101
|
Brazhe A, Verisokin A, Verveyko D, Postnov D. Astrocytes: new evidence, new models, new roles. Biophys Rev 2023; 15:1303-1333. [PMID: 37975000 PMCID: PMC10643736 DOI: 10.1007/s12551-023-01145-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
Astrocytes have been in the limelight of active research for about 3 decades now. Over this period, ideas about their function and role in the nervous system have evolved from simple assistance in energy supply and homeostasis maintenance to a complex informational and metabolic hub that integrates data on local neuronal activity, sensory and arousal context, and orchestrates many crucial processes in the brain. Rapid progress in experimental techniques and data analysis produces a growing body of data, which can be used as a foundation for formulation of new hypotheses, building new refined mathematical models, and ultimately should lead to a new level of understanding of the contribution of astrocytes to the cognitive tasks performed by the brain. Here, we highlight recent progress in astrocyte research, which we believe expands our understanding of how low-level signaling at a cellular level builds up to processes at the level of the whole brain and animal behavior. We start our review with revisiting data on the role of noradrenaline-mediated astrocytic signaling in locomotion, arousal, sensory integration, memory, and sleep. We then briefly review astrocyte contribution to the regulation of cerebral blood flow regulation, which is followed by a discussion of biophysical mechanisms underlying astrocyte effects on different brain processes. The experimental section is closed by an overview of recent experimental techniques available for modulation and visualization of astrocyte dynamics. We then evaluate how the new data can be potentially incorporated into the new mathematical models or where and how it already has been done. Finally, we discuss an interesting prospect that astrocytes may be key players in important processes such as the switching between sleep and wakefulness and the removal of toxic metabolites from the brain milieu.
Collapse
Affiliation(s)
- Alexey Brazhe
- Department of Biophysics, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1/24, Moscow, 119234 Russia
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry RAS, GSP-7, Miklukho-Maklay Str., 16/10, Moscow, 117997 Russia
| | - Andrey Verisokin
- Department of Theoretical Physics, Kursk State University, Radishcheva st., 33, Kursk, 305000 Russia
| | - Darya Verveyko
- Department of Theoretical Physics, Kursk State University, Radishcheva st., 33, Kursk, 305000 Russia
| | - Dmitry Postnov
- Department of Optics and Biophotonics, Saratov State University, Astrakhanskaya st., 83, Saratov, 410012 Russia
| |
Collapse
|
102
|
Tanguay E, Bouchard SJ, Lévesque M, De Koninck P, Breton-Provencher V. Shining light on the noradrenergic system. NEUROPHOTONICS 2023; 10:044406. [PMID: 37766924 PMCID: PMC10519836 DOI: 10.1117/1.nph.10.4.044406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Despite decades of research on the noradrenergic system, our understanding of its impact on brain function and behavior remains incomplete. Traditional recording techniques are challenging to implement for investigating in vivo noradrenergic activity, due to the relatively small size and the position in the brain of the locus coeruleus (LC), the primary location for noradrenergic neurons. However, recent advances in optical and fluorescent methods have enabled researchers to study the LC more effectively. Use of genetically encoded calcium indicators to image the activity of noradrenergic neurons and biosensors that monitor noradrenaline release with fluorescence can be an indispensable tool for studying noradrenergic activity. In this review, we examine how these methods are being applied to record the noradrenergic system in the rodent brain during behavior.
Collapse
Affiliation(s)
| | | | - Martin Lévesque
- CERVO Brain Research Centre, Quebec, Quebec, Canada
- Université Laval, Department of Psychiatry and Neuroscience, Faculty of Medicine, Quebec, Quebec, Canada
| | - Paul De Koninck
- CERVO Brain Research Centre, Quebec, Quebec, Canada
- Université Laval, Department of Biochemistry, Microbiology, and Bioinformatics, Faculty of Science and Engineering, Quebec, Quebec, Canada
| | - Vincent Breton-Provencher
- CERVO Brain Research Centre, Quebec, Quebec, Canada
- Université Laval, Department of Psychiatry and Neuroscience, Faculty of Medicine, Quebec, Quebec, Canada
| |
Collapse
|
103
|
Monari S, Guillot de Suduiraut I, Grosse J, Zanoletti O, Walker SE, Mesquita M, Wood TC, Cash D, Astori S, Sandi C. Blunted Glucocorticoid Responsiveness to Stress Causes Behavioral and Biological Alterations That Lead to Posttraumatic Stress Disorder Vulnerability. Biol Psychiatry 2023:S0006-3223(23)01590-1. [PMID: 37743003 DOI: 10.1016/j.biopsych.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Understanding why only a subset of trauma-exposed individuals develop posttraumatic stress disorder is critical for advancing clinical strategies. A few behavioral (deficits in fear extinction) and biological (blunted glucocorticoid levels, small hippocampal size, and rapid-eye-movement sleep [REMS] disturbances) traits have been identified as potential vulnerability factors. However, whether and to what extent these traits are interrelated and whether one of them could causally engender the others are not known. METHODS In a genetically selected rat model of reduced corticosterone responsiveness to stress, we explored posttraumatic stress disorder-related biobehavioral traits using ex vivo magnetic resonance imaging, cued fear conditioning, and polysomnographic recordings combined with in vivo photometric measurements. RESULTS We showed that genetic selection for blunted glucocorticoid responsiveness led to a correlated multitrait response, including impaired fear extinction (observed in males but not in females), small hippocampal volume, and REMS disturbances, supporting their interrelatedness. Fear extinction deficits and concomitant disruptions in REMS could be normalized through postextinction corticosterone administration, causally implicating glucocorticoid deficiency in two core posttraumatic stress disorder-related risk factors and manifestations. Furthermore, reduced REMS was accompanied by higher norepinephrine levels in the hippocampal dentate gyrus that were also reversed by postextinction corticosterone treatment. CONCLUSIONS Our results indicate a predominant role for glucocorticoid deficiency over the contribution of reduced hippocampal volume in engendering both REMS alterations and associated deficits in fear extinction consolidation, and they causally implicate blunted glucocorticoids in sustaining neurophysiological disturbances that lead to fear extinction deficits.
Collapse
Affiliation(s)
- Silvia Monari
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Isabelle Guillot de Suduiraut
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sophie E Walker
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michel Mesquita
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tobias C Wood
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Simone Astori
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
104
|
Song X, Li H, Liu X, Pang M, Wang Y. Calcium Imaging Characterize the Neurobiological Effect of Terahertz Radiation in Zebrafish Larvae. SENSORS (BASEL, SWITZERLAND) 2023; 23:7689. [PMID: 37765745 PMCID: PMC10537331 DOI: 10.3390/s23187689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
(1) Objective: To explore the neurobiological effects of terahertz (THz) radiation on zebrafish larvae using calcium (Ca2+) imaging technology. (2) Methods: Zebrafish larvae at 7 days post fertilization (dpf) were exposed to THz radiation for 10 or 20 min; the frequency was 2.52 THz and the amplitude 50 mW/cm2. The behavioral experiments, neural Ca2+ imaging, and quantitative polymerase chain reaction (qPCR) of the dopamine-related genes were conducted following the irradiation. (3) Results: Compared with the control group, the behavioral experiments demonstrated that THz radiation significantly increased the distance travelled and speed of zebrafish larvae. In addition, the maximum acceleration and motion frequency were elevated in the 20 min radiation group. The neural Ca2+ imaging results indicated a substantial increase in zebrafish neuronal activity. qPCR experiments revealed a significant upregulation of dopamine-related genes, such as drd2b, drd4a, slc6a3 and th. (4) Conclusion: THz radiation (2.52 THz, 50 mW/cm2, 20 min) upregulated dopamine-related genes and significantly enhanced neuronal excitability, and the neurobiological effect of THz radiation can be visualized using neural Ca2+ imaging in vivo.
Collapse
Affiliation(s)
- Xin Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
| | - Haibin Li
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| | - Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
| | - Yuye Wang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
105
|
Villarin JM, Kellendonk C. Locus of control: How the brain gives up when failure is taken for granted. Neuron 2023; 111:2620-2622. [PMID: 37678166 PMCID: PMC10859865 DOI: 10.1016/j.neuron.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
After repeatedly failing to get out of a stressful, uncontrollable environment, mice switch from escape behavior to inactivity. In this issue of Neuron, Li et al. identify a circuit involving noradrenergic projections from the locus coeruleus to GABAergic projection neurons in the orbitofrontal cortex that participate in this adaptive behavior.
Collapse
Affiliation(s)
- Joseph M Villarin
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Christoph Kellendonk
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
106
|
Li C, Sun T, Zhang Y, Gao Y, Sun Z, Li W, Cheng H, Gu Y, Abumaria N. A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice. Neuron 2023; 111:2727-2741.e7. [PMID: 37352858 DOI: 10.1016/j.neuron.2023.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 01/13/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Persistence in the face of failure helps to overcome challenges. But the ability to adjust behavior or even give up when the task is uncontrollable has advantages. How the mammalian brain switches behavior when facing uncontrollability remains an open question. We generated two mouse models of behavioral transition from action to no-action during exposure to a prolonged experience with an uncontrollable outcome. The transition was not caused by pain desensitization or muscle fatigue and was not a depression-/learned-helplessness-like behavior. Noradrenergic neurons projecting to GABAergic neurons within the orbitofrontal cortex (OFC) are key regulators of this behavior. Fiber photometry, microdialysis, mini-two-photon microscopy, and tetrode/optrode in vivo recording in freely behaving mice revealed that the reduction of norepinephrine and downregulation of alpha 1 receptor in the OFC reduced the number and activity of GABAergic neurons necessary for driving action behavior resulting in behavioral transition. These findings define a circuit governing behavioral switch in response to prolonged uncontrollability.
Collapse
Affiliation(s)
- Chaoqun Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Tianping Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yimu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yan Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhou Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wei Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing 100871, China; Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing 211500, China
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
107
|
Kagiampaki Z, Rohner V, Kiss C, Curreli S, Dieter A, Wilhelm M, Harada M, Duss SN, Dernic J, Bhat MA, Zhou X, Ravotto L, Ziebarth T, Wasielewski LM, Sönmez L, Benke D, Weber B, Bohacek J, Reiner A, Wiegert JS, Fellin T, Patriarchi T. Sensitive multicolor indicators for monitoring norepinephrine in vivo. Nat Methods 2023; 20:1426-1436. [PMID: 37474807 PMCID: PMC7615053 DOI: 10.1038/s41592-023-01959-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/16/2023] [Indexed: 07/22/2023]
Abstract
Genetically encoded indicators engineered from G-protein-coupled receptors are important tools that enable high-resolution in vivo neuromodulator imaging. Here, we introduce a family of sensitive multicolor norepinephrine (NE) indicators, which includes nLightG (green) and nLightR (red). These tools report endogenous NE release in vitro, ex vivo and in vivo with improved sensitivity, ligand selectivity and kinetics, as well as a distinct pharmacological profile compared with previous state-of-the-art GRABNE indicators. Using in vivo multisite fiber photometry recordings of nLightG, we could simultaneously monitor optogenetically evoked NE release in the mouse locus coeruleus and hippocampus. Two-photon imaging of nLightG revealed locomotion and reward-related NE transients in the dorsal CA1 area of the hippocampus. Thus, the sensitive NE indicators introduced here represent an important addition to the current repertoire of indicators and provide the means for a thorough investigation of the NE system.
Collapse
Affiliation(s)
| | - Valentin Rohner
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Cedric Kiss
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Sebastiano Curreli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Alexander Dieter
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maria Wilhelm
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Masaya Harada
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Sian N Duss
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Jan Dernic
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Musadiq A Bhat
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Xuehan Zhou
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Tim Ziebarth
- Cellular Neurobiology, Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Laura Moreno Wasielewski
- Cellular Neurobiology, Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Latife Sönmez
- Cellular Neurobiology, Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Johannes Bohacek
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Andreas Reiner
- Cellular Neurobiology, Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
108
|
Ultrafast nLight indicators for sensitive and specific in vivo imaging of norepinephrine. Nat Methods 2023; 20:1289-1290. [PMID: 37474810 DOI: 10.1038/s41592-023-01960-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
|
109
|
Ozkan AD, Wijerathne TD, Gettas T, Lacroix JJ. Force-induced motions of the PIEZO1 blade probed with fluorimetry. Cell Rep 2023; 42:112837. [PMID: 37471225 PMCID: PMC10530446 DOI: 10.1016/j.celrep.2023.112837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Mechanical forces are thought to activate mechanosensitive PIEZO channels by changing the conformation of a large transmembrane blade domain. Yet, whether different stimuli induce identical conformational changes in this domain remains unclear. Here, we repurpose a cyclic permuted green fluorescent protein as a conformation-sensitive probe to track local rearrangements along the PIEZO1 blade. Two independent probes, one inserted in an extracellular site distal to the pore and the other in a distant intracellular proximal position, elicit sizable fluorescence signals when the tagged channels activate in response to fluid shear stress of low intensity. Neither cellular indentations nor osmotic swelling of the cell elicit detectable fluorescence signals from either probe, despite the ability of these stimuli to activate the tagged channels. High-intensity flow stimuli are ineffective at eliciting fluorescence signals from either probe. Together, these findings suggest that low-intensity fluid shear stress causes a distinct form of mechanical stress to the cell.
Collapse
Affiliation(s)
- Alper D Ozkan
- Department of Pharmaceutical Microbiology, Bahçeşehir University, Yıldız, Çırağan Cd, 34349 Beşiktaş/İstanbul, Turkey
| | - Tharaka D Wijerathne
- Department of Basic Medical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Tina Gettas
- Department of Basic Medical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Jérôme J Lacroix
- Department of Basic Medical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA.
| |
Collapse
|
110
|
Zhuo Y, Luo B, Yi X, Dong H, Wan J, Cai R, Williams JT, Qian T, Campbell MG, Miao X, Li B, Wei Y, Li G, Wang H, Zheng Y, Watabe-Uchida M, Li Y. Improved dual-color GRAB sensors for monitoring dopaminergic activity in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554559. [PMID: 37662187 PMCID: PMC10473776 DOI: 10.1101/2023.08.24.554559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Dopamine (DA) plays multiple roles in a wide range of physiological and pathological processes via a vast network of dopaminergic projections. To fully dissect the spatiotemporal dynamics of DA release in both dense and sparsely innervated brain regions, we developed a series of green and red fluorescent GPCR activation-based DA (GRABDA) sensors using a variety of DA receptor subtypes. These sensors have high sensitivity, selectivity, and signal-to-noise properties with subsecond response kinetics and the ability to detect a wide range of DA concentrations. We then used these sensors in freely moving mice to measure both optogenetically evoked and behaviorally relevant DA release while measuring neurochemical signaling in the nucleus accumbens, amygdala, and cortex. Using these sensors, we also detected spatially resolved heterogeneous cortical DA release in mice performing various behaviors. These next-generation GRABDA sensors provide a robust set of tools for imaging dopaminergic activity under a variety of physiological and pathological conditions.
Collapse
Affiliation(s)
- Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- These authors contributed equally
| | - Bin Luo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- These authors contributed equally
| | - Xinyang Yi
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Hui Dong
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - John T. Williams
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Malcolm G. Campbell
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Xiaolei Miao
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Bozhi Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing 100853, China
| | - Yu Wei
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yu Zheng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Mitsuko Watabe-Uchida
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing 102206, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
111
|
Ravariu C. From Enzymatic Dopamine Biosensors to OECT Biosensors of Dopamine. BIOSENSORS 2023; 13:806. [PMID: 37622892 PMCID: PMC10452593 DOI: 10.3390/bios13080806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Neurotransmitters are an important category of substances used inside the nervous system, whose detection with biosensors has been seriously addressed in the last decades. Dopamine, a neurotransmitter from the catecholamine family, was recently discovered to have implications for cardiac arrest or muscle contractions. In addition to having many other neuro-psychiatric implications, dopamine can be detected in blood, urine, and sweat. This review highlights the importance of biosensors as influential tools for dopamine recognition. The first part of this article is related to an introduction to biosensors for neurotransmitters, with a focus on dopamine. The regular methods in their detection are expensive and require high expertise personnel. A major direction of evolution of these biosensors has expanded with the integration of active biological materials suitable for molecular recognition near electronic devices. Secondly, for dopamine in particular, the miniaturized biosensors offer excellent sensitivity and specificity and offer cheaper detection than conventional spectrometry, while their linear detection ranges from the last years fall exactly on the clinical intervals. Thirdly, the applications of novel nanomaterials and biomaterials to these biosensors are discussed. Older generations, metabolism-based or enzymatic biosensors, could not detect concentrations below the micro-molar range. But new generations of biosensors combine aptamer receptors and organic electrochemical transistors, OECTs, as transducers. They have pushed the detection limit to the pico-molar and even femto-molar ranges, which fully correspond to the usual ranges of clinical detection of human dopamine in body humors that cover 0.1 ÷ 10 nM. In addition, if ten years ago the use of natural dopamine receptors on cell membranes seemed impossible for biosensors, the actual technology allows co-integrate transistors and vesicles with natural receptors of dopamine, like G protein-coupled receptors. The technology is still complicated, but the uni-molecular detection selectivity is promising.
Collapse
Affiliation(s)
- Cristian Ravariu
- Biodevices and Nano-Electronics of Cell Group, Department of Electronic Devices Circuits and Architectures, Polytechnic University of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- EduSciArt SRL, Iovita 2, 050686 Bucharest, Romania
| |
Collapse
|
112
|
Stanley AT, Post MR, Lacefield C, Sulzer D, Miniaci MC. Norepinephrine release in the cerebellum contributes to aversive learning. Nat Commun 2023; 14:4852. [PMID: 37563141 PMCID: PMC10415399 DOI: 10.1038/s41467-023-40548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
The modulation of dopamine release from midbrain projections to the striatum has long been demonstrated in reward-based learning, but the synaptic basis of aversive learning is far less characterized. The cerebellum receives axonal projections from the locus coeruleus, and norepinephrine release is implicated in states of arousal and stress, but whether aversive learning relies on plastic changes in norepinephrine release in the cerebellum is unknown. Here we report that in mice, norepinephrine is released in the cerebellum following an unpredicted noxious event (a foot-shock) and that this norepinephrine release is potentiated powerfully with fear acquisition as animals learn that a previously neutral stimulus (tone) predicts the aversive event. Importantly, both chemogenetic and optogenetic inhibition of the locus coeruleus-cerebellum pathway block fear memory without impairing motor function. Thus, norepinephrine release in the cerebellum is modulated by experience and underlies aversive learning.
Collapse
Affiliation(s)
- Adrien T Stanley
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Michael R Post
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Clay Lacefield
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - David Sulzer
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, USA.
| | | |
Collapse
|
113
|
Wait SJ, Rappleye M, Lee JD, Goy ME, Smith N, Berndt A. Machine Learning Ensemble Directed Engineering of Genetically Encoded Fluorescent Calcium Indicators. RESEARCH SQUARE 2023:rs.3.rs-3146778. [PMID: 37609342 PMCID: PMC10441480 DOI: 10.21203/rs.3.rs-3146778/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In this study, we focused on the transformative potential of machine learning in the engineering of genetically encoded fluorescent indicators (GEFIs), protein-based sensing tools that are critical for real-time monitoring of biological activity. GEFIs are complex proteins with multiple dynamic states, rendering optimization by trial-and-error mutagenesis a challenging problem. We applied an alternative approach using machine learning to predict the outcomes of sensor mutagenesis by analyzing established libraries that link sensor sequences to functions. Using the GCaMP calcium indicator as a scaffold, we developed an ensemble of three regression models trained on experimentally derived GCaMP mutation libraries. We used the trained ensemble to perform an in silico functional screen on 1423 novel, uncharacterized GCaMP variants. As a result, we identified the novel ensemble-derived GCaMP (eGCaMP) variants, eGCaMP and eGCaMP+, that achieve both faster kinetics and larger fluorescent responses upon stimulation than previously published fast variants. Furthermore, we identified a combinatorial mutation with extraordinary dynamic range, eGCaMP2+, that outperforms the tested 6th, 7th, and 8th generation GCaMPs. These findings demonstrate the value of machine learning as a tool to facilitate the efficient pre-screening of mutants for functional characteristics. By leveraging the learning capabilities of our ensemble, we were able to accelerate the identification of promising mutations and reduce the experimental burden associated with trial-and-error mutagenesis. Overall, these findings have significant implications for optimizing GEFIs and other protein-based tools, demonstrating the utility of machine learning as a powerful asset in protein engineering.
Collapse
Affiliation(s)
- Sarah J. Wait
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Michael Rappleye
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Justin Daho Lee
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Marc Exposit Goy
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA
| | - Netta Smith
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Andre Berndt
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA
| |
Collapse
|
114
|
Andersen M, Tsopanidou A, Radovanovic T, Compere VN, Hauglund N, Nedergaard M, Kjaerby C. Using Fiber Photometry in Mice to Estimate Fluorescent Biosensor Levels During Sleep. Bio Protoc 2023; 13:e4734. [PMID: 37575397 PMCID: PMC10415158 DOI: 10.21769/bioprotoc.4734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/12/2023] [Accepted: 05/12/2023] [Indexed: 08/15/2023] Open
Abstract
Sleep is not homogenous but contains a highly diverse microstructural composition influenced by neuromodulators. Prior methods used to measure neuromodulator levels in vivo have been limited by low time resolution or technical difficulties in achieving recordings in a freely moving setting, which is essential for natural sleep. In this protocol, we demonstrate the combination of electroencephalographic (EEG)/electromyographic (EMG) recordings with fiber photometric measurements of fluorescent biosensors for neuromodulators in freely moving mice. This allows for real-time assessment of extracellular neuromodulator levels during distinct phases of sleep with a high temporal resolution.
Collapse
Affiliation(s)
- Mie Andersen
- Center for Translational Neuromedicine, University of Copenhagen, Noerre Alle 14, 2200 Copenhagen, Denmark
| | - Anastasia Tsopanidou
- Center for Translational Neuromedicine, University of Copenhagen, Noerre Alle 14, 2200 Copenhagen, Denmark
| | - Tessa Radovanovic
- Center for Translational Neuromedicine, University of Copenhagen, Noerre Alle 14, 2200 Copenhagen, Denmark
| | - Viviane Noelani Compere
- Center for Translational Neuromedicine, University of Copenhagen, Noerre Alle 14, 2200 Copenhagen, Denmark
| | - Natalie Hauglund
- Center for Translational Neuromedicine, University of Copenhagen, Noerre Alle 14, 2200 Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, Noerre Alle 14, 2200 Copenhagen, Denmark
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Celia Kjaerby
- Center for Translational Neuromedicine, University of Copenhagen, Noerre Alle 14, 2200 Copenhagen, Denmark
| |
Collapse
|
115
|
Qian T, Wang H, Xia X, Li Y. Current and emerging methods for probing neuropeptide transmission. Curr Opin Neurobiol 2023; 81:102751. [PMID: 37487399 DOI: 10.1016/j.conb.2023.102751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/26/2023]
Abstract
Neuropeptides comprise the most diverse category of neurochemicals in the brain, playing critical roles in a wide range of physiological and pathophysiological processes. Monitoring neuropeptides with high spatial and temporal resolution is essential for understanding how peptidergic transmission is regulated throughout the central nervous system. In this review, we provide an overview of current non-optical and optical approaches used to detect neuropeptides, including their design principles, intrinsic properties, and potential limitations. We also highlight the advantages of using G protein‒coupled receptor (GPCR) activation‒based (GRAB) sensors to monitor neuropeptides in vivo with high sensitivity, good specificity, and high spatiotemporal resolution. Finally, we present a promising outlook regarding the development and optimization of new GRAB neuropeptide sensors, as well as their potential applications.
Collapse
Affiliation(s)
- Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China
| | - Xiju Xia
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Chinese Institute for Brain Research, Beijing, 102206, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
116
|
Jun S, Ou X, Shi L, Yu H, Deng T, Chen J, Nie X, Hao Y, Shi Y, Liu W, Tian Y, Wang S, Yuan F. Circuit-Specific Control of Blood Pressure by PNMT-Expressing Nucleus Tractus Solitarii Neurons. Neurosci Bull 2023; 39:1193-1209. [PMID: 36588135 PMCID: PMC10387028 DOI: 10.1007/s12264-022-01008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/18/2022] [Indexed: 01/03/2023] Open
Abstract
The nucleus tractus solitarii (NTS) is one of the morphologically and functionally defined centers that engage in the autonomic regulation of cardiovascular activity. Phenotypically-characterized NTS neurons have been implicated in the differential regulation of blood pressure (BP). Here, we investigated whether phenylethanolamine N-methyltransferase (PNMT)-expressing NTS (NTSPNMT) neurons contribute to the control of BP. We demonstrate that photostimulation of NTSPNMT neurons has variable effects on BP. A depressor response was produced during optogenetic stimulation of NTSPNMT neurons projecting to the paraventricular nucleus of the hypothalamus, lateral parabrachial nucleus, and caudal ventrolateral medulla. Conversely, photostimulation of NTSPNMT neurons projecting to the rostral ventrolateral medulla produced a robust pressor response and bradycardia. In addition, genetic ablation of both NTSPNMT neurons and those projecting to the rostral ventrolateral medulla impaired the arterial baroreflex. Overall, we revealed the neuronal phenotype- and circuit-specific mechanisms underlying the contribution of NTSPNMT neurons to the regulation of BP.
Collapse
Affiliation(s)
- Shirui Jun
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xianhong Ou
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Luo Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hongxiao Yu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tianjiao Deng
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jinting Chen
- Core Facilities and Centers, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaojun Nie
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yinchao Hao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yishuo Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wei Liu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yanming Tian
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Sheng Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China.
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China.
| |
Collapse
|
117
|
Bridge MF, Wilson LR, Panda S, Stevanovic KD, Letsinger AC, McBride S, Cushman JD. FiPhA: An Open-Source Platform for Fiber Photometry Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550098. [PMID: 37546723 PMCID: PMC10401953 DOI: 10.1101/2023.07.21.550098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Significance Fiber photometry is a widely used technique in modern behavioral neuroscience, employing genetically encoded fluorescent sensors to monitor neural activity and neurotransmitter release in awake-behaving animals, However, analyzing photometry data can be both laborious and time-consuming. Aim We propose the FiPhA (Fiber Photometry Analysis) app, which is a general-purpose fiber photometry analysis application. The goal is to develop a pipeline suitable for a wide range of photometry approaches, including spectrally resolved, camera-based, and lock-in demodulation. Approach FiPhA was developed using the R Shiny framework and offers interactive visualization, quality control, and batch processing functionalities in a user-friendly interface. Results This application simplifies and streamlines the analysis process, thereby reducing labor and time requirements. It offers interactive visualizations, event-triggered average processing, powerful tools for filtering behavioral events and quality control features. Conclusions FiPhA is a valuable tool for behavioral neuroscientists working with discrete, event-based fiber photometry data. It addresses the challenges associated with analyzing and investigating such data, offering a robust and user-friendly solution without the complexity of having to hand-design custom analysis pipelines. This application thus helps standardize an approach to fiber photometry analysis.
Collapse
Affiliation(s)
- Matthew F. Bridge
- Social & Scientific Systems, Inc., a DLH Holdings Corp. Company, Durham, NC, United States
| | - Leslie R. Wilson
- Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Sambit Panda
- Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Korey D. Stevanovic
- Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Ayland C. Letsinger
- Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Sandra McBride
- Social & Scientific Systems, Inc., a DLH Holdings Corp. Company, Durham, NC, United States
| | - Jesse D. Cushman
- Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| |
Collapse
|
118
|
Corona A, Choe J, Muñoz-Castañeda R, Osten P, Shea SD. A circuit from the locus coeruleus to the anterior cingulate cortex modulates offspring interactions in mice. Cell Rep 2023; 42:112771. [PMID: 37421626 PMCID: PMC10529180 DOI: 10.1016/j.celrep.2023.112771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/01/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023] Open
Abstract
Social sensitivity to other individuals in distress is crucial for survival. The anterior cingulate cortex (ACC) is a structure involved in making behavioral choices and is influenced by observed pain or distress. Nevertheless, our understanding of the neural circuitry underlying this sensitivity is incomplete. Here, we reveal unexpected sex-dependent activation of ACC when parental mice respond to distressed pups by returning them to the nest ("pup retrieval"). We observe sex differences in the interactions between excitatory and inhibitory ACC neurons during parental care, and inactivation of ACC excitatory neurons increased pup neglect. Locus coeruleus (LC) releases noradrenaline in ACC during pup retrieval, and inactivation of the LC-ACC pathway disrupts parental care. We conclude that ACC maintains sex-dependent sensitivity to pup distress under LC modulation. We propose that ACC's involvement in parenting presents an opportunity to identify neural circuits that support sensitivity to the emotional distress of others.
Collapse
Affiliation(s)
- Alberto Corona
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jane Choe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Stephen D Shea
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
119
|
Glaeser-Khan S, Savalia NK, Cressy J, Feng J, Li Y, Kwan AC, Kaye AP. Spatiotemporal organization of prefrontal norepinephrine influences neuronal activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544191. [PMID: 37502881 PMCID: PMC10370029 DOI: 10.1101/2023.06.09.544191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Norepinephrine (NE), a neuromodulator released by locus coeruleus neurons throughout cortex, influences arousal and learning through extra-synaptic vesicle exocytosis. While NE within cortical regions has been viewed as a homogenous field, recent studies have demonstrated heterogeneous axonal dynamics and advances in GPCR-based fluorescent sensors permit direct observation of the local dynamics of NE at cellular scale. To investigate how the spatiotemporal dynamics of NE release in the PFC affect neuronal firing, we employed in-vivo two-photon imaging of layer 2/3 of PFC in order to observe fine-scale neuronal calcium and NE dynamics concurrently. We found that local and global NE fields can decouple from one another, providing a substrate for local NE spatiotemporal activity patterns. Optic flow analysis revealed putative release and reuptake events which can occur at the same location, albeit at different times, indicating the potential to create a heterogeneous NE field. Utilizing generalized linear models, we demonstrated that cellular Ca2+ fluctuations are influenced by both the local and global NE field. However, during periods of local/global NE field decoupling, the local field drives cell firing dynamics rather than the global field. These findings underscore the significance of localized, phasic NE fluctuations for structuring cell firing, which may provide local neuromodulatory control of cortical activity.
Collapse
|
120
|
He B, Gao R, Lv S, Chen A, Huang J, Wang L, Feng Y, Feng J, Liu B, Lei J, Deng B, He B, Cui B, Peng F, Yan M, Wang Z, Lam EWF, Jin B, Shao Z, Li Y, Jiao J, Wang X, Liu Q. Cancer cell employs a microenvironmental neural signal trans-activating nucleus-mitochondria coordination to acquire stemness. Signal Transduct Target Ther 2023; 8:275. [PMID: 37463926 PMCID: PMC10354099 DOI: 10.1038/s41392-023-01487-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 07/20/2023] Open
Abstract
Cancer cell receives extracellular signal inputs to obtain a stem-like status, yet how tumor microenvironmental (TME) neural signals steer cancer stemness to establish the hierarchical tumor architectures remains elusive. Here, a pan-cancer transcriptomic screening for 10852 samples of 33 TCGA cancer types reveals that cAMP-responsive element (CRE) transcription factors are convergent activators for cancer stemness. Deconvolution of transcriptomic profiles, specification of neural markers and illustration of norepinephrine dynamics uncover a bond between TME neural signals and cancer-cell CRE activity. Specifically, neural signal norepinephrine potentiates the stemness of proximal cancer cells by activating cAMP-CRE axis, where ATF1 serves as a conserved hub. Upon activation by norepinephrine, ATF1 potentiates cancer stemness by coordinated trans-activation of both nuclear pluripotency factors MYC/NANOG and mitochondrial biogenesis regulators NRF1/TFAM, thereby orchestrating nuclear reprograming and mitochondrial rejuvenating. Accordingly, single-cell transcriptomes confirm the coordinated activation of nuclear pluripotency with mitochondrial biogenesis in cancer stem-like cells. These findings elucidate that cancer cell acquires stemness via a norepinephrine-ATF1 driven nucleus-mitochondria collaborated program, suggesting a spatialized stemness acquisition by hijacking microenvironmental neural signals.
Collapse
Affiliation(s)
- Bin He
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Rui Gao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 510275, PR China
| | - Shasha Lv
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, PR China
| | - Ailin Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Junxiu Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Luoxuan Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, PR China
| | - Yunxiu Feng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, PR China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, PR China
| | - Bing Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Jie Lei
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Bing Deng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Bin He
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, PR China
| | - Bai Cui
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, PR China
| | - Fei Peng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, PR China
| | - Min Yan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Zifeng Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Bilian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, PR China
| | - Zhiming Shao
- Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, PR China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Xi Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Quentin Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 510275, PR China.
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, PR China.
| |
Collapse
|
121
|
Zheng Y, Li Y. Past, present, and future of tools for dopamine detection. Neuroscience 2023:S0306-4522(23)00295-6. [PMID: 37419404 DOI: 10.1016/j.neuroscience.2023.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Dopamine (DA) is a critical neuromodulator involved in various brain functions. To understand how DA regulates neural circuits and behaviors in the physiological and pathological conditions, it is essential to have tools that enable the direct detection of DA dynamics in vivo. Recently, genetically encoded DA sensors based on G protein-coupled receptors revolutionized this field, as it allows us to track in vivo DA dynamic with unprecedented spatial-temporal resolution, high molecular specificity, and sub-second kinetics. In this review, we first summarize traditional DA detection methods. Then we focus on the development of genetically encoded DA sensors and feature its significance to understanding dopaminergic neuromodulation across diverse behaviors and species. Finally, we present our perspectives about the future direction of the next-generation DA sensors and extend their potential applications. Overall, this review offers a comprehensive perspective on the past, present, and future of DA detection tools, with important implications for the study of DA functions in health and disease.
Collapse
Affiliation(s)
- Yu Zheng
- Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871 Beijing, China; PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China; National Biomedical Imaging Center, Peking University, 100871 Beijing, China.
| |
Collapse
|
122
|
Qian T, Wang H, Wang P, Geng L, Mei L, Osakada T, Wang L, Tang Y, Kania A, Grinevich V, Stoop R, Lin D, Luo M, Li Y. A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments. Nat Biotechnol 2023; 41:944-957. [PMID: 36593404 PMCID: PMC11182738 DOI: 10.1038/s41587-022-01561-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/12/2022] [Indexed: 01/03/2023]
Abstract
Oxytocin (OT), a peptide hormone and neuromodulator, is involved in diverse physiological and pathophysiological processes in the central nervous system and the periphery. However, the regulation and functional sequences of spatial OT release in the brain remain poorly understood. We describe a genetically encoded G-protein-coupled receptor activation-based (GRAB) OT sensor called GRABOT1.0. In contrast to previous methods, GRABOT1.0 enables imaging of OT release ex vivo and in vivo with suitable sensitivity, specificity and spatiotemporal resolution. Using this sensor, we visualize stimulation-induced OT release from specific neuronal compartments in mouse brain slices and discover that N-type calcium channels predominantly mediate axonal OT release, whereas L-type calcium channels mediate somatodendritic OT release. We identify differences in the fusion machinery of OT release for axon terminals versus somata and dendrites. Finally, we measure OT dynamics in various brain regions in mice during male courtship behavior. Thus, GRABOT1.0 provides insights into the role of compartmental OT release in physiological and behavioral functions.
Collapse
Affiliation(s)
- Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Peng Wang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lan Geng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Long Mei
- Neuroscience Institute, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Takuya Osakada
- Neuroscience Institute, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Lei Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China
| | - Yan Tang
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Alan Kania
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ron Stoop
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Dayu Lin
- Neuroscience Institute, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Tsinghua University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| |
Collapse
|
123
|
Umpierre AD, Li B, Ayasoufi K, Zhao S, Xie M, Thyen G, Hur B, Zheng J, Liang Y, Wu Z, Yu X, Sung J, Johnson AJ, Li Y, Wu LJ. Microglial P2Y 6 calcium signaling promotes phagocytosis and shapes neuroimmune responses in epileptogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544691. [PMID: 37398001 PMCID: PMC10312639 DOI: 10.1101/2023.06.12.544691] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Microglial calcium signaling is rare in a baseline state but shows strong engagement during early epilepsy development. The mechanism and purpose behind microglial calcium signaling is not known. By developing an in vivo UDP fluorescent sensor, GRABUDP1.0, we discovered that UDP release is a conserved response to seizures and excitotoxicity across brain regions. UDP signals to the microglial P2Y6 receptor for broad increases in calcium signaling during epileptogenesis. UDP-P2Y6 signaling is necessary for lysosome upregulation across limbic brain regions and enhances production of pro-inflammatory cytokines-TNFα and IL-1β. Failures in lysosome upregulation, observed in P2Y6 KO mice, can also be phenocopied by attenuating microglial calcium signaling in Calcium Extruder ("CalEx") mice. In the hippocampus, only microglia with P2Y6 expression can perform full neuronal engulfment, which substantially reduces CA3 neuron survival and impairs cognition. Our results demonstrate that calcium activity, driven by UDP-P2Y6 signaling, is a signature of phagocytic and pro-inflammatory function in microglia during epileptogenesis.
Collapse
Affiliation(s)
- Anthony D. Umpierre
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- These authors contributed equally
| | - Bohan Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Peking University School of Life Sciences, Beijing, CN 100871
- These authors contributed equally
| | | | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Neuroscience Track, Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Neuroscience Track, Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905
| | - Grace Thyen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Benjamin Hur
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Neuroscience Track, Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905
| | - Yue Liang
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Peking University School of Life Sciences, Beijing, CN 100871
| | - Xinzhu Yu
- Department of Molecular and Integrative Physiology, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905
| | - Aaron J. Johnson
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
- Department of Molecular Medicine, Mayo Clinic, Rochester MN 55905
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Peking University School of Life Sciences, Beijing, CN 100871
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
- Lead contact
| |
Collapse
|
124
|
Turrini L, Roschi L, de Vito G, Pavone FS, Vanzi F. Imaging Approaches to Investigate Pathophysiological Mechanisms of Brain Disease in Zebrafish. Int J Mol Sci 2023; 24:9833. [PMID: 37372981 DOI: 10.3390/ijms24129833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Zebrafish has become an essential model organism in modern biomedical research. Owing to its distinctive features and high grade of genomic homology with humans, it is increasingly employed to model diverse neurological disorders, both through genetic and pharmacological intervention. The use of this vertebrate model has recently enhanced research efforts, both in the optical technology and in the bioengineering fields, aiming at developing novel tools for high spatiotemporal resolution imaging. Indeed, the ever-increasing use of imaging methods, often combined with fluorescent reporters or tags, enable a unique chance for translational neuroscience research at different levels, ranging from behavior (whole-organism) to functional aspects (whole-brain) and down to structural features (cellular and subcellular). In this work, we present a review of the imaging approaches employed to investigate pathophysiological mechanisms underlying functional, structural, and behavioral alterations of human neurological diseases modeled in zebrafish.
Collapse
Affiliation(s)
- Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Roschi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy
- Interdepartmental Centre for the Study of Complex Dynamics, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
125
|
Kroning K, Gannot N, Li X, Zhou G, Sescil J, Putansu A, Shen J, Wilson A, Fiel H, Li P, Wang W. Single-chain fluorescent integrators for mapping G-protein-coupled receptor agonists. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543062. [PMID: 37398137 PMCID: PMC10312536 DOI: 10.1101/2023.05.31.543062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
GPCRs transduce the effects of many neuromodulators including dopamine, serotonin, epinephrine, acetylcholine, and opioids. The localization of synthetic or endogenous GPCR agonists impacts their action on specific neuronal pathways. In this paper, we show a series of single-protein chain integrator sensors to determine GPCR agonist localization in the whole brain. We previously engineered integrator sensors for the mu and kappa opioid receptor agonists called M- and K-SPOTIT, respectively. Here, we show a new integrator sensor design platform called SPOTall that we used to engineer sensors for the beta-2-adrenergic receptor (B2AR), the dopamine receptor D1, and the cholinergic receptor muscarinic 2 agonists. For multiplexed imaging of SPOTIT and SPOTall, we engineered a red version of the SPOTIT sensors. Finally, we used M-SPOTIT and B2AR-SPOTall to detect morphine, isoproterenol, and epinephrine in the mouse brain. The SPOTIT and SPOTall sensor design platform can be used to design a variety of GPCR integrator sensors for unbiased agonist detection of many synthetic and endogenous neuromodulators across the whole brain.
Collapse
Affiliation(s)
- Kayla Kroning
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| | - Noam Gannot
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI
| | - Xingyu Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Guanwei Zhou
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI
| | - Jennifer Sescil
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| | - Aubrey Putansu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| | - Jiaqi Shen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| | - Avery Wilson
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Hailey Fiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Peng Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Chemistry, University of Michigan, Ann Arbor, MI
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
126
|
Zhang K, Han Y, Zhang P, Zheng Y, Cheng A. Comparison of fluorescence biosensors and whole-cell patch clamp recording in detecting ACh, NE, and 5-HT. Front Cell Neurosci 2023; 17:1166480. [PMID: 37333890 PMCID: PMC10272411 DOI: 10.3389/fncel.2023.1166480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
The communication between neurons and, in some cases, between neurons and non-neuronal cells, through neurotransmission plays a crucial role in various physiological and pathological processes. Despite its importance, the neuromodulatory transmission in most tissues and organs remains poorly understood due to the limitations of current tools for direct measurement of neuromodulatory transmitters. In order to study the functional roles of neuromodulatory transmitters in animal behaviors and brain disorders, new fluorescent sensors based on bacterial periplasmic binding proteins (PBPs) and G-protein coupled receptors have been developed, but their results have not been compared to or multiplexed with traditional methods such as electrophysiological recordings. In this study, a multiplexed method was developed to measure acetylcholine (ACh), norepinephrine (NE), and serotonin (5-HT) in cultured rat hippocampal slices using simultaneous whole-cell patch clamp recordings and genetically encoded fluorescence sensor imaging. The strengths and weaknesses of each technique were compared, and the results showed that both techniques did not interfere with each other. In general, genetically encoded sensors GRABNE and GRAB5HT1.0 showed better stability compared to electrophysiological recordings in detecting NE and 5-HT, while electrophysiological recordings had faster temporal kinetics in reporting ACh. Moreover, genetically encoded sensors mainly report the presynaptic neurotransmitter release while electrophysiological recordings provide more information of the activation of downstream receptors. In sum, this study demonstrates the use of combined techniques to measure neurotransmitter dynamics and highlights the potential for future multianalyte monitoring.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Han
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqiong Zheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aobing Cheng
- Department of Anesthesiology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
127
|
Duffet L, Williams ET, Gresch A, Chen S, Bhat MA, Benke D, Hartrampf N, Patriarchi T. Optical tools for visualizing and controlling human GLP-1 receptor activation with high spatiotemporal resolution. eLife 2023; 12:86628. [PMID: 37265064 DOI: 10.7554/elife.86628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
The glucagon-like peptide-1 receptor (GLP1R) is a broadly expressed target of peptide hormones with essential roles in energy and glucose homeostasis, as well as of the blockbuster weight-loss drugs semaglutide and liraglutide. Despite its large clinical relevance, tools to investigate the precise activation dynamics of this receptor with high spatiotemporal resolution are limited. Here, we introduce a novel genetically encoded sensor based on the engineering of a circularly permuted green fluorescent protein into the human GLP1R, named GLPLight1. We demonstrate that fluorescence signal from GLPLight1 accurately reports the expected receptor conformational activation in response to pharmacological ligands with high sensitivity (max ΔF/F0=528%) and temporal resolution (τON = 4.7 s). We further demonstrated that GLPLight1 shows comparable responses to glucagon-like peptide-1 (GLP-1) derivatives as observed for the native receptor. Using GLPLight1, we established an all-optical assay to characterize a novel photocaged GLP-1 derivative (photo-GLP1) and to demonstrate optical control of GLP1R activation. Thus, the new all-optical toolkit introduced here enhances our ability to study GLP1R activation with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Loïc Duffet
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Elyse T Williams
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Andrea Gresch
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Simin Chen
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Musadiq A Bhat
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Nina Hartrampf
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| |
Collapse
|
128
|
Zhou B, Fan K, Guo J, Feng J, Yang C, Li Y, Shi S, Kong L. Plug-and-play fiber-optic sensors based on engineered cells for neurochemical monitoring at high specificity in freely moving animals. SCIENCE ADVANCES 2023; 9:eadg0218. [PMID: 37267364 PMCID: PMC10413668 DOI: 10.1126/sciadv.adg0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/27/2023] [Indexed: 06/04/2023]
Abstract
In vivo detection of neurochemicals, including neurotransmitters and neuromodulators, is critical for both understanding brain mechanisms and diagnosing brain diseases. However, few sensors are competent in monitoring neurochemical dynamics in vivo at high specificity. Here, we propose the fiber-optic probes based on engineered cells (FOPECs) for plug-and-play, real-time detection of neurochemicals in freely moving animals. Taking advantages of life-evolved neurochemical receptors as key components, the chemical specificity of FOPECs is unprecedented. We demonstrate the applications of FOPECs in real-time monitoring of neurochemical dynamics under various physiology and pathology conditions. With no requirement of viral infection in advance and no dependence on animal species, FOPECs can be widely adopted in vertebrates, such as mice, rats, rabbits, and chickens. Moreover, FOPECs can be used to monitor drug metabolisms in vivo. We demonstrated the neurochemical monitoring in blood circulation systems in vivo. We expect that FOPECs will benefit not only neuroscience study but also drug discovery.
Collapse
Affiliation(s)
- Bingqian Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Kuikui Fan
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Jingjing Guo
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Changxi Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Songhai Shi
- Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Lingjie Kong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
129
|
Wu Q, Zhang Y. Neural Circuit Mechanisms Involved in Animals' Detection of and Response to Visual Threats. Neurosci Bull 2023; 39:994-1008. [PMID: 36694085 PMCID: PMC10264346 DOI: 10.1007/s12264-023-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/30/2022] [Indexed: 01/26/2023] Open
Abstract
Evading or escaping from predators is one of the most crucial issues for survival across the animal kingdom. The timely detection of predators and the initiation of appropriate fight-or-flight responses are innate capabilities of the nervous system. Here we review recent progress in our understanding of innate visually-triggered defensive behaviors and the underlying neural circuit mechanisms, and a comparison among vinegar flies, zebrafish, and mice is included. This overview covers the anatomical and functional aspects of the neural circuits involved in this process, including visual threat processing and identification, the selection of appropriate behavioral responses, and the initiation of these innate defensive behaviors. The emphasis of this review is on the early stages of this pathway, namely, threat identification from complex visual inputs and how behavioral choices are influenced by differences in visual threats. We also briefly cover how the innate defensive response is processed centrally. Based on these summaries, we discuss coding strategies for visual threats and propose a common prototypical pathway for rapid innate defensive responses.
Collapse
Affiliation(s)
- Qiwen Wu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifeng Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
130
|
Kawabata R, Yamanaka H, Kobayashi K, Oke Y, Fujita A, Oku Y, Yao I, Koga K. The anterior cingulate cortex is critical for acute stress-induced hypersensitivity in mice. Neuroscience 2023:S0306-4522(23)00221-X. [PMID: 37211084 DOI: 10.1016/j.neuroscience.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
Stress can be categorized according to physical, psychological and social factors. Exposure to stress produces stress-induced hypersensitivity and forms negative emotions such as anxiety and depression. For example, acute physical stress induced by the elevated open platform (EOP) causes prolonged mechanical hypersensitivity. The anterior cingulate cortex (ACC) is a cortical region involved in pain and negative emotions. Recently, we showed that mice exposed to the EOP changed spontaneous excitatory, but not inhibitory transmission in layer II/III pyramidal neurons of the ACC. However, it is still unclear whether the ACC is involved in the EOP induced mechanical hypersensitivity, and how the EOP alters evoked synaptic transmission on excitatory and inhibitory synaptic transmission in the ACC. In this study, we injected ibotenic acid into the ACC to examine if it was involved in stress-induced mechanical hypersensitivity induced by EOP exposure. Next, by using whole-cell patch-clamp recording from brain slice preparation, we analyzed action potentials and evoked synaptic transmission from layer II/III pyramidal neurons within the ACC. Lesion of the ACC completely blocked the stress-induced mechanical hypersensitivity induced by EOP exposure. Mechanistically, EOP exposure mainly altered evoked excitatory postsynaptic currents such as input-output and paired pulse ratio. Intriguingly, the mice exposed in the EOP also produced low-frequency stimulation induced short-term depression on excitatory synapses in the ACC. These results suggest that the ACC plays a critical role in the modulation of stress-induced mechanical hypersensitivity, possibly through synaptic plasticity on excitatory transmission.
Collapse
Affiliation(s)
- Ryo Kawabata
- Biomedical Chemistry major, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan; Department of Neurophysiology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiroki Yamanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Kimiko Kobayashi
- Department of Anatomy and Neuroscience, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Yoshihiko Oke
- Department of Physiology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Ayumi Fujita
- Department of Neurophysiology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Yoshitaka Oku
- Department of Physiology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Ikuko Yao
- Biomedical Chemistry major, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Kohei Koga
- Department of Neurophysiology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan.
| |
Collapse
|
131
|
Ma HT, Zhang HC, Zuo ZF, Liu YX. Heterogeneous organization of Locus coeruleus: An intrinsic mechanism for functional complexity. Physiol Behav 2023; 268:114231. [PMID: 37172640 DOI: 10.1016/j.physbeh.2023.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Locus coeruleus (LC) is a small nucleus located deep in the brainstem that contains the majority of central noradrenergic neurons, which provide the primary source of noradrenaline (NA) throughout the entire central nervous system (CNS).The release of neurotransmitter NA is considered to modulate arousal, sensory processing, attention, aversive and adaptive stress responses as well as high-order cognitive function and memory, with the highly ramified axonal arborizations of LC-NA neurons sending wide projections to the targeted brain areas. For over 30 years, LC was thought to be a homogeneous nucleus in structure and function due to the widespread uniform release of NA by LC-NA neurons and simultaneous action in several CNS regions, such as the prefrontal cortex, hippocampus, cerebellum, and spinal cord. However, recent advances in neuroscience tools have revealed that LC is probably not so homogeneous as we previous thought and exhibits heterogeneity in various aspects. Accumulating studies have shown that the functional complexity of LC may be attributed to its heterogeneity in developmental origin, projection patterns, topography distribution, morphology and molecular organization, electrophysiological properties and sex differences. This review will highlight the heterogeneity of LC and its critical role in modulating diverse behavioral outcomes.
Collapse
Affiliation(s)
- Hai-Tao Ma
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China; Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, 100069, China.
| | - Hao-Chen Zhang
- Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Zhong-Fu Zuo
- Department of Human Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121000, China
| | - Ying-Xue Liu
- Department of Human Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
132
|
Murphy KZ, Haile E, Tigue AM, Pierce AF, Donaldson ZR. PhAT: A Flexible Open-Source GUI-Driven Toolkit for Photometry Analysis. Curr Protoc 2023; 3:e763. [PMID: 37184156 PMCID: PMC10246504 DOI: 10.1002/cpz1.763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Photometry approaches detect sensor-mediated changes in fluorescence as a proxy for rapid molecular changes within the brain. As a flexible technique with a relatively low cost to implement, photometry is rapidly being incorporated into neuroscience laboratories. Yet, although multiple data acquisition systems for photometry now exist, robust analytical pipelines for the resulting data remain limited. Here we present the Photometry Analysis Toolkit (PhAT)-a free open-source analysis pipeline that provides options for signal normalization, incorporation of multiple data streams to align photometry data with behavior and other events, calculation of event-related changes in fluorescence, and comparison of similarity across fluorescent traces. A graphical user interface (GUI) enables use of this software without prior coding knowledge. In addition to providing foundational analytical tools, PhAT is designed to readily incorporate community-driven development of new modules for more bespoke analyses, and enables data to be easily exported to enable subsequent statistical testing and/or code-based analyses. In addition, we provide recommendations regarding technical aspects of photometry experiments, including sensor selection and validation, reference signal considerations, and best practices for experimental design and data collection. We hope that the distribution of this software and protocols will lower the barrier to entry for new photometry users and improve the quality of collected data, increasing transparency and reproducibility in photometry analyses. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Software and environment installation Alternate Protocol 1: Software and environment update Basic Protocol 2: GUI-driven fiber photometry analysis Support Protocol 1: Examining signal quality Support Protocol 2: Interacting with graphs Basic Protocol 3: Adding modules to PhAT Alternate Protocol 2: Creating functions for use in Jupyter Notebook.
Collapse
Affiliation(s)
- Kathleen Z. Murphy
- Department of Psychology & Neuroscience, 345 UCB, University of Colorado Boulder, Boulder, CO 80304
| | - Eyobel Haile
- Department of Psychology & Neuroscience, 345 UCB, University of Colorado Boulder, Boulder, CO 80304
| | - Anna Mc Tigue
- Department of Computer Science, 430 UCB, University of Colorado Boulder, Boulder, CO 80304
| | - Anne F. Pierce
- Department of Psychology & Neuroscience, 345 UCB, University of Colorado Boulder, Boulder, CO 80304
| | - Zoe R. Donaldson
- Department of Psychology & Neuroscience, 345 UCB, University of Colorado Boulder, Boulder, CO 80304
- Department of Computer Science, 430 UCB, University of Colorado Boulder, Boulder, CO 80304
| |
Collapse
|
133
|
Wang D, Wei L, Tan J, Yan Y, Wei M, Song T, Li S, Zhao L, Wu W, Li Z, Liu Q. A novel strategy of engineering genetically encoded probe for ultrasensitive sensing Hg 2+ with unusual planar trigonometric coordination configuration. Anal Chim Acta 2023; 1252:341049. [PMID: 36935153 DOI: 10.1016/j.aca.2023.341049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/13/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
At present, few genetically encoded fluorescent probes are currently available for the analysis of toxic heavy metal ions, and most have poor performance that cannot meet the requirements of sensitive and dynamic detection in living cells. In this study, we designed a single fluorescent protein-based probe sfGFP-MerBD, which can specifically response to Hg2+ with high binding affinity and wide dynamic range. More importantly, the developing probe can timely and reversibly monitor changes of Hg2+ concentration in living mammalian cells. The excellent performance of this probe is largely due to the recognition element of the probe, MerBD, which adopts an unusual planar trigonometric coordination configuration with Hg2+, and the coordination can cause enough conformational change to influence the fluorescence of skeleton protein sfGFP coupled with it. The small peptide MerBD was delicately designed based on the three-dimensional structure of metalloprotein MerR. This novel design strategy solves the challenging problems that there are few natural functional proteins in the process of constructing fluorescent probes for toxic metal ions and some functional proteins cannot be directly used as recognition elements. Based on the new strategy, more genetically encoded fluorescent probes of toxic heavy metal ions can be efficiently constructed and applied in the future.
Collapse
Affiliation(s)
- Dan Wang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China; Nanning New Technology Entrepreneur Center, Nanning, 530006, China.
| | - Liudan Wei
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China; Guangxi Academy of Sciences, Nanning, 530007, China
| | - Jiaxin Tan
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Yiyu Yan
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Min Wei
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Tianyu Song
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Sihang Li
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Liu Zhao
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Weibo Wu
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China.
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
134
|
Liu H, Fu R, Zhang Y, Mao L, Zhu L, Zhang L, Liu X, Jiang H. Integrate transcriptomic and metabolomic analysis reveals the underlying mechanisms of behavioral disorders in zebrafish (Danio rerio) induced by imidacloprid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161541. [PMID: 36731560 DOI: 10.1016/j.scitotenv.2023.161541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Imidacloprid, a widely used neonicotinoid insecticide, poses a significant threat to aquatic ecosystems. Behavior is a functional indicator of the net sensory, motor, and integrative processes of the nervous system and is presumed to be more sensitive in detecting toxicity. In the present study, we investigated the behavioral effects of imidacloprid at the level of environmental concentrations (1, 10 and 100 μg/L) for a constant exposure to zebrafish adults, and performed the integrated transcriptomic and metabolomic analysis to analyze the molecular mechanism underlying behavioral effects of imidacloprid. Our results show that imidacloprid exposure significantly induce behavioral disruptions characterized by anxiety, depression, and reduced physiological function including exploratory, decision, social interaction and locomotor activity. Integrated transcriptomic and metabolomic analysis indicate that the disruption of circadian rhythm, metabolic imbalance of arginine and proline, and neurotransmitter disorder are the underlying molecular mechanisms of behavioral impairment induced by imidacloprid. The "gene-metabolite-disease" network consisted by 11 metabolites and 15 genes is associated human disease Alzheimer's disease (AD) and schizophrenia. Our results confirm the behavioral impairment induced by imidacloprid at environmental concentrations for constant exposure. The identified genes and metabolites can be used not only to illustrate the underlying mechanisms, but also can be developed as biomarkers in determining the ecological risk of imidacloprid to aquatic organisms even Homo sapiens.
Collapse
Affiliation(s)
- Hongli Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruiqiang Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
135
|
Shang M, Shen M, Xu R, Du J, Zhang J, OuYang D, Du J, Hu J, Sun Z, Wang B, Han Q, Hu Y, Liu Y, Guan Y, Li J, Guo G, Xing J. Moderate white light exposure enhanced spatial memory retrieval by activating a central amygdala-involved circuit in mice. Commun Biol 2023; 6:414. [PMID: 37059729 PMCID: PMC10104844 DOI: 10.1038/s42003-023-04765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023] Open
Abstract
Light exposure can profoundly affect neurological functions and behaviors. Here, we show that short-term exposure to moderate (400 lux) white light during Y-maze test promoted spatial memory retrieval and induced only mild anxiety in mice. This beneficial effect involves the activation of a circuit including neurons in the central amygdala (CeA), locus coeruleus (LC), and dentate gyrus (DG). Specifically, moderate light activated corticotropin-releasing hormone (CRH) positive (+) CeA neurons and induced the release of corticotropin-releasing factor (CRF) from their axon terminals ending in the LC. CRF then activated tyrosine hydroxylase-expressing LC neurons, which send projections to DG and release norepinephrine (NE). NE activated β-adrenergic receptors on CaMKIIα-expressing DG neurons, ultimately promoting spatial memory retrieval. Our study thus demonstrated a specific light scheme that can promote spatial memory without excessive stress, and unraveled the underlying CeA-LC-DG circuit and associated neurochemical mechanisms.
Collapse
Affiliation(s)
- MengJuan Shang
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, ShaanXi, 710032, China
| | - MeiLun Shen
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, ShaanXi, 710032, China
| | - RuoTong Xu
- The Third Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, ShaanXi, 710032, China
| | - JingYu Du
- The Third Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, ShaanXi, 710032, China
| | - JiMeng Zhang
- The Second Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, ShaanXi, 710032, China
| | - Ding OuYang
- The Third Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, ShaanXi, 710032, China
| | - JunZe Du
- The Third Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, ShaanXi, 710032, China
| | - JunFeng Hu
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, ShaanXi, 710032, China
| | - ZhiChuan Sun
- Department of Neurosurgery, Daxing Hospital, Xi'an, ShaanXi, 710032, China
| | - BingXia Wang
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, ShaanXi, 710032, China
| | - Qian Han
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, ShaanXi, 710032, China
| | - Yang Hu
- The Third Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, ShaanXi, 710032, China
| | - YiHong Liu
- The Third Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, ShaanXi, 710032, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jing Li
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, ShaanXi, 710032, China
| | - GuoZhen Guo
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, ShaanXi, 710032, China.
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi'an, ShaanXi, 710032, China.
| | - JunLing Xing
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, ShaanXi, 710032, China.
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi'an, ShaanXi, 710032, China.
| |
Collapse
|
136
|
Reitman ME, Tse V, Mi X, Willoughby DD, Peinado A, Aivazidis A, Myagmar BE, Simpson PC, Bayraktar OA, Yu G, Poskanzer KE. Norepinephrine links astrocytic activity to regulation of cortical state. Nat Neurosci 2023; 26:579-593. [PMID: 36997759 PMCID: PMC10089924 DOI: 10.1038/s41593-023-01284-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/14/2023] [Indexed: 04/01/2023]
Abstract
Cortical state, defined by population-level neuronal activity patterns, determines sensory perception. While arousal-associated neuromodulators-including norepinephrine (NE)-reduce cortical synchrony, how the cortex resynchronizes remains unknown. Furthermore, general mechanisms regulating cortical synchrony in the wake state are poorly understood. Using in vivo imaging and electrophysiology in mouse visual cortex, we describe a critical role for cortical astrocytes in circuit resynchronization. We characterize astrocytes' calcium responses to changes in behavioral arousal and NE, and show that astrocytes signal when arousal-driven neuronal activity is reduced and bi-hemispheric cortical synchrony is increased. Using in vivo pharmacology, we uncover a paradoxical, synchronizing response to Adra1a receptor stimulation. We reconcile these results by demonstrating that astrocyte-specific deletion of Adra1a enhances arousal-driven neuronal activity, while impairing arousal-related cortical synchrony. Our findings demonstrate that astrocytic NE signaling acts as a distinct neuromodulatory pathway, regulating cortical state and linking arousal-associated desynchrony to cortical circuit resynchronization.
Collapse
Affiliation(s)
- Michael E Reitman
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Tse
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Xuelong Mi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA
| | - Drew D Willoughby
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Alba Peinado
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Bat-Erdene Myagmar
- Department of Medicine and Research Service, San Francisco Veterans Affairs Medical Center and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Paul C Simpson
- Department of Medicine and Research Service, San Francisco Veterans Affairs Medical Center and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | | | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA
| | - Kira E Poskanzer
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA.
| |
Collapse
|
137
|
Li L, Rana A, Li EM, Feng J, Li Y, Bruchas MR. Activity-dependent constraints on catecholamine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534970. [PMID: 37034631 PMCID: PMC10081217 DOI: 10.1101/2023.03.30.534970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Catecholamine signaling is thought to modulate cognition in an inverted-U relationship, but the mechanisms are unclear. We measured norepinephrine and dopamine release, postsynaptic calcium responses, and interactions between tonic and phasic firing modes under various stimuli and conditions. High tonic activity in vivo depleted catecholamine stores, desensitized postsynaptic responses, and decreased phasic transmission. Together this provides a clearer understanding of the inverted-U relationship, offering insights into psychiatric disorders and neurodegenerative diseases with impaired catecholamine signaling.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Hospital, Seattle WA 98145, USA
| | - Akshay Rana
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Equal contribution
| | - Esther M. Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle WA 98105, USA
- Equal contribution
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Michael R. Bruchas
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Pharmacology, University of Washington, Seattle WA 98195, USA
| |
Collapse
|
138
|
Formozov A, Dieter A, Wiegert JS. A flexible and versatile system for multi-color fiber photometry and optogenetic manipulation. CELL REPORTS METHODS 2023; 3:100418. [PMID: 37056369 PMCID: PMC10088095 DOI: 10.1016/j.crmeth.2023.100418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023]
Abstract
Here, we present simultaneous fiber photometry recordings and optogenetic stimulation based on a multimode fused fiber coupler for both light delivery and collection without the need for dichroic beam splitters. In combination with a multi-color light source and appropriate optical filters, our approach offers remarkable flexibility in experimental design and facilitates the exploration of new molecular tools in vivo at minimal cost. We demonstrate straightforward re-configuration of the setup to operate with green, red, and near-infrared calcium indicators with or without simultaneous optogenetic stimulation and further explore the multi-color photometry capabilities of the system. The ease of assembly, operation, characterization, and customization of this platform holds the potential to foster the development of experimental strategies for multi-color fused fiber photometry combined with optogenetics far beyond its current state.
Collapse
Affiliation(s)
- Andrey Formozov
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Alexander Dieter
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - J. Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
139
|
Lischinsky JE, Yin L, Shi C, Prakash N, Burke J, Shekaran G, Grba M, Corbin JG, Lin D. Hardwired to attack: Transcriptionally defined amygdala subpopulations play distinct roles in innate social behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532692. [PMID: 36993508 PMCID: PMC10055059 DOI: 10.1101/2023.03.16.532692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Social behaviors are innate and supported by dedicated neural circuits, but it remains unclear whether these circuits are developmentally hardwired or established through social experience. Here, we revealed distinct response patterns and functions in social behavior of medial amygdala (MeA) cells originating from two embryonically parcellated developmental lineages. MeA cells in male mice that express the transcription factor Foxp2 (MeAFoxp2) are specialized for processing male conspecific cues even before puberty and are essential for adult inter-male aggression. In contrast, MeA cells derived from the Dbx1-lineage (MeADbx1) respond broadly to social cues and are non-essential for male aggression. Furthermore, MeAFoxp2 and MeADbx1 cells show differential anatomical and functional connectivity. Altogether, our results support a developmentally hardwired aggression circuit at the level of the MeA and we propose a lineage-based circuit organization by which a cell's embryonic transcription factor profile determines its social information representation and behavior relevance during adulthood.
Collapse
Affiliation(s)
- Julieta E Lischinsky
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Luping Yin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Chenxi Shi
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Hunter College, New York, NY, USA
| | - Nandkishore Prakash
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, United States
| | - Jared Burke
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Govind Shekaran
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Maria Grba
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, United States
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
140
|
Two-photon fluorescence imaging and specifically biosensing of norepinephrine on a 100-ms timescale. Nat Commun 2023; 14:1419. [PMID: 36918539 PMCID: PMC10014876 DOI: 10.1038/s41467-023-36869-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Norepinephrine (NE) is a key neurotransmitter in the central nervous system of organisms; however, specifically tracking the transient NE dynamics with high spatiotemporal resolution in living systems remains a great challenge. Herein, we develop a small molecular fluorescent probe that can precisely anchor on neuronal cytomembranes and specifically respond to NE on a 100-ms timescale. A unique dual acceleration mechanism of molecular-folding and water-bridging is disclosed, which boosts the reaction kinetics by ˃105 and ˃103 times, respectively. Benefiting from its excellent spatiotemporal resolution, the probe is applied to monitor NE dynamics at the single-neuron level, thereby, successfully snapshotting the fast fluctuation of NE levels at neuronal cytomembranes within 2 s. Moreover, two-photon fluorescence imaging of acute brain tissue slices reveals a close correlation between downregulated NE levels and Alzheimer's disease pathology as well as antioxidant therapy.
Collapse
|
141
|
Fang M, Li Y, Liao Z, Wang G, Cao Q, Li Y, Duan Y, Han Y, Deng X, Wu F, Kamau PM, Lu Q, Lai R. Lipopolysaccharide-binding protein expression is increased by stress and inhibits monoamine synthesis to promote depressive symptoms. Immunity 2023; 56:620-634.e11. [PMID: 36854305 DOI: 10.1016/j.immuni.2023.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/11/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
Monoamine insufficiency is suggested to be associated with depressive features such as sadness, anhedonia, insomnia, and cognitive dysfunction, but the mechanisms that cause it are unclear. We found that the acute-phase protein lipopolysaccharide-binding protein (LBP) inhibits monoamine biosynthesis by acting as an endogenous inhibitor of dopamine-β-hydroxylase (DBH) and aromatic-L-amino-acid-decarboxylase (DDC). LBP expression was increased in individuals with depression and by diverse stress challenges in mice. LBP antibodies and LBP knockdown inhibited monoamine insufficiency and depression-like features in mice, which worsened with LBP overexpression or administration. Monoamine insufficiency and depression-like symptoms were not induced by stressful stimuli in LBP-deficient mice, further highlighting a role for LBP in stress-induced depression, and a peptide we designed that blocks LBP-DBH and LBP-DDC interactions showed anti-depression effects in mice. This study reveals an important role for LBP in regulating monoamine biosynthesis and suggests that targeting LBP may have potential as a treatment for some individuals with depression.
Collapse
Affiliation(s)
- Mingqian Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; College of Life Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhiyi Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiqi Cao
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ya Li
- First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yong Duan
- First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yanbing Han
- First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Xinyi Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Feilong Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
142
|
Murphy KZ, Haile E, McTigue A, Pierce AF, Donaldson ZR. PhAT: A flexible open-source GUI-driven toolkit for photometry analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532489. [PMID: 36993180 PMCID: PMC10054971 DOI: 10.1101/2023.03.14.532489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Photometry approaches detect sensor-mediated changes in fluorescence as a proxy for rapid molecular changes within the brain. As a flexible technique with a relatively low cost to implement, photometry is rapidly being incorporated into neuroscience laboratories. While multiple data acquisition systems for photometry now exist, robust analytical pipelines for the resulting data remain limited. Here we present the Ph otometry A nalysis T oolkit (PhAT) - a free open source analysis pipeline that provides options for signal normalization, incorporation of multiple data streams to align photometry data with behavior and other events, calculation of event-related changes in fluorescence, and comparison of similarity across fluorescent traces. A graphical user interface (GUI) enables use of this software without prior coding knowledge. In addition to providing foundational analytical tools, PhAT is designed to readily incorporate community-driven development of new modules for more bespoke analyses, and data can be easily exported to enable subsequent statistical testing and/or code-based analyses. In addition, we provide recommendations regarding technical aspects of photometry experiments including sensor selection and validation, reference signal considerations, and best practices for experimental design and data collection. We hope that the distribution of this software and protocol will lower the barrier to entry for new photometry users and improve the quality of collected data, increasing transparency and reproducibility in photometry analyses. Basic Protocol 1: Software Environment InstallationBasic Protocol 2: GUI-driven Fiber Photometry AnalysisBasic Protocol 3: Adding Modules.
Collapse
Affiliation(s)
- Kathleen Z. Murphy
- Department of Psychology & Neuroscience, 345 UCB, University of Colorado Boulder, Boulder, CO 80304
| | - Eyobel Haile
- Department of Computer Science, 430 UCB, University of Colorado Boulder, Boulder, CO 80304
| | - Anna McTigue
- Department of Molecular, Cellular, and Developmental Biology, UCB 347, University of Colorado Boulder, Boulder, CO 80304
| | - Anne F. Pierce
- Department of Psychology & Neuroscience, 345 UCB, University of Colorado Boulder, Boulder, CO 80304
| | - Zoe R. Donaldson
- Department of Psychology & Neuroscience, 345 UCB, University of Colorado Boulder, Boulder, CO 80304
- Department of Molecular, Cellular, and Developmental Biology, UCB 347, University of Colorado Boulder, Boulder, CO 80304
| |
Collapse
|
143
|
Dong H, Li M, Yan Y, Qian T, Lin Y, Ma X, Vischer HF, Liu C, Li G, Wang H, Leurs R, Li Y. Genetically encoded sensors for measuring histamine release both in vitro and in vivo. Neuron 2023; 111:1564-1576.e6. [PMID: 36924772 DOI: 10.1016/j.neuron.2023.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/21/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
Histamine (HA) is a key biogenic monoamine involved in a wide range of physiological and pathological processes in both the central and peripheral nervous systems. Because the ability to directly measure extracellular HA in real time will provide important insights into the functional role of HA in complex circuits under a variety of conditions, we developed a series of genetically encoded G-protein-coupled receptor-activation-based (GRAB) HA (GRABHA) sensors with good photostability, sub-second kinetics, nanomolar affinity, and high specificity. Using these GRABHA sensors, we measured electrical-stimulation-evoked HA release in acute brain slices with high spatiotemporal resolution. Moreover, we recorded HA release in the preoptic area of the hypothalamus and prefrontal cortex during the sleep-wake cycle in freely moving mice, finding distinct patterns of HA dynamics between these specific brain regions. Thus, GRABHA sensors are robust tools for measuring extracellular HA transmission in both physiological and pathological processes.
Collapse
Affiliation(s)
- Hui Dong
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Mengyao Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yuqi Yan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yunzhi Lin
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Xiaoyuan Ma
- Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Henry F Vischer
- Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Can Liu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China.
| |
Collapse
|
144
|
Zheng D, Pisano F, Collard L, Balena A, Pisanello M, Spagnolo B, Mach-Batlle R, Tantussi F, Carbone L, De Angelis F, Valiente M, de la Prida LM, Ciracì C, De Vittorio M, Pisanello F. Toward Plasmonic Neural Probes: SERS Detection of Neurotransmitters through Gold-Nanoislands-Decorated Tapered Optical Fibers with Sub-10 nm Gaps. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2200902. [PMID: 36479741 DOI: 10.1002/adma.202200902] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Integration of plasmonic nanostructures with fiber-optics-based neural probes enables label-free detection of molecular fingerprints via surface-enhanced Raman spectroscopy (SERS), and it represents a fascinating technological horizon to investigate brain function. However, developing neuroplasmonic probes that can interface with deep brain regions with minimal invasiveness while providing the sensitivity to detect biomolecular signatures in a physiological environment is challenging, in particular because the same waveguide must be employed for both delivering excitation light and collecting the resulting scattered photons. Here, a SERS-active neural probe based on a tapered optical fiber (TF) decorated with gold nanoislands (NIs) that can detect neurotransmitters down to the micromolar range is presented. To do this, a novel, nonplanar repeated dewetting technique to fabricate gold NIs with sub-10 nm gaps, uniformly distributed on the wide (square millimeter scale in surface area), highly curved surface of TF is developed. It is experimentally and numerically shown that the amplified broadband near-field enhancement of the high-density NIs layer allows for achieving a limit of detection in aqueous solution of 10-7 m for rhodamine 6G and 10-5 m for serotonin and dopamine through SERS at near-infrared wavelengths. The NIs-TF technology is envisioned as a first step toward the unexplored frontier of in vivo label-free plasmonic neural interfaces.
Collapse
Affiliation(s)
- Di Zheng
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| | - Liam Collard
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| | - Antonio Balena
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| | - Marco Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| | - Barbara Spagnolo
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| | - Rosa Mach-Batlle
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| | - Francesco Tantussi
- Istituto Italiano di Tecnologia, Center for Convergent Technologies, Genova, 16163, Italy
| | - Luigi Carbone
- CNR NANOTEC - Institute of Nanotechnology, University of Salento, Lecce, 73100, Italy
| | - Francesco De Angelis
- Istituto Italiano di Tecnologia, Center for Convergent Technologies, Genova, 16163, Italy
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | | | - Cristian Ciracì
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
- Dipartimento di Ingegneria Dell'Innovazione, Università del Salento, Lecce, 73100, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| |
Collapse
|
145
|
Qiu Z, Zhang C, He Z, Hua J, Wen C, Zhao S. Intracerebral Fluorescence-Photoacoustic Dual-Mode Imaging for Precise Diagnosis and Drug Intervention Tracing in Depression. Anal Chem 2023; 95:5384-5392. [PMID: 36811909 DOI: 10.1021/acs.analchem.2c05742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Unravelling the pathophysiology of depression is a unique challenge. Depression is closely associated with reduced norepinephrine (NE) levels; therefore, developing bioimaging probes to visualize NE levels in the brain is a key to elucidating the pathophysiological process of depression. However, because NE is similar in structure and chemical properties to two other catecholamine neurotransmitters, epinephrine and dopamine, designing an NE-specific multimodal bioimaging probe is a difficult task. In this work, we designed and synthesized the first near-infrared fluorescent-photoacoustic (PA) dual-modality imaging probe for NE (FPNE). The β-hydroxyethylamine of NE was shown to react via nucleophilic substitution and intramolecular nucleophilic cyclization, resulting in the cleavage of a carbonic ester bond in the probe molecule and release of a merocyanine molecule (IR-720). This process changed the color of the reaction solution from blue-purple to green, and the absorption peak was red-shifted from 585 to 720 nm. Under light excitation at 720 nm, linear relationships between the concentration of NE and both the PA response and the fluorescence signal intensity were observed. Thus, the use of intracerebral in situ visualization for diagnosis of depression and monitoring of drug interventions was achieved in a mouse model by fluorescence and PA imaging of brain regions after administration of FPNE by tail-vein injection.
Collapse
Affiliation(s)
- Zhidong Qiu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chaobang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zongyi He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jing Hua
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Changchun Wen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
146
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
147
|
Rapid and specific detection of norepinephrine via a “hunting—shooting” strategy. Sci China Chem 2023. [DOI: 10.1007/s11426-023-1543-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
148
|
Turner KL, Gheres KW, Drew PJ. Relating Pupil Diameter and Blinking to Cortical Activity and Hemodynamics across Arousal States. J Neurosci 2023; 43:949-964. [PMID: 36517240 PMCID: PMC9908322 DOI: 10.1523/jneurosci.1244-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Arousal state affects neural activity and vascular dynamics in the cortex, with sleep associated with large changes in the local field potential and increases in cortical blood flow. We investigated the relationship between pupil diameter and blink rate with neural activity and blood volume in the somatosensory cortex in male and female unanesthetized, head-fixed mice. We monitored these variables while the mice were awake, during periods of rapid eye movement (REM), and non-rapid eye movement (NREM) sleep. Pupil diameter was smaller during sleep than in the awake state. Changes in pupil diameter were coherent with both gamma-band power and blood volume in the somatosensory cortex, but the strength and sign of this relationship varied with arousal state. We observed a strong negative correlation between pupil diameter and both gamma-band power and blood volume during periods of awake rest and NREM sleep, although the correlations between pupil diameter and these signals became positive during periods of alertness, active whisking, and REM. Blinking was associated with increases in arousal and decreases in blood volume when the mouse was asleep. Bilateral coherence in gamma-band power and in blood volume dropped following awake blinking, indicating a reset of neural and vascular activity. Using only eye metrics (pupil diameter and eye motion), we could determine the arousal state of the mouse ('Awake,' 'NREM,' 'REM') with >90% accuracy with a 5 s resolution. There is a strong relationship between pupil diameter and hemodynamics signals in mice, reflecting the pronounced effects of arousal on cerebrovascular dynamics.SIGNIFICANCE STATEMENT Determining arousal state is a critical component of any neuroscience experiment. Pupil diameter and blinking are influenced by arousal state, as are hemodynamics signals in the cortex. We investigated the relationship between cortical hemodynamics and pupil diameter and found that pupil diameter was strongly related to the blood volume in the cortex. Mice were more likely to be awake after blinking than before, and blinking resets neural activity. Pupil diameter and eye motion can be used as a reliable, noninvasive indicator of arousal state. As mice transition from wake to sleep and back again over a timescale of seconds, monitoring pupil diameter and eye motion permits the noninvasive detection of sleep events during behavioral or resting-state experiments.
Collapse
Affiliation(s)
- Kevin L Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Kyle W Gheres
- Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Departments of Engineering Science and Mechanics
| | - Patrick J Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Departments of Engineering Science and Mechanics
- Biology and Neurosurgery, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
149
|
Day-Cooney J, Dalangin R, Zhong H, Mao T. Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo. J Neurochem 2023; 164:284-308. [PMID: 35285522 PMCID: PMC11322610 DOI: 10.1111/jnc.15608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
The brain relies on many forms of dynamic activities in individual neurons, from synaptic transmission to electrical activity and intracellular signaling events. Monitoring these neuronal activities with high spatiotemporal resolution in the context of animal behavior is a necessary step to achieve a mechanistic understanding of brain function. With the rapid development and dissemination of highly optimized genetically encoded fluorescent sensors, a growing number of brain activities can now be visualized in vivo. To date, cellular calcium imaging, which has been largely used as a proxy for electrical activity, has become a mainstay in systems neuroscience. While challenges remain, voltage imaging of neural populations is now possible. In addition, it is becoming increasingly practical to image over half a dozen neurotransmitters, as well as certain intracellular signaling and metabolic activities. These new capabilities enable neuroscientists to test previously unattainable hypotheses and questions. This review summarizes recent progress in the development and delivery of genetically encoded fluorescent sensors, and highlights example applications in the context of in vivo imaging.
Collapse
Affiliation(s)
- Julian Day-Cooney
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rochelin Dalangin
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
150
|
Stellon D, Talbot J, Hewitt AW, King AE, Cook AL. Seeing Neurodegeneration in a New Light Using Genetically Encoded Fluorescent Biosensors and iPSCs. Int J Mol Sci 2023; 24:1766. [PMID: 36675282 PMCID: PMC9861453 DOI: 10.3390/ijms24021766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases present a progressive loss of neuronal structure and function, leading to cell death and irrecoverable brain atrophy. Most have disease-modifying therapies, in part because the mechanisms of neurodegeneration are yet to be defined, preventing the development of targeted therapies. To overcome this, there is a need for tools that enable a quantitative assessment of how cellular mechanisms and diverse environmental conditions contribute to disease. One such tool is genetically encodable fluorescent biosensors (GEFBs), engineered constructs encoding proteins with novel functions capable of sensing spatiotemporal changes in specific pathways, enzyme functions, or metabolite levels. GEFB technology therefore presents a plethora of unique sensing capabilities that, when coupled with induced pluripotent stem cells (iPSCs), present a powerful tool for exploring disease mechanisms and identifying novel therapeutics. In this review, we discuss different GEFBs relevant to neurodegenerative disease and how they can be used with iPSCs to illuminate unresolved questions about causes and risks for neurodegenerative disease.
Collapse
Affiliation(s)
- David Stellon
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|