101
|
Nitarska J, Smith JG, Sherlock WT, Hillege MMG, Nott A, Barshop WD, Vashisht AA, Wohlschlegel JA, Mitter R, Riccio A. A Functional Switch of NuRD Chromatin Remodeling Complex Subunits Regulates Mouse Cortical Development. Cell Rep 2017; 17:1683-1698. [PMID: 27806305 PMCID: PMC5149529 DOI: 10.1016/j.celrep.2016.10.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 08/03/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
Histone modifications and chromatin remodeling represent universal mechanisms by which cells adapt their transcriptional response to rapidly changing environmental conditions. Extensive chromatin remodeling takes place during neuronal development, allowing the transition of pluripotent cells into differentiated neurons. Here, we report that the NuRD complex, which couples ATP-dependent chromatin remodeling with histone deacetylase activity, regulates mouse brain development. Subunit exchange of CHDs, the core ATPase subunits of the NuRD complex, is required for distinct aspects of cortical development. Whereas CHD4 promotes the early proliferation of progenitors, CHD5 facilitates neuronal migration and CHD3 ensures proper layer specification. Inhibition of each CHD leads to defects of neuronal differentiation and migration, which cannot be rescued by expressing heterologous CHDs. Finally, we demonstrate that NuRD complexes containing specific CHDs are recruited to regulatory elements and modulate the expression of genes essential for brain development. The ATPases CHD3, CHD4, and CHD5 are mutually exclusive subunits of the NuRD complex CHD3, CHD4, and CHD5 regulate distinct and non-redundant aspects of cortical development Loss of each CHD leads to specific defects of neuronal proliferation and migration CHD3, CHD4, and CHD5 regulate distinct set of genes essential for brain development
Collapse
Affiliation(s)
- Justyna Nitarska
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - Jacob G Smith
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - William T Sherlock
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - Michele M G Hillege
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - Alexi Nott
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1737 USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1737 USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1737 USA
| | - Richard Mitter
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Antonella Riccio
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
102
|
Popovitchenko T, Rasin MR. Transcriptional and Post-Transcriptional Mechanisms of the Development of Neocortical Lamination. Front Neuroanat 2017; 11:102. [PMID: 29170632 PMCID: PMC5684109 DOI: 10.3389/fnana.2017.00102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022] Open
Abstract
The neocortex is a laminated brain structure that is the seat of higher cognitive capacity and responses, long-term memory, sensory and emotional functions, and voluntary motor behavior. Proper lamination requires that progenitor cells give rise to a neuron, that the immature neuron can migrate away from its mother cell and past other cells, and finally that the immature neuron can take its place and adopt a mature identity characterized by connectivity and gene expression; thus lamination proceeds through three steps: genesis, migration, and maturation. Each neocortical layer contains pyramidal neurons that share specific morphological and molecular characteristics that stem from their prenatal birth date. Transcription factors are dynamic proteins because of the cohort of downstream factors that they regulate. RNA-binding proteins are no less dynamic, and play important roles in every step of mRNA processing. Indeed, recent screens have uncovered post-transcriptional mechanisms as being integral regulatory mechanisms to neocortical development. Here, we summarize major aspects of neocortical laminar development, emphasizing transcriptional and post-transcriptional mechanisms, with the aim of spurring increased understanding and study of its intricacies.
Collapse
Affiliation(s)
- Tatiana Popovitchenko
- Neuroscience and Cell Biology, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Mladen-Roko Rasin
- Neuroscience and Cell Biology, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
103
|
Martínez-Cerdeño V, García-Moreno F, Tosches MA, Csillag A, Manger PR, Molnár Z. Update on forebrain evolution: From neurogenesis to thermogenesis. Semin Cell Dev Biol 2017; 76:15-22. [PMID: 28964836 DOI: 10.1016/j.semcdb.2017.09.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 01/25/2023]
Abstract
Comparative developmental studies provide growing understanding of vertebrate forebrain evolution. This short review directs the spotlight to some newly emerging aspects, including the evolutionary origin of the proliferative region known as the subventricular zone (SVZ) and of intermediate progenitor cells (IPCs) that populate the SVZ, neural circuits that originated within homologous regions across all amniotes, and the role of thermogenesis in the acquisition of an increased brain size. These data were presented at the 8th European Conference on Comparative Neurobiology.
Collapse
Affiliation(s)
- Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, USA; MIND Institute, UC Davis School of Medicine, CA, USA.
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Parque Científico UPV/EHU Edif. Sede, E-48940 Leioa, Spain
| | | | - András Csillag
- Department of Anatomy, Histology and Embryology, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of Witwatersrand, South Africa
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.
| |
Collapse
|
104
|
Lin JJ, Chin TY, Chen CP, Chan HL, Wu TY. Zika virus: An emerging challenge for obstetrics and gynecology. Taiwan J Obstet Gynecol 2017; 56:585-592. [PMID: 29037541 DOI: 10.1016/j.tjog.2017.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 10/18/2022] Open
Abstract
Microcephaly is a rare birth defect, however, the re-emerging mosquito and sexual transmitted flavivirus, Zika virus (ZIKV), had changed the situation and caused an urgent challenge for the obstetrics and gynecology. This review will brief summarize the epidemiology and virology of ZIKV. And compared the animal models that had developed for the ZIKV infections. These animal models will be benefit for the development of vaccines and anti-ZIKV drugs. Furthermore, the genes that are involved in the causation of microcephaly were also summarized. Finally, the Wnt signal is critical for the brain development as well as innate immune response. Based on previous literatures, we proposed that ZIKV-induced microcephaly might result from the influence of Wnt/β-catenin signaling pathway through the regulation of miRNA-34.
Collapse
Affiliation(s)
- Jhe-Jhih Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting-Yu Chin
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli, Taiwan
| | - Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
105
|
Govindan S, Jabaudon D. Coupling progenitor and neuronal diversity in the developing neocortex. FEBS Lett 2017; 591:3960-3977. [PMID: 28895133 DOI: 10.1002/1873-3468.12846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022]
Abstract
The adult neocortex is composed of several types of glutamatergic neurons, which are sequentially born from progenitors during development. The extent and nature of progenitor diversity, and how it relates to neuronal diversity, is still poorly understood. In this review, we discuss key features of neocortical progenitors across several species, including their morphological properties, cell cycling behaviour and molecular signatures, and how these features relate to the competence of these cells to generate distinct types of progenies.
Collapse
Affiliation(s)
| | - Denis Jabaudon
- Department of Basic Neuroscience, University of Geneva, Switzerland
| |
Collapse
|
106
|
Harris L, Zalucki O, Gobius I, McDonald H, Osinki J, Harvey TJ, Essebier A, Vidovic D, Gladwyn-Ng I, Burne TH, Heng JI, Richards LJ, Gronostajski RM, Piper M. Transcriptional regulation of intermediate progenitor cell generation during hippocampal development. Development 2017; 143:4620-4630. [PMID: 27965439 DOI: 10.1242/dev.140681] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/28/2016] [Indexed: 01/21/2023]
Abstract
During forebrain development, radial glia generate neurons through the production of intermediate progenitor cells (IPCs). The production of IPCs is a central tenet underlying the generation of the appropriate number of cortical neurons, but the transcriptional logic underpinning this process remains poorly defined. Here, we examined IPC production using mice lacking the transcription factor nuclear factor I/X (Nfix). We show that Nfix deficiency delays IPC production and prolongs the neurogenic window, resulting in an increased number of neurons in the postnatal forebrain. Loss of additional Nfi alleles (Nfib) resulted in a severe delay in IPC generation while, conversely, overexpression of NFIX led to precocious IPC generation. Mechanistically, analyses of microarray and ChIP-seq datasets, coupled with the investigation of spindle orientation during radial glial cell division, revealed that NFIX promotes the generation of IPCs via the transcriptional upregulation of inscuteable (Insc). These data thereby provide novel insights into the mechanisms controlling the timely transition of radial glia into IPCs during forebrain development.
Collapse
Affiliation(s)
- Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Oressia Zalucki
- The School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Ilan Gobius
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Hannah McDonald
- The School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Jason Osinki
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Alexandra Essebier
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Diana Vidovic
- The School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Ivan Gladwyn-Ng
- The Harry Perkins Institute of Medical Research, Crawley, Western Australia 6009, Australia.,The Centre for Medical Research, Crawley, Western Australia 6009, Australia
| | - Thomas H Burne
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia.,Queensland Centre for Mental Health Research, Wacol 4076, Australia
| | - Julian I Heng
- The Harry Perkins Institute of Medical Research, Crawley, Western Australia 6009, Australia.,The Centre for Medical Research, Crawley, Western Australia 6009, Australia
| | - Linda J Richards
- The School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia .,Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
107
|
Enhanced expression of Pafah1b1 causes over-migration of cerebral cortical neurons into the marginal zone. Brain Struct Funct 2017; 222:4283-4291. [PMID: 28836069 DOI: 10.1007/s00429-017-1497-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
Abstract
Mutations of PAFAH1B1 cause classical lissencephaly in humans. In addition, duplications and triplications of PAFAH1B1 are found in individuals with intellectual disability and other neurological disorders suggesting that proper brain development is highly sensitive to the PAFAH1B1 dosage. To examine the effect of PAFAH1B1 over-dosage in neural development, especially in migration of neurons and layer formation during cerebral cortical development, we overexpressed Pafah1b1 in migrating neurons in the mouse embryonic cortex using in utero electroporation. Enhanced expression of Pafah1b1 in radially-migrating neurons resulted in their over-migration into the marginal zone. Neurons that invaded the marginal zone were oriented abnormally. Layer distribution of Pafaha1b1-overexpressing neurons shifted more superficially than control neurons. Some of the Pafaha1b1-overexpressing future layer 4 neurons changed their positions to layers 2/3. Furthermore, they also changed their layer marker expression from layer 4 to layers 2/3. These results suggest that overexpression of Pafah1b1 affects the migration of neurons and disrupts layer formation in the developing cerebral cortex, and further support the idea that appropriate dosage of Pafah1b1 is crucial for the proper development of the brain.
Collapse
|
108
|
Haushalter C, Asselin L, Fraulob V, Dollé P, Rhinn M. Retinoic acid controls early neurogenesis in the developing mouse cerebral cortex. Dev Biol 2017; 430:129-141. [PMID: 28790015 DOI: 10.1016/j.ydbio.2017.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023]
Abstract
A tight regulation of neuron production is required to generate a functional cerebral cortex and is achieved by a proper balance between proliferation and differentiation of progenitor cells. Though the vitamin A (retinol) active derivative retinoic acid (RA) has been implicated as one of the signals acting during mammalian forebrain neurogenesis, its function at the onset of neurogenesis as well as during establishment of cortical layers and neuronal subtypes remains elusive. One limitation is that murine mutants for genes encoding key enzymes involved in RA synthesis die during early embryonic development. We analysed corticogenesis in Rdh10 null mutants, in which an RA deficiency is generated as the intracellular retinol to retinaldehyde conversion is abolished. When analysed at the latest stage before lethality occurs (embryonic day [E]13.5), the mutants show smaller telencephalic vesicles and the thickness of their cortical plate is strongly reduced. The first progenitors formed in the cortical plate are radial glial (RG) cells which generate neurons either directly, or through an indirect mechanism involving the production of intermediate neuronal progenitors (INPs) which then give rise to neurons. We show that in absence of RA, the RG progenitors proliferate less and prematurely produce neurons, leading to their depletion at E11.5. Furthermore, we could demonstrate that lack of RA impairs the generation of INPs at E13.5 and affects the cell cycle exit of progenitor cells during corticogenesis, altogether leading to a deficit in projection neurons and to microcephaly.
Collapse
Affiliation(s)
- Carole Haushalter
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Laure Asselin
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Valérie Fraulob
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Pascal Dollé
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Muriel Rhinn
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
109
|
Albert M, Kalebic N, Florio M, Lakshmanaperumal N, Haffner C, Brandl H, Henry I, Huttner WB. Epigenome profiling and editing of neocortical progenitor cells during development. EMBO J 2017; 36:2642-2658. [PMID: 28765163 DOI: 10.15252/embj.201796764] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 01/09/2023] Open
Abstract
The generation of neocortical neurons from neural progenitor cells (NPCs) is primarily controlled by transcription factors binding to DNA in the context of chromatin. To understand the complex layer of regulation that orchestrates different NPC types from the same DNA sequence, epigenome maps with cell type resolution are required. Here, we present genomewide histone methylation maps for distinct neural cell populations in the developing mouse neocortex. Using different chromatin features, we identify potential novel regulators of cortical NPCs. Moreover, we identify extensive H3K27me3 changes between NPC subtypes coinciding with major developmental and cell biological transitions. Interestingly, we detect dynamic H3K27me3 changes on promoters of several crucial transcription factors, including the basal progenitor regulator Eomes We use catalytically inactive Cas9 fused with the histone methyltransferase Ezh2 to edit H3K27me3 at the Eomes locus in vivo, which results in reduced Tbr2 expression and lower basal progenitor abundance, underscoring the relevance of dynamic H3K27me3 changes during neocortex development. Taken together, we provide a rich resource of neocortical histone methylation data and outline an approach to investigate its contribution to the regulation of selected genes during neocortical development.
Collapse
Affiliation(s)
- Mareike Albert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marta Florio
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Christiane Haffner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Holger Brandl
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ian Henry
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
110
|
Neural Stem Cells to Cerebral Cortex: Emerging Mechanisms Regulating Progenitor Behavior and Productivity. J Neurosci 2017; 36:11394-11401. [PMID: 27911741 DOI: 10.1523/jneurosci.2359-16.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 12/16/2022] Open
Abstract
This review accompanies a 2016 SFN mini-symposium presenting examples of current studies that address a central question: How do neural stem cells (NSCs) divide in different ways to produce heterogeneous daughter types at the right time and in proper numbers to build a cerebral cortex with the appropriate size and structure? We will focus on four aspects of corticogenesis: cytokinesis events that follow apical mitoses of NSCs; coordinating abscission with delamination from the apical membrane; timing of neurogenesis and its indirect regulation through emergence of intermediate progenitors; and capacity of single NSCs to generate the correct number and laminar fate of cortical neurons. Defects in these mechanisms can cause microcephaly and other brain malformations, and understanding them is critical to designing diagnostic tools and preventive and corrective therapies.
Collapse
|
111
|
Probst S, Daza RA, Bader N, Hummel JF, Weiß M, Tanriver Y, Hevner RF, Arnold SJ. A dual-fluorescence reporter in the Eomes locus for live imaging and medium-term lineage tracing. Genesis 2017. [PMID: 28646547 DOI: 10.1002/dvg.23043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The T-box transcription factor Eomes (also known as Tbr2) shows short-lived expression in various localized domains of the embryo, including epiblast cells during gastrulation and intermediate progenitor cells in the cerebral cortex. In these tissues Eomes fulfills crucial roles for lineage specification of progenitors. To directly observe Eomes-dependent cell lineages in the living embryo, we generated a novel dual-fluorescence reporter allele that expresses a membrane-bound tdTomato protein for investigation of cell morphology and a nuclear GFP for cell tracing. This allele recapitulates endogenous EOMES protein expression and is suitable for live imaging. We found that the allele can also be used as a short-to-medium-term lineage tracer, as GFP persists in cells longer than EOMES protein and marks Eomes-dependent lineages with a timeframe of days to weeks depending on the proliferation rate. In summary, we present a novel genetic tool for investigation of Eomes-dependent cell types by live imaging and lineage tracing.
Collapse
Affiliation(s)
- Simone Probst
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ray A Daza
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, 98101
| | - Natalie Bader
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas F Hummel
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University Medical Center, Freiburg, Germany
| | - Matthias Weiß
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yakup Tanriver
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University Medical Center, Freiburg, Germany.,Department of Internal Medicine IV, Faculty of Medicine, University Medical Center, Freiburg, Germany
| | - Robert F Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, 98101
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
112
|
Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity. J Neurosci 2017; 36:6403-19. [PMID: 27307230 DOI: 10.1523/jneurosci.4067-15.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The neocortex contains hundreds to thousands of distinct subtypes of precisely connected neurons, allowing it to perform remarkably complex tasks of high-level cognition. Callosal projection neurons (CPN) connect the cerebral hemispheres via the corpus callosum, integrating cortical information and playing key roles in associative cognition. CPN are a strikingly diverse set of neuronal subpopulations, and development of this diversity requires precise control by a complex, interactive set of molecular effectors. We have found that the transcriptional coregulator Cited2 regulates and refines two stages of CPN development. Cited2 is expressed broadly by progenitors in the embryonic day 15.5 subventricular zone, during the peak of superficial layer CPN birth, with a progressive postmitotic refinement in expression, becoming restricted to CPN of the somatosensory cortex postnatally. We generated progenitor-stage and postmitotic forebrain-specific Cited2 conditional knock-out mice, using the Emx1-Cre and NEX-Cre mouse lines, respectively. We demonstrate that Cited2 functions in progenitors, but is not necessary postmitotically, to regulate both (1) broad generation of layer II/III CPN and (2) acquisition of precise area-specific molecular identity and axonal/dendritic connectivity of somatosensory CPN. This novel CPN subtype-specific and area-specific control from progenitor action of Cited2 adds yet another layer of complexity to the multistage developmental regulation of neocortical development. SIGNIFICANCE STATEMENT This study identifies Cited2 as a novel subtype-specific and area-specific control over development of distinct subpopulations within the broad population of callosal projection neurons (CPN), whose axons connect the two cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We found that Cited2 functions within subventricular zone progenitors to both broadly regulate generation of superficial layer CPN throughout the neocortex, and to refine precise area-specific development and connectivity of somatosensory CPN. Gaining insight into molecular development and heterogeneity of CPN will advance understanding of both diverse functions of CPN and of the remarkable range of neurodevelopmental deficits correlated with CPN/CC development.
Collapse
|
113
|
Kon E, Cossard A, Jossin Y. Neuronal Polarity in the Embryonic Mammalian Cerebral Cortex. Front Cell Neurosci 2017; 11:163. [PMID: 28670267 PMCID: PMC5472699 DOI: 10.3389/fncel.2017.00163] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/26/2017] [Indexed: 11/13/2022] Open
Abstract
The cerebral cortex is composed of billions of neurons that can grossly be subdivided into two broad classes: inhibitory GABAergic interneurons and excitatory glutamatergic neurons. The majority of cortical neurons in mammals are the excitatory type and they are the main focus of this review article. Like many of the cells in multicellular organisms, fully differentiated neurons are both morphologically and functionally polarized. However, they go through several changes in polarity before reaching this final mature differentiated state. Neurons are derived from polarized neuronal progenitor/stem cells and their commitment to neuronal fate is decided by cellular and molecular asymmetry during their last division in the neurogenic zone. They migrate from their birthplace using so-called multipolar migration, during which they switch direction of movement several times, and repolarize for bipolar migration when the axon is specified. Therefore, neurons have to break their previous symmetry, change their morphology and adequately respond to polarizing signals during migration in order to reach the correct position in the cortex and start making connections. Finally, the dendritic tree is elaborated and the axon/dendrite morphological polarity is set. Here we will describe the function, establishment and maintenance of polarity during the different developmental steps starting from neural stem cell (NSC) division, neuronal migration and axon specification at embryonic developmental stages.
Collapse
Affiliation(s)
- Elif Kon
- Mammalian Development and Cell Biology Unit, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Alexia Cossard
- Mammalian Development and Cell Biology Unit, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Yves Jossin
- Mammalian Development and Cell Biology Unit, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| |
Collapse
|
114
|
Huang YT, Mason JO, Price DJ. Lateral cortical Cdca7 expression levels are regulated by Pax6 and influence the production of intermediate progenitors. BMC Neurosci 2017; 18:47. [PMID: 28583079 PMCID: PMC5460507 DOI: 10.1186/s12868-017-0365-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/27/2017] [Indexed: 11/16/2022] Open
Abstract
Background We studied whether regulation of Cdca7 (Cell division cycle associated 7) expression by transcription factor Pax6 contributes to Pax6’s cellular actions during corticogenesis. The function of Cdca7 in mediating Pax6’s effects during corticogenesis has not been explored. Pax6 is expressed by radial glial progenitors in the ventricular zone of the embryonic cortical neuroepithelium, where it is required for the development of a normal complement of Tbr2-expressing intermediate progenitor cells in the subventricular zone. Pax6’s expression levels are graded across the ventricular zone, with highest levels laterally where Tbr2-expressing progenitors are generated in greatest numbers at early stages of corticogenesis. Methods We used in situ hybridization and immunohistochemistry to analyse patterns of Cdca7 and Pax6 expression in cortical tissue from wild-type and Pax6−/− embryos. In each genotype we compared the graded expression of the two genes quantitatively at several ages. To test whether defects in Cdca7 expression in lateral cortical cells might contribute to the cellular defects in this region caused by Pax6 loss, we electroporated a Cdca7 expression vector into wild-type lateral cortex and examined the effect on the production of Tbr2-expressing cells. Results We found that Cdca7 is co-expressed with Pax6 in cortical progenitors, at levels opposite to those of Pax6. Lowest levels of Cdca7 are found in the radial glial progenitors of lateral cortex, where Pax6 levels are highest. Higher levels of Cdca7 are found in ventral telencephalon, where Pax6 levels are low. Loss of Pax6 causes Cdca7 expression to increase in the lateral cortex. Elevating Cdca7 in normal lateral cortical progenitors to levels close to those normally found in ventral telencephalon reduces their production of Tbr2-expressing cells early in lateral cortical formation. Conclusion Our results suggest that Pax6 normally represses Cdca7 expression in the lateral cortex and that repression of Cdca7 in cells of this region is required for their production of a normal complement of Tbr2-expressing intermediate progenitors.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - John O Mason
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - David J Price
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
115
|
FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol 2017; 37:MCB.00470-16. [PMID: 28069738 DOI: 10.1128/mcb.00470-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/03/2017] [Indexed: 01/05/2023] Open
Abstract
FBXL5 is the substrate recognition subunit of an SCF-type ubiquitin ligase that serves as a master regulator of iron metabolism in mammalian cells. We previously showed that mice with systemic deficiency of FBXL5 fail to sense intracellular iron levels and die in utero at embryonic day 8.5 (E8.5) as a result of iron overload and subsequent oxidative stress. This early embryonic mortality has thus impeded study of the role of FBXL5 in brain development. We have now generated mice lacking FBXL5 specifically in nestin-expressing neural stem progenitor cells (NSPCs) in the brain. Unexpectedly, the mutant embryos manifested a progressive increase in the number of NSPCs and astroglia in the cerebral cortex. Stabilization of iron regulatory protein 2 (IRP2) as a result of FBXL5 deficiency led to accumulation of ferrous and ferric iron as well as to generation of reactive oxygen species. Pharmacological manipulation suggested that the phenotypes of FBXL5 deficiency are attributable to aberrant activation of mammalian target of rapamycin (mTOR) signaling. Our results thus show that FBXL5 contributes to regulation of NSPC proliferation during mammalian brain development.
Collapse
|
116
|
Moreno N, González A. Pattern of Neurogenesis and Identification of Neuronal Progenitor Subtypes during Pallial Development in Xenopus laevis. Front Neuroanat 2017; 11:24. [PMID: 28396626 PMCID: PMC5366753 DOI: 10.3389/fnana.2017.00024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/08/2017] [Indexed: 11/13/2022] Open
Abstract
The complexity of the pallium during evolution has increased dramatically in many different respects. The highest level of complexity is found in mammals, where most of the pallium (cortex) shows a layered organization and neurons are generated during development following an inside-out order, a sequence not observed in other amniotes (birds and reptiles). Species-differences may be related to major neurogenetic events, from the neural progenitors that divide and produce all pallial cells. In mammals, two main types of precursors have been described, primary precursor cells in the ventricular zone (vz; also called radial glial cells or apical progenitors) and secondary precursor cells (called basal or intermediate progenitors) separated from the ventricle surface. Previous studies suggested that pallial neurogenetic cells, and especially the intermediate progenitors, evolved independently in mammalian and sauropsid lineages. In the present study, we examined pallial neurogenesis in the amphibian Xenopus laevis, a representative species of the only group of tetrapods that are anamniotes. The pattern of pallial proliferation during embryonic and larval development was studied, together with a multiple immunohistochemical analysis of putative progenitor cells. We found that there are two phases of progenitor divisions in the developing pallium that, following the radial unit concept from the ventricle to the mantle, finally result in an outside-in order of mature neurons, what seems to be the primitive condition of vertebrates. Gene expressions of key transcription factors that characterize radial glial cells in the vz were demonstrated in Xenopus. In addition, although mitotic cells were corroborated outside the vz, the expression pattern of markers for intermediate progenitors differed from mammals.
Collapse
Affiliation(s)
- Nerea Moreno
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| |
Collapse
|
117
|
Barford K, Yap CC, Dwyer ND, Winckler B. The related neuronal endosomal proteins NEEP21 (Nsg1) and P19 (Nsg2) have divergent expression profiles in vivo. J Comp Neurol 2017; 525:1861-1878. [PMID: 28299779 DOI: 10.1002/cne.24168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/28/2016] [Accepted: 11/18/2016] [Indexed: 01/23/2023]
Abstract
Endosomal maturation and transport constitutes a complex trafficking system present in all cell types. Neurons have adapted their endosomal system to meet their unique and complex needs. These adaptations include repurposing existing proteins to diversify endocytosis and trafficking, as well as preferential expression of certain regulators more highly in neurons than other cell types. These neuronal regulators include the family of Neuron-Specific Gene family members (Nsg), NEEP21 (Nsg1), and P19 (Nsg2). NEEP21/Nsg1 plays a role in the trafficking of multiple receptors, including the cell adhesion molecule L1/NgCAM, the neurotransmitter receptor GluA2, and β-APP. Recently, we showed that NEEP2/Nsg1 and P19/Nsg2 are not expressed in all neuronal cell types in vitro. However, it is not known where and when NEEP21/Nsg1 and P19/Nsg2 are expressed in vivo, and whether both proteins are always coexpressed. Here, we show that NEEP21/Nsg1 and P19/Nsg2 are present in both overlapping and distinct cell populations in the hippocampus, neocortex, and cerebellum during development. NEEP21/Nsg1 and P19/Nsg2 levels are highest during embryonic development, and expression persists in the juvenile mouse brain. In particular, a subset of layer V cortical neurons retains relatively high expression of both NEEP21/Nsg1 and P19/Nsg2 at postnatal day 16 as well as in the CA1-3 regions of the hippocampus. In the cerebellum, NEEP21/Nsg1 expression becomes largely restricted to Purkinje neurons in adulthood whereas P19/Nsg2 expression strikingly disappears from the cerebellum with age. This divergent and restricted expression likely reflects differential needs for this class of trafficking regulators in different neurons during different stages of maturation.
Collapse
Affiliation(s)
- Kelly Barford
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Chan Choo Yap
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Noelle D Dwyer
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
118
|
Ravi N, Sanchez-Guardado L, Lois C, Kelsch W. Determination of the connectivity of newborn neurons in mammalian olfactory circuits. Cell Mol Life Sci 2017; 74:849-867. [PMID: 27695873 PMCID: PMC11107630 DOI: 10.1007/s00018-016-2367-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/24/2016] [Accepted: 09/13/2016] [Indexed: 12/24/2022]
Abstract
The mammalian olfactory bulb is a forebrain structure just one synapse downstream from the olfactory sensory neurons and performs the complex computations of sensory inputs. The formation of this sensory circuit is shaped through activity-dependent and cell-intrinsic mechanisms. Recent studies have revealed that cell-type specific connectivity and the organization of synapses in dendritic compartments are determined through cell-intrinsic programs already preset in progenitor cells. These progenitor programs give rise to subpopulations within a neuron type that have distinct synaptic organizations. The intrinsically determined formation of distinct synaptic organizations requires factors from contacting cells that match the cell-intrinsic programs. While certain genes control wiring within the newly generated neurons, other regulatory genes provide intercellular signals and are only expressed in neurons that will form contacts with the newly generated cells. Here, the olfactory system has provided a useful model circuit to reveal the factors regulating assembly of the highly structured connectivity in mammals.
Collapse
Affiliation(s)
- Namasivayam Ravi
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Luis Sanchez-Guardado
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
| | - Wolfgang Kelsch
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
119
|
Haushalter C, Schuhbaur B, Dollé P, Rhinn M. Meningeal retinoic acid contributes to neocortical lamination and radial migration during mouse brain development. Biol Open 2017; 6:148-160. [PMID: 28011626 PMCID: PMC5312094 DOI: 10.1242/bio.021063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Retinoic acid (RA) is a diffusible molecule involved in early forebrain patterning. Its later production in the meninges by the retinaldehyde dehydrogenase RALDH2 coincides with the time of cortical neuron generation. A function of RA in this process has not been adressed directly as Raldh2−/− mouse mutants are embryonic lethal. Here, we used a conditional genetic strategy to inactivate Raldh2 just prior to onset of its expression in the developing meninges. This inactivation does not affect the formation of the cortical progenitor populations, their rate of division, or timing of differentiation. However, migration of late-born cortical neurons is delayed, with neurons stalling in the intermediate zone and exhibiting an abnormal multipolar morphology. This suggests that RA controls the multipolar-to-bipolar transition that occurs in the intermediate zone and allows neurons to start locomotion in the cortical plate. Our work also shows a role for RA in cortical lamination, as deep layers are expanded and a subset of layer IV neurons are not formed in the Raldh2-ablated mutants. These data demonstrate that meninges are a source of extrinsic signals important for cortical development. Summary: Involvement of the signalling molecule retinoic acid in neurogenesis of the developing cerebral cortex is shown through targeted deletion of its synthesizing enzyme.
Collapse
Affiliation(s)
- Carole Haushalter
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Brigitte Schuhbaur
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Pascal Dollé
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France .,Centre National de la Recherche Scientifique, UMR 7104, Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Muriel Rhinn
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France .,Centre National de la Recherche Scientifique, UMR 7104, Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
120
|
Enriquez-Rios V, Dumitrache LC, Downing SM, Li Y, Brown EJ, Russell HR, McKinnon PJ. DNA-PKcs, ATM, and ATR Interplay Maintains Genome Integrity during Neurogenesis. J Neurosci 2017; 37:893-905. [PMID: 28123024 PMCID: PMC5296783 DOI: 10.1523/jneurosci.4213-15.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 11/14/2016] [Accepted: 11/26/2016] [Indexed: 12/15/2022] Open
Abstract
The DNA damage response (DDR) orchestrates a network of cellular processes that integrates cell-cycle control and DNA repair or apoptosis, which serves to maintain genome stability. DNA-PKcs (the catalytic subunit of the DNA-dependent kinase, encoded by PRKDC), ATM (ataxia telangiectasia, mutated), and ATR (ATM and Rad3-related) are related PI3K-like protein kinases and central regulators of the DDR. Defects in these kinases have been linked to neurodegenerative or neurodevelopmental syndromes. In all cases, the key neuroprotective function of these kinases is uncertain. It also remains unclear how interactions between the three DNA damage-responsive kinases coordinate genome stability, particularly in a physiological context. Here, we used a genetic approach to identify the neural function of DNA-PKcs and the interplay between ATM and ATR during neurogenesis. We found that DNA-PKcs loss in the mouse sensitized neuronal progenitors to apoptosis after ionizing radiation because of excessive DNA damage. DNA-PKcs was also required to prevent endogenous DNA damage accumulation throughout the adult brain. In contrast, ATR coordinated the DDR during neurogenesis to direct apoptosis in cycling neural progenitors, whereas ATM regulated apoptosis in both proliferative and noncycling cells. We also found that ATR controls a DNA damage-induced G2/M checkpoint in cortical progenitors, independent of ATM and DNA-PKcs. These nonoverlapping roles were further confirmed via sustained murine embryonic or cortical development after all three kinases were simultaneously inactivated. Thus, our results illustrate how DNA-PKcs, ATM, and ATR have unique and essential roles during the DDR, collectively ensuring comprehensive genome maintenance in the nervous system. SIGNIFICANCE STATEMENT The DNA damage response (DDR) is essential for prevention of a broad spectrum of different human neurologic diseases. However, a detailed understanding of the DDR at a physiological level is lacking. In contrast to many in vitro cellular studies, here we demonstrate independent biological roles for the DDR kinases DNA-PKcs, ATM, and ATR during neurogenesis. We show that DNA-PKcs is central to DNA repair in nonproliferating cells, and restricts DNA damage accumulation, whereas ATR controls damage-induced G2 checkpoint control and apoptosis in proliferating cells. Conversely, ATM is critical for controlling apoptosis in immature noncycling neural cells after DNA damage. These data demonstrate functionally distinct, but cooperative, roles for each kinase in preserving genome stability in the nervous system.
Collapse
Affiliation(s)
- Vanessa Enriquez-Rios
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, and
| | - Lavinia C Dumitrache
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Susanna M Downing
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Yang Li
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Eric J Brown
- Abramson Family Cancer Research Institute and the Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Helen R Russell
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Peter J McKinnon
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105,
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, and
| |
Collapse
|
121
|
Fededa JP, Esk C, Mierzwa B, Stanyte R, Yuan S, Zheng H, Ebnet K, Yan W, Knoblich JA, Gerlich DW. MicroRNA-34/449 controls mitotic spindle orientation during mammalian cortex development. EMBO J 2016; 35:2386-2398. [PMID: 27707753 PMCID: PMC5109238 DOI: 10.15252/embj.201694056] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/18/2016] [Accepted: 09/06/2016] [Indexed: 01/07/2023] Open
Abstract
Correct orientation of the mitotic spindle determines the plane of cellular cleavage and is crucial for organ development. In the developing cerebral cortex, spindle orientation defects result in severe neurodevelopmental disorders, but the precise mechanisms that control this important event are not fully understood. Here, we use a combination of high-content screening and mouse genetics to identify the miR-34/449 family as key regulators of mitotic spindle orientation in the developing cerebral cortex. By screening through all cortically expressed miRNAs in HeLa cells, we show that several members of the miR-34/449 family control mitotic duration and spindle rotation. Analysis of miR-34/449 knockout (KO) mouse embryos demonstrates significant spindle misorientation phenotypes in cortical progenitors, resulting in an excess of radial glia cells at the expense of intermediate progenitors and a significant delay in neurogenesis. We identify the junction adhesion molecule-A (JAM-A) as a key target for miR-34/449 in the developing cortex that might be responsible for those defects. Our data indicate that miRNA-dependent regulation of mitotic spindle orientation is crucial for cell fate specification during mammalian neurogenesis.
Collapse
Affiliation(s)
- Juan Pablo Fededa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| | - Christopher Esk
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| | - Beata Mierzwa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| | - Rugile Stanyte
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Klaus Ebnet
- Institute-associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, Münster, Germany
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
122
|
Prenatal β-catenin/Brn2/Tbr2 transcriptional cascade regulates adult social and stereotypic behaviors. Mol Psychiatry 2016; 21:1417-33. [PMID: 26830142 PMCID: PMC5685528 DOI: 10.1038/mp.2015.207] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/01/2015] [Accepted: 11/19/2015] [Indexed: 12/17/2022]
Abstract
Social interaction is a fundamental behavior in all animal species, but the developmental timing of the social neural circuit formation and the cellular and molecular mechanisms governing its formation are poorly understood. We generated a mouse model with mutations in two Disheveled genes, Dvl1 and Dvl3, that displays adult social and repetitive behavioral abnormalities associated with transient embryonic brain enlargement during deep layer cortical neuron formation. These phenotypes were mediated by the embryonic expansion of basal neural progenitor cells (NPCs) via deregulation of a β-catenin/Brn2/Tbr2 transcriptional cascade. Transient pharmacological activation of the canonical Wnt pathway during this period of early corticogenesis rescued the β-catenin/Brn2/Tbr2 transcriptional cascade and the embryonic brain phenotypes. Remarkably, this embryonic treatment prevented adult behavioral deficits and partially rescued abnormal brain structure in Dvl mutant mice. Our findings define a mechanism that links fetal brain development and adult behavior, demonstrating a fetal origin for social and repetitive behavior deficits seen in disorders such as autism.
Collapse
|
123
|
Abstract
T-box transcription factors play key roles in the regulation of developmental processes such as cell differentiation and migration. Mammals have 17 T-box genes, of which several regulate brain development. The Tbr1 subfamily of T-box genes is particularly important in development of the cerebral cortex, olfactory bulbs (OBs), and cerebellum. This subfamily is comprised of Tbr1, Tbr2 (also known as Eomes), and Tbx21. In developing cerebral cortex, Tbr2 and Tbr1 are expressed during successive stages of differentiation in the pyramidal neuron lineage, from Tbr2+ intermediate progenitors to Tbr1+ postmitotic glutamatergic neurons. At each stage, Tbr2 and Tbr1 regulate laminar and regional identity of cortical projection neurons, cell migration, and axon guidance. In the OB, Tbr1 subfamily genes regulate neurogenesis of mitral and tufted cells, and glutamatergic juxtaglomerular interneurons. Tbr2 is also prominent in the development of retinal ganglion cells in nonimage-forming pathways. Other regions that require Tbr2 or Tbr1 in development or adulthood include the cerebellum and adult dentate gyrus. In humans, de novo mutations in TBR1 are important causes of sporadic autism and intellectual disability. Further studies of T-box transcription factors will enhance our understanding of neurodevelopmental disorders and inform approaches to new therapies.
Collapse
|
124
|
Nomura T, Ohtaka-Maruyama C, Yamashita W, Wakamatsu Y, Murakami Y, Calegari F, Suzuki K, Gotoh H, Ono K. The evolution of basal progenitors in the developing non-mammalian brain. Development 2016; 143:66-74. [PMID: 26732839 PMCID: PMC4725208 DOI: 10.1242/dev.127100] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The amplification of distinct neural stem/progenitor cell subtypes during embryogenesis is essential for the intricate brain structures present in various vertebrate species. For example, in both mammals and birds, proliferative neuronal progenitors transiently appear on the basal side of the ventricular zone of the telencephalon (basal progenitors), where they contribute to the enlargement of the neocortex and its homologous structures. In placental mammals, this proliferative cell population can be subdivided into several groups that include Tbr2+ intermediate progenitors and basal radial glial cells (bRGs). Here, we report that basal progenitors in the developing avian pallium show unique morphological and molecular characteristics that resemble the characteristics of bRGs, a progenitor population that is abundant in gyrencephalic mammalian neocortex. Manipulation of LGN (Leu-Gly-Asn repeat-enriched protein) and Cdk4/cyclin D1, both essential regulators of neural progenitor dynamics, revealed that basal progenitors and Tbr2+ cells are distinct cell lineages in the developing avian telencephalon. Furthermore, we identified a small population of subapical mitotic cells in the developing brains of a wide variety of amniotes and amphibians. Our results suggest that unique progenitor subtypes are amplified in mammalian and avian lineages by modifying common mechanisms of neural stem/progenitor regulation during amniote brain evolution. Highlighted article: In the developing chick pallium, a basal progenitor population resembles mammalian cortical basal radial glia, suggesting a more ancient evolutionary origin for this cell type.
Collapse
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyo-ku, Kyoto 606-0823, Japan Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Chiaki Ohtaka-Maruyama
- Neural Network Project, Department of Neural Development and Regeneration, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Wataru Yamashita
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yoshio Wakamatsu
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Federico Calegari
- DFG-Centre for Regenerative Therapies Dresden, Faculty of Medicine, TUD, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Kunihiro Suzuki
- Department of Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan Division of Companion Diagnostics, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyo-ku, Kyoto 606-0823, Japan
| |
Collapse
|
125
|
An essential role of SVZ progenitors in cortical folding in gyrencephalic mammals. Sci Rep 2016; 6:29578. [PMID: 27403992 PMCID: PMC4941724 DOI: 10.1038/srep29578] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/20/2016] [Indexed: 12/02/2022] Open
Abstract
Because folding of the cerebral cortex in the mammalian brain is believed to be crucial for higher brain functions, the mechanisms underlying its formation during development and evolution are of great interest. Although it has been proposed that increased neural progenitors in the subventricular zone (SVZ) are responsible for making cortical folds, their roles in cortical folding are still largely unclear, mainly because genetic methods for gyrencephalic mammals had been poorly available. Here, by taking an advantage of our newly developed in utero electroporation technique for the gyrencephalic brain of ferrets, we investigated the role of SVZ progenitors in cortical folding. We found regional differences in the abundance of SVZ progenitors in the developing ferret brain even before cortical folds began to be formed. When Tbr2 transcription factor was inhibited, intermediate progenitor cells were markedly reduced in the ferret cerebral cortex. Interestingly, outer radial glial cells were also reduced by inhibiting Tbr2. We uncovered that reduced numbers of SVZ progenitors resulted in impaired cortical folding. When Tbr2 was inhibited, upper cortical layers were preferentially reduced in gyri compared to those in sulci. Our findings indicate the biological importance of SVZ progenitors in cortical folding in the gyrencephalic brain.
Collapse
|
126
|
Intermediate Progenitor Cohorts Differentially Generate Cortical Layers and Require Tbr2 for Timely Acquisition of Neuronal Subtype Identity. Cell Rep 2016; 16:92-105. [PMID: 27320921 DOI: 10.1016/j.celrep.2016.05.072] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/28/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023] Open
Abstract
Intermediate progenitors (IPs) amplify the production of pyramidal neurons, but their role in selective genesis of cortical layers or neuronal subtypes remains unclear. Using genetic lineage tracing in mice, we find that IPs destined to produce upper cortical layers first appear early in corticogenesis, by embryonic day 11.5. During later corticogenesis, IP laminar fates are progressively limited to upper layers. We examined the role of Tbr2, an IP-specific transcription factor, in laminar fate regulation using Tbr2 conditional mutant mice. Upon Tbr2 inactivation, fewer neurons were produced by immediate differentiation and laminar fates were shifted upward. Genesis of subventricular mitoses was, however, not reduced in the context of a Tbr2-null cortex. Instead, neuronal and laminar differentiation were disrupted and delayed. Our findings indicate that upper-layer genesis depends on IPs from many stages of corticogenesis and that Tbr2 regulates the tempo of laminar fate implementation for all cortical layers.
Collapse
|
127
|
Laguesse S, Creppe C, Nedialkova DD, Prévot PP, Borgs L, Huysseune S, Franco B, Duysens G, Krusy N, Lee G, Thelen N, Thiry M, Close P, Chariot A, Malgrange B, Leidel SA, Godin JD, Nguyen L. A Dynamic Unfolded Protein Response Contributes to the Control of Cortical Neurogenesis. Dev Cell 2016; 35:553-567. [PMID: 26651292 DOI: 10.1016/j.devcel.2015.11.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 10/07/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
The cerebral cortex contains layers of neurons sequentially generated by distinct lineage-related progenitors. At the onset of corticogenesis, the first-born progenitors are apical progenitors (APs), whose asymmetric division gives birth directly to neurons. Later, they switch to indirect neurogenesis by generating intermediate progenitors (IPs), which give rise to projection neurons of all cortical layers. While a direct lineage relationship between APs and IPs has been established, the molecular mechanism that controls their transition remains elusive. Here we show that interfering with codon translation speed triggers ER stress and the unfolded protein response (UPR), further impairing the generation of IPs and leading to microcephaly. Moreover, we demonstrate that a progressive downregulation of UPR in cortical progenitors acts as a physiological signal to amplify IPs and promotes indirect neurogenesis. Thus, our findings reveal a contribution of UPR to cell fate acquisition during mammalian brain development.
Collapse
Affiliation(s)
- Sophie Laguesse
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Catherine Creppe
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Danny D Nedialkova
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Albert-Schweitzer-Campus 1, 48129 Muenster, Germany
| | - Pierre-Paul Prévot
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Laurence Borgs
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Sandra Huysseune
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Bénédicte Franco
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Guérin Duysens
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Nathalie Krusy
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicolas Thelen
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Marc Thiry
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Pierre Close
- GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Alain Chariot
- GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Muenster, Germany; Faculty of Medicine, University of Muenster, 48129 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Albert-Schweitzer-Campus 1, 48129 Muenster, Germany
| | - Juliette D Godin
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium.
| | - Laurent Nguyen
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium.
| |
Collapse
|
128
|
Kalebic N, Taverna E, Tavano S, Wong FK, Suchold D, Winkler S, Huttner WB, Sarov M. CRISPR/Cas9-induced disruption of gene expression in mouse embryonic brain and single neural stem cells in vivo. EMBO Rep 2016; 17:338-48. [PMID: 26758805 PMCID: PMC4772980 DOI: 10.15252/embr.201541715] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023] Open
Abstract
We have applied the CRISPR/Cas9 system in vivo to disrupt gene expression in neural stem cells in the developing mammalian brain. Two days after in utero electroporation of a single plasmid encoding Cas9 and an appropriate guide RNA (gRNA) into the embryonic neocortex of Tis21::GFP knock-in mice, expression of GFP, which occurs specifically in neural stem cells committed to neurogenesis, was found to be nearly completely (≈ 90%) abolished in the progeny of the targeted cells. Importantly, upon in utero electroporation directly of recombinant Cas9/gRNA complex, near-maximal efficiency of disruption of GFP expression was achieved already after 24 h. Furthermore, by using microinjection of the Cas9 protein/gRNA complex into neural stem cells in organotypic slice culture, we obtained disruption of GFP expression within a single cell cycle. Finally, we used either Cas9 plasmid in utero electroporation or Cas9 protein complex microinjection to disrupt the expression of Eomes/Tbr2, a gene fundamental for neocortical neurogenesis. This resulted in a reduction in basal progenitors and an increase in neuronal differentiation. Thus, the present in vivo application of the CRISPR/Cas9 system in neural stem cells provides a rapid, efficient and enduring disruption of expression of specific genes to dissect their role in mammalian brain development.
Collapse
Affiliation(s)
- Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Elena Taverna
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Stefania Tavano
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Fong Kuan Wong
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Dana Suchold
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| |
Collapse
|
129
|
Martínez-Cerdeño V, Cunningham CL, Camacho J, Keiter JA, Ariza J, Lovern M, Noctor SC. Evolutionary origin of Tbr2-expressing precursor cells and the subventricular zone in the developing cortex. J Comp Neurol 2016; 524:433-47. [PMID: 26267763 PMCID: PMC4843790 DOI: 10.1002/cne.23879] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/05/2022]
Abstract
The subventricular zone (SVZ) is greatly expanded in primates with gyrencephalic cortices and is thought to be absent from vertebrates with three-layered, lissencephalic cortices, such as the turtle. Recent work in rodents has shown that Tbr2-expressing neural precursor cells in the SVZ produce excitatory neurons for each cortical layer in the neocortex. Many excitatory neurons are generated through a two-step process in which Pax6-expressing radial glial cells divide in the VZ to produce Tbr2-expressing intermediate progenitor cells, which divide in the SVZ to produce cortical neurons. We investigated the evolutionary origin of SVZ neural precursor cells in the prenatal cerebral cortex by testing for the presence and distribution of Tbr2-expressing cells in the prenatal cortex of reptilian and avian species. We found that mitotic Tbr2(+) cells are present in the prenatal cortex of lizard, turtle, chicken, and dove. Furthermore, Tbr2(+) cells are organized into a distinct SVZ in the dorsal ventricular ridge (DVR) of turtle forebrain and in the cortices of chicken and dove. Our results are consistent with the concept that Tbr2(+) neural precursor cells were present in the common ancestor of mammals and reptiles. Our data also suggest that the organizing principle guiding the assembly of Tbr2(+) cells into an anatomically distinct SVZ, both developmentally and evolutionarily, may be shared across vertebrates. Finally, our results indicate that Tbr2 expression can be used to test for the presence of a distinct SVZ and to define the boundaries of the SVZ in developing cortices.
Collapse
Affiliation(s)
- Verónica Martínez-Cerdeño
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children of Northern California, Sacramento, California, 95817
- Department of Pathology and Laboratory Medicine, School of Medicine, UC Davis, Sacramento, California, 95817
- Medical Investigations of Neurodevelopmental Disorders (M.I.N.D.) Institute, School of Medicine, UC Davis, Sacramento, California, 95817
| | | | - Jasmin Camacho
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children of Northern California, Sacramento, California, 95817
| | - Janet A Keiter
- Neuroscience Graduate Program, UC Davis, Davis, California, 95616
| | - Jeanelle Ariza
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children of Northern California, Sacramento, California, 95817
| | - Matthew Lovern
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, 74074
| | - Stephen C Noctor
- Department of Psychiatry, School of Medicine, UC Davis, Sacramento, California, 95817
- Medical Investigations of Neurodevelopmental Disorders (M.I.N.D.) Institute, School of Medicine, UC Davis, Sacramento, California, 95817
| |
Collapse
|
130
|
Perez-Garcia CG, O'Leary DDM. Formation of the Cortical Subventricular Zone Requires MDGA1-Mediated Aggregation of Basal Progenitors. Cell Rep 2016; 14:560-571. [PMID: 26776515 PMCID: PMC4731247 DOI: 10.1016/j.celrep.2015.12.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/28/2015] [Accepted: 12/13/2015] [Indexed: 11/22/2022] Open
Abstract
The subventricular zone (SVZ) provides a specialized neurogenic microenvironment for proliferation and aggregation of basal progenitors (BPs). Our study reveals a mechanism for the aggregation of BPs within the SVZ required for their proliferation and generation of cortical layer neurons. The autism-related IgCAM, MDGA1, is locally expressed in the BP cell membrane where it co-localizes and complexes with the gap junction protein Connexin43. To address MDGA1 function, we created a floxed allele of MDGA1 and deleted it from BPs. MDGA1 deletion results in reduced BP proliferation and size of the SVZ, with an aberrant population of BPs ectopically positioned in the cortical plate. These defects are manifested in diminished production of cortical layer neurons and a significant reduction of the cortical layers. We conclude that MDGA1 functions to aggregate and maintain BPs within the SVZ providing the neurogenic niche required for their proliferation and generation of cortical layer neurons.
Collapse
Affiliation(s)
| | - Dennis D M O'Leary
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| |
Collapse
|
131
|
Dudok JJ, Murtaza M, Henrique Alves C, Rashbass P, Wijnholds J. Crumbs 2 prevents cortical abnormalities in mouse dorsal telencephalon. Neurosci Res 2016; 108:12-23. [PMID: 26802325 DOI: 10.1016/j.neures.2016.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 01/15/2023]
Abstract
The formation of a functionally integrated nervous system is dependent on a highly organized sequence of events that includes timely division and differentiation of progenitors. Several apical polarity proteins have been shown to play crucial roles during neurogenesis, however, the role of Crumbs 2 (CRB2) in cortical development has not previously been reported. Here, we show that conditional ablation of Crb2 in the murine dorsal telencephalon leads to defects in the maintenance of the apical complex. Furthermore, within the mutant dorsal telencephalon there is premature expression of differentiation proteins. We examined the physiological function of Crb2 on wild type genetic background as well as on background lacking Crb1. Telencephalon lacking CRB2 resulted in reduced levels of PALS1 and CRB3 from the apical complex, an increased number of mitotic cells and expanded neuronal domain. These defects are transient and therefore only result in rather mild cortical abnormalities. We show that CRB2 is required for maintenance of the apical polarity complex during development of the cortex and regulation of cell division, and that loss of CRB2 results in cortical abnormalities.
Collapse
Affiliation(s)
- Jacobus J Dudok
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Mariyam Murtaza
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - C Henrique Alves
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Pen Rashbass
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jan Wijnholds
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
132
|
Abstract
Imprinted genes are dosage sensitive, and their dysregulated expression is linked to disorders of growth and proliferation, including fetal and postnatal growth restriction. Common sequelae of growth disorders include neurodevelopmental defects, some of which are indirectly related to placental insufficiency. However, several growth-associated imprinted genes are also expressed in the embryonic CNS, in which their aberrant expression may more directly affect neurodevelopment. To test whether growth-associated genes influence neural lineage progression, we focused on the maternally imprinted gene Zac1. In humans, either loss or gain of ZAC1 expression is associated with reduced growth rates and intellectual disability. To test whether increased Zac1 expression directly perturbs neurodevelopment, we misexpressed Zac1 in murine neocortical progenitors. The effects were striking: Zac1 delayed the transition of apical radial glial cells to basal intermediate neuronal progenitors and postponed their subsequent differentiation into neurons. Zac1 misexpression also blocked neuronal migration, with Zac1-overexpressing neurons pausing more frequently and forming fewer neurite branches during the period when locomoting neurons undergo dynamic morphological transitions. Similar, albeit less striking, neuronal migration and morphological defects were observed on Zac1 knockdown, indicating that Zac1 levels must be regulated precisely. Finally, Zac1 controlled neuronal migration by regulating Pac1 transcription, a receptor for the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP). Pac1 and Zac1 loss- and gain-of-function presented as phenocopies, and overexpression of Pac1 rescued the Zac1 knockdown neuronal migration phenotype. Thus, dysregulated Zac1 expression has striking consequences on neocortical development, suggesting that misexpression of this transcription factor in the brain in certain growth disorders may contribute to neurocognitive deficits. Significance statement: Altered expression of imprinted genes is linked to cognitive dysfunction and neuropsychological disorders, such as Angelman and Prader-Willi syndromes, and autism spectrum disorder. Mouse models have also revealed the importance of imprinting for brain development, with chimeras generated with parthenogenetic (two maternal chromosomes) or androgenetic (two paternal chromosomes) cells displaying altered brain sizes and cellular defects. Despite these striking phenotypes, only a handful of imprinted genes are known or suspected to regulate brain development (e.g., Dlk1, Peg3, Ube3a, necdin, and Grb10). Herein we show that the maternally imprinted gene Zac1 is a critical regulator of neocortical development. Our studies are relevant because loss of 6q24 maternal imprinting in humans results in elevated ZAC1 expression, which has been associated with neurocognitive defects.
Collapse
|
133
|
Sgrò F, Bianchi FT, Falcone M, Pallavicini G, Gai M, Chiotto AMA, Berto GE, Turco E, Chang YJ, Huttner WB, Di Cunto F. Tissue-specific control of midbody microtubule stability by Citron kinase through modulation of TUBB3 phosphorylation. Cell Death Differ 2015; 23:801-13. [PMID: 26586574 DOI: 10.1038/cdd.2015.142] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 09/13/2015] [Accepted: 09/29/2015] [Indexed: 01/02/2023] Open
Abstract
Cytokinesis, the physical separation of daughter cells at the end of cell cycle, is commonly considered a highly stereotyped phenomenon. However, in some specialized cells this process may involve specific molecular events that are still largely unknown. In mammals, loss of Citron-kinase (CIT-K) leads to massive cytokinesis failure and apoptosis only in neuronal progenitors and in male germ cells, resulting in severe microcephaly and testicular hypoplasia, but the reasons for this specificity are unknown. In this report we show that CIT-K modulates the stability of midbody microtubules and that the expression of tubulin β-III (TUBB3) is crucial for this phenotype. We observed that TUBB3 is expressed in proliferating CNS progenitors, with a pattern correlating with the susceptibility to CIT-K loss. More importantly, depletion of TUBB3 in CIT-K-dependent cells makes them resistant to CIT-K loss, whereas TUBB3 overexpression increases their sensitivity to CIT-K knockdown. The loss of CIT-K leads to a strong decrease in the phosphorylation of S444 on TUBB3, a post-translational modification associated with microtubule stabilization. CIT-K may promote this event by interacting with TUBB3 and by recruiting at the midbody casein kinase-2α (CK2α) that has previously been reported to phosphorylate the S444 residue. Indeed, CK2α is lost from the midbody in CIT-K-depleted cells. Moreover, expression of the nonphosphorylatable TUBB3 mutant S444A induces cytokinesis failure, whereas expression of the phospho-mimetic mutant S444D rescues the cytokinesis failure induced by both CIT-K and CK2α loss. Altogether, our findings reveal that expression of relatively low levels of TUBB3 in mitotic cells can be detrimental for their cytokinesis and underscore the importance of CIT-K in counteracting this event.
Collapse
Affiliation(s)
- F Sgrò
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - F T Bianchi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - M Falcone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - G Pallavicini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - M Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - A M A Chiotto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - G E Berto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - E Turco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Y J Chang
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - W B Huttner
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - F Di Cunto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Neuroscience Institute of Turin, Turin, Italy
| |
Collapse
|
134
|
Petros TJ, Bultje RS, Ross ME, Fishell G, Anderson SA. Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate. Cell Rep 2015; 13:1090-1095. [PMID: 26526999 DOI: 10.1016/j.celrep.2015.09.079] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 08/19/2015] [Accepted: 09/25/2015] [Indexed: 11/15/2022] Open
Abstract
Fate determination in the mammalian telencephalon, with its diversity of neuronal subtypes and relevance to neuropsychiatric disease, remains a critical area of study in neuroscience. Most studies investigating this topic focus on the diversity of neural progenitors within spatial and temporal domains along the lateral ventricles. Often overlooked is whether the location of neurogenesis within a fate-restricted domain is associated with, or instructive for, distinct neuronal fates. Here, we use in vivo fate mapping and the manipulation of neurogenic location to demonstrate that apical versus basal neurogenesis influences the fate determination of major subgroups of cortical interneurons derived from the subcortical telencephalon. Somatostatin-expressing interneurons arise mainly from apical divisions along the ventricular surface, whereas parvalbumin-expressing interneurons originate predominantly from basal divisions in the subventricular zone. As manipulations that shift neurogenic location alter interneuron subclass fate, these results add an additional dimension to the spatial-temporal determinants of neuronal fate determination.
Collapse
Affiliation(s)
- Timothy J Petros
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA; NYU Neuroscience Institute, Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, New York, NY 10016, USA
| | - Ronald S Bultje
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Gord Fishell
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, New York, NY 10016, USA
| | - Stewart A Anderson
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA; Department of Psychiatry, Children's Hospital of Philadelphia and UPenn School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
135
|
Genomic DISC1 Disruption in hiPSCs Alters Wnt Signaling and Neural Cell Fate. Cell Rep 2015; 12:1414-29. [PMID: 26299970 DOI: 10.1016/j.celrep.2015.07.061] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/08/2015] [Accepted: 07/29/2015] [Indexed: 02/08/2023] Open
Abstract
Genetic and clinical association studies have identified disrupted in schizophrenia 1 (DISC1) as a candidate risk gene for major mental illness. DISC1 is interrupted by a balanced chr(1;11) translocation in a Scottish family in which the translocation predisposes to psychiatric disorders. We investigate the consequences of DISC1 interruption in human neural cells using TALENs or CRISPR-Cas9 to target the DISC1 locus. We show that disruption of DISC1 near the site of the translocation results in decreased DISC1 protein levels because of nonsense-mediated decay of long splice variants. This results in an increased level of canonical Wnt signaling in neural progenitor cells and altered expression of fate markers such as Foxg1 and Tbr2. These gene expression changes are rescued by antagonizing Wnt signaling in a critical developmental window, supporting the hypothesis that DISC1-dependent suppression of basal Wnt signaling influences the distribution of cell types generated during cortical development.
Collapse
|
136
|
De Juan Romero C, Borrell V. Coevolution of radial glial cells and the cerebral cortex. Glia 2015; 63:1303-19. [PMID: 25808466 PMCID: PMC5008138 DOI: 10.1002/glia.22827] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/09/2015] [Indexed: 12/14/2022]
Abstract
Radial glia cells play fundamental roles in the development of the cerebral cortex, acting both as the primary stem and progenitor cells, as well as the guides for neuronal migration and lamination. These critical functions of radial glia cells in cortical development have been discovered mostly during the last 15 years and, more recently, seminal studies have demonstrated the existence of a remarkable diversity of additional cortical progenitor cell types, including a variety of basal radial glia cells with key roles in cortical expansion and folding, both in ontogeny and phylogeny. In this review, we summarize the main cellular and molecular mechanisms known to be involved in cerebral cortex development in mouse, as the currently preferred animal model, and then compare these with known mechanisms in other vertebrates, both mammal and nonmammal, including human. This allows us to present a global picture of how radial glia cells and the cerebral cortex seem to have coevolved, from reptiles to primates, leading to the remarkable diversity of vertebrate cortical phenotypes.
Collapse
Affiliation(s)
- Camino De Juan Romero
- Instituto De Neurociencias, Consejo Superior De Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan D'alacant, Spain
| | - Víctor Borrell
- Instituto De Neurociencias, Consejo Superior De Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan D'alacant, Spain
| |
Collapse
|
137
|
Yang M, Yang SL, Herrlinger S, Liang C, Dzieciatkowska M, Hansen KC, Desai R, Nagy A, Niswander L, Moss EG, Chen JF. Lin28 promotes the proliferative capacity of neural progenitor cells in brain development. Development 2015; 142:1616-27. [PMID: 25922525 DOI: 10.1242/dev.120543] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neural progenitor cells (NPCs) have distinct proliferation capacities at different stages of brain development. Lin28 is an RNA-binding protein with two homologs in mice: Lin28a and Lin28b. Here we show that Lin28a/b are enriched in early NPCs and their expression declines during neural differentiation. Lin28a single-knockout mice show reduced NPC proliferation, enhanced cell cycle exit and a smaller brain, whereas mice lacking both Lin28a alleles and one Lin28b allele display similar but more severe phenotypes. Ectopic expression of Lin28a in mice results in increased NPC proliferation, NPC numbers and brain size. Mechanistically, Lin28a physically and functionally interacts with Imp1 (Igf2bp1) and regulates Igf2-mTOR signaling. The function of Lin28a/b in NPCs could be attributed, at least in part, to the regulation of their mRNA targets that encode Igf1r and Hmga2. Thus, Lin28a and Lin28b have overlapping functions in temporally regulating NPC proliferation during early brain development.
Collapse
Affiliation(s)
- Mei Yang
- Department of Genetics, Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Si-Lu Yang
- Department of Genetics, Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Stephanie Herrlinger
- Department of Genetics, Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Chen Liang
- Department of Genetics, Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry & Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kirk C Hansen
- Department of Biochemistry & Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Ridham Desai
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada
| | - Lee Niswander
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Eric G Moss
- Department of Molecular Biology, Rowan University, Stratford, NJ 08084, USA
| | - Jian-Fu Chen
- Department of Genetics, Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
138
|
Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Mol Psychiatry 2015; 20:795-809. [PMID: 25450230 PMCID: PMC4486649 DOI: 10.1038/mp.2014.147] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022]
Abstract
The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.
Collapse
|
139
|
Abstract
Several neural precursor populations contemporaneously generate neurons in the developing neocortex. Specifically, radial glial stem cells of the dorsal telencephalon divide asymmetrically to produce excitatory neurons, but also indirectly to produce neurons via three types of intermediate progenitor cells. Why so many precursor types are needed to produce neurons has not been established; whether different intermediate progenitor cells merely expand the output of radial glia or instead generate distinct types of neurons is unknown. Here we use a novel genetic fate mapping technique to simultaneously track multiple precursor streams in the developing mouse brain and show that layer 2 and 3 pyramidal neurons exhibit distinctive electrophysiological and structural properties depending upon their precursor cell type of origin. These data indicate that individual precursor subclasses synchronously produce functionally different neurons, even within the same lamina, and identify a primary mechanism leading to cortical neuronal diversity.
Collapse
|
140
|
Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11515-015-1364-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
141
|
EphA4 Regulates the Balance between Self-Renewal and Differentiation of Radial Glial Cells and Intermediate Neuronal Precursors in Cooperation with FGF Signaling. PLoS One 2015; 10:e0126942. [PMID: 25978062 PMCID: PMC4433105 DOI: 10.1371/journal.pone.0126942] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 04/09/2015] [Indexed: 11/19/2022] Open
Abstract
In mouse cerebral corticogenesis, neurons are generated from radial glial cells (RGCs) or from their immediate progeny, intermediate neuronal precursors (INPs). The balance between self-renewal of these neuronal precursors and specification of cell fate is critical for proper cortical development, but the signaling mechanisms that regulate this progression are poorly understood. EphA4, a member of the receptor tyrosine kinase superfamily, is expressed in RGCs during embryogenesis. To illuminate the function of EphA4 in RGC cell fate determination during early corticogenesis, we deleted Epha4 in cortical cells at E11.5 or E13.5. Loss of EphA4 at both stages led to precocious in vivo RGC differentiation toward neurogenesis. Cortical cells isolated at E14.5 and E15.5 from both deletion mutants showed reduced capacity for neurosphere formation with greater differentiation toward neurons. They also exhibited lower phosphorylation of ERK and FRS2α in the presence of FGF. The size of the cerebral cortex at P0 was smaller than that of controls when Epha4 was deleted at E11.5 but not when it was deleted at E13.5, although the cortical layers were formed normally in both mutants. The number of PAX6-positive RGCs decreased at later developmental stages only in the E11.5 Epha4 deletion mutant. These results suggest that EphA4, in cooperation with an FGF signal, contributes to the maintenance of RGC self-renewal and repression of RGC differentiation through the neuronal lineage. This function of EphA4 is especially critical and uncompensated in early stages of corticogenesis, and thus deletion at E11.5 reduces the size of the neonatal cortex.
Collapse
|
142
|
de Juan Romero C, Bruder C, Tomasello U, Sanz-Anquela JM, Borrell V. Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly. EMBO J 2015; 34:1859-74. [PMID: 25916825 PMCID: PMC4547892 DOI: 10.15252/embj.201591176] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/27/2015] [Indexed: 12/28/2022] Open
Abstract
Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large-scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ∼80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices.
Collapse
Affiliation(s)
- Camino de Juan Romero
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Carl Bruder
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ugo Tomasello
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | | | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| |
Collapse
|
143
|
Meechan DW, Maynard TM, Tucker ES, Fernandez A, Karpinski BA, Rothblat LA, LaMantia AS. Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development. Prog Neurobiol 2015; 130:1-28. [PMID: 25866365 DOI: 10.1016/j.pneurobio.2015.03.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/24/2015] [Accepted: 03/29/2015] [Indexed: 12/21/2022]
Abstract
Understanding the developmental etiology of autistic spectrum disorders, attention deficit/hyperactivity disorder and schizophrenia remains a major challenge for establishing new diagnostic and therapeutic approaches to these common, difficult-to-treat diseases that compromise neural circuits in the cerebral cortex. One aspect of this challenge is the breadth and overlap of ASD, ADHD, and SCZ deficits; another is the complexity of mutations associated with each, and a third is the difficulty of analyzing disrupted development in at-risk or affected human fetuses. The identification of distinct genetic syndromes that include behavioral deficits similar to those in ASD, ADHC and SCZ provides a critical starting point for meeting this challenge. We summarize clinical and behavioral impairments in children and adults with one such genetic syndrome, the 22q11.2 Deletion Syndrome, routinely called 22q11DS, caused by micro-deletions of between 1.5 and 3.0 MB on human chromosome 22. Among many syndromic features, including cardiovascular and craniofacial anomalies, 22q11DS patients have a high incidence of brain structural, functional, and behavioral deficits that reflect cerebral cortical dysfunction and fall within the spectrum that defines ASD, ADHD, and SCZ. We show that developmental pathogenesis underlying this apparent genetic "model" syndrome in patients can be defined and analyzed mechanistically using genomically accurate mouse models of the deletion that causes 22q11DS. We conclude that "modeling a model", in this case 22q11DS as a model for idiopathic ASD, ADHD and SCZ, as well as other behavioral disorders like anxiety frequently seen in 22q11DS patients, in genetically engineered mice provides a foundation for understanding the causes and improving diagnosis and therapy for these disorders of cortical circuit development.
Collapse
Affiliation(s)
- Daniel W Meechan
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Thomas M Maynard
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Eric S Tucker
- Department of Neurobiology and Anatomy, Neuroscience Graduate Program, and Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Alejandra Fernandez
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Beverly A Karpinski
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Lawrence A Rothblat
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States; Department of Psychology, The George Washington University, Washington, DC, United States
| | - Anthony-S LaMantia
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States.
| |
Collapse
|
144
|
Duan L, Peng CY, Pan L, Kessler JA. Human pluripotent stem cell-derived radial glia recapitulate developmental events and provide real-time access to cortical neurons and astrocytes. Stem Cells Transl Med 2015; 4:437-47. [PMID: 25834120 DOI: 10.5966/sctm.2014-0137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/19/2015] [Indexed: 01/08/2023] Open
Abstract
Studies of human cerebral cortex development are limited by difficulties in accessing and manipulating human neural tissue at specific development stages. We have derived human radial glia (hRG), which are responsible for most cerebral cortex neurogenesis, from human pluripotent stem cells. These hRG display the hallmark morphological, cellular, and molecular features of radial glia in vitro. They can be passaged and generate layer-specific subtypes of cortical neurons in a temporal and passage-dependent fashion. In later passages, they adopt a distinct progenitor phenotype that gives rise to cortical astrocytes and GABAergic interneurons. These hRG are also capable of following developmental cues to engraft, differentiate, migrate, and integrate into the embryonic mouse cortex when injected into E14 lateral ventricles. Moreover, hRG-derived cells can be cryopreserved at specific stages and retain their stage-specific phenotypes and competence when revived. Our study demonstrates that cultured hRG maintain a cell-intrinsic clock that regulates the progressive generation of stage-specific neuronal and glial subtypes. It also describes an easily accessible cell source for studying hRG lineage specification and progression and an on-demand supply of specific cortical neuron subtypes and astrocytes.
Collapse
Affiliation(s)
- Lishu Duan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chian-Yu Peng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Liuliu Pan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - John A Kessler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
145
|
Shibata M, Gulden FO, Sestan N. From trans to cis: transcriptional regulatory networks in neocortical development. Trends Genet 2015; 31:77-87. [PMID: 25624274 DOI: 10.1016/j.tig.2014.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 01/25/2023]
Abstract
Transcriptional mechanisms mediated by the binding of transcription factors (TFs) to cis-acting regulatory elements (CREs) in DNA play crucial roles in directing gene expression. While TFs have been extensively studied, less effort has gone towards the identification and functional characterization of CREs and associated epigenetic modulation. However, owing to methodological and analytical advances, more comprehensive studies of regulatory elements and mechanisms are now possible. We summarize recent progress in integrative analyses of these regulatory components in the development of the cerebral neocortex, the part of the brain involved in cognition and complex behavior. These studies are uncovering not only the underlying transcriptional regulatory networks, but also how these networks are altered across species and in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Mikihito Shibata
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Forrest O Gulden
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
146
|
Azzarelli R, Hardwick LJA, Philpott A. Emergence of neuronal diversity from patterning of telencephalic progenitors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:197-214. [PMID: 25619507 DOI: 10.1002/wdev.174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/02/2014] [Accepted: 12/14/2014] [Indexed: 01/03/2023]
Abstract
During central nervous system (CNS) development, hundreds of distinct neuronal subtypes are generated from a single layer of multipotent neuroepithelial progenitor cells. Within the rostral CNS, initial regionalization of the telencephalon marks the territories where the cerebral cortex and the basal ganglia originate. Subsequent refinement of the primary structures determines the formation of domains of differential gene expression, where distinct fate-restricted progenitors are located. To understand how diversification of neural progenitors and neurons is achieved in the telencephalon, it is important to address early and late patterning events in this context. In particular, important questions include: How does the telencephalon become specified and regionalized along the major spatial axes? Within each region, are the differences in neuronal subtypes established at the progenitor level or at the postmitotic stage? If distinct progenitors exist that are committed to subtype-specific neuronal lineages, how does the diversification emerge? What is the contribution of positional and temporal cues and how is this information integrated into the intrinsic programs of cell identity? WIREs For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | | | | |
Collapse
|
147
|
Najas S, Arranz J, Lochhead PA, Ashford AL, Oxley D, Delabar JM, Cook SJ, Barallobre MJ, Arbonés ML. DYRK1A-mediated Cyclin D1 Degradation in Neural Stem Cells Contributes to the Neurogenic Cortical Defects in Down Syndrome. EBioMedicine 2015; 2:120-34. [PMID: 26137553 PMCID: PMC4484814 DOI: 10.1016/j.ebiom.2015.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 01/02/2023] Open
Abstract
Alterations in cerebral cortex connectivity lead to intellectual disability and in Down syndrome, this is associated with a deficit in cortical neurons that arises during prenatal development. However, the pathogenic mechanisms that cause this deficit have not yet been defined. Here we show that the human DYRK1A kinase on chromosome 21 tightly regulates the nuclear levels of Cyclin D1 in embryonic cortical stem (radial glia) cells, and that a modest increase in DYRK1A protein in transgenic embryos lengthens the G1 phase in these progenitors. These alterations promote asymmetric proliferative divisions at the expense of neurogenic divisions, producing a deficit in cortical projection neurons that persists in postnatal stages. Moreover, radial glial progenitors in the Ts65Dn mouse model of Down syndrome have less Cyclin D1, and Dyrk1a is the triplicated gene that causes both early cortical neurogenic defects and decreased nuclear Cyclin D1 levels in this model. These data provide insights into the mechanisms that couple cell cycle regulation and neuron production in cortical neural stem cells, emphasizing that the deleterious effect of DYRK1A triplication in the formation of the cerebral cortex begins at the onset of neurogenesis, which is relevant to the search for early therapeutic interventions in Down syndrome.
Collapse
Affiliation(s)
- Sònia Najas
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain
| | - Juan Arranz
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain
| | - Pamela A. Lochhead
- Signalling Programme, The Babraham Institute, Babraham Research Campus, CB22 3AT Cambridge, UK
| | - Anne L. Ashford
- Signalling Programme, The Babraham Institute, Babraham Research Campus, CB22 3AT Cambridge, UK
| | - David Oxley
- Proteomics Group, The Babraham Institute, Babraham Research Campus, CB22 3AT Cambridge, UK
| | - Jean M. Delabar
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, 75013 Paris, France
| | - Simon J. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, CB22 3AT Cambridge, UK
| | - María José Barallobre
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain
| | - Maria L. Arbonés
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain
| |
Collapse
|
148
|
Costa MR, Müller U. Specification of excitatory neurons in the developing cerebral cortex: progenitor diversity and environmental influences. Front Cell Neurosci 2015; 8:449. [PMID: 25628534 PMCID: PMC4290578 DOI: 10.3389/fncel.2014.00449] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/12/2014] [Indexed: 11/13/2022] Open
Abstract
The mature cerebral cortex harbors a heterogeneous population of glutamatergic neurons, organized into a highly intricate histological architecture. Classically, this mixed population of neurons was thought to be generated sequentially from a seemingly homogenous group of progenitors under the influence of external cues. This view, however, has been challenged in the last decade by evidences pointing to the existence of fate-restricted neuronal progenitors in the developing neocortex. Here, we review classical studies using cell transplantation, retroviral labeling and cell culture, as well as new data from genetic fate-mapping analysis, to discuss the lineage relationships between neocortical progenitors and subclasses of excitatory neurons. We also propose a temporal model to conciliate the existence of fate-restricted progenitors alongside multipotent progenitors in the neocortex. Finally, we discuss evidences for a critical period of plasticity among post mitotic excitatory cortical neurons when environmental influences could change neuronal cell fate.
Collapse
Affiliation(s)
- Marcos R Costa
- Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| | - Ulrich Müller
- Dorris Neuroscience Center and Department of Cell Biology, The Scripps Research Institute La Jolla, CA, USA
| |
Collapse
|
149
|
You L, Zou J, Zhao H, Bertos NR, Park M, Wang E, Yang XJ. Deficiency of the chromatin regulator BRPF1 causes abnormal brain development. J Biol Chem 2015; 290:7114-29. [PMID: 25568313 DOI: 10.1074/jbc.m114.635250] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epigenetic mechanisms are important in different neurological disorders, and one such mechanism is histone acetylation. The multivalent chromatin regulator BRPF1 (bromodomain- and plant homeodomain-linked (PHD) zinc finger-containing protein 1) recognizes different epigenetic marks and activates three histone acetyltransferases, so it is both a reader and a co-writer of the epigenetic language. The three histone acetyltransferases are MOZ, MORF, and HBO1, which are also known as lysine acetyltransferase 6A (KAT6A), KAT6B, and KAT7, respectively. The MORF gene is mutated in four neurodevelopmental disorders sharing the characteristic of intellectual disability and frequently displaying callosal agenesis. Here, we report that forebrain-specific inactivation of the mouse Brpf1 gene caused early postnatal lethality, neocortical abnormalities, and partial callosal agenesis. With respect to the control, the mutant forebrain contained fewer Tbr2-positive intermediate neuronal progenitors and displayed aberrant neurogenesis. Molecularly, Brpf1 loss led to decreased transcription of multiple genes, such as Robo3 and Otx1, important for neocortical development. Surprisingly, elevated expression of different Hox genes and various other transcription factors, such as Lhx4, Foxa1, Tbx5, and Twist1, was also observed. These results thus identify an important role of Brpf1 in regulating forebrain development and suggest that it acts as both an activator and a silencer of gene expression in vivo.
Collapse
Affiliation(s)
- Linya You
- From the Rosalind & Morris Goodman Cancer Research Center, Department of Medicine, McGill University, Quebec H3A 1A3
| | - Jinfeng Zou
- the National Research Council Canada, Montreal, Quebec H4P 2R2, and
| | - Hong Zhao
- From the Rosalind & Morris Goodman Cancer Research Center
| | | | - Morag Park
- From the Rosalind & Morris Goodman Cancer Research Center, Department of Medicine, McGill University, Quebec H3A 1A3, the Department of Biochemistry, McGill University and McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| | - Edwin Wang
- the National Research Council Canada, Montreal, Quebec H4P 2R2, and
| | - Xiang-Jiao Yang
- From the Rosalind & Morris Goodman Cancer Research Center, Department of Medicine, McGill University, Quebec H3A 1A3, the Department of Biochemistry, McGill University and McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
150
|
Watanabe N, Kageyama R, Ohtsuka T. Hbp1 regulates the timing of neuronal differentiation during cortical development by controlling cell cycle progression. Development 2015; 142:2278-90. [DOI: 10.1242/dev.120477] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/26/2015] [Indexed: 11/20/2022]
Abstract
In the developing mammalian brain, neural stem cells (NSCs) initially expand the progenitor pool by symmetric divisions. NSCs then shift from symmetric to asymmetric division and commence neurogenesis. Although the precise mechanisms regulating the developmental timing of this transition have not been fully elucidated, gradual elongation in the length of the cell cycle and coinciding accumulation of determinants that promote neuronal differentiation may function as a biological clock that regulates the onset of asymmetric division and neurogenesis. We conducted gene expression profiling of embryonic NSCs in the cortical regions and found that expression of high mobility group box transcription factor 1 (Hbp1) was upregulated during neurogenic stages. Induced conditional knockout mice of Hbp1 generated by crossing with Nestin-CreERT2 mice exhibited a remarkable dilatation of the telencephalic vesicles with a tangentially expanded ventricular zone and a thinner cortical plate containing reduced numbers of neurons. In these Hbp1-deficient mouse embryos, neural stem/progenitor cells continued to divide with a shorter cell cycle length. And downstream target genes of the Wnt signaling, such as cyclin D1 and c-jun, were upregulated in the germinal zone of the cortical regions. These results indicate that Hbp1 plays a critical role in regulating the timing of cortical neurogenesis by elongating the cell cycle and is essential for normal cortical development.
Collapse
Affiliation(s)
- Naoki Watanabe
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshiyuki Ohtsuka
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|