers had higher odds of cognitive decline (odds ratio [OR] = 1.46, 95% confidence interval [CI]: 1.29–1.64) while PA was not significantly associated with cognitive decline overall (moderate PA: OR = 0.87, 0.67–1.13; high PA: OR = 0.71, 0.36–1.40). There was no evidence for an interaction effect between PA and APOE ɛ 4 in cognitive decline in older adults (APOE × moderate PA: p = .83; APOE × high PA: p = .90). Conclusions Previous claims of a gene–environment interaction between APOE ɛ 4 and PA in cognitive decline are not supported by our results.
Collapse
Affiliation(s)
- Najada Stringa
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam UMC-Vrije Universiteit, the Netherlands
| | - Natasja M van Schoor
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam UMC-Vrije Universiteit, the Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health Research Institute, Amsterdam UMC-Vrije Universiteit, the Netherlands.,GGZ inGeest, Amsterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Vieri Del Panta
- Laboratory of Clinical Epidemiology, InCHIANTI Study Group, LHTC Local Health Tuscany Center, Florence, Italy
| | - Chantal M Koolhaas
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Stefania Bandinelli
- Laboratory of Clinical Epidemiology, InCHIANTI Study Group, LHTC Local Health Tuscany Center, Florence, Italy
| | - Frank J Wolters
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martijn Huisman
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam UMC-Vrije Universiteit, the Netherlands.,Department of Sociology, VU University, Amsterdam, the Netherlands
| |
Collapse
|
119
|
Jacobo-Albavera L, Domínguez-Pérez M, Medina-Leyte DJ, González-Garrido A, Villarreal-Molina T. The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease. Int J Mol Sci 2021; 22:ijms22041593. [PMID: 33562440 PMCID: PMC7915494 DOI: 10.3390/ijms22041593] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cholesterol homeostasis is essential in normal physiology of all cells. One of several proteins involved in cholesterol homeostasis is the ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein widely expressed in many tissues. One of its main functions is the efflux of intracellular free cholesterol and phospholipids across the plasma membrane to combine with apolipoproteins, mainly apolipoprotein A-I (Apo A-I), forming nascent high-density lipoprotein-cholesterol (HDL-C) particles, the first step of reverse cholesterol transport (RCT). In addition, ABCA1 regulates cholesterol and phospholipid content in the plasma membrane affecting lipid rafts, microparticle (MP) formation and cell signaling. Thus, it is not surprising that impaired ABCA1 function and altered cholesterol homeostasis may affect many different organs and is involved in the pathophysiology of a broad array of diseases. This review describes evidence obtained from animal models, human studies and genetic variation explaining how ABCA1 is involved in dyslipidemia, coronary heart disease (CHD), type 2 diabetes (T2D), thrombosis, neurological disorders, age-related macular degeneration (AMD), glaucoma, viral infections and in cancer progression.
Collapse
Affiliation(s)
- Leonor Jacobo-Albavera
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Mayra Domínguez-Pérez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Diana Jhoseline Medina-Leyte
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City CP04510, Mexico
| | - Antonia González-Garrido
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Teresa Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Correspondence:
| |
Collapse
|
120
|
Arora S, Layek B, Singh J. Design and Validation of Liposomal ApoE2 Gene Delivery System to Evade Blood-Brain Barrier for Effective Treatment of Alzheimer's Disease. Mol Pharm 2021; 18:714-725. [PMID: 32787268 PMCID: PMC10292003 DOI: 10.1021/acs.molpharmaceut.0c00461] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Targeting gene-based therapeutics to the brain is a strategy actively sought to treat Alzheimer's disease (AD). Recent findings discovered the role of apolipoprotein E (ApoE) isoforms in the clearance of toxic amyloid beta proteins from the brain. ApoE2 isoform is beneficial for preventing AD development, whereas ApoE4 is a major contributing factor to the disease. In this paper, we demonstrated efficient brain-targeted delivery of ApoE2 encoding plasmid DNA (pApoE2) using glucose transporter-1 (glut-1) targeted liposomes. Liposomes were surface-functionalized with a glut-1 targeting ligand mannose (MAN) and a cell-penetrating peptide (CPP) to enhance brain-targeting and cellular internalization, respectively. Among various CPPs, rabies virus glycoprotein peptide (RVG) or penetratin (Pen) was selected as a cell-penetration enhancer. Dual (RVGMAN and PenMAN)-functionalized liposomes were cytocompatible at 100 nM phospholipid concentration and demonstrated significantly higher expression of ApoE2 in bEnd.3 cells, primary neurons, and astrocytes compared to monofunctionalized and unmodified (plain) liposomes. Dual-modified liposomes also showed ∼2 times higher protein expression than other formulation controls in neurons cultured below the in vitro BBB model. These results translated well to in vivo efficacy study with significantly higher transfection of pApoE2 in the C57BL/6 mice brain following single tail vein administration of RVGMAN and PenMAN functionalized liposomes without any noticeable signs of toxicity. These results illustrate the potential of surface-modified liposomes for safe and brain-targeted delivery of the pApoE2 gene for effective AD therapy.
Collapse
Affiliation(s)
- Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, 58105 North Dakota, United States
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, 58105 North Dakota, United States
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, 58105 North Dakota, United States
| |
Collapse
|
121
|
Daily oscillation of cognitive factors is modified in the temporal cortex of an amyloid β(1-42)-induced rat model of Alzheimer's disease. Brain Res Bull 2021; 170:106-114. [PMID: 33508401 DOI: 10.1016/j.brainresbull.2021.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/28/2020] [Accepted: 01/20/2021] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a devastating disease characterized by loss of synapses and neurons in the elderly. Accumulation of the β-amyloid peptide (Aβ) in the brain is thought to be central to the pathogenesis of AD. ApoE plays a key role in normal and physiological clearance of Aß, since it facilitates the peptide intra- and extracellular proteolytic degradation. Besides the cognitive deficit, AD patients also show alterations in their circadian rhythms. The objective of this study was to investigate the effects of an i.c.v. injection of Aβ (1-42) peptide on the 24 h rhythms of Apo E, BMAL1, RORα, Bdnf and trkB mRNA and Aβ levels in the rat temporal cortex. We found that an i.c.v. injection of Aβ aggregates phase shifts daily Bdnf expression as well as Apo E, BMAL1, RORα, Aβ and decreased the mesor of TrkB rhythms. Thus, elevated Aβ peptide levels might modify the temporal patterns of cognition-related factors, probably; by affecting the clock factors rhythms as well as in the 24 h rhythms of Apo E.
Collapse
|
122
|
Suire CN, Leissring MA. Cathepsin D: A Candidate Link between Amyloid β-protein and Tauopathy in Alzheimer Disease. JOURNAL OF EXPERIMENTAL NEUROLOGY 2021; 2:10-15. [PMID: 33665647 PMCID: PMC7929084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alzheimer disease (AD) is a debilitating neurodegenerative disorder characterized by extracellular deposition of the amyloid β-protein (Aβ) and intraneuronal accumulation of the microtubule-associated protein, tau. Despite a wealth of experimental and genetic evidence implicating both Aβ and tau in the pathogenesis of AD, the precise molecular links between these two pathological hallmarks have remained surprisingly elusive. Here, we review emerging evidence for a critical nexus among Aβ, tau, and the lysosomal protease cathepsin D (CatD) that we hypothesize may play a pivotal role in the etiology of AD. CatD degrades both Aβ and tau in vitro, but the in vivo relevance of this lysosomal protease to these principally extracellular and cytosolic proteins, respectively, had remained undefined for many decades. Recently, however, our group found that genetic deletion of CatD in mice results in dramatic accumulation of Aβ in lysosomes, revealing that Aβ is normally trafficked to lysosomes in substantial quantities. Moreover, emerging evidence suggests that tau is also trafficked to the lysosome via chaperone-mediated autophagy and other trafficking pathways. Thus, Aβ, tau and CatD are colocalized in the lysosome, an organelle that shows dysfunction early in AD pathogenesis, where they can potentially interact. Notably, we discovered that Aβ42-the Aβ species most strongly linked to AD pathogenesis-is a highly potent, low-nanomolar, competitive inhibitor of CatD. Taking these observations together, we hypothesize that Aβ42 may trigger tauopathy by competitive inhibition of CatD-mediated degradation of tau-pathogenic forms of tau, in particular. Herein, we review the evidence supporting this hypothesis and explore the implications for the molecular pathogenesis of AD. Future research into these novel mechanistic links among Aβ, tau and CatD promises to expand our understanding of the etiology of AD and could potentially lead to novel therapeutic approaches for combatting this devastating disease of brain and mind.
Collapse
Affiliation(s)
- Caitlin N. Suire
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697 USA
| | - Malcolm A. Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697 USA,Correspondence should be addressed to Malcolm A. Leissring;
| |
Collapse
|
123
|
Jonathan MC, Adrián SH, Gonzalo A. Type II nuclear receptors with potential role in Alzheimer disease. Mol Aspects Med 2021; 78:100940. [PMID: 33397589 DOI: 10.1016/j.mam.2020.100940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Nuclear receptors are ligand-activated transcription factors that can modulated cellular processes involved in the development, homeostasis, cell proliferation, metabolism, and reproduction through the control of the specific genetic and molecular program. In the central nervous system, they are key regulators of neural stem cell fate decisions and can modulate the physiology of different brain cells. Over the past decades, a large body of evidence has supported that nuclear receptors are potential therapeutic targets for the treatment of neurodegenerative disorders such as Alzheimer's disease, the most common dementia worldwide, and the main cause of disability in later life. This disease is characterized by the progressive accumulation of amyloid-beta peptides and hyperphosphorylated tau protein that can explain alterations in synaptic transmission and plasticity; loss of dendritic spines; increased in reactive microglia and inflammation; reduction of neuronal stem cells number; myelin and vascular alterations that finally leads to increased neuronal death. Here, we present a review of type II no steroidal nuclear receptors that form obligatory heterodimers with the Retinoid X Receptor (RXR) and its potential in the therapeutic of AD. Activation of type II nuclear receptor by synthetic agonist leads to transcriptional regulation of specific genes that acts counteracting against the detrimental effects of amyloid-beta peptides and hyperphosphorylated tau in neuronal cells recovering the functionality of the synapses. But also, activation of type II nuclear receptor leads to modifications in APP metabolism, repression of inflammatory cascade and inductors of the generation of neuronal stem cells and progenitor cells supporting its potential therapeutics role for Alzheimer's disease.
Collapse
Affiliation(s)
- Muñoz-Cabrera Jonathan
- Grupo de Neurociencias y Muerte Celular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sandoval-Hernández Adrián
- Grupo de Neurociencias y Muerte Celular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Arboleda Gonzalo
- Grupo de Neurociencias y Muerte Celular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
124
|
Brown MR, Radford SE, Hewitt EW. Modulation of β-Amyloid Fibril Formation in Alzheimer's Disease by Microglia and Infection. Front Mol Neurosci 2020; 13:609073. [PMID: 33324164 PMCID: PMC7725705 DOI: 10.3389/fnmol.2020.609073] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023] Open
Abstract
Amyloid plaques are a pathological hallmark of Alzheimer's disease. The major component of these plaques are highly ordered amyloid fibrils formed by amyloid-β (Aβ) peptides. However, whilst Aβ amyloid fibril assembly has been subjected to detailed and extensive analysis in vitro, these studies may not reproduce how Aβ fibrils assemble in the brain. This is because the brain represents a highly complex and dynamic environment, and in Alzheimer's disease multiple cofactors may affect the assembly of Aβ fibrils. Moreover, in vivo amyloid plaque formation will reflect the balance between the assembly of Aβ fibrils and their degradation. This review explores the roles of microglia as cofactors in Aβ aggregation and in the clearance of amyloid deposits. In addition, we discuss how infection may be an additional cofactor in Aβ fibril assembly by virtue of the antimicrobial properties of Aβ peptides. Crucially, by understanding the roles of microglia and infection in Aβ amyloid fibril assembly it may be possible to identify new therapeutic targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Madeleine R Brown
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Eric W Hewitt
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
125
|
Regulation of cytochrome P450 4F11 expression by liver X receptor alpha. Int Immunopharmacol 2020; 90:107240. [PMID: 33310663 DOI: 10.1016/j.intimp.2020.107240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022]
Abstract
Cytochrome P450 4F (CYP4F) enzymes are responsible for the metabolism of eicosanoids, which play important roles in inflammation. Nuclear receptor liver X receptor alpha (LXRα) is a critical signal node connecting inflammation and lipid metabolism. Studies revealed that the release of cytokines and nuclear factor-κB (NF-κB) can change the CYP4F11 expression in HepG2 cells. However, the effect of LXRα on the CYP4F family and the underlying mechanism remain unclear. This study found that CYP4F11 is a target gene of LXRα. Luciferase assays and siRNA transfection showed that LXRα increased the transcription of CYP4F11 and LXRα agonist GW3965 could induce the expression of CYP4F11 by activating the LXRα-CYP4F11 pathway. Besides, overexpression of CYP4F11 could decrease TNF-α and IL-1β in lipopolysaccharide (LPS)-induced THP-1 cells. The finding of the regulation of CYP4F11 may contribute to the anti-inflammatory activity of LXRα agonists.
Collapse
|
126
|
Li Z, Shue F, Zhao N, Shinohara M, Bu G. APOE2: protective mechanism and therapeutic implications for Alzheimer's disease. Mol Neurodegener 2020; 15:63. [PMID: 33148290 PMCID: PMC7640652 DOI: 10.1186/s13024-020-00413-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023] Open
Abstract
Investigations of apolipoprotein E (APOE) gene, the major genetic risk modifier for Alzheimer's disease (AD), have yielded significant insights into the pathogenic mechanism. Among the three common coding variants, APOE*ε4 increases, whereas APOE*ε2 decreases the risk of late-onset AD compared with APOE*ε3. Despite increased understanding of the detrimental effect of APOE*ε4, it remains unclear how APOE*ε2 confers protection against AD. Accumulating evidence suggests that APOE*ε2 protects against AD through both amyloid-β (Aβ)-dependent and independent mechanisms. In addition, APOE*ε2 has been identified as a longevity gene, suggesting a systemic effect of APOE*ε2 on the aging process. However, APOE*ε2 is not entirely benign; APOE*ε2 carriers exhibit increased risk of certain cerebrovascular diseases and neurological disorders. Here, we review evidence from both human and animal studies demonstrating the protective effect of APOE*ε2 against AD and propose a working model depicting potential underlying mechanisms. Finally, we discuss potential therapeutic strategies designed to leverage the protective effect of APOE2 to treat AD.
Collapse
Affiliation(s)
- Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mitsuru Shinohara
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi, 474-8511, Japan.
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
127
|
Pedrini S, Chatterjee P, Hone E, Martins RN. High‐density lipoprotein‐related cholesterol metabolism in Alzheimer’s disease. J Neurochem 2020; 159:343-377. [DOI: 10.1111/jnc.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Steve Pedrini
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Pratishtha Chatterjee
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
| | - Eugene Hone
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Ralph N. Martins
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Nedlands WA Australia
| |
Collapse
|
128
|
Perea JR, Bolós M, Avila J. Microglia in Alzheimer's Disease in the Context of Tau Pathology. Biomolecules 2020; 10:biom10101439. [PMID: 33066368 PMCID: PMC7602223 DOI: 10.3390/biom10101439] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
Microglia are the cells that comprise the innate immune system in the brain. First described more than a century ago, these cells were initially assigned a secondary role in the central nervous system (CNS) with respect to the protagonists, neurons. However, the latest advances have revealed the complexity and importance of microglia in neurodegenerative conditions such as Alzheimer’s disease (AD), the most common form of dementia associated with aging. This pathology is characterized by the accumulation of amyloid-β peptide (Aβ), which forms senile plaques in the neocortex, as well as by the aggregation of hyperphosphorylated tau protein, a process that leads to the development of neurofibrillary tangles (NFTs). Over the past few years, efforts have been focused on studying the interaction between Aβ and microglia, together with the ability of the latter to decrease the levels of this peptide. Given that most clinical trials following this strategy have failed, current endeavors focus on deciphering the molecular mechanisms that trigger the tau-induced inflammatory response of microglia. In this review, we summarize the most recent studies on the physiological and pathological functions of tau protein and microglia. In addition, we analyze the impact of microglial AD-risk genes (APOE, TREM2, and CD33) in tau pathology, and we discuss the role of extracellular soluble tau in neuroinflammation.
Collapse
Affiliation(s)
- Juan Ramón Perea
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 1 Nicolás Cabrera, 28049 Madrid, Spain; (J.R.P.); (M.B.)
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), 5 Valderrebollo, 28031 Madrid, Spain
| | - Marta Bolós
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 1 Nicolás Cabrera, 28049 Madrid, Spain; (J.R.P.); (M.B.)
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), 5 Valderrebollo, 28031 Madrid, Spain
| | - Jesús Avila
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 1 Nicolás Cabrera, 28049 Madrid, Spain; (J.R.P.); (M.B.)
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), 5 Valderrebollo, 28031 Madrid, Spain
- Correspondence: ; Tel.:+34-196-4564
| |
Collapse
|
129
|
Sadeghmousavi S, Eskian M, Rahmani F, Rezaei N. The effect of insomnia on development of Alzheimer's disease. J Neuroinflammation 2020; 17:289. [PMID: 33023629 PMCID: PMC7542374 DOI: 10.1186/s12974-020-01960-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and a neurodegenerative disorder characterized by memory deficits especially forgetting recent information, recall ability impairment, and loss of time tracking, problem-solving, language, and recognition difficulties. AD is also a globally important health issue but despite all scientific efforts, the treatment of AD is still a challenge. Sleep has important roles in learning and memory consolidation. Studies have shown that sleep deprivation (SD) and insomnia are associated with the pathogenesis of Alzheimer's disease and may have an impact on the symptoms and development. Thus, sleep disorders have decisive effects on AD; this association deserves more attention in research, diagnostics, and treatment, and knowing this relation also can help to prevent AD through screening and proper management of sleep disorders. This study aimed to show the potential role of SD and insomnia in the pathogenesis and progression of AD.
Collapse
Affiliation(s)
- Shaghayegh Sadeghmousavi
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Eskian
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Rahmani
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nima Rezaei
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
130
|
Poon CH, Wang Y, Fung ML, Zhang C, Lim LW. Rodent Models of Amyloid-Beta Feature of Alzheimer's Disease: Development and Potential Treatment Implications. Aging Dis 2020; 11:1235-1259. [PMID: 33014535 PMCID: PMC7505263 DOI: 10.14336/ad.2019.1026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/26/2019] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide and causes severe financial and social burdens. Despite much research on the pathogenesis of AD, the neuropathological mechanisms remain obscure and current treatments have proven ineffective. In the past decades, transgenic rodent models have been used to try to unravel this disease, which is crucial for early diagnosis and the assessment of disease-modifying compounds. In this review, we focus on transgenic rodent models used to study amyloid-beta pathology in AD. We also discuss their possible use as promising tools for AD research. There is still no effective treatment for AD and the development of potent therapeutics are urgently needed. Many molecular pathways are susceptible to AD, ranging from neuroinflammation, immune response, and neuroplasticity to neurotrophic factors. Studying these pathways may shed light on AD pathophysiology as well as provide potential targets for the development of more effective treatments. This review discusses the advantages and limitations of these models and their potential therapeutic implications for AD.
Collapse
Affiliation(s)
- Chi Him Poon
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yingyi Wang
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man-Lung Fung
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chengfei Zhang
- 2Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Lee Wei Lim
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
131
|
Plotkin SS, Cashman NR. Passive immunotherapies targeting Aβ and tau in Alzheimer's disease. Neurobiol Dis 2020; 144:105010. [PMID: 32682954 PMCID: PMC7365083 DOI: 10.1016/j.nbd.2020.105010] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Amyloid-β (Aβ) and tau proteins currently represent the two most promising targets to treat Alzheimer's disease. The most extensively developed method to treat the pathologic forms of these proteins is through the administration of exogenous antibodies, or passive immunotherapy. In this review, we discuss the molecular-level strategies that researchers are using to design an effective therapeutic antibody, given the challenges in treating this disease. These challenges include selectively targeting a protein that has misfolded or is pathological rather than the more abundant, healthy protein, designing strategic constructs for immunizing an animal to raise an antibody that has the appropriate conformational selectivity to achieve this end, and clearing the pathological protein species before prion-like cell-to-cell spread of misfolded protein has irreparably damaged neurons, without invoking damaging inflammatory responses in the brain that naturally arise when the innate immune system is clearing foreign agents. The various solutions to these problems in current clinical trials will be discussed.
Collapse
Affiliation(s)
- Steven S Plotkin
- University of British Columbia, Department of Physics and Astronomy and Genome Sciences and Technology Program, Vancouver, BC V6T 1Z1, Canada.
| | - Neil R Cashman
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
132
|
The Role of HDL and HDL Mimetic Peptides as Potential Therapeutics for Alzheimer's Disease. Biomolecules 2020; 10:biom10091276. [PMID: 32899606 PMCID: PMC7563116 DOI: 10.3390/biom10091276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
The role of high-density lipoproteins (HDL) in the cardiovascular system has been extensively studied and the cardioprotective effects of HDL are well established. As HDL particles are formed both in the systemic circulation and in the central nervous system, the role of HDL and its associated apolipoproteins in the brain has attracted much research interest in recent years. Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, for which there currently exists no approved disease modifying treatment. Multiple lines of evidence, including a number of large-scale human clinical studies, have shown a robust connection between HDL levels and AD. Low levels of HDL are associated with increased risk and severity of AD, whereas high levels of HDL are correlated with superior cognitive function. Although the mechanisms underlying the protective effects of HDL in the brain are not fully understood, many of the functions of HDL, including reverse lipid/cholesterol transport, anti-inflammation/immune modulation, anti-oxidation, microvessel endothelial protection, and proteopathy modification, are thought to be critical for its beneficial effects. This review describes the current evidence for the role of HDL in AD and the potential of using small peptides mimicking HDL or its associated apolipoproteins (HDL-mimetic peptides) as therapeutics to treat AD.
Collapse
|
133
|
Clark JN, Whiting A, McCaffery P. Retinoic acid receptor-targeted drugs in neurodegenerative disease. Expert Opin Drug Metab Toxicol 2020; 16:1097-1108. [DOI: 10.1080/17425255.2020.1811232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jason Nicol Clark
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | | | - Peter McCaffery
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
134
|
ApoE Lipidation as a Therapeutic Target in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21176336. [PMID: 32882843 PMCID: PMC7503657 DOI: 10.3390/ijms21176336] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein E (APOE) is the major cholesterol carrier in the brain, affecting various normal cellular processes including neuronal growth, repair and remodeling of membranes, synaptogenesis, clearance and degradation of amyloid β (Aβ) and neuroinflammation. In humans, the APOE gene has three common allelic variants, termed E2, E3, and E4. APOE4 is considered the strongest genetic risk factor for Alzheimer’s disease (AD), whereas APOE2 is neuroprotective. To perform its normal functions, apoE must be secreted and properly lipidated, a process influenced by the structural differences associated with apoE isoforms. Here we highlight the importance of lipidated apoE as well as the APOE-lipidation targeted therapeutic approaches that have the potential to correct or prevent neurodegeneration. Many of these approaches have been validated using diverse cellular and animal models. Overall, there is great potential to improve the lipidated state of apoE with the goal of ameliorating APOE-associated central nervous system impairments.
Collapse
|
135
|
Huang YP, Xue JJ, Li C, Chen X, Fu HJ, Fei T, Bi PX. Depression and APOEε4 Status in Individuals with Subjective Cognitive Decline: A Meta-Analysis. Psychiatry Investig 2020; 17:858-864. [PMID: 32853520 PMCID: PMC7538248 DOI: 10.30773/pi.2019.0324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/24/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To evaluate the associative role of depression and apolipoprotein E epsilon 4 allele (APOEε4) in subjective cognitive decline (SCD) and its progression to objective cognitive decline. METHODS After literature search in electronic databases, studies were selected by following precise eligibility criteria. Meta-analyses were performed to examine the role of APOEε4 and depression in SCD or its progression to mild cognitive impairment (MCI) or dementia. RESULTS APOEε4 positivity was not different between SCD and normal individuals but was significantly higher in individuals with SCD plus than in normal individuals [odds ratio: 2.39 (95% CI: 1.87, 3.05); p<0.00001] and in SCD converters than in non-converters [odds ratio: 5.19 (95% CI: 2.36, 11.42); p<0.00001]. Depression was significantly higher in individuals with SCD [standardized mean difference: 0.63 (0.45, 0.82); p<0.00001] and SCD plus [standardized mean difference: 0.83 (0.43, 1.22); p<0.0001] than in normal individuals. However, depression was not different between SCD and MCI or between SCD converters and non-converters. Age of SCD converters was higher than non-converters [mean difference: 2.95 years (0.58, 5.31)]. CONCLUSION Whereas APOEε4 positivity was higher in SCD plus and SCD converters, depression was higher in SCD and SCD plus but was not different between SCD and MCI.
Collapse
Affiliation(s)
- Yue-Ping Huang
- Department of Gerontological Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Ju-Jun Xue
- Department of Gerontological Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Chao Li
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical College, Mudanjiang, China
| | - Xi Chen
- Department of Experimental Diagnosis, Heilongjiang Provincial Hospital, Harbin, China
| | - Hong-Juan Fu
- Department of Gerontological Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Teng Fei
- Department of Experimental Diagnosis, Heilongjiang Provincial Hospital, Harbin, China
| | - Peng-Xiang Bi
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical College, Mudanjiang, China
| |
Collapse
|
136
|
Emerging Therapeutic Promise of Ketogenic Diet to Attenuate Neuropathological Alterations in Alzheimer's Disease. Mol Neurobiol 2020; 57:4961-4977. [PMID: 32820459 DOI: 10.1007/s12035-020-02065-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial and chronic neurodegenerative disorder that interferes with memory, thinking, and behavior. The consumption of dietary fat has been considered a vital factor for AD as this disease is related to blood-brain barrier function and cholesterol signaling. The ε4 allele of apolipoprotein E (APOE4) is a primary genetic risk factor that encodes one of many proteins accountable for the transport of cholesterol and it is deemed as the leading cholesterol transport proteins in the brain. In case of AD development, the causative factor is the high level of serum/plasma cholesterol. However, this statement is arguable and, in the meantime, the levels of brain cholesterol in individuals with AD are extremely inconstant and levels of cholesterol in the brain and serum/plasma of AD individuals do not reflect cholesterol as a risk factor. In fact, APOE4 is neither fundamental nor sufficient for the advancement of AD; it just acts as a synergistic and increases the danger of AD. Another noticeable characteristic of AD is area-specific decreases in the metabolism of brain glucose. It has been found that the brain cells cannot efficiently metabolize fats; hence, they totally rely upon glucose as a vitality substrate. Thus, suppression of glucose metabolism can possess an intense effect on brain actions. Hypometabolism is frequently found in AD and has quite recently achieved impressive consideration as a plausible target for interfering in the progression of the disease. One promising approach is to keep up the normal supply of glucose to the brain with ketone bodies from the ketogenic diet signifies a potential therapeutic agent for AD. Therefore, this review represents the role of ketogenic diets to combat AD pathogenesis by considering the influence of APOE.
Collapse
|
137
|
Najm R, Zalocusky KA, Zilberter M, Yoon SY, Hao Y, Koutsodendris N, Nelson M, Rao A, Taubes A, Jones EA, Huang Y. In Vivo Chimeric Alzheimer's Disease Modeling of Apolipoprotein E4 Toxicity in Human Neurons. Cell Rep 2020; 32:107962. [PMID: 32726626 PMCID: PMC7430173 DOI: 10.1016/j.celrep.2020.107962] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/15/2020] [Accepted: 07/03/2020] [Indexed: 02/08/2023] Open
Abstract
Despite its clear impact on Alzheimer's disease (AD) risk, apolipoprotein (apo) E4's contributions to AD etiology remain poorly understood. Progress in answering this and other questions in AD research has been limited by an inability to model human-specific phenotypes in an in vivo environment. Here we transplant human induced pluripotent stem cell (hiPSC)-derived neurons carrying normal apoE3 or pathogenic apoE4 into human apoE3 or apoE4 knockin mouse hippocampi, enabling us to disentangle the effects of apoE4 produced in human neurons and in the brain environment. Using single-nucleus RNA sequencing (snRNA-seq), we identify key transcriptional changes specific to human neuron subtypes in response to endogenous or exogenous apoE4. We also find that Aβ from transplanted human neurons forms plaque-like aggregates, with differences in localization and interaction with microglia depending on the transplant and host apoE genotype. These findings highlight the power of in vivo chimeric disease modeling for studying AD.
Collapse
Affiliation(s)
- Ramsey Najm
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kelly A Zalocusky
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Gladstone Center for Translational Advancement, San Francisco, CA 94158, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Yanxia Hao
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Gladstone Center for Translational Advancement, San Francisco, CA 94158, USA
| | - Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Maxine Nelson
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Antara Rao
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alice Taubes
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emily A Jones
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Center for Translational Advancement, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Neurology and Pathology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
138
|
Dubey H, Gulati K, Ray A. Alzheimer's Disease: A Contextual Link with Nitric Oxide Synthase. Curr Mol Med 2020; 20:505-515. [PMID: 31782366 DOI: 10.2174/1566524019666191129103117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is a gasotransmitter with pleiotropic effects which has made a great impact on biology and medicine. A multidimensional neuromodulatory role of NO has been shown in the brain with specific reference to neurodegenerative disorders like Alzheimer's disease (AD) and cognitive dysfunction. It has been found that NO/cGMP signalling pathway has an important role in learning and memory. Initially, it was considered that indirectly NO exerted neurotoxicity in AD via glutamatergic excitotoxicity. However, considering the early development of cognitive functions involved in the learning memory process including long term potentiation and synaptic plasticity, NO has a crucial role. Increasing evidence uncovered the above facts that isoforms of NOS viz endothelial NO synthase (eNOS), neuronal NO synthase (nNOS) and inducible NO synthase (iNOS) having a variable expression in AD are mainly responsible for learning and memory activities. In this review, we focus on the role of NOS isoforms in AD parallel to NO. Further, this review provides convergent evidence that NO could provide a therapeutic avenue in AD via modulation of the relevant NOS expression.
Collapse
Affiliation(s)
- Harikesh Dubey
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Kavita Gulati
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Arunabha Ray
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| |
Collapse
|
139
|
Plascencia-Villa G, Perry G. Status and future directions of clinical trials in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:3-50. [PMID: 32739008 DOI: 10.1016/bs.irn.2020.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amyloid-β (Aβ) senile plaques and neurofibrillary tangles of tau are generally recognized as the culprits of Alzheimer's disease (AD) and related dementia. About 25 years ago, the amyloid cascade hypotheses postulated a direct correlation of plaques with the development of AD, and it has been the dominant theory since then. In this period, more than 200 clinical trials focused mainly on targeting components of the Aβ cascade have dramatically failed, some of them in Phase III. With a greater than 99.6% failure rate at a cost of several billion from governments, industry, and private funders, therapeutic strategies targeting amyloid and tau are now under scrutiny. Therefore, it is time to reevaluate alternatives to targeting Aβ and tau as effective therapeutic strategies for AD. The diagnosis of AD is currently based on medical examination of symptoms including tests to assess memory impairment, attention, language, and other thinking skills. This is complemented with brain scans, such as computed tomography, magnetic resonance imaging, or positron emission tomography with the help of imaging probes targeting Aβ or tau deposits. This approach has contributed to the tunnel vision focus on Aβ and tau as the main culprits of AD. However, events upstream of these proteopathies (age-related impaired neuronal bioenergetics, lysosome function, neurotrophic signaling, and neuroinflammation, among others) are almost surely where the development of alternative therapeutic interventions should be targeted. Here, we present the current status of therapeutic candidates targeting diverse mechanisms and strategies including Aβ and tau, proteins involved in Aβ production and trafficking (ApoE, α/β/γ-secretases), neuroinflammation, neurotransmitters, neuroprotective agents antimicrobials, and gene and stem cell therapy. There are currently around 33 compounds in Phase III, 78 in Phase II, and 32 more in Phase I trials. With the current world health crisis of increased dementia in a rapidly aging population, effective AD therapies are desperately needed.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), 1 UTSA Circle, San Antonio, TX, United States
| | - George Perry
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), 1 UTSA Circle, San Antonio, TX, United States.
| |
Collapse
|
140
|
Park KHJ, Barrett T. Gliosis Precedes Amyloid-β Deposition and Pathological Tau Accumulation in the Neuronal Cell Cycle Re-Entry Mouse Model of Alzheimer's Disease. J Alzheimers Dis Rep 2020; 4:243-253. [PMID: 32904753 PMCID: PMC7458550 DOI: 10.3233/adr-200170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: The presence of cell cycle markers in postmortem Alzheimer’s disease (AD) brains suggest a potential role of cell cycle activation in AD. It was shown that cell cycle activation in postmitotic neurons in mice produces Aβ and tau pathologies from endogenous mouse proteins in the absence of AβPP or tau mutations. Objective: In this study, we examined the microglial and astrocytic responses in these mice since neuroinflammation is another key pathological feature in AD. Methods: Our neuronal cell cycle re-entry (NCCR) mouse model are bitransgenic mice heterozygous for both Camk2a-tTA and TRE-SV40T. Using this tet-off system, we triggered NCCR in our animals via neuronal expression of SV40T starting at 1 month of age. TRE-SV40T Tg mice were used as SV40T transgene controls. The animals were examined at following time points: 2, 3, 4, 6, and 12 months of age. The microglia and astrocyte responses in our mice were determined by image analysis and stereology on brain sections immunofluorescently labeled using the following antibodies: Iba1, CD45, CD68, MHCII, and GFAP. Cellular senescent marker p16 was also used in this study. Results: Our NCCR mice demonstrate early and persistent activation of microglia and astrocytes. Additionally, proinflammatory and senescent microglia phenotype and brain leukocyte infiltration is present at 12 months of age. Conclusion: In the absence of FAD gene mutations, our NCCR mice simultaneously display many of the pathological changes associated with AD, such as ectopic neuronal cell cycle re-entry, Aβ and tau pathologies, neuroinflammation, and neurodegeneration. These animals represent a promising alternative AD mouse model.
Collapse
Affiliation(s)
- Kevin H J Park
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA.,Biochemistry, Cellular & Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI, USA.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA.,Michigan Alzheimer's Disease Center, University of Michigan, Ann Arbor, MI, USA
| | - Tomás Barrett
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
141
|
Graykowski D, Kasparian K, Caniglia J, Gritsaeva Y, Cudaback E. Neuroinflammation drives APOE genotype-dependent differential expression of neprilysin. J Neuroimmunol 2020; 346:577315. [PMID: 32682137 DOI: 10.1016/j.jneuroim.2020.577315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by the deposition of amyloid-beta (Aβ) plaques and widespread neuroinflammation. While the cause of AD remains unknown, multiple factors likely contribute to the disease, including heart disease, diabetes, previous head injury, as well as a number of genetic determinants. Inheritance of the apolipoprotein (APOE) ε4 allele represents the strongest genetic risk factor for development of AD, driving pathogenesis and increasing overall disease severity. APOE has long been recognized as a key regulator of cholesterol homeostasis, although a greater appreciation now exists for its role in various innate immune system processes. Indeed, APOE modulates inflammatory environments in brain in large part by altering gene expression profiles in glia, important mediators of immunity in the CNS. While the association between APOE and AD was first observed nearly three decades ago, the mechanism by which APOE ε4 influences the etiology and pathophysiology of AD is not well characterized. Overwhelming data supports the hypothesis that APOE ε4 dysregulates central amyloid metabolism by an undetermined molecular mechanism, thus laying the foundation for disease. A host of amyloid-degrading enzymes (ADEs) regulate Aβ accumulation in brain, and therefore represent valuable therapeutic targets. Neprilysin (NEP), a metalloendopeptidase expressed by activated microglia and astrocytes, is a broad-spectrum ADE able to degrade a variety of Aβ species. Here we describe in vivo and in vitro experiments designed to investigate the potential for APOE genotype to differentially regulate glial NEP in brain under neuroinflammatory conditions. Our results provide a novel mechanism by which APOE genotype-dependent differential expression of NEP by glia during neuroinflammation may contribute to AD pathogenesis.
Collapse
Affiliation(s)
- David Graykowski
- Department of Health Sciences, DePaul University, Chicago, IL 60614, USA
| | - Kyle Kasparian
- Department of Health Sciences, DePaul University, Chicago, IL 60614, USA
| | - John Caniglia
- Department of Health Sciences, DePaul University, Chicago, IL 60614, USA
| | - Yelena Gritsaeva
- Department of Health Sciences, DePaul University, Chicago, IL 60614, USA
| | - Eiron Cudaback
- Department of Health Sciences, DePaul University, Chicago, IL 60614, USA.
| |
Collapse
|
142
|
Yu W, Wang L, Yang L, Li YJ, Wang M, Qiu C, Yang Q, Li XB, Huang YL, Liu R, Wu YM. Activation of LXRβ Signaling in the Amygdala Confers Anxiolytic Effects Through Rebalancing Excitatory and Inhibitory Neurotransmission upon Acute Stress. Neurotherapeutics 2020; 17:1253-1270. [PMID: 32297184 PMCID: PMC7609627 DOI: 10.1007/s13311-020-00857-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The balance of major excitatory (glutamate, Glu) and inhibitory (γ-aminobutyric acid, GABA), named as E/I neurotransmission, is critical for proper information processing. Anxiety-like responses upon stress are accompanied by abnormal alterations in the formation and function of synapses, resulting in the imbalance of E/I neurotransmission in the amygdala. Liver X receptors (LXRs), including LXRα and LXRβ isoforms, are nuclear receptors responsible for regulating central nervous system (CNS) functions besides maintaining metabolic homeostasis. However, little is known about the contribution of LXRs in E/I balance in regulating anxiety-related behaviors induced by stress. In this study, we found stress-induced anxiety led to the expression reduction of LXRβ not LXRα in mice amygdala. GW3965, a dual agonist for both LXRα and LXRβ, alleviated anxiety-like behaviors of stressed mice through activation of LXRβ, confirmed by the knockdown of LXRβ mediated by lentiviral shRNAs in the basolateral amygdala (BLA). This was paralleled by correcting the disequilibrium of E/I neurotransmission in the stressed BLA. Importantly, GW3965 exerted anxiolytic effects by correcting the promoted amplitude and frequency of miniature excitatory postsynaptic current (mEPSC), and augmenting the decreased that of miniature inhibitory postsynaptic current (mIPSC) in the stressed BLA. This suggests that stress-induced anxiety-like behaviors can largely be ascribed to the deficit of LXRβ signaling in E/I neurotransmission in BLA. These findings highlight the deficiency of LXRβ signaling in the amygdala linked to anxiety disorder, and LXRβ activation may represent a potential novel target for anxiety treatment with an alteration in synaptic transmission in the amygdala.
Collapse
Affiliation(s)
- Wen Yu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Lu Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Le Yang
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, People's Republic of China
| | - Yan-Jiao Li
- Department of Acupuncture and Moxibustion, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, Shaanxi Province, People's Republic of China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Chen Qiu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Qi Yang
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, People's Republic of China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Yun-Long Huang
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rui Liu
- Department of Rehabilitation Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China.
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China.
| |
Collapse
|
143
|
Rahimi-Balaei M, Jiao X, Dalvand A, Shabanipour S, Chung SH, Amiri S, Kong J, Marzban H. Mutations in the Reelin pathway are associated with abnormal expression of microglial IgG FC receptors in the cerebellar cortex. Mol Biol Rep 2020; 47:5323-5331. [PMID: 32594343 DOI: 10.1007/s11033-020-05614-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/20/2020] [Indexed: 11/29/2022]
Abstract
Microglia are the immune cells of the central nervous system involved in a variety of developmental processes, such as regulation of cell death and survival, spatial patterning, and contribute to the development of Purkinje cells (PCs) during migration. Microglia express immunoglobulin G Fc receptors (FcgRs). In this report, we describe microglial FcgR expression and its relation to abnormal PC migration in the cerebellum during development. To detect microglial FcgR, the direct anti-IgG (secondary antisera) and high concentrations of Triton X-100 were applied as a method for labeling microglial cells without the use of any specific primary antiserum. By using Acp2-/- mice, which show an excessive PC migration into the molecular layer (ml), and 3 different types of mice with a null to alter the Reelin pathway (Reeler-, Dab1 (SCM)-, and Apoer mutant mice), we studied the location of PCs and the expression of FcgRs. Wild type littermates were used as controls in all studies. We show that the expression of microglial FcgRs was absent and PCs were ectopically located in the white matter in the cerebella of all mutant mice, except for the Acp2-/- mice (PCs were located in the ml). These results suggest a role for FcgRs in the Reelin signaling pathway, not in regulating PC migration, but rather in the adaptation to an environment with a relatively large number of ectopically located PCs. However, the exact correlation between the ectopic location of PCs and lack of FcgRs in Reeler, SCM, and Apoer-/- mice and the presence of FcgRs and directed PC location in the ml in Acp2-/- mice are yet to be determined.
Collapse
Affiliation(s)
- Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Xiaodan Jiao
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Azadeh Dalvand
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Shahin Shabanipour
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Seung H Chung
- Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Shayan Amiri
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jimig Kong
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada. .,The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
144
|
Gray SC, Kinghorn KJ, Woodling NS. Shifting equilibriums in Alzheimer's disease: the complex roles of microglia in neuroinflammation, neuronal survival and neurogenesis. Neural Regen Res 2020; 15:1208-1219. [PMID: 31960800 PMCID: PMC7047786 DOI: 10.4103/1673-5374.272571] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/02/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease is the leading cause of dementia. Its increased prevalence in developed countries, due to the sharp rise in ageing populations, presents one of the costliest challenges to modern medicine. In order to find disease-modifying therapies to confront this challenge, a more complete understanding of the pathogenesis of Alzheimer's disease is necessary. Recent studies have revealed increasing evidence for the roles played by microglia, the resident innate immune system cells of the brain. Reflecting the well-established roles of microglia in reacting to pathogens and inflammatory stimuli, there is now a growing literature describing both protective and detrimental effects for individual cytokines and chemokines produced by microglia in Alzheimer's disease. A smaller but increasing number of studies have also addressed the divergent roles played by microglial neurotrophic and neurogenic factors, and how their perturbation may play a key role in the pathogenesis of Alzheimer's disease. Here we review recent findings on the roles played by microglia in neuroinflammation, neuronal survival and neurogenesis in Alzheimer's disease. In each case, landmark studies have provided evidence for the divergent ways in which microglia can either promote neuronal function and survival, or perturb neuronal function, leading to cell death. In many cases, the secreted molecules of microglia can lead to divergent effects depending on the magnitude and context of microglial activation. This suggests that microglial functions must be maintained in a fine equilibrium, in order to support healthy neuronal function, and that the cellular microenvironment in the Alzheimer's disease brain disrupts this fine balance, leading to neurodegeneration. Thus, an understanding of microglial homeostasis, both in health and across the trajectory of the disease state, will improve our understanding of the pathogenic mechanisms underlying Alzheimer's disease, and will hopefully lead to the development of microglial-based therapeutic strategies to restore equilibrium in the Alzheimer's disease brain.
Collapse
Affiliation(s)
- Sophie C. Gray
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kerri J. Kinghorn
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Nathaniel S. Woodling
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
145
|
Selected LDLR and APOE Polymorphisms Affect Cognitive and Functional Response to Lipophilic Statins in Alzheimer's Disease. J Mol Neurosci 2020; 70:1574-1588. [PMID: 32474901 DOI: 10.1007/s12031-020-01588-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022]
Abstract
Effects of statins over clinical changes in Alzheimer's disease (AD) are usually non-significant, but epistatic interactions between genetic variants involved in cholesterol metabolism could be important for such effects. We aimed to investigate whether LDLR single-nucleotide polymorphisms rs11669576 (LDLR8), rs5930 (LDLR10), and rs5925 (LDLR13) are associated with cognitive and functional changes in AD, while also considering APOE haplotypes and lipid-lowering treatment with lipophilic statins for stratification. Consecutive outpatients with late-onset AD were screened with cognitive tests, while caregivers scored functionality and caregiver burden, with prospective neurotranslational correlations documented for 1 year. For 179 patients, minor allele frequencies were 0.078 for rs11669576-A (14.5% heterozygotes), 0.346 for rs5930-A (42.5% heterozygotes), and 0.444 for rs5925-C (56.4% heterozygotes), all in Hardy-Weinberg equilibrium; 134 patients had hypercholesterolemia, and 133 used lipophilic statins. Carriers of rs11669576-G had faster cognitive decline, while functional decline was slower for carriers of rs11669576-A who used lipophilic statins. APOE-ε4 carriers who also carried rs5930-AA had improved caregiver burden, while carriers of haplotypes that included rs5930-AG had worse cognitive and functional outcomes, though carriers of the A allele of rs5930 had better cognitive and functional response to lipophilic statins. APOE-ε4 non-carriers who carried rs5925-TT had slower cognitive decline, while lipophilic statins protected carriers of the other genotypes. We preliminarily conclude that reportedly protective variants of LDLR and APOE against risk of AD also slowed cognitive decline, regardless of cholesterol variations, while therapy with lipophilic statins might benefit carriers of specific genetic variants.
Collapse
|
146
|
A Role of Low-Density Lipoprotein Receptor-Related Protein 4 (LRP4) in Astrocytic Aβ Clearance. J Neurosci 2020; 40:5347-5361. [PMID: 32457076 DOI: 10.1523/jneurosci.0250-20.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 01/28/2023] Open
Abstract
Amyloid-β (Aβ) deposition occurs years before cognitive symptoms appear and is considered a cause of Alzheimer's disease (AD). The imbalance of Aβ production and clearance leads to Aβ accumulation and Aβ deposition. Increasing evidence indicates an important role of astrocytes, the most abundant cell type among glial cells in the brain, in Aβ clearance. We explored the role of low-density lipoprotein receptor-related protein 4 (LRP4), a member of the LDLR family, in AD pathology. We show that Lrp4 is specifically expressed in astrocytes and its levels in astrocytes were higher than those of Ldlr and Lrp1, both of which have been implicated in Aβ uptake. LRP4 was reduced in postmortem brain tissues of AD patients. Genetic deletion of the Lrp4 gene augmented Aβ plaques in 5xFAD male mice, an AD mouse model, and exacerbated the deficits in neurotransmission, synchrony between the hippocampus and PFC, and cognition. Mechanistically, LRP4 promotes Aβ uptake by astrocytes likely by interacting with ApoE. Together, our study demonstrates that astrocytic LRP4 plays an important role in Aβ pathology and cognitive function.SIGNIFICANCE STATEMENT This study investigates how astrocytes, a type of non-nerve cells in the brain, may contribute to Alzheimer's disease (AD) development. We demonstrate that the low-density lipoprotein receptor-related protein 4 (LRP4) is reduced in the brain of AD patients. Mimicking the reduced levels in an AD mouse model exacerbates cognitive impairment and increases amyloid aggregates that are known to damage the brain. We show that LRP4 could promote the clearance of amyloid protein by astrocytes. Our results reveal a previously unappreciated role of LRP4 in AD development.
Collapse
|
147
|
Mamun AA, Uddin MS, Bin Bashar MF, Zaman S, Begum Y, Bulbul IJ, Islam MS, Sarwar MS, Mathew B, Amran MS, Md Ashraf G, Bin-Jumah MN, Mousa SA, Abdel-Daim MM. Molecular Insight into the Therapeutic Promise of Targeting APOE4 for Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5086250. [PMID: 32509144 PMCID: PMC7245681 DOI: 10.1155/2020/5086250] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that causes chronic cognitive dysfunction. Most of the AD cases are late onset, and the apolipoprotein E (APOE) isoform is a key genetic risk factor. The APOE gene has 3 key alleles in humans including APOE2, APOE3, and APOE4. Among them, APOE4 is the most potent genetic risk factor for late-onset AD (LOAD), while APOE2 has a defensive effect. Research data suggest that APOE4 leads to the pathogenesis of AD through various processes such as accelerated beta-amyloid aggregations that raised neurofibrillary tangle formation, cerebrovascular diseases, aggravated neuroinflammation, and synaptic loss. However, the precise mode of actions regarding in what way APOE4 leads to AD pathology remains unclear. Since APOE contributes to several pathological pathways of AD, targeting APOE4 might serve as a promising strategy for the development of novel drugs to combat AD. In this review, we focus on the recent studies about APOE4-targeted therapeutic strategies that have been advanced in animal models and are being prepared for use in humans for the management of AD.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md. Fahim Bin Bashar
- Department of Pharmacy, University of Development Alternative, Dhaka, Bangladesh
| | - Sonia Zaman
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Yesmin Begum
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | | | - Md. Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY 12144, USA
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
148
|
Sáez-Orellana F, Octave JN, Pierrot N. Alzheimer's Disease, a Lipid Story: Involvement of Peroxisome Proliferator-Activated Receptor α. Cells 2020; 9:E1215. [PMID: 32422896 PMCID: PMC7290654 DOI: 10.3390/cells9051215] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly. Mutations in genes encoding proteins involved in amyloid-β peptide (Aβ) production are responsible for inherited AD cases. The amyloid cascade hypothesis was proposed to explain the pathogeny. Despite the fact that Aβ is considered as the main culprit of the pathology, most clinical trials focusing on Aβ failed and suggested that earlier interventions are needed to influence the course of AD. Therefore, identifying risk factors that predispose to AD is crucial. Among them, the epsilon 4 allele of the apolipoprotein E gene that encodes the major brain lipid carrier and metabolic disorders such as obesity and type 2 diabetes were identified as AD risk factors, suggesting that abnormal lipid metabolism could influence the progression of the disease. Among lipids, fatty acids (FAs) play a fundamental role in proper brain function, including memory. Peroxisome proliferator-activated receptor α (PPARα) is a master metabolic regulator that regulates the catabolism of FA. Several studies report an essential role of PPARα in neuronal function governing synaptic plasticity and cognition. In this review, we explore the implication of lipid metabolism in AD, with a special focus on PPARα and its potential role in AD therapy.
Collapse
Affiliation(s)
- Francisco Sáez-Orellana
- Université Catholique de Louvain, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium; (F.S.-O.); (J.-N.O.)
- Institute of Neuroscience, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium
| | - Jean-Noël Octave
- Université Catholique de Louvain, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium; (F.S.-O.); (J.-N.O.)
- Institute of Neuroscience, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium
| | - Nathalie Pierrot
- Université Catholique de Louvain, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium; (F.S.-O.); (J.-N.O.)
- Institute of Neuroscience, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium
| |
Collapse
|
149
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
150
|
Raman S, Brookhouser N, Brafman DA. Using human induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which Apolipoprotein E (APOE) contributes to Alzheimer's disease (AD) risk. Neurobiol Dis 2020; 138:104788. [PMID: 32032733 PMCID: PMC7098264 DOI: 10.1016/j.nbd.2020.104788] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 01/02/2023] Open
Abstract
Although the biochemical and pathological hallmarks of Alzheimer's disease (AD), such as axonal transport defects, synaptic loss, and selective neuronal death, are well characterized, the underlying mechanisms that cause AD are largely unknown, thereby making it difficult to design effective therapeutic interventions. Genome-wide association studies (GWAS) studies have identified several factors associated with increased AD risk. Of these genetic factors, polymorphisms in the Apolipoprotein E (APOE) gene are the strongest and most prevalent. While it has been established that the ApoE protein modulates the formation of amyloid plaques and neurofibrillary tangles, the precise molecular mechanisms by which various ApoE isoforms enhance or mitigate AD onset and progression in aging adults are yet to be elucidated. Advances in cellular reprogramming to generate disease-in-a-dish models now provide a simplified and accessible system that complements animal and primary cell models to study ApoE in the context of AD. In this review, we will describe the use and manipulation of human induced pluripotent stem cells (hiPSCs) in dissecting the interaction between ApoE and AD. First, we will provide an overview of the proposed roles that ApoE plays in modulating pathophysiology of AD. Next, we will summarize the recent studies that have employed hiPSCs to model familial and sporadic AD. Lastly, we will speculate on how current advances in genome editing technologies and organoid culture systems can be used to improve hiPSC-based tools to investigate ApoE-dependent modulation of AD onset and progression.
Collapse
Affiliation(s)
- Sreedevi Raman
- School of Biological and Health Systems Engineering, Arizona State University, United States of America
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, United States of America; Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, United States of America
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, United States of America.
| |
Collapse
|