101
|
Padamsey Z, Katsanevaki D, Dupuy N, Rochefort NL. Neocortex saves energy by reducing coding precision during food scarcity. Neuron 2022; 110:280-296.e10. [PMID: 34741806 PMCID: PMC8788933 DOI: 10.1016/j.neuron.2021.10.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022]
Abstract
Information processing is energetically expensive. In the mammalian brain, it is unclear how information coding and energy use are regulated during food scarcity. Using whole-cell recordings and two-photon imaging in layer 2/3 mouse visual cortex, we found that food restriction reduced AMPA receptor conductance, reducing synaptic ATP use by 29%. Neuronal excitability was nonetheless preserved by a compensatory increase in input resistance and a depolarized resting potential. Consequently, neurons spiked at similar rates as controls but spent less ATP on underlying excitatory currents. This energy-saving strategy had a cost because it amplified the variability of visually-evoked subthreshold responses, leading to a 32% broadening of orientation tuning and impaired fine visual discrimination. This reduction in coding precision was associated with reduced levels of the fat mass-regulated hormone leptin and was restored by exogenous leptin supplementation. Our findings reveal that metabolic state dynamically regulates the energy spent on coding precision in neocortex.
Collapse
Affiliation(s)
- Zahid Padamsey
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | - Danai Katsanevaki
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nathalie Dupuy
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
102
|
Wyllie DJA, Bowie D. Ionotropic glutamate receptors: structure, function and dysfunction. J Physiol 2022; 600:175-179. [PMID: 35028955 DOI: 10.1113/jp282389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- David J A Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| |
Collapse
|
103
|
Xu Q, Hu M, Li J, Ma X, Chu Z, Zhu Q, Zhang Y, Zhu P, Huang Y, He G. Discovery of novel brain-penetrant GluN2B NMDAR antagonists via pharmacophore-merging strategy as anti-stroke therapeutic agents. Eur J Med Chem 2022; 227:113876. [PMID: 34710748 DOI: 10.1016/j.ejmech.2021.113876] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 01/01/2023]
Abstract
In this work, a novel structural series of brain-penetrant GluN2B NMDAR antagonists were designed, synthesized and biologically evaluated as anti-stroke therapeutic agents via merging the structures of NBP and known GluN2B ligands. Approximately half of them exhibited superior neuroprotective activity to NBP against NMDA-induced neurotoxicity in hippocampal neurons at 10 μM, and compound 45e and 45f exerted equipotent activity to ifenprodil, an approved GluN2B- selective NMDAR antagonist. In particular, 45e, with the most potent neuroprotective activity throughout this series, displayed dramatically enhanced activity (Ki = 3.26 nM) compared to ifenprodil (Ki = 14.80 nM) in Radioligand Competitive Binding Assay, and remarkable inhibition (IC50 = 79.32 nM) against GluN1/GluN2B receptor-mediated current in Patch Clamp Assay. Meanwhile, 45e and its enantiomers exhibited low inhibition rate against the current mediated by other investigated receptors at the concentration of 10 μM, indicating their favorable selectivity for GluN1/GluN2B. In the rat model of middle cerebral artery ischemia (MCAO), 45e exerted comparable therapeutic efficacy to ifenprodil at the same dosage. In addition to the attractive in vitro and in vivo potency, 45e displayed a favorable bioavailability (F = 63.37%) and an excellent brain exposure. In further repeated dose toxicity experiments, compound 45e demonstrated an acceptable safety profile. With the above merits, 45e is worthy of further functional investigation as a novel anti-stroke therapeutic agent.
Collapse
Affiliation(s)
- Qinlong Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Mengqi Hu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Jiaming Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Xiaodong Ma
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhaoxing Chu
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China; China Pharmaceutical University, Nanjing, 210009, China
| | - Qihua Zhu
- China Pharmaceutical University, Nanjing, 210009, China
| | - Yanchun Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Panhu Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yuanzheng Huang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guangwei He
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| |
Collapse
|
104
|
Pribbenow C, Chen YC, Heim MM, Laber D, Reubold S, Reynolds E, Balles I, Fernández-d V Alquicira T, Suárez-Grimalt R, Scheunemann L, Rauch C, Matkovic T, Rösner J, Lichtner G, Jagannathan SR, Owald D. Postsynaptic plasticity of cholinergic synapses underlies the induction and expression of appetitive and familiarity memories in Drosophila. eLife 2022; 11:80445. [PMID: 36250621 PMCID: PMC9733945 DOI: 10.7554/elife.80445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022] Open
Abstract
In vertebrates, several forms of memory-relevant synaptic plasticity involve postsynaptic rearrangements of glutamate receptors. In contrast, previous work indicates that Drosophila and other invertebrates store memories using presynaptic plasticity of cholinergic synapses. Here, we provide evidence for postsynaptic plasticity at cholinergic output synapses from the Drosophila mushroom bodies (MBs). We find that the nicotinic acetylcholine receptor (nAChR) subunit α5 is required within specific MB output neurons for appetitive memory induction but is dispensable for aversive memories. In addition, nAChR α2 subunits mediate memory expression and likely function downstream of α5 and the postsynaptic scaffold protein discs large (Dlg). We show that postsynaptic plasticity traces can be induced independently of the presynapse, and that in vivo dynamics of α2 nAChR subunits are changed both in the context of associative and non-associative (familiarity) memory formation, underlying different plasticity rules. Therefore, regardless of neurotransmitter identity, key principles of postsynaptic plasticity support memory storage across phyla.
Collapse
Affiliation(s)
- Carlotta Pribbenow
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Yi-chun Chen
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - M-Marcel Heim
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Desiree Laber
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Silas Reubold
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Eric Reynolds
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Isabella Balles
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Tania Fernández-d V Alquicira
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Raquel Suárez-Grimalt
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany,Einstein Center for Neurosciences BerlinBerlinGermany
| | - Lisa Scheunemann
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany,NeuroCure, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany,Institut für Biologie, Freie Universität BerlinBerlinGermany
| | - Carolin Rauch
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Tanja Matkovic
- Institut für Biologie, Freie Universität BerlinBerlinGermany
| | - Jörg Rösner
- NWFZ, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthGreifswaldGermany
| | - Gregor Lichtner
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany,Universitätsmedizin Greifswald, Department of Anesthesia, Critical Care, Emergency and Pain MedicineGreifswaldGermany
| | - Sridhar R Jagannathan
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - David Owald
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany,Einstein Center for Neurosciences BerlinBerlinGermany,NeuroCure, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
105
|
Aberrant hippocampal transmission and behavior in mice with a stargazin mutation linked to intellectual disability. Mol Psychiatry 2022; 27:2457-2469. [PMID: 35256745 PMCID: PMC9135633 DOI: 10.1038/s41380-022-01487-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 11/08/2022]
Abstract
Mutations linked to neurodevelopmental disorders, such as intellectual disability (ID), are frequently found in genes that encode for proteins of the excitatory synapse. Transmembrane AMPA receptor regulatory proteins (TARPs) are AMPA receptor auxiliary proteins that regulate crucial aspects of receptor function. Here, we investigate a mutant form of the TARP family member stargazin, described in an ID patient. Molecular dynamics analyses predicted that the ID-associated stargazin variant, V143L, weakens the overall interface of the AMPAR:stargazin complex and impairs the stability of the complex. Knock-in mice harboring the V143L stargazin mutation manifest cognitive and social deficits and hippocampal synaptic transmission defects, resembling phenotypes displayed by ID patients. In the hippocampus of stargazin V143L mice, CA1 neurons show impaired spine maturation, abnormal synaptic transmission and long-term potentiation specifically in basal dendrites, and synaptic ultrastructural alterations. These data suggest a causal role for mutated stargazin in the pathogenesis of ID and unveil a new role for stargazin in the development and function of hippocampal synapses.
Collapse
|
106
|
Sanzeni A, Histed MH, Brunel N. Emergence of Irregular Activity in Networks of Strongly Coupled Conductance-Based Neurons. PHYSICAL REVIEW. X 2022; 12:011044. [PMID: 35923858 PMCID: PMC9344604 DOI: 10.1103/physrevx.12.011044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cortical neurons are characterized by irregular firing and a broad distribution of rates. The balanced state model explains these observations with a cancellation of mean excitatory and inhibitory currents, which makes fluctuations drive firing. In networks of neurons with current-based synapses, the balanced state emerges dynamically if coupling is strong, i.e., if the mean number of synapses per neuron K is large and synaptic efficacy is of the order of 1 / K . When synapses are conductance-based, current fluctuations are suppressed when coupling is strong, questioning the applicability of the balanced state idea to biological neural networks. We analyze networks of strongly coupled conductance-based neurons and show that asynchronous irregular activity and broad distributions of rates emerge if synaptic efficacy is of the order of 1/ log(K). In such networks, unlike in the standard balanced state model, current fluctuations are small and firing is maintained by a drift-diffusion balance. This balance emerges dynamically, without fine-tuning, if inputs are smaller than a critical value, which depends on synaptic time constants and coupling strength, and is significantly more robust to connection heterogeneities than the classical balanced state model. Our analysis makes experimentally testable predictions of how the network response properties should evolve as input increases.
Collapse
Affiliation(s)
- A. Sanzeni
- Center for Theoretical Neuroscience, Columbia University, New York, New York, USA
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
- National Institute of Mental Health Intramural Program, NIH, Bethesda, Maryland, USA
| | - M. H. Histed
- National Institute of Mental Health Intramural Program, NIH, Bethesda, Maryland, USA
| | - N. Brunel
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
- Department of Physics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
107
|
Frye HE, Izumi Y, Harris AN, Williams SB, Trousdale CR, Sun MY, Sauerbeck AD, Kummer TT, Mennerick S, Zorumski CF, Nelson EC, Dougherty JD, Morón JA. Sex Differences in the Role of CNIH3 on Spatial Memory and Synaptic Plasticity. Biol Psychiatry 2021; 90:766-780. [PMID: 34548146 PMCID: PMC8571071 DOI: 10.1016/j.biopsych.2021.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND CNIH3 is an AMPA receptor (AMPAR) auxiliary protein prominently expressed in the dorsal hippocampus (dHPC), a region that plays a critical role in spatial memory and synaptic plasticity. However, the effects of CNIH3 on AMPAR-dependent synaptic function and behavior have not been investigated. METHODS We assessed a gain-of-function model of Cnih3 overexpression in the dHPC and generated and characterized a line of Cnih3-/- C57BL/6 mice. We assessed spatial memory through behavioral assays, protein levels of AMPAR subunits and synaptic proteins by immunoblotting, and long-term potentiation in electrophysiological recordings. We also utilized a super-resolution imaging workflow, SEQUIN (Synaptic Evaluation and Quantification by Imaging of Nanostructure), for analysis of nanoscale synaptic connectivity in the dHPC. RESULTS Overexpression of Cnih3 in the dHPC improved short-term spatial memory in female mice but not in male mice. Cnih3-/- female mice exhibited weakened short-term spatial memory, reduced dHPC synapse density, enhanced expression of calcium-impermeable AMPAR (GluA2-containing) subunits in synaptosomes, and attenuated long-term potentiation maintenance compared with Cnih3+/+ control mice; Cnih3-/- males were unaffected. Further investigation revealed that deficiencies in spatial memory and changes in AMPAR composition and synaptic plasticity were most pronounced during the metestrus phase of the estrous cycle in female Cnih3-/- mice. CONCLUSIONS This study identified a novel effect of sex and estrous on CNIH3's role in spatial memory and synaptic plasticity. Manipulation of CNIH3 unmasked sexually dimorphic effects on spatial memory, synaptic function, AMPAR composition, and hippocampal plasticity. These findings reinforce the importance of considering sex as a biological variable in studies of memory and hippocampal synaptic function.
Collapse
Affiliation(s)
- Hannah E Frye
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Pain Center, Washington University School of Medicine, St. Louis, Missouri; Program in Neuroscience, Washington University in St. Louis, St. Louis, Missouri
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Alexis N Harris
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Sidney B Williams
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Pain Center, Washington University School of Medicine, St. Louis, Missouri
| | - Christopher R Trousdale
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Pain Center, Washington University School of Medicine, St. Louis, Missouri
| | - Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew D Sauerbeck
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Terrance T Kummer
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Jose A Morón
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Pain Center, Washington University School of Medicine, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
108
|
Hirschfeldova K, Cerny J, Bozikova P, Kuchtiak V, Rausch T, Benes V, Spaniel F, Gregus D, Horacek J, Vyklicky L, Balik A. Evidence for the Association between the Intronic Haplotypes of Ionotropic Glutamate Receptors and First-Episode Schizophrenia. J Pers Med 2021; 11:1250. [PMID: 34945722 PMCID: PMC8708351 DOI: 10.3390/jpm11121250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The heritable component of schizophrenia (SCH) as a polygenic trait is represented by numerous variants from a heterogeneous group of genes each contributing a relatively small effect. Various SNPs have already been found and analyzed in genes encoding the NMDAR subunits. However, less is known about genetic variations of genes encoding the AMPA and kainate receptor subunits. We analyzed sixteen iGluR genes in full length to determine the sequence variability of iGluR genes. Our aim was to describe the rate of genetic variability, its distribution, and the co-occurrence of variants and to identify new candidate risk variants or haplotypes. The cumulative effect of genetic risk was then estimated using a simple scoring model. GRIN2A-B, GRIN3A-B, and GRIK4 genes showed significantly increased genetic variation in SCH patients. The fixation index statistic revealed eight intronic haplotypes and an additional four intronic SNPs within the sequences of iGluR genes associated with SCH (p < 0.05). The haplotypes were used in the proposed simple scoring model and moreover as a test for genetic predisposition to schizophrenia. The positive likelihood ratio for the scoring model test reached 7.11. We also observed 41 protein-altering variants (38 missense variants, four frameshifts, and one nonsense variant) that were not significantly associated with SCH. Our data suggest that some intronic regulatory regions of iGluR genes and their common variability are among the components from which the genetic predisposition to SCH is composed.
Collapse
Affiliation(s)
- Katerina Hirschfeldova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic;
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.C.); (V.K.); (L.V.)
| | - Jiri Cerny
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.C.); (V.K.); (L.V.)
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Czech Republic;
| | - Paulina Bozikova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Czech Republic;
| | - Viktor Kuchtiak
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.C.); (V.K.); (L.V.)
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Tobias Rausch
- Genomics Core Facility, EMBL, 69117 Heidelberg, Germany; (T.R.); (V.B.)
| | - Vladimir Benes
- Genomics Core Facility, EMBL, 69117 Heidelberg, Germany; (T.R.); (V.B.)
| | - Filip Spaniel
- The National Institute of Mental Health, 25067 Klecany, Czech Republic; (F.S.); (D.G.); (J.H.)
| | - David Gregus
- The National Institute of Mental Health, 25067 Klecany, Czech Republic; (F.S.); (D.G.); (J.H.)
| | - Jiri Horacek
- The National Institute of Mental Health, 25067 Klecany, Czech Republic; (F.S.); (D.G.); (J.H.)
| | - Ladislav Vyklicky
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.C.); (V.K.); (L.V.)
| | - Ales Balik
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.C.); (V.K.); (L.V.)
- Institute of Physiology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Czech Republic
| |
Collapse
|
109
|
Cheng L, Chen K, Li J, Wu J, Zhang J, Chen L, Guo G, Zhang J. Phosphorylation of CRMP2 by Cdk5 Negatively Regulates the Surface Delivery and Synaptic Function of AMPA Receptors. Mol Neurobiol 2021; 59:762-777. [PMID: 34773219 DOI: 10.1007/s12035-021-02581-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/24/2021] [Indexed: 11/28/2022]
Abstract
AMPA receptor mediate most fast excitatory synaptic transmission and play a key role in synaptic plasticity in the central nervous system (CNS) by trafficking and targeting of its subunits to individual postsynaptic membrane. Collapsing response mediator protein 2 (CRMP2), an intracellular phospho-protein, has been reported to promote the maturation of the dendritic spine and transfer AMPA receptors to the membrane. However, our knowledge about the molecular mechanisms of CRMP2 regulating AMPA receptors trafficking is limited. Here, we reported that CRMP2 promoted the surface expression of AMPA receptor GluA1 subunit in cultured hippocampal neurons and in HEK293T cells expressing GluA1 subunits. Furthermore, we found that CRMP2 interacted with GluA1, and their interaction was inhibited by CRMP2 phosphorylation at ser522. Moreover, our results showed that phosphorylation of CRMP2 at ser522 by cyclin-dependent kinase 5 (Cdk5) decreased the fluorescence intensity of surface GluA1 and the amplitude and frequency of miniature excitatory synaptic currents (mEPSCs) in cultured hippocampal neurons, indicating a reduction levels and synaptic function of AMPA receptors. Taken together, our data demonstrated that phosphorylation of CRMP2 by Cdk5 is important for AMPA receptor surface delivery in hippocampal neurons.
Collapse
Affiliation(s)
- Longfei Cheng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China.,Department of Neurosurgery, The First Affiliated Hospital of Jinan University Guangzhou, Guangzhou, 510630, China
| | - Keen Chen
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China.,Department of Neurosurgery, The First Affiliated Hospital of Jinan University Guangzhou, Guangzhou, 510630, China
| | - Jiong Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Jiaming Wu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China.,Department of Neurosurgery, The First Affiliated Hospital of Jinan University Guangzhou, Guangzhou, 510630, China
| | - Jiaqi Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Li Chen
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China.
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
110
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
111
|
Fernández-Suárez D, Krapacher FA, Pietrajtis K, Andersson A, Kisiswa L, Carrier-Ruiz A, Diana MA, Ibáñez CF. Adult medial habenula neurons require GDNF receptor GFRα1 for synaptic stability and function. PLoS Biol 2021; 19:e3001350. [PMID: 34748545 PMCID: PMC8601618 DOI: 10.1371/journal.pbio.3001350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/18/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
The medial habenula (mHb) is an understudied small brain nucleus linking forebrain and midbrain structures controlling anxiety and fear behaviors. The mechanisms that maintain the structural and functional integrity of mHb neurons and their synapses remain unknown. Using spatiotemporally controlled Cre-mediated recombination in adult mice, we found that the glial cell-derived neurotrophic factor receptor alpha 1 (GFRα1) is required in adult mHb neurons for synaptic stability and function. mHb neurons express some of the highest levels of GFRα1 in the mouse brain, and acute ablation of GFRα1 results in loss of septohabenular and habenulointerpeduncular glutamatergic synapses, with the remaining synapses displaying reduced numbers of presynaptic vesicles. Chemo- and optogenetic studies in mice lacking GFRα1 revealed impaired circuit connectivity, reduced AMPA receptor postsynaptic currents, and abnormally low rectification index (R.I.) of AMPARs, suggesting reduced Ca2+ permeability. Further biochemical and proximity ligation assay (PLA) studies defined the presence of GluA1/GluA2 (Ca2+ impermeable) as well as GluA1/GluA4 (Ca2+ permeable) AMPAR complexes in mHb neurons, as well as clear differences in the levels and association of AMPAR subunits with mHb neurons lacking GFRα1. Finally, acute loss of GFRα1 in adult mHb neurons reduced anxiety-like behavior and potentiated context-based fear responses, phenocopying the effects of lesions to septal projections to the mHb. These results uncover an unexpected function for GFRα1 in the maintenance and function of adult glutamatergic synapses and reveal a potential new mechanism for regulating synaptic plasticity in the septohabenulointerpeduncular pathway and attuning of anxiety and fear behaviors.
Collapse
Affiliation(s)
- Diana Fernández-Suárez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Physiology and Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | | | - Katarzyna Pietrajtis
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine–Institut de Biologie Paris Seine (NPS-IBPS), Paris, France
| | - Annika Andersson
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Lilian Kisiswa
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | - Marco A. Diana
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine–Institut de Biologie Paris Seine (NPS-IBPS), Paris, France
| | - Carlos F. Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Physiology and Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University School of Life Sciences and Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
112
|
Coombs ID, Cull-Candy SG. Single-channel mechanisms underlying the function, diversity and plasticity of AMPA receptors. Neuropharmacology 2021; 198:108781. [PMID: 34480912 DOI: 10.1016/j.neuropharm.2021.108781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022]
Abstract
The functional properties of AMPA receptors shape many of the essential features of excitatory synaptic signalling in the brain, including high-fidelity point-to-point transmission and long-term plasticity. Understanding the behaviour and regulation of single AMPAR channels is fundamental in unravelling how central synapses carry, process and store information. There is now an abundance of data on the importance of alternative splicing, RNA editing, and phosphorylation of AMPAR subunits in determining central synaptic diversity. Furthermore, auxiliary subunits have emerged as pivotal players that regulate AMPAR channel properties and add further diversity. Single-channel studies have helped reveal a fascinating picture of the unique behaviour of AMPAR channels - their concentration-dependent single-channel conductance, the basis of their multiple-conductance states, and the influence of auxiliary proteins in controlling many of their gating and conductance properties. Here we summarize basic hallmarks of AMPAR single-channels, in relation to function, diversity and plasticity. We also present data that reveal an unexpected feature of AMPAR sublevel behaviour. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.
Collapse
Affiliation(s)
- Ian D Coombs
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Stuart G Cull-Candy
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
113
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 267] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
114
|
GluA3 autoantibodies induce alterations in dendritic spine and behavior in mice. Brain Behav Immun 2021; 97:89-101. [PMID: 34246733 DOI: 10.1016/j.bbi.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Accepted: 07/03/2021] [Indexed: 12/22/2022] Open
Abstract
Autoantibodies targeting the GluA3 subunit of AMPA receptors (AMPARs) have been found in patients with Rasmussen's encephalitis and different types of epilepsy and were associated with the presence of learning and attention deficits. Our group recently identified the presence of anti-GluA3 immunoglobulin G (IgG) in about 25% of patients with frontotemporal dementia (FTD), thus suggesting a novel pathogenetic role also in chronic neurodegenerative diseases. However, the in vivo behavioral, molecular and morphological effects induced these antibodies are still unexplored. We injected anti-GluA3 IgG purified from the serum of FTD patients, or control IgG, in mice by intracerebroventricular infusion. Biochemical analyses showed a reduction of synaptic levels of GluA3-containing AMPARs in the prefrontal cortex (PFC), and not in the hippocampus. Accordingly, animals injected with anti-GluA3 IgG showed significant changes in recognition memory and impairments in social behavior and in social cognitive functions. As visualized by confocal imaging, functional outcomes were paralleled by profound alterations of dendritic spine morphology in the PFC. All observed behavioral, molecular and morphological alterations were transient and not detected 10-14 days from anti-GluA3 IgG injection. Overall, our in vivo preclinical data provide novel insights into autoimmune encephalitis associated with anti-GluA3 IgG and indicate an additional pathological mechanism affecting the excitatory synapses in FTD patients carrying anti-GluA3 IgG that could contribute to clinical symptoms.
Collapse
|
115
|
Díaz-Alonso J, Nicoll RA. AMPA receptor trafficking and LTP: Carboxy-termini, amino-termini and TARPs. Neuropharmacology 2021; 197:108710. [PMID: 34271016 PMCID: PMC9122021 DOI: 10.1016/j.neuropharm.2021.108710] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022]
Abstract
AMPA receptors (AMPARs) are fundamental elements in excitatory synaptic transmission and synaptic plasticity in the CNS. Long term potentiation (LTP), a form of synaptic plasticity which contributes to learning and memory formation, relies on the accumulation of AMPARs at the postsynapse. This phenomenon requires the coordinated recruitment of different elements in the AMPAR complex. Based on recent research reviewed herein, we propose an updated AMPAR trafficking and LTP model which incorporates both extracellular as well as intracellular mechanisms. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.
Collapse
Affiliation(s)
- Javier Díaz-Alonso
- Department of Anatomy and Neurobiology, USA; Center for the Neurobiology of Learning and Memory, University of California at Irvine, USA.
| | - Roger A Nicoll
- Departments of Cellular and Molecular Pharmacology, USA; Physiology, University of California at San Francisco, USA.
| |
Collapse
|
116
|
Schiel KA. A beneficial role for elevated extracellular glutamate in Amyotrophic Lateral Sclerosis and cerebral ischemia. Bioessays 2021; 43:e2100127. [PMID: 34585427 DOI: 10.1002/bies.202100127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/06/2022]
Abstract
This hypothesis proposes that increased extracellular glutamate in Amyotrophic Lateral Sclerosis (ALS) and cerebral ischemia, currently viewed as a trigger for excitotoxicity, is actually beneficial as it stimulates the utilization of glutamate as metabolic fuel. Renewed appreciation of glutamate oxidation by ischemic neurons has raised questions regarding the role of extracellular glutamate in ischemia. Is it detrimental, as suggested by excitotoxicity in early in vitro studies, or beneficial, as suggested by its oxidation in later in vivo studies? The answer may depend on the activity of N-methyl-D-aspartate (NMDA) glutamate receptors. Early in vitro procedures co-activated NMDA receptors (NMDARs) containing 2A (GluN2A) and 2B (GluN2B) subunits, an event now believed to trigger excitotoxicity; however, during in vivo ischemia D-serine and zinc molecules are released and these ensure only GluN2B receptors are stimulated. This not only prevents excitotoxicity but also initiates signaling cascades that allow ischemic neurons to import and oxidize glutamate.
Collapse
|
117
|
Singh A, Allen D, Fracassi A, Tumurbaatar B, Natarajan C, Scaduto P, Woltjer R, Kayed R, Limon A, Krishnan B, Taglialatela G. Functional Integrity of Synapses in the Central Nervous System of Cognitively Intact Individuals with High Alzheimer's Disease Neuropathology Is Associated with Absence of Synaptic Tau Oligomers. J Alzheimers Dis 2021; 78:1661-1678. [PMID: 33185603 PMCID: PMC7836055 DOI: 10.3233/jad-200716] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Certain individuals, here referred to as Non-Demented with Alzheimer Neuropathology (NDAN), do not show overt neurodegeneration (N-) and remain cognitively intact despite the presence of plaques (A+) and tangles (T+) that would normally be consistent with fully symptomatic Alzheimer's disease (AD). OBJECTIVE The existence of NDAN (A + T+N-) subjects suggests that the human brain utilizes intrinsic mechanisms that can naturally evade cognitive decline normally associated with the symptomatic stages of AD (A + T+N+). Deciphering the underlying mechanisms would prove relevant to develop complementing therapeutics to prevent progression of AD-related cognitive decline. METHODS Previously, we have reported that NDAN present with preserved neurogenesis and synaptic integrity paralleled by absence of amyloid oligomers at synapses. Using postmortem brain samples from age-matched control subjects, demented AD patients and NDAN individuals, we performed immunofluorescence, western blots, micro transplantation of synaptic membranes in Xenopus oocytes followed by twin electrode voltage clamp electrophysiology and fluorescence assisted single synaptosome-long term potentiation studies. RESULTS We report decreased tau oligomers at synapses in the brains of NDAN subjects. Furthermore, using novel approaches we report, for the first time, that such absence of tau oligomers at synapses is associated with synaptic functional integrity in NDAN subjects as compared to demented AD patients. CONCLUSION Overall, these results give further credence to tau oligomers as primary actors of synaptic destruction underscoring cognitive demise in AD and support their targeting as a viable therapeutic strategy for AD and related tauopathies.
Collapse
Affiliation(s)
- Ayush Singh
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Dyron Allen
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Anna Fracassi
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Batbayar Tumurbaatar
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Chandramouli Natarajan
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Pietro Scaduto
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Randy Woltjer
- Department of Pathology, Oregon Health and Science University, Portland, OR, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Agenor Limon
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Balaji Krishnan
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA,Correspondence to: Giulio Taglialatela, PhD, Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA. Tel.: +1 409 772 1679; Fax: +1 409 772 0015; E-mail: . and Balaji Krishnan, PhD, Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA. Tel.: +1 409 772 8069; Fax: +1 409 772 0015; E-mail:
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA,Correspondence to: Giulio Taglialatela, PhD, Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA. Tel.: +1 409 772 1679; Fax: +1 409 772 0015; E-mail: . and Balaji Krishnan, PhD, Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA. Tel.: +1 409 772 8069; Fax: +1 409 772 0015; E-mail:
| |
Collapse
|
118
|
Guo C, Ma YY. Calcium Permeable-AMPA Receptors and Excitotoxicity in Neurological Disorders. Front Neural Circuits 2021; 15:711564. [PMID: 34483848 PMCID: PMC8416103 DOI: 10.3389/fncir.2021.711564] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Excitotoxicity is one of the primary mechanisms of cell loss in a variety of diseases of the central and peripheral nervous systems. Other than the previously established signaling pathways of excitotoxicity, which depend on the excessive release of glutamate from axon terminals or over-activation of NMDA receptors (NMDARs), Ca2+ influx-triggered excitotoxicity through Ca2+-permeable (CP)-AMPA receptors (AMPARs) is detected in multiple disease models. In this review, both acute brain insults (e.g., brain trauma or spinal cord injury, ischemia) and chronic neurological disorders, including Epilepsy/Seizures, Huntington’s disease (HD), Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), chronic pain, and glaucoma, are discussed regarding the CP-AMPAR-mediated excitotoxicity. Considering the low expression or absence of CP-AMPARs in most cells, specific manipulation of the CP-AMPARs might be a more plausible strategy to delay the onset and progression of pathological alterations with fewer side effects than blocking NMDARs.
Collapse
Affiliation(s)
- Changyong Guo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
119
|
Wilding TJ, Huettner JE. Cadmium activates AMPA and NMDA receptors with M3 helix cysteine substitutions. J Gen Physiol 2021; 152:151704. [PMID: 32342094 PMCID: PMC7335009 DOI: 10.1085/jgp.201912537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
AMPA and NMDA receptors are ligand-gated ion channels that depolarize postsynaptic neurons when activated by the neurotransmitter L-glutamate. Changes in the distribution and activity of these receptors underlie learning and memory, but excessive change is associated with an array of neurological disorders, including cognitive impairment, developmental delay, and epilepsy. All of the ionotropic glutamate receptors (iGluRs) exhibit similar tetrameric architecture, transmembrane topology, and basic framework for activation; conformational changes induced by extracellular agonist binding deform and splay open the inner helix bundle crossing that occludes ion flux through the channel. NMDA receptors require agonist binding to all four subunits, whereas AMPA and closely related kainate receptors can open with less than complete occupancy. In addition to conventional activation by agonist binding, we recently identified two locations along the inner helix of the GluK2 kainate receptor subunit where cysteine (Cys) substitution yields channels that are opened by exposure to cadmium ions, independent of agonist site occupancy. Here, we generate AMPA and NMDA receptor subunits with homologous Cys substitutions and demonstrate similar activation of the mutant receptors by Cd. Coexpression of the auxiliary subunit stargazin enhanced Cd potency for activation of Cys-substituted GluA1 and altered occlusion upon treatment with sulfhydryl-reactive MTS reagents. Mutant NMDA receptors displayed voltage-dependent Mg block of currents activated by agonist and/or Cd as well as asymmetry between Cd effects on Cys-substituted GluN1 versus GluN2 subunits. In addition, Cd activation of each Cys-substituted iGluR was inhibited by protons. These results, together with our earlier work on GluK2, reveal a novel mechanism shared among the three different iGluR subtypes for prying open the gate that controls ion entry into the pore.
Collapse
Affiliation(s)
- Timothy J Wilding
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO
| | - James E Huettner
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO
| |
Collapse
|
120
|
Presynaptic AMPA Receptors in Health and Disease. Cells 2021; 10:cells10092260. [PMID: 34571906 PMCID: PMC8470629 DOI: 10.3390/cells10092260] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023] Open
Abstract
AMPA receptors (AMPARs) are ionotropic glutamate receptors that play a major role in excitatory neurotransmission. AMPARs are located at both presynaptic and postsynaptic plasma membranes. A huge number of studies investigated the role of postsynaptic AMPARs in the normal and abnormal functioning of the mammalian central nervous system (CNS). These studies highlighted that changes in the functional properties or abundance of postsynaptic AMPARs are major mechanisms underlying synaptic plasticity phenomena, providing molecular explanations for the processes of learning and memory. Conversely, the role of AMPARs at presynaptic terminals is as yet poorly clarified. Accruing evidence demonstrates that presynaptic AMPARs can modulate the release of various neurotransmitters. Recent studies also suggest that presynaptic AMPARs may possess double ionotropic-metabotropic features and that they are involved in the local regulation of actin dynamics in both dendritic and axonal compartments. In addition, evidence suggests a key role of presynaptic AMPARs in axonal pathology, in regulation of pain transmission and in the physiology of the auditory system. Thus, it appears that presynaptic AMPARs play an important modulatory role in nerve terminal activity, making them attractive as novel pharmacological targets for a variety of pathological conditions.
Collapse
|
121
|
Watson JF, Pinggera A, Ho H, Greger IH. AMPA receptor anchoring at CA1 synapses is determined by N-terminal domain and TARP γ8 interactions. Nat Commun 2021; 12:5083. [PMID: 34426577 PMCID: PMC8382838 DOI: 10.1038/s41467-021-25281-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/02/2021] [Indexed: 12/30/2022] Open
Abstract
AMPA receptor (AMPAR) abundance and positioning at excitatory synapses regulates the strength of transmission. Changes in AMPAR localisation can enact synaptic plasticity, allowing long-term information storage, and is therefore tightly controlled. Multiple mechanisms regulating AMPAR synaptic anchoring have been described, but with limited coherence or comparison between reports, our understanding of this process is unclear. Here, combining synaptic recordings from mouse hippocampal slices and super-resolution imaging in dissociated cultures, we compare the contributions of three AMPAR interaction domains controlling transmission at hippocampal CA1 synapses. We show that the AMPAR C-termini play only a modulatory role, whereas the extracellular N-terminal domain (NTD) and PDZ interactions of the auxiliary subunit TARP γ8 are both crucial, and each is sufficient to maintain transmission. Our data support a model in which γ8 accumulates AMPARs at the postsynaptic density, where the NTD further tunes their positioning. This interplay between cytosolic (TARP γ8) and synaptic cleft (NTD) interactions provides versatility to regulate synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Jake F Watson
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
- IST Austria, Am Campus 1, Klosterneuburg, Austria
| | - Alexandra Pinggera
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Hinze Ho
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom.
| |
Collapse
|
122
|
Martin EE, Wleklinski E, Hoang HTM, Ahmad M. Interaction and Subcellular Association of PRRT1/SynDIG4 With AMPA Receptors. Front Synaptic Neurosci 2021; 13:705664. [PMID: 34408636 PMCID: PMC8365426 DOI: 10.3389/fnsyn.2021.705664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
AMPA receptors (AMPAR) are organized into supramolecular complexes in association with other membrane proteins that provide exquisite regulation of their biophysical properties and subcellular trafficking. Proline-rich transmembrane protein 1 (PRRT1), also named as SynDIG4, is a component of native AMPAR complexes in multiple brain regions. Deletion of PRRT1 leads to altered surface levels and phosphorylation status of AMPARs, as well as impaired forms of synaptic plasticity. Here, we have investigated the mechanisms underlying the observed regulation of AMPARs by investigating the interaction properties and subcellular localization of PRRT1. Our results show that PRRT1 can interact physically with all AMPAR subunits GluA1-GluA4. We decipher the membrane topology of PRRT1 to find that contrary to the predicted dual membrane pass, only the second hydrophobic segment spans the membrane completely, and is involved in mediating the interaction with AMPARs. We also report a physical interaction of PRRT1 with phosphatase PP2B that dephosphorylates AMPARs during synaptic plasticity. Our co-localization analysis in primary neuronal cultures identifies that PRRT1 associates with AMPARs extrasynaptically where it localizes to early and recycling endosomes as well as to the plasma membrane. These findings advance the understanding of the mechanisms by which PRRT1 regulates AMPARs under basal conditions and during synaptic plasticity.
Collapse
Affiliation(s)
- Emily Eischen Martin
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Erica Wleklinski
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Hanh T M Hoang
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Mohiuddin Ahmad
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
123
|
Sathler MF, Khatri L, Roberts JP, Schmidt IG, Zaytseva A, Kubrusly RCC, Ziff EB, Kim S. Phosphorylation of AMPA receptor subunit GluA1 regulates clathrin-mediated receptor internalization. J Cell Sci 2021; 134:272078. [PMID: 34369573 DOI: 10.1242/jcs.257972] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/29/2021] [Indexed: 11/20/2022] Open
Abstract
Synaptic strength is altered during synaptic plasticity by controlling the number of AMPA receptors (AMPARs) at excitatory synapses. During long-term potentiation and synaptic up-scaling, AMPARs are accumulated at synapses to increase synaptic strength. Neuronal activity leads to phosphorylation of AMPAR subunit GluA1 and subsequent elevation of GluA1 surface expression, either by an increase in receptor forward trafficking to the synaptic membrane or a decrease in receptor internalization. However, the molecular pathways underlying GluA1 phosphorylation-induced elevation of surface AMPAR expression are not completely understood. Here, we employ fluorescence recovery after photobleaching (FRAP) to reveal that phosphorylation of GluA1 Serine 845 (S845) predominantly plays a role in receptor internalization than forward trafficking during synaptic plasticity. Notably, internalization of AMPARs depends upon the clathrin adaptor, AP2, which recruits cargo proteins into endocytic clathrin coated pits. In fact, we further reveal that an increase in GluA1 S845 phosphorylation by two distinct forms of synaptic plasticity diminishes the binding of the AP2 adaptor, reducing internalization, and resulting in elevation of GluA1 surface expression. We thus demonstrate a mechanism of GluA1 phosphorylation-regulated clathrin-mediated internalization of AMPARs.
Collapse
Affiliation(s)
- Matheus F Sathler
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA.,Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO, 80525, USA.,Neuroscience Program, Department of Physiology and Pharmacology, Rua São João Batista, 187, sala 428, Fluminense Federal University, Niterói, RJ, 24020-005, Brazil
| | - Latika Khatri
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | | | | - Regina C C Kubrusly
- Neuroscience Program, Department of Physiology and Pharmacology, Rua São João Batista, 187, sala 428, Fluminense Federal University, Niterói, RJ, 24020-005, Brazil
| | - Edward B Ziff
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Seonil Kim
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO, 80525, USA.,Molecular, Cellular and Integrative Neurosciences Program
| |
Collapse
|
124
|
Kadriu B, Musazzi L, Johnston JN, Kalynchuk LE, Caruncho HJ, Popoli M, Zarate CA. Positive AMPA receptor modulation in the treatment of neuropsychiatric disorders: A long and winding road. Drug Discov Today 2021; 26:2816-2838. [PMID: 34358693 DOI: 10.1016/j.drudis.2021.07.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
Glutamatergic transmission is widely implicated in neuropsychiatric disorders, and the discovery that ketamine elicits rapid-acting antidepressant effects by modulating α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) signaling has spurred a resurgence of interest in the field. This review explores agents in various stages of development for neuropsychiatric disorders that positively modulate AMPARs, both directly and indirectly. Despite promising preclinical research, few direct and indirect AMPAR positive modulators have progressed past early clinical development. Challenges such as low potency have created barriers to effective implementation. Nevertheless, the functional complexity of AMPARs sets them apart from other drug targets and allows for specificity in drug discovery. Additional effective treatments for neuropsychiatric disorders that work through positive AMPAR modulation may eventually be developed.
Collapse
Affiliation(s)
- Bashkim Kadriu
- Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Jenessa N Johnston
- Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Carlos A Zarate
- Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
125
|
Etsè KS, Dorosz J, McLain Christensen K, Thomas JY, Botez Pop I, Goffin E, Colson T, Lestage P, Danober L, Pirotte B, Kastrup JS, Francotte P. Development of Thiochroman Dioxide Analogues of Benzothiadiazine Dioxides as New Positive Allosteric Modulators of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors. ACS Chem Neurosci 2021; 12:2679-2692. [PMID: 34242002 DOI: 10.1021/acschemneuro.1c00255] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
On the basis of the activity of 1,2,4-benzothiadiazine 1,1-dioxides as positive allosteric modulators of AMPA receptors, thiochroman 1,1-dioxides were designed applying the isosteric replacement concept. The new compounds expressed strong modulatory activity on AMPA receptors in vitro, although lower than their corresponding benzothiadiazine analogues. The pharmacokinetic profile of three thiochroman 1,1-dioxides (12a, 12b, 12e) was examined in vivo after oral administration, showing that these compounds freely cross the blood-brain barrier. Structural analysis was achieved using X-ray crystallography after cocrystallization of the racemic compound 12b in complex with the ligand-binding domain of GluA2 (L504Y/N775S). Interestingly, both enantiomers of 12b were found to interact with the GluA2 dimer interface, almost identically to its benzothiadiazine analogue, BPAM344 (4). The interactions of the two enantiomers in the cocrystal were further analyzed (mapping Hirshfeld surfaces and 2D fingerprint) and compared to those of 4. Taken together, these data explain the lower affinity on AMPA receptors of thiochroman 1,1-dioxides compared to their corresponding 1,2,4-benzothiadiazine 1,1-dioxides.
Collapse
Affiliation(s)
- Koffi Sénam Etsè
- Center for Interdisciplinary Research on Medicines (CIRM) − Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000 Liège, Belgium
| | - Jerzy Dorosz
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Katrine McLain Christensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jean-Yves Thomas
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Iuliana Botez Pop
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Eric Goffin
- Center for Interdisciplinary Research on Medicines (CIRM) − Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000 Liège, Belgium
| | - Thomas Colson
- Center for Interdisciplinary Research on Medicines (CIRM) − Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000 Liège, Belgium
| | - Pierre Lestage
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Laurence Danober
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Bernard Pirotte
- Center for Interdisciplinary Research on Medicines (CIRM) − Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000 Liège, Belgium
| | - Jette Sandholm Kastrup
- Research Cluster on Molecular Neuroprotection, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Pierre Francotte
- Center for Interdisciplinary Research on Medicines (CIRM) − Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000 Liège, Belgium
| |
Collapse
|
126
|
Hanley JG. Regulation of AMPAR expression by microRNAs. Neuropharmacology 2021; 197:108723. [PMID: 34274347 DOI: 10.1016/j.neuropharm.2021.108723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
AMPA receptors (AMPARs) are the major excitatory neurotransmitter receptor in the brain, and their expression at synapses is a critical determinant of synaptic transmission and therefore brain function. Synaptic plasticity involves increases or decreases in synaptic strength, caused by changes in the number or subunit-specific subtype of AMPARs expressed at synapses, and resulting in modifications of functional connectivity of neuronal circuits, a process which is thought to underpin learning and the formation or loss of memories. Furthermore, numerous neurological disorders involve dysregulation of excitatory synaptic transmission or aberrant recruitment of plasticity processes. MicroRNAs (miRNAs) repress the translation of target genes by partial complementary base pairing with mRNAs, and are the core component of a mechanism widely used in a range of cell processes for regulating protein translation. MiRNA-dependent translational repression can occur locally in neuronal dendrites, close to synapses, and can also result in relatively rapid changes in protein expression. MiRNAs are therefore well-placed to regulate synaptic plasticity via the local control of AMPAR subunit synthesis, and can also result in synaptic dysfunction in the event of dysregulation in disease. Here, I will review the miRNAs that have been identified as playing a role in physiological or pathological changes in AMPAR subunit expression at synapses, focussing on miRNAs that target mRNAs encoding AMPAR subunits, and on miRNAs that target AMPAR accessory proteins involved in AMPAR trafficking and hence the regulation of AMPAR synaptic localisation.
Collapse
Affiliation(s)
- Jonathan G Hanley
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
127
|
Ho SY, Lin L, Chen IC, Tsai CW, Chang FC, Liou HH. Perampanel Reduces Hyperthermia-Induced Seizures in Dravet Syndrome Mouse Model. Front Pharmacol 2021; 12:682767. [PMID: 34335252 PMCID: PMC8317459 DOI: 10.3389/fphar.2021.682767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Treatment options for Dravet syndrome are limited. The aim of this study was to evaluate the antiepileptic effect of the AMPA receptor antagonist perampanel (PER) on a mouse model of Dravet syndrome (Scn1aE1099X/+). We report here that the PER (2 mg/kg) treatment inhibited the spontaneous recurrent seizures and attenuated epileptic activity in Scn1aE1099X/+ mice. In the hyperthermia-induced seizure experiment, PER clearly increased temperature tolerance and significantly ameliorated seizure frequency and discharge duration. PER also demonstrated antiepileptic effects in a cross-over study and a synergistic effect for attenuating heat-induced seizure when given in combination with stiripentol or valproic acid. The results showed that PER effectively decreased the occurrence of spontaneous recurrent seizures and showed significant therapeutic potential for hyperthermia-induced seizures with regard to both susceptibility and severity in a Dravet syndrome mouse model. Potential therapeutic effects of PER for treatment of Dravet syndrome were demonstrated.
Collapse
Affiliation(s)
- Shih-Yin Ho
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li Lin
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Chun Chen
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Che-Wen Tsai
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fang-Chia Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Horng-Huei Liou
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,National Taiwan University Hospital Yunlin Branch, Douliu, Taiwan
| |
Collapse
|
128
|
Matthews PM, Pinggera A, Kampjut D, Greger IH. Biology of AMPA receptor interacting proteins - From biogenesis to synaptic plasticity. Neuropharmacology 2021; 197:108709. [PMID: 34271020 DOI: 10.1016/j.neuropharm.2021.108709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022]
Abstract
AMPA-type glutamate receptors mediate the majority of excitatory synaptic transmission in the central nervous system. Their signaling properties and abundance at synapses are both crucial determinants of synapse efficacy and plasticity, and are therefore under sophisticated control. Unique to this ionotropic glutamate receptor (iGluR) is the abundance of interacting proteins that contribute to its complex regulation. These include transient interactions with the receptor cytoplasmic tail as well as the N-terminal domain locating to the synaptic cleft, both of which are involved in AMPAR trafficking and receptor stabilization at the synapse. Moreover, an array of transmembrane proteins operate as auxiliary subunits that in addition to receptor trafficking and stabilization also substantially impact AMPAR gating and pharmacology. Here, we provide an overview of the catalogue of AMPAR interacting proteins, and how they contribute to the complex biology of this central glutamate receptor.
Collapse
Affiliation(s)
- Peter M Matthews
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alexandra Pinggera
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Domen Kampjut
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
129
|
Abstract
This study presents evidence that the MAGUK family of synaptic scaffolding proteins plays an essential, but redundant, role in long-term potentiation (LTP). The action of PSD-95, but not that of SAP102, requires the binding to the transsynaptic adhesion protein ADAM22, which is required for nanocolumn stabilization. Based on these and previous results, we propose a two-step process in the recruitment of AMPARs during LTP. First, AMPARs, via TARPs, bind to exposed PSD-95 in the PSD. This alone is not adequate to enhance synaptic transmission. Second, the AMPAR/TARP/PSD-95 complex is stabilized in the nanocolumn by binding to ADAM22. A second, ADAM22-independent pathway is proposed for SAP102.
Collapse
|
130
|
Wang M, Feng LR, Li ZL, Ma KG, Chang KW, Chen XL, Yang PB, Ji SF, Ma YB, Han H, Ruganzua JB, Yang WN, Qian YH. Thymosin β4 reverses phenotypic polarization of glial cells and cognitive impairment via negative regulation of NF-κB signaling axis in APP/PS1 mice. J Neuroinflammation 2021; 18:146. [PMID: 34183019 PMCID: PMC8240373 DOI: 10.1186/s12974-021-02166-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
Background Thymosin β4 (Tβ4) is the most abundant member of the β-thymosins and plays an important role in the control of actin polymerization in eukaryotic cells. While its effects in multiple organs and diseases are being widely investigated, the safety profile has been established in animals and humans, currently, little is known about its influence on Alzheimer’s disease (AD) and the possible mechanisms. Thus, we aimed to evaluate the effects and mechanisms of Tβ4 on glial polarization and cognitive performance in APP/PS1 transgenic mice. Methods Behavior tests were conducted to assess the learning and memory, anxiety and depression in APP/PS1 mice. Thioflavin S staining, Nissl staining, immunohistochemistry/immunofluorescence, ELISA, qRT-PCR, and immunoblotting were performed to explore Aβ accumulation, phenotypic polarization of glial cells, neuronal loss and function, and TLR4/NF-κB axis in APP/PS1 mice. Results We demonstrated that Tβ4 protein level elevated in all APP/PS1 mice. Over-expression of Tβ4 alone alleviated AD-like phenotypes of APP/PS1 mice, showed less brain Aβ accumulation and more Insulin-degrading enzyme (IDE), reversed phenotypic polarization of microglia and astrocyte to a healthy state, improved neuronal function and cognitive behavior performance, and accidentally displayed antidepressant-like effect. Besides, Tβ4 could downregulate both TLR4/MyD88/NF-κB p65 and p52-dependent inflammatory pathways in the APP/PS1 mice. While combination drug of TLR4 antagonist TAK242 or NF-κB p65 inhibitor PDTC exerted no further effects. Conclusions These results suggest that Tβ4 may exert its function by regulating both classical and non-canonical NF-κB signaling and is restoring its function as a potential therapeutic target against AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02166-3.
Collapse
Affiliation(s)
- Meng Wang
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Li-Rong Feng
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zi-Long Li
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kai-Ge Ma
- Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ke-Wei Chang
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xin-Lin Chen
- Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Peng-Bo Yang
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Sheng-Feng Ji
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yan-Bing Ma
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Hua Han
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - John Bosco Ruganzua
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wei-Na Yang
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yi-Hua Qian
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China. .,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China. .,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
131
|
Sun JH, Chen J, Ayala Valenzuela FE, Brown C, Masser-Frye D, Jones M, Romero LP, Rinaldi B, Li WL, Li QQ, Wu D, Gerard B, Thorpe E, Bayat A, Shi YS. X-linked neonatal-onset epileptic encephalopathy associated with a gain-of-function variant p.R660T in GRIA3. PLoS Genet 2021; 17:e1009608. [PMID: 34161333 PMCID: PMC8259962 DOI: 10.1371/journal.pgen.1009608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/06/2021] [Accepted: 05/18/2021] [Indexed: 12/02/2022] Open
Abstract
The X-linked GRIA3 gene encodes the GLUA3 subunit of AMPA-type glutamate receptors. Pathogenic variants in this gene were previously reported in neurodevelopmental diseases, mostly in male patients but rarely in females. Here we report a de novo pathogenic missense variant in GRIA3 (c.1979G>C; p. R660T) identified in a 1-year-old female patient with severe epilepsy and global developmental delay. When exogenously expressed in human embryonic kidney (HEK) cells, GLUA3_R660T showed slower desensitization and deactivation kinetics compared to wildtype (wt) GLUA3 receptors. Substantial non-desensitized currents were observed with the mutant but not for wt GLUA3 with prolonged exposure to glutamate. When co-expressed with GLUA2, the decay kinetics were similarly slowed in GLUA2/A3_R660T with non-desensitized steady state currents. In cultured cerebellar granule neurons, miniature excitatory postsynaptic currents (mEPSCs) were significantly slower in R660T transfected cells than those expressing wt GLUA3. When overexpressed in hippocampal CA1 neurons by in utero electroporation, the evoked EPSCs and mEPSCs were slower in neurons expressing R660T mutant compared to those expressing wt GLUA3. Therefore our study provides functional evidence that a gain of function (GoF) variant in GRIA3 may cause epileptic encephalopathy and global developmental delay in a female subject by enhancing synaptic transmission. Glutamate is the excitatory neurotransmitter in brain, abnormality of which causes excitotoxicity and diseases. Here we identified a pathogenic missense variant in GRIA3 gene in a female patient with severe epilepsy and global developmental delay. The X-linked GRIA3 gene encodes GLUA3, a subunit of glutamate receptors. Through electrophysiological analysis of the mutant GLUA3 in a cell line and mouse neurons, we found this mutant makes strengthened glutamate receptors. This study thus indicates that the variant causes epileptic encephalopathy and global developmental delay by enhancing glutamate signaling in brain.
Collapse
Affiliation(s)
- Jia-Hui Sun
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Jiang Chen
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | | | - Carolyn Brown
- Illumina Inc., San Diego, California, United States of America
| | - Diane Masser-Frye
- Division of Genetics, Department of Pediatrics, UC San Diego School of Medicine, Rady Children’s Hospital, San Diego, California, United States of America
| | - Marilyn Jones
- Division of Genetics, Department of Pediatrics, UC San Diego School of Medicine, Rady Children’s Hospital, San Diego, California, United States of America
| | - Leslie Patron Romero
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana, Mexico
| | - Berardo Rinaldi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Wenhui Laura Li
- Breakthrough Genomics Inc., Irvine, California, United States of America
| | - Qing-Qing Li
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Dan Wu
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Benedicte Gerard
- Laboratoires de diagnostic génétique, Institut Medical d’Alsace, Hôpitaux Universitaire de Strasbourg, Strasbourg, France
| | - Erin Thorpe
- Illumina Inc., San Diego, California, United States of America
- * E-mail: (ET); (AB); (YSS)
| | - Allan Bayat
- Department for Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services Research, University of Southern Denmark, Odense, Denmark
- * E-mail: (ET); (AB); (YSS)
| | - Yun Stone Shi
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
- * E-mail: (ET); (AB); (YSS)
| |
Collapse
|
132
|
Radchenko EV, Tarakanova AS, Karlov DS, Lavrov MI, Palyulin VA. [Ligands of the AMPA-subtype glutamate receptors: mechanisms of action and novel chemotypes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:187-200. [PMID: 34142526 DOI: 10.18097/pbmc20216703187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ionotropic glutamate receptors of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype play a key role in synaptic plasticity representing one of the mechanisms for learning and memory formation. They can also serve as targets for the development of novel classes of pharmaceuticals for the treatment or substantive correction of many serious neurodegenerative and psychoneurological disorders. The search and studies of various types of AMPA receptor ligands attract considerable attention from academic organizations and pharmaceutical companies all over the world. This review mainly focuses on recent advances in this field. The architecture and operational mechanism of the receptor as well as its major binding sites and ligand types are considered. Special attention is paid to the studies of mechanisms of action and novel chemotypes of AMPA receptor agonists and competitive antagonists, positive and negative allosteric modulators, auxiliary protein-dependent allosteric modulators, and ion channel blockers.
Collapse
Affiliation(s)
| | | | - D S Karlov
- Lomonosov Moscow State University, Moscow, Russia
| | - M I Lavrov
- Lomonosov Moscow State University, Moscow, Russia
| | - V A Palyulin
- Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
133
|
Ramos-Vicente D, Grant SG, Bayés À. Metazoan evolution and diversity of glutamate receptors and their auxiliary subunits. Neuropharmacology 2021; 195:108640. [PMID: 34116111 DOI: 10.1016/j.neuropharm.2021.108640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/18/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in vertebrate and invertebrate nervous systems. Proteins involved in glutamatergic neurotransmission, and chiefly glutamate receptors and their auxiliary subunits, play key roles in nervous system function. Thus, understanding their evolution and uncovering their diversity is essential to comprehend how nervous systems evolved, shaping cognitive function. Comprehensive phylogenetic analysis of these proteins across metazoans have revealed that their evolution is much more complex than what can be anticipated from vertebrate genomes. This is particularly true for ionotropic glutamate receptors (iGluRs), as their current classification into 6 classes (AMPA, Kainate, Delta, NMDA1, NMDA2 and NMDA3) would be largely incomplete. New work proposes a classification of iGluRs into 4 subfamilies that encompass 10 classes. Vertebrate AMPA, Kainate and Delta receptors would belong to one of these subfamilies, named AKDF, the NMDA subunits would constitute another subfamily and non-vertebrate iGluRs would be organised into the previously unreported Epsilon and Lambda subfamilies. Similarly, the animal evolution of metabotropic glutamate receptors has resulted in the formation of four classes of these receptors, instead of the three currently recognised. Here we review our current knowledge on the animal evolution of glutamate receptors and their auxiliary subunits. This article is part of the special issue on 'Glutamate Receptors - Orphan iGluRs'.
Collapse
Affiliation(s)
- David Ramos-Vicente
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Seth Gn Grant
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
134
|
Herbrechter R, Hube N, Buchholz R, Reiner A. Splicing and editing of ionotropic glutamate receptors: a comprehensive analysis based on human RNA-Seq data. Cell Mol Life Sci 2021; 78:5605-5630. [PMID: 34100982 PMCID: PMC8257547 DOI: 10.1007/s00018-021-03865-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) play key roles for signaling in the central nervous system. Alternative splicing and RNA editing are well-known mechanisms to increase iGluR diversity and to provide context-dependent regulation. Earlier work on isoform identification has focused on the analysis of cloned transcripts, mostly from rodents. We here set out to obtain a systematic overview of iGluR splicing and editing in human brain based on RNA-Seq data. Using data from two large-scale transcriptome studies, we established a workflow for the de novo identification and quantification of alternative splice and editing events. We detected all canonical iGluR splice junctions, assessed the abundance of alternative events described in the literature, and identified new splice events in AMPA, kainate, delta, and NMDA receptor subunits. Notable events include an abundant transcript encoding the GluA4 amino-terminal domain, GluA4-ATD, a novel C-terminal GluD1 (delta receptor 1) isoform, GluD1-b, and potentially new GluK4 and GluN2C isoforms. C-terminal GluN1 splicing may be controlled by inclusion of a cassette exon, which shows preference for one of the two acceptor sites in the last exon. Moreover, we identified alternative untranslated regions (UTRs) and species-specific differences in splicing. In contrast, editing in exonic iGluR regions appears to be mostly limited to ten previously described sites, two of which result in silent amino acid changes. Coupling of proximal editing/editing and editing/splice events occurs to variable degree. Overall, this analysis provides the first inventory of alternative splicing and editing in human brain iGluRs and provides the impetus for further transcriptome-based and functional investigations.
Collapse
Affiliation(s)
- Robin Herbrechter
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Nadine Hube
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Raoul Buchholz
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.
| |
Collapse
|
135
|
Peng SX, Wang YY, Zhang M, Zang YY, Wu D, Pei J, Li Y, Dai J, Guo X, Luo X, Zhang N, Yang JJ, Zhang C, Gao X, Liu N, Shi YS. SNP rs10420324 in the AMPA receptor auxiliary subunit TARP γ-8 regulates the susceptibility to antisocial personality disorder. Sci Rep 2021; 11:11997. [PMID: 34099816 PMCID: PMC8184779 DOI: 10.1038/s41598-021-91415-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/25/2021] [Indexed: 11/08/2022] Open
Abstract
In the brain, AMPA receptors mediate fast excitatory neurotransmission, the dysfunction of which leads to neuropsychiatric disorders. Synaptic function of AMPA receptors is tightly controlled by a protein group called transmembrane AMPAR regulatory proteins (TARPs). TARP γ-8 (also known as CACNG8) preferentially expresses in the hippocampus, cortex and subcortical regions that are critical for emotion generation indicating its association with psychiatric disorders. Here, we identified rs10420324 (T/G), a SNP located in the human CACNG8 gene, regulated reporter gene expression in vitro and TARP γ-8 expression in the human brain. A guanine at the locus (rs10420324G) suppressed transcription likely through modulation of a local G-quadruplex DNA structure. Consistent with these observations, the frequency of rs10420324G was higher in patients with anti-social personality disorder (ASPD) than in controls, indicating that rs10420324G in CACNG8 is more voluntary for ASPD. We then characterized the behavior of TARP γ-8 knockout and heterozygous mice and found that consistent with ASPD patients who often exhibit impulsivity, aggression, risk taking, irresponsibility and callousness, a decreased γ-8 expression in mice displayed similar behaviors. Furthermore, we found that a decrease in TARP γ-8 expression impaired synaptic AMPAR functions in layer 2-3 pyramidal neurons of the prefrontal cortex, a brain region that inhibition leads to aggression, thus explaining, at least partially, the neuronal basis for the behavioral abnormality. Taken together, our study indicates that TARP γ-8 expression level is associated with ASPD, and that the TARP γ-8 knockout mouse is a valuable animal model for studying this psychiatric disease.
Collapse
Affiliation(s)
- Shi-Xiao Peng
- MOE Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice, Medical School, Nanjing University, Nanjing, 210032, China
| | - Yue-Ying Wang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice, Medical School, Nanjing University, Nanjing, 210032, China
| | - Min Zhang
- School of Psychology, Nanjing Normal University, Nanjing, 210029, China
| | - Yan-Yu Zang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice, Medical School, Nanjing University, Nanjing, 210032, China
| | - Dan Wu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
| | - Jingwen Pei
- MOE Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice, Medical School, Nanjing University, Nanjing, 210032, China
| | - Yansong Li
- Reward, Competition and Social Neuroscience Lab, Department of Psychology, School of Social and Behavioral Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiapei Dai
- Chinese Brain Bank Center, Wuhan, 430074, China
| | - Xiaoyun Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xingguang Luo
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Ning Zhang
- School of Psychology, Nanjing Normal University, Nanjing, 210029, China
- Department of Medical Psychology, Nanjing Medical University Affiliated Nanjing Brain Hospital, Nanjing, 210029, China
| | - Jian-Jun Yang
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Xiang Gao
- MOE Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice, Medical School, Nanjing University, Nanjing, 210032, China
| | - Na Liu
- Department of Medical Psychology, Nanjing Medical University Affiliated Nanjing Brain Hospital, Nanjing, 210029, China.
| | - Yun Stone Shi
- MOE Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice, Medical School, Nanjing University, Nanjing, 210032, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, 210032, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210032, China.
| |
Collapse
|
136
|
mGluR1 signaling in cerebellar Purkinje cells: Subcellular organization and involvement in cerebellar function and disease. Neuropharmacology 2021; 194:108629. [PMID: 34089728 DOI: 10.1016/j.neuropharm.2021.108629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022]
Abstract
The cerebellum is essential for the control, coordination, and learning of movements, and for certain aspects of cognitive function. Purkinje cells are the sole output neurons in the cerebellar cortex and therefore play crucial roles in the diverse functions of the cerebellum. The type 1 metabotropic glutamate receptor (mGluR1) is prominently enriched in Purkinje cells and triggers downstream signaling pathways that are required for functional and structural plasticity, and for synaptic responses. To understand how mGluR1 contributes to cerebellar functions, it is important to consider not only the operational properties of this receptor, but also its spatial organization and the molecular interactions that enable its proper functioning. In this review, we highlight how mGluR1 and its related signaling molecules are organized into tightly coupled microdomains to fulfill physiological functions. We also describe emerging evidence that altered mGluR1 signaling in Purkinje cells underlies cerebellar dysfunction in ataxias of human patients and mouse models.
Collapse
|
137
|
Gating and modulation of a hetero-octameric AMPA glutamate receptor. Nature 2021; 594:454-458. [PMID: 34079129 PMCID: PMC7611729 DOI: 10.1038/s41586-021-03613-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/05/2021] [Indexed: 02/06/2023]
Abstract
AMPA receptors (AMPARs) mediate the majority of excitatory transmission in the brain and enable the synaptic plasticity that underlies learning1. A diverse array of AMPAR signalling complexes are established by receptor auxiliary subunits, which associate with the AMPAR in various combinations to modulate trafficking, gating and synaptic strength2. However, their mechanisms of action are poorly understood. Here we determine cryo-electron microscopy structures of the heteromeric GluA1-GluA2 receptor assembled with both TARP-γ8 and CNIH2, the predominant AMPAR complex in the forebrain, in both resting and active states. Two TARP-γ8 and two CNIH2 subunits insert at distinct sites beneath the ligand-binding domains of the receptor, with site-specific lipids shaping each interaction and affecting the gating regulation of the AMPARs. Activation of the receptor leads to asymmetry between GluA1 and GluA2 along the ion conduction path and an outward expansion of the channel triggers counter-rotations of both auxiliary subunit pairs, promoting the active-state conformation. In addition, both TARP-γ8 and CNIH2 pivot towards the pore exit upon activation, extending their reach for cytoplasmic receptor elements. CNIH2 achieves this through its uniquely extended M2 helix, which has transformed this endoplasmic reticulum-export factor into a powerful AMPAR modulator that is capable of providing hippocampal pyramidal neurons with their integrative synaptic properties.
Collapse
|
138
|
Feng Z, Wu X, Zhang M. Presynaptic bouton compartmentalization and postsynaptic density-mediated glutamate receptor clustering via phase separation. Neuropharmacology 2021; 193:108622. [PMID: 34051266 DOI: 10.1016/j.neuropharm.2021.108622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/25/2021] [Accepted: 05/17/2021] [Indexed: 01/21/2023]
Abstract
Neuronal synapses encompass three compartments: presynaptic axon terminal, synaptic cleft, and postsynaptic dendrite. Each compartment contains densely packed molecular machineries that are involved in synaptic transmission. In recent years, emerging evidence indicates that the assembly of these membraneless substructures or assemblies that are not enclosed by membranes are driven by liquid-liquid phase separation. We review here recent studies that suggest the phase separation-mediated organization of these synaptic compartments. We discuss how synaptic function may be linked to its organization as biomolecular condensates. We conclude with a discussion of areas of future interest in the field for better understanding of the structural architecture of neuronal synapses and its contribution to synaptic functions.
Collapse
Affiliation(s)
- Zhe Feng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiandeng Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
139
|
Zhang TY, Cai MT, Zheng Y, Lai QL, Shen CH, Qiao S, Zhang YX. Anti-Alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor Encephalitis: A Review. Front Immunol 2021; 12:652820. [PMID: 34093540 PMCID: PMC8175895 DOI: 10.3389/fimmu.2021.652820] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/05/2021] [Indexed: 11/23/2022] Open
Abstract
Anti-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) encephalitis, a rare subtype of autoimmune encephalitis, was first reported by Lai et al. The AMPAR antibodies target against extracellular epitopes of the GluA1 or GluA2 subunits of the receptor. AMPARs are expressed throughout the central nervous system, especially in the hippocampus and other limbic regions. Anti-AMPAR encephalitis was more common in middle-aged women and most patients had an acute or subacute onset. Limbic encephalitis, a classic syndrome of anti-AMPAR encephalitis, was clinically characterized by a subacute disturbance of short-term memory loss, confusion, abnormal behavior and seizure. Magnetic resonance imaging often showed T2/fluid-attenuated inversion-recovery hyperintensities in the bilateral medial temporal lobe. For suspected patients, paired serum and cerebrospinal fluid (CSF) testing with cell-based assay were recommended. CSF specimen was preferred given its higher sensitivity. Most patients with anti-AMPAR encephalitis were complicated with tumors, such as thymoma, small cell lung cancer, breast cancer, and ovarian cancer. First-line treatments included high-dose steroids, intravenous immunoglobulin and plasma exchange. Second-line treatments, including rituximab and cyclophosphamide, can be initiated in patients who were non-reactive to first-line treatment. Most patients with anti-AMPAR encephalitis showed a partial neurologic response to immunotherapy.
Collapse
Affiliation(s)
- Tian-Yi Zhang
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Meng-Ting Cai
- Department of Neurology, Second Affiliated Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Yang Zheng
- Department of Neurology, Second Affiliated Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Qi-Lun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Chun-Hong Shen
- Department of Neurology, Second Affiliated Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Song Qiao
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Yin-Xi Zhang
- Department of Neurology, Second Affiliated Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
140
|
Projections from the lateral parabrachial nucleus to the lateral and ventral lateral periaqueductal gray subregions mediate the itching sensation. Pain 2021; 162:1848-1863. [PMID: 33449512 DOI: 10.1097/j.pain.0000000000002193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/30/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Lateral and ventral lateral subregions of the periaqueductal gray (l/vlPAG) have been proved to be pivotal components in descending circuitry of itch processing, and their effects are related to the subclassification of neurons that were meditated. In this study, lateral parabrachial nucleus (LPB), one of the most crucial relay stations in the ascending pathway, was taken as the input nucleus to examine the modulatory effect of l/vlPAG neurons that received LPB projections. Anatomical tracing, chemogenetic, optogenetic, and local pharmacological approaches were used to investigate the participation of the LPB-l/vlPAG pathway in itch and pain sensation in mice. First, morphological evidence for projections from vesicular glutamate transporter-2-containing neurons in the LPB to l/vlPAG involved in itch transmission has been provided. Furthermore, chemogenetic and optogenetic activation of the LPB-l/vlPAG pathway resulted in both antipruritic effect and analgesic effect, whereas pharmacogenetic inhibition strengthened nociceptive perception without affecting spontaneous scratching behavior. Finally, in vivo pharmacology was combined with optogenetics which revealed that AMPA receptor-expressing neurons in l/vlPAG might play a more essential role in pathway modulation. These findings provide a novel insight about the connections between 2 prominent transmit nuclei, LPB and l/vlPAG, in both pruriceptive and nociceptive sensations and deepen the understanding of l/vlPAG modulatory roles in itch sensation by chosen LPB as source of ascending efferent projections.
Collapse
|
141
|
Cull‐Candy SG, Farrant M. Ca 2+ -permeable AMPA receptors and their auxiliary subunits in synaptic plasticity and disease. J Physiol 2021; 599:2655-2671. [PMID: 33533533 PMCID: PMC8436767 DOI: 10.1113/jp279029] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
AMPA receptors are tetrameric glutamate-gated ion channels that mediate a majority of fast excitatory neurotransmission in the brain. They exist as calcium-impermeable (CI-) and calcium-permeable (CP-) subtypes, the latter of which lacks the GluA2 subunit. CP-AMPARs display an array of distinctive biophysical and pharmacological properties that allow them to be functionally identified. This has revealed that they play crucial roles in diverse forms of central synaptic plasticity. Here we summarise the functional hallmarks of CP-AMPARs and describe how these are modified by the presence of auxiliary subunits that have emerged as pivotal regulators of AMPARs. A lasting change in the prevalence of GluA2-containing AMPARs, and hence in the fraction of CP-AMPARs, is a feature in many maladaptive forms of synaptic plasticity and neurological disorders. These include modifications of glutamatergic transmission induced by inflammatory pain, fear conditioning, cocaine exposure, and anoxia-induced damage in neurons and glia. Furthermore, defective RNA editing of GluA2 can cause altered expression of CP-AMPARs and is implicated in motor neuron damage (amyotrophic lateral sclerosis) and the proliferation of cells in malignant gliomas. A number of the players involved in CP-AMPAR regulation have been identified, providing useful insight into interventions that may prevent the aberrant CP-AMPAR expression. Furthermore, recent molecular and pharmacological developments, particularly the discovery of TARP subtype-selective drugs, offer the exciting potential to modify some of the harmful effects of increased CP-AMPAR prevalence in a brain region-specific manner.
Collapse
Affiliation(s)
- Stuart G. Cull‐Candy
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Mark Farrant
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| |
Collapse
|
142
|
Kamalova A, Futai K, Delpire E, Nakagawa T. AMPA Receptor Auxiliary Subunit GSG1L Suppresses Short-Term Facilitation in Corticothalamic Synapses and Determines Seizure Susceptibility. Cell Rep 2021; 32:107921. [PMID: 32697982 PMCID: PMC7425083 DOI: 10.1016/j.celrep.2020.107921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/06/2020] [Accepted: 06/26/2020] [Indexed: 01/29/2023] Open
Abstract
The anterior thalamus (AT) is critical for memory formation, processing navigational information, and seizure initiation. However, the molecular mechanisms that regulate synaptic function of AT neurons remain largely unexplored. We report that AMPA receptor auxiliary subunit GSG1L controls short-term plasticity in AT synapses that receive inputs from the cortex, but not in those receiving inputs from other pathways. A canonical auxiliary subunit stargazin co-exists in these neurons but is functionally absent from corticothalamic synapses. In GSG1L knockout mice, AT neurons exhibit hyperexcitability and the animals have increased susceptibility to seizures, consistent with a negative regulatory role of GSG1L. We hypothesize that negative regulation of synaptic function by GSG1L plays a critical role in maintaining optimal excitation in the AT. Kamalova et al. report the phenotypes of GSG1L KO mice. The synaptic function of AMPAR auxiliary subunit GSG1L in the anterior thalamus is input specific. GSG1L suppresses short-term facilitation and decreases AMPAR activity specifically in corticothalamic synapses, where stargazin is functionally absent. GSG1L KO mice exhibit hyperexcitability and seizure susceptibility.
Collapse
Affiliation(s)
- Aichurok Kamalova
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Kensuke Futai
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eric Delpire
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Department of Anesthesiology, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
143
|
Peter S, Urbanus BHA, Klaassen RV, Wu B, Boele HJ, Azizi S, Slotman JA, Houtsmuller AB, Schonewille M, Hoebeek FE, Spijker S, Smit AB, De Zeeuw CI. AMPAR Auxiliary Protein SHISA6 Facilitates Purkinje Cell Synaptic Excitability and Procedural Memory Formation. Cell Rep 2021; 31:107515. [PMID: 32294428 PMCID: PMC7175376 DOI: 10.1016/j.celrep.2020.03.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/31/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
The majority of excitatory postsynaptic currents in the brain are gated through AMPA-type glutamate receptors, the kinetics and trafficking of which can be modulated by auxiliary proteins. It remains to be elucidated whether and how auxiliary proteins can modulate synaptic function to contribute to procedural memory formation. In this study, we report that the AMPA-type glutamate receptor (AMPAR) auxiliary protein SHISA6 (CKAMP52) is expressed in cerebellar Purkinje cells, where it co-localizes with GluA2-containing AMPARs. The absence of SHISA6 in Purkinje cells results in severe impairments in the adaptation of the vestibulo-ocular reflex and eyeblink conditioning. The physiological abnormalities include decreased presence of AMPARs in synaptosomes, impaired excitatory transmission, increased deactivation of AMPA receptors, and reduced induction of long-term potentiation at Purkinje cell synapses. Our data indicate that Purkinje cells require SHISA6-dependent modification of AMPAR function in order to facilitate cerebellar, procedural memory formation. SHISA6 is prominently expressed in Purkinje cells in close association with AMPARs SHISA6 absence in Purkinje cells results in impaired procedural memory formation Purkinje cell synaptic baseline excitatory transmission is facilitated by SHISA6 Purkinje cell AMPAR kinetics are modulated by SHISA6
Collapse
Affiliation(s)
- Saša Peter
- Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, the Netherlands
| | | | - Remco V Klaassen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Bin Wu
- Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, the Netherlands; Department of Neurology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, the Netherlands
| | - Sameha Azizi
- Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, the Netherlands
| | - Johan A Slotman
- Optical Imaging Centre, Department of Pathology, Erasmus MC, 3000 DR Rotterdam, the Netherlands
| | - Adriaan B Houtsmuller
- Optical Imaging Centre, Department of Pathology, Erasmus MC, 3000 DR Rotterdam, the Netherlands
| | | | - Freek E Hoebeek
- Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, the Netherlands; Department for Developmental Origins of Disease, Wilhelmina Children's Hospital, Brain Center, UMC Utrecht, 3584 EA Utrecht, the Netherlands
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands.
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, 1105 CA Amsterdam, the Netherlands.
| |
Collapse
|
144
|
Auxiliary subunits of the AMPA receptor: The Shisa family of proteins. Curr Opin Pharmacol 2021; 58:52-61. [PMID: 33892364 DOI: 10.1016/j.coph.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/15/2022]
Abstract
AMPA receptors mediate fast synaptic transmission in the CNS and can assemble with several types of auxiliary proteins in a spatio-temporal manner, from newly synthesized AMPA receptor tetramers to mature AMPA receptors in the cell membrane. As such, the interaction of auxiliary subunits with the AMPA receptor plays a major role in the regulation of AMPA receptor biogenesis, trafficking, and biophysical properties. Throughout the years, various 'families' of proteins have been identified and today the approximate full complement of AMPAR auxiliary proteins is known. This review presents the current knowledge on the most prominent AMPA-receptor-interacting auxiliary proteins, highlights recent results regarding the Shisa protein family, and provides a discussion on future research that might contribute to the discovery of novel pharmacological targets of auxiliary subunits.
Collapse
|
145
|
Bowie D. Neurotransmitter-gated ion channels, still front and centre stage. J Physiol 2021; 599:389-395. [PMID: 33448020 DOI: 10.1113/jp280800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, H3G 1Y6, Canada
| |
Collapse
|
146
|
Wang HQ, Wang ZZ, Chen NH. The receptor hypothesis and the pathogenesis of depression: Genetic bases and biological correlates. Pharmacol Res 2021; 167:105542. [PMID: 33711432 DOI: 10.1016/j.phrs.2021.105542] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023]
Abstract
Depression has become one of the most prevalent neuropsychiatric disorders characterized by anhedonia, anxiety, pessimism, or even suicidal thoughts. Receptor theory has been pointed out to explain the pathogenesis of depression, while it is still subject to debate. Additionally, gene abnormality accounts for nearly 40-50% of depression risk, which is a significant factor contributing to the onset of depression. Accordingly, studying on receptors and their gene abnormality are critical parts of the research on internal causes of depression. This review summarizes the pathogenesis of depression from six of the most related receptors and their associated genes, including N-methyl-D-aspartate receptor, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, glucocorticoid receptor, 5-hydroxytryptamine receptor, GABAA receptor α2, and dopamine receptor; and several "non-classic" receptors, such as metabotropic glutamate receptor, opioid receptor, and insulin receptor. These receptors have received considerable critical attention and are highly implicated in the onset of depression. We begin by providing the biological mechanisms of action of these receptors on the pathogenesis of depression. Then we review the historical and social context about these receptors. Finally, we discuss the limitations of the current state of knowledge and outline insights on future research directions, aiming to provide more novel targets and theoretical basis for the early prevention, accurate diagnosis and prompt treatment of depression.
Collapse
Affiliation(s)
- Hui-Qin Wang
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
147
|
Martinez-Sanchez A, Laugks U, Kochovski Z, Papantoniou C, Zinzula L, Baumeister W, Lučić V. Trans-synaptic assemblies link synaptic vesicles and neuroreceptors. SCIENCE ADVANCES 2021; 7:7/10/eabe6204. [PMID: 33674312 PMCID: PMC7935360 DOI: 10.1126/sciadv.abe6204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/22/2021] [Indexed: 05/03/2023]
Abstract
Synaptic transmission is characterized by fast, tightly coupled processes and complex signaling pathways that require a precise protein organization, such as the previously reported nanodomain colocalization of pre- and postsynaptic proteins. Here, we used cryo-electron tomography to visualize synaptic complexes together with their native environment comprising interacting proteins and lipids on a 2- to 4-nm scale. Using template-free detection and classification, we showed that tripartite trans-synaptic assemblies (subcolumns) link synaptic vesicles to postsynaptic receptors and established that a particular displacement between directly interacting complexes characterizes subcolumns. Furthermore, we obtained de novo average structures of ionotropic glutamate receptors in their physiological composition, embedded in plasma membrane. These data support the hypothesis that synaptic function is carried by precisely organized trans-synaptic units. It provides a framework for further exploration of synaptic and other large molecular assemblies that link different cells or cellular regions and may require weak or transient interactions to exert their function.
Collapse
Affiliation(s)
- Antonio Martinez-Sanchez
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Department of Computer Sciences, Faculty of Sciences, University of Oviedo, Federico Garcia Lorca 18, 33007, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avenida Hospital Universitario s/n, 33011 Oviedo, Spain
- Institute of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Ulrike Laugks
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Zdravko Kochovski
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christos Papantoniou
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Luca Zinzula
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Vladan Lučić
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
148
|
Han W, Shepard RD, Lu W. Regulation of GABA ARs by Transmembrane Accessory Proteins. Trends Neurosci 2021; 44:152-165. [PMID: 33234346 PMCID: PMC7855156 DOI: 10.1016/j.tins.2020.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
The vast majority of fast inhibitory transmission in the brain is mediated by GABA acting on GABAA receptors (GABAARs), which provides inhibitory balance to excitatory drive and controls neuronal output. GABAARs are also effectively targeted by clinically important drugs for treatment in a number of neurological disorders. It has long been hypothesized that function and pharmacology of GABAARs are determined by the channel pore-forming subunits. However, recent studies have provided new dimensions in studying GABAARs due to several transmembrane proteins that interact with GABAARs and modulate their trafficking and function. In this review, we summarize recent findings on these novel GABAAR transmembrane regulators and highlight a potential avenue to develop new GABAAR psychopharmacology by targeting these receptor-associated membrane proteins.
Collapse
Affiliation(s)
- Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan D Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
149
|
The aging mouse brain: cognition, connectivity and calcium. Cell Calcium 2021; 94:102358. [PMID: 33517250 DOI: 10.1016/j.ceca.2021.102358] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
Aging is a complex process that differentially impacts multiple cognitive, sensory, neuronal and molecular processes. Technological innovations now allow for parallel investigation of neuronal circuit function, structure and molecular composition in the brain of awake behaving adult mice. Thus, mice have become a critical tool to better understand how aging impacts the brain. However, a more granular systems-based approach, which considers the impact of age on key features relating to neural processing, is required. Here, we review evidence probing the impact of age on the mouse brain. We focus on a range of processes relating to neuronal function, including cognitive abilities, sensory systems, synaptic plasticity and calcium regulation. Across many systems, we find evidence for prominent age-related dysregulation even before 12 months of age, suggesting that emerging age-related alterations can manifest by late adulthood. However, we also find reports suggesting that some processes are remarkably resilient to aging. The evidence suggests that aging does not drive a parallel, linear dysregulation of all systems, but instead impacts some processes earlier, and more severely, than others. We propose that capturing the more fine-scale emerging features of age-related vulnerability and resilience may provide better opportunities for the rejuvenation of the aged brain.
Collapse
|
150
|
Carrillo E, Shaikh SA, Berka V, Durham RJ, Litwin DB, Lee G, MacLean DM, Nowak LM, Jayaraman V. Mechanism of modulation of AMPA receptors by TARP-γ8. J Gen Physiol 2021; 152:jgp.201912451. [PMID: 31748249 PMCID: PMC7034100 DOI: 10.1085/jgp.201912451] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/04/2019] [Indexed: 01/24/2023] Open
Abstract
Using single-channel recordings and single-molecule FRET, Carrillo et al. show that resensitization of α-amino-5-methyl-3-hydroxy-4-isoxazole propionate receptors by the regulatory protein γ8 is characterized by transitions to high conductance levels associated with tighter conformational coupling similar to those seen in the presence of cyclothiazide. Fast excitatory synaptic transmission in the mammalian central nervous system is mediated by glutamate-activated α-amino-5-methyl-3-hydroxy-4-isoxazole propionate (AMPA) receptors. In neurons, AMPA receptors coassemble with transmembrane AMPA receptor regulatory proteins (TARPs). Assembly with TARP γ8 alters the biophysical properties of the receptor, producing resensitization currents in the continued presence of glutamate. Using single-channel recordings, we show that under resensitizing conditions, GluA2 AMPA receptors primarily transition to higher conductance levels, similar to activation of the receptors in the presence of cyclothiazide, which stabilizes the open state. To study the conformation associated with these states, we have used single-molecule FRET and show that this high-conductance state exhibits tighter coupling between subunits in the extracellular parts of the receptor. Furthermore, the dwell times for the transition from the tightly coupled state to the decoupled states correlate to longer open durations of the channels, thus correlating conformation and function at the single-molecule level.
Collapse
Affiliation(s)
- Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX.,E. Carrillo and S.A. Shaikh contributed equally to this work and are listed in alphabetical order
| | - Sana A Shaikh
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX.,E. Carrillo and S.A. Shaikh contributed equally to this work and are listed in alphabetical order
| | - Vladimir Berka
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX
| | - Ryan J Durham
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX
| | - Douglas B Litwin
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX
| | - Garam Lee
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Linda M Nowak
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|