101
|
Abdelhamid R, Luo J, VandeVrede L, Kundu I, Michalsen B, Litosh VA, Schiefer IT, Gherezghiher T, Yao P, Qin Z, Thatcher GRJ. Benzothiophene Selective Estrogen Receptor Modulators Provide Neuroprotection by a novel GPR30-dependent Mechanism. ACS Chem Neurosci 2011; 2:256-268. [PMID: 21731800 PMCID: PMC3124785 DOI: 10.1021/cn100106a] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 02/24/2011] [Indexed: 12/18/2022] Open
Abstract
The clinical benzothiophene SERM (BT-SERM), raloxifene, was compared with estrogens in protection of primary rat neurons against oxygen-glucose deprivation (OGD). Structure-activity relationships for neuroprotection were determined for a family of BT-SERMs displaying a spectrum of ERα and ERβ binding affinity and agonist/antagonist activity, leading to discovery of a neuroprotective pharmacophore, present in the clinically relevant SERMS, raloxifene and desmethylarzoxifene (DMA), for which submicromolar potency was observed for neuroprotection. BT-SERM neuroprotection did not correlate with binding to ER nor classical ER activity, however, both the neuroprotective SERMs and estrogens were shown, using pharmacological probes, to activate the same kinase signaling cascades. The antiestrogen ICI 182,780 inhibited the actions of estrogens, but not those of BT-SERMs, whereas antagonism of the G-protein coupled receptor, GPR30, was effective for both SERMs and estrogens. Since SERMs have antioxidant activity, ER-independent mechanisms were studied using the classical phenolic antioxidants, BHT and Trolox, and the Nrf2-dependent cytoprotective electrophile, sulforaphane. However, neuroprotection by these agents was not sensitive to GPR30 antagonism. Collectively, these data indicate that the activity of neuroprotective BT-SERMs is GPR30-dependent and ER-independent and not mediated by antioxidant effects. Comparison of novel BT-SERM derivatives and analogs identified a neuroprotective pharmacophore of potential use in design of novel neuroprotective agents with a spectrum of ER activity.
Collapse
Affiliation(s)
- Ramy Abdelhamid
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Jia Luo
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Lawren VandeVrede
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Indraneel Kundu
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Bradley Michalsen
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Vladislav A. Litosh
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Isaac T. Schiefer
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Teshome Gherezghiher
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Ping Yao
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Zhihui Qin
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Gregory R. J. Thatcher
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| |
Collapse
|
102
|
|
103
|
17β-estradiol protects dopaminergic neurons in organotypic slice of mesencephalon by MAPK-mediated activation of anti-apoptosis gene BCL2. J Mol Neurosci 2011; 45:236-45. [PMID: 21327582 DOI: 10.1007/s12031-011-9500-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 01/27/2011] [Indexed: 10/18/2022]
Abstract
Both clinical and experimental studies provide growing evidences that marked sex differences in certain neurological disorders or disease models are largely attributed to the neuroprotective effects of estrogen. The purposes of this study were to assess the neuroprotective effect of 17β-estradiol (E2) on dopaminergic neurons against 6-hydroxydopamine (6-OHDA) in organotypic mesencephalic slice culture and to elucidate the possible mechanism underlying neuroprotection. It was found that long-term exposure to E2 exerted marked effects on restoring the number of dopaminergic neurons, maintaining normal morphology of dopaminergic neurons, and preserving their ability to release dopamine at the presence of 6-OHDA. The neuroprotective effect of E2 could be dramatically blocked by an estrogen receptor antagonist ICI 182, 780 (ICI). The expression of GFAP, TLR4, and anti-apoptosis gene BCL2 were elevated at the presence of E2, whereas only BCL2 activation was blocked by ICI, dominantly responsible for E2-induced neuroprotection. Furthermore, activation of BCL2 was speculated to be mainly mediated through mitogen-activated protein kinase (MAPK) pathways, yet phosphatidylinositol-3-kinase signaling contributed largely to GFAP and TLR4 upregulation. Taken together, MAPK pathway-mediated BCL2 expression accounted for one of the key mechanisms involved in E2 neuroprotective effect on dopaminergic neurons against 6-OHDA insult. This finding provides new insight into controversial estrogen replacement therapy.
Collapse
|
104
|
Das A, Smith JA, Gibson C, Varma AK, Ray SK, Banik NL. Estrogen receptor agonists and estrogen attenuate TNF-α-induced apoptosis in VSC4.1 motoneurons. J Endocrinol 2011; 208:171-82. [PMID: 21068071 PMCID: PMC3951893 DOI: 10.1677/joe-10-0338] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tumor necrosis factor-alpha (TNF-α) may cause apoptosis and inflammation in amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI). Recent studies suggest that estrogen (EST) provides neuroprotection against SCI. We tested whether 1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) (EST receptor alpha (ERα) agonist), 2,3-bis (4-hydroxyphenyl) propionitrile (DPN) (EST receptor beta (ERβ) agonist), or EST itself would prevent apoptosis in VSC4.1 motoneurons following exposure to TNF-α. Cells were exposed to TNF-α and 15 min later treated with PPT, DPN, or EST. Posttreatment with 50 nM PPT, 50 nM DPN, or 150 nM EST prevented cell death in VSC4.1 motoneurons. Treatment of VSC4.1 motoneurons with PPT, DPN, or EST induced overexpression of ERα, ERβ, or both, which contributed to neuroprotection by upregulating expression of anti-apoptotic proteins (p-AKT, p-CREB, Bcl-2, and p-Src). Our analyses also revealed that EST agonists and EST increased phosphorylation of extracellular signal-regulated kinase (ERK). The L-type Ca(2+) channel inhibitor, nifedipine (10 μM), partially inhibited EST agonist and EST-induced increase in phosphorylated ERK expression. The mitogen-activated protein kinase inhibitor, PD98059 (5 μM), partially prevented ER agonists and EST from providing neuroprotection to TNF-α toxicity. Presence of the nuclear ER antagonist, ICI 182 780 (10 μM), blocked the neuroprotection provided by all three ER agonists tested. Taken together, our data indicate that both ERα and ERβ contribute to PPT, DPN, or EST-mediated neuroprotection with similar signaling profiles. Our data strongly imply that PPT, DPN, or EST can be used as effective neuroprotective agents to attenuate motoneuron death in ALS and SCI.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
105
|
Logan SM, Sarkar SN, Zhang Z, Simpkins JW. Estrogen-induced signaling attenuates soluble Aβ peptide-mediated dysfunction of pathways in synaptic plasticity. Brain Res 2011; 1383:1-12. [PMID: 21262203 DOI: 10.1016/j.brainres.2011.01.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 11/26/2022]
Abstract
Neuromodulation of synaptic plasticity by 17β-estradiol (E2) is thought to influence information processing and storage in the cortex and hippocampus. Because E2 rapidly affects cortical memory and synaptic plasticity, we examined its effects on phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII), extracellular signal-regulated kinase (ERK), and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) [AMPA-type glutamate receptor subunit 1 (GluR1 subunit)], all of which are important for the induction and maintenance of synaptic plasticity and memory. Acute E2 treatment resulted in an increased temporal and spatial phosphorylation pattern of CaMKII, ERK, and AMPAR (GluR1 subunit). By using inhibitors, we were able to attribute GluR1 phosphorylation to CaMKII at serine 831, and we also found that E2 treatment increased GluR1 insertion into the surface membrane. Because soluble amyloid-beta (Aβ) oligomers inhibit CaMKII and ERK activation, which is necessary for synaptic plasticity, we also tested E2's ability to ameliorate Aβ-induced dysfunction of synaptic plasticity. We found that estrogen treatment in neuronal culture, slice culture, and in vivo, ameliorated Aβ oligomer-induced inhibition of CaMKII, ERK, and AMPAR phosphorylation, and also ameliorated the Aβ oligomer-induced reduction of dendritic spine density in a CaMKII-dependent manner. These phosphorylation events are correlated with the early stage of inhibitory avoidance learning, and our data show that E2 improved inhibitory avoidance memory deficits in animals treated with soluble Aβ oligomers. This study identifies E2-induced signaling that attenuates soluble Aβ peptide-mediated dysfunction of pathways in synaptic plasticity.
Collapse
Affiliation(s)
- Shaun M Logan
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|
106
|
Wu TW, Chen S, Brinton RD. Membrane estrogen receptors mediate calcium signaling and MAP kinase activation in individual hippocampal neurons. Brain Res 2011; 1379:34-43. [PMID: 21241678 DOI: 10.1016/j.brainres.2011.01.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2011] [Indexed: 11/19/2022]
Abstract
Previously we demonstrated that 17β-Estradiol (E2) induced rapid Ca(2+) influx via L-type calcium channel activation, which was required for activation of Src/ERK/CREB/Bcl2 signaling cascade and subsequent induction of neuroprotective and neurotrophic responses in rat hippocampal and cortical neurons (Wu et al., 2005; Zhao et al., 2005). The current study determined the presence and specificity of membrane E2 binding sites and the functional consequence of E2 binding to membrane receptors in individual neurons. Using E2-BSA-FITC (fluorescein isothiocyanate) macromolecular complex, membrane E2 binding sites were observed in hippocampal neurons. Punctate FITC signal was observed on plasma membrane of soma and neuronal processes in E2-BSA-FITC binding neurons. No membrane binding was observed with BSA-FITC. Specificity of binding was demonstrated by competition with excess un-conjugated E2. An ERa specific agonist, PPT, and an ERb agonist, DPN, partially competed for E2-BSA-FITC binding. Imaging of intracellular Ca(2+) ([Ca(2+)]i) in live neurons, revealed rapid Ca(2+) responses in E2-BSA-FITC binding neurons within minutes that culminated in a greater [Ca(2+)]i rise and [Ca(2+)]i spikes at >20 min. The same neurons in which E2-BSA-FITC induced a [Ca(2+)]i rise also exhibited activated pERK (extracellular signal-regulated kinase) that was translocated to the nucleus. Immunofluorescent analyses demonstrated that both excitatory and inhibitory neuronal markers labeled subpopulations of E2-BSA-FITC binding neurons. All E2-BSA-FITC binding neurons expressed L-type calcium channels. These results demonstrate, at a single cell level, that E2 membrane receptors mediate the rapid signaling cascades required for E2 neuroprotective and neurotrophic effects in hippocampal neurons. These results are discussed with respect to therapeutic targets of estrogen therapy in brain.
Collapse
Affiliation(s)
- Tzu-Wei Wu
- University of Southern California, Pharmaceutical Sciences Center, Los Angeles, CA 90089-9121, USA.
| | | | | |
Collapse
|
107
|
Estradiol acutely potentiates hippocampal excitatory synaptic transmission through a presynaptic mechanism. J Neurosci 2011; 30:16137-48. [PMID: 21123560 DOI: 10.1523/jneurosci.4161-10.2010] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although recent evidence suggests that the hippocampus is a source of 17β-estradiol (E2), the physiological role of this neurosteroid E2, as distinct from ovarian E2, is unknown. One likely function of neurosteroid E2 is to acutely potentiate excitatory synaptic transmission, but the mechanism of this effect is not well understood. Using whole-cell voltage-clamp recording of synaptically evoked EPSCs in adult rat hippocampal slices, we show that, in contrast to the conclusions of previous studies, E2 potentiates excitatory transmission through a presynaptic mechanism. We find that E2 acutely potentiates EPSCs by increasing the probability of glutamate release specifically at inputs with low initial release probability. This effect is mediated by estrogen receptor β (ERβ) acting as a monomer, whereas ERα is not required. We further show that the E2-induced increase in glutamate release is attributable primarily to increased individual vesicle release probability and is associated with higher average cleft glutamate concentration. These two findings together argue strongly that E2 promotes multivesicular release, which has not been shown before in the adult hippocampus. The rapid time course of acute EPSC potentiation and its concentration dependence suggest that locally synthesized neurosteroid E2 may activate this effect in vivo.
Collapse
|
108
|
Roepke TA, Ronnekleiv OK, Kelly MJ. Physiological consequences of membrane-initiated estrogen signaling in the brain. Front Biosci (Landmark Ed) 2011; 16:1560-73. [PMID: 21196248 DOI: 10.2741/3805] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many of the actions of 17beta-estradiol (E2) in the central nervous system (CNS) are mediated via the classical nuclear steroid receptors, ER(alpha) and ERbeta, which interact with the estrogen response element to modulate gene expression. In addition to the nuclear-initiated estrogen signaling, E2 signaling in the brain can occur rapidly within minutes prior to any sufficient effects on transcription of relevant genes. These rapid, membrane-initiated E2 signaling mechanisms have now been characterized in many brain regions, most importantly in neurons of the hypothalamus and hippocampus. Furthermore, our understanding of the physiological effects of membrane-initiated pathways is now a major field of interest in the hypothalamic control of reproduction, energy balance, thermoregulation and other homeostatic functions as well as the effects of E2 on physiological and pathophysiological functions of the hippocampus. Membrane signaling pathways impact neuronal excitability, signal transduction, cell death, neurotransmitter release and gene expression. This review will summarize recent findings on membrane-initiated E2 signaling in the hypothalamus and hippocampus and its contribution to the control of physiological and behavioral functions.
Collapse
Affiliation(s)
- Troy A Roepke
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
109
|
Srivastava DP, Penzes P. Rapid estradiol modulation of neuronal connectivity and its implications for disease. Front Endocrinol (Lausanne) 2011; 2:77. [PMID: 22654827 PMCID: PMC3356153 DOI: 10.3389/fendo.2011.00077] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/04/2011] [Indexed: 12/05/2022] Open
Abstract
Estrogens have multiple actions in the brain including modulating synaptic plasticity, connectivity, and cognitive behaviors. While the classical view of estrogens are as endocrine signals, whose effects manifest via the regulation of gene transcription, mounting evidence has been presented demonstrating that estrogens have rapid effects within specific areas of the brain. The emergence that 17 β-estradiol can be produced locally in the brain which can elicit rapid (within minutes) cellular responses has led to its classification as a neurosteroid. Moreover, recent studies have also begun to detail the molecular and cellular underpinnings of how 17 β-estradiol can rapidly modulate spiny synapses (dendritic spines). Remodeling of dendritic spines is a key step in the rewiring of neuronal circuitry thought to underlie the processing and storage of information in the forebrain. Conversely, abnormal remodeling of dendritic spines is thought to contribute to a number of psychiatric and neurodevelopmental disorders. Here we review recent molecular and cellular work that offers a potential mechanism of how 17 β-estradiol may modulate synapse structure and function of cortical neurons. This mechanism allows cortical neurons to respond to activity-dependent stimuli with greater efficacy. In turn this form of plasticity may provide an insight into how 17 β-estradiol can modulate the rewiring of neuronal circuits, underlying its ability to influencing cortically based behaviors. We will then go on to discuss the potential role of 17 β-estradiol modulation of neural circuits and its potential relevance for the treatment of psychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Deepak P. Srivastava
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Department of Neuroscience and Centre for the Cellular Basis of Behaviour, The James Black Centre, Institute of Psychiatry, King’s College LondonLondon, UK
- *Correspondence: Deepak P. Srivastava, Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA. e-mail:
| | - Peter Penzes
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| |
Collapse
|
110
|
Habauzit D, Flouriot G, Pakdel F, Saligaut C. Effects of estrogens and endocrine-disrupting chemicals on cell differentiation-survival-proliferation in brain: contributions of neuronal cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:300-327. [PMID: 21790314 DOI: 10.1080/10937404.2011.578554] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Estrogens and estrogen receptors (ER) are key actors in the control of differentiation and survival and act on extrareproductive tissues such as brain. Thus, estrogens may display neuritogenic effects during development and neuroprotective effects in the pathophysiological context of brain ischemia and neurodegenerative pathologies like Alzheimer's disease or Parkinson's disease. Some of these effects require classical transcriptional "genomic" mechanisms through ER, whereas other effects appear to rely clearly on "membrane-initiated mechanisms" through cytoplasmic signal transduction pathways. Disturbances of these mechanisms by endocrine-disrupting chemicals (EDC) may exert adverse effects on brain. Some EDC may act via ER-independent mechanisms but might cross-react with endogenous estrogen. Other EDC may act through ER-dependent mechanisms and display agonistic/antagonistic estrogenic properties. Because of these potential effects of EDC, it is necessary to establish sensitive cell-based assays to determine EDC effects on brain. In the present review, some effects of estrogens and EDC are described with focus on ER-mediated effects in neuronal cells. Particular attention is given to PC12 cells, an interesting model to study the mechanisms underlying ER-mediated differentiating and neuroprotective effects of estrogens.
Collapse
Affiliation(s)
- Denis Habauzit
- UMR CNRS 6026 (Interactions Cellulaires et Moléculaires, Equipe RED), Université de Rennes 1, Rennes, France
| | | | | | | |
Collapse
|
111
|
Liu L, Zhao L, She H, Chen S, Wang JM, Wong C, McClure K, Sitruk-Ware R, Brinton RD. Clinically relevant progestins regulate neurogenic and neuroprotective responses in vitro and in vivo. Endocrinology 2010; 151:5782-94. [PMID: 20943809 PMCID: PMC2999493 DOI: 10.1210/en.2010-0005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Previously, we demonstrated that progesterone (P(4)) promoted adult rat neural progenitor cell (rNPC) proliferation with concomitant regulation of cell-cycle gene expression via the P(4) receptor membrane component/ERK pathway. Here, we report the efficacy of seven clinically relevant progestins alone or in combination with 17β-estradiol (E(2)) on adult rNPC proliferation and hippocampal cell viability in vitro and in vivo. In vitro analyses indicated that P(4), norgestimate, Nestorone, norethynodrel, norethindrone, and levonorgestrel (LNG) significantly increased in rNPC proliferation, whereas norethindrone acetate was without effect, and medroxyprogesterone acetate (MPA) inhibited rNPC proliferation. Proliferative progestins in vitro were also neuroprotective. Acute in vivo exposure to P(4) and Nestorone significantly increased proliferating cell nuclear antigen and cell division cycle 2 expression and total number of hippocampal 5-bromo-2-deoxyuridine (BrdU)-positive cells, whereas LNG and MPA were without effect. Mechanistically, neurogenic progestins required activation of MAPK to promote proliferation. P(4), Nestorone, and LNG significantly increased ATP synthase subunit α (complex V, subunit α) expression, whereas MPA was without effect. In combination with E(2), P(4), Nestorone, LNG, and MPA significantly increased BrdU incorporation. However, BrdU incorporation induced by E(2) plus LNG or MPA was paralleled by a significant increase in apoptosis. A rise in Bax/Bcl-2 ratio paralleled apoptosis induced by LNG and MPA. With the exception of P(4), clinical progestins antagonized E(2)-induced rise in complex V, subunit α. These preclinical translational findings indicate that the neurogenic response to clinical progestins varies dramatically. Progestin impact on the regenerative capacity of the brain has clinical implications for contraceptive and hormone therapy formulations prescribed for pre- and postmenopausal women.
Collapse
Affiliation(s)
- Lifei Liu
- Program in Neuroscience, University of Southern California, School of Pharmacy Pharmaceutical Sciences Center, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Sarkar SN, Smith LT, Logan SM, Simpkins JW. Estrogen-induced activation of extracellular signal-regulated kinase signaling triggers dendritic resident mRNA translation. Neuroscience 2010; 170:1080-5. [PMID: 20691769 PMCID: PMC3026564 DOI: 10.1016/j.neuroscience.2010.07.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/22/2010] [Accepted: 07/20/2010] [Indexed: 11/25/2022]
Abstract
Activated extracellular signal-regulated kinase (ERK) signaling mediated plasticity-related gene transcription has been proposed for one possible mechanism by which 17β-estradiol (E2) enhances synaptic plasticity and memory. Because activated ERK also enhances plasticity-related mRNA translation in the dendrites of neurons, we sought to determine the effects of E2 on activation of ERK, phosphorylation of translation initiation factors, and dendritic mRNA translation in hippocampal neurons. Acute E2 application resulted in a rapid, transient increase in phosphorylation of translation initiation factors, ribosomal protein (S6) and eIF4E binding protein1 (4EBP1), in an activated ERK-dependent manner. Since phosphorylation of these translation factors enhance mRNA translation, we tested E2's effect on dendritic mRNA translation. Using a green fluorescent protein (GFP)-based dendritic mRNA translation reporter (reporter plasmid construct consisted of a GFP gene fused to the 3' untranslated region (UTR) from CAMKIIα, which contains dendritic resident mRNA targeting and mRNA translational regulatory elements) we showed that E2 treatment resulted in increased somatic and dendritic GFP mRNA translation in GFP-reporter transfected hippocampal neurons. Translation inhibitor anisomycin and ERK inhibitor U0126 blocked E2 effects. Taken together, our results provide a novel mechanism by which E2 may trigger local protein synthesis of α-CaMKII in the dendrites, which is necessary for modulation of synaptic plasticity.
Collapse
Affiliation(s)
- S N Sarkar
- Department of Pharmacology and Neuroscience, University of North Texas, Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|
113
|
Ronda AC, Buitrago C, Boland R. Role of estrogen receptors, PKC and Src in ERK2 and p38 MAPK signaling triggered by 17β-estradiol in skeletal muscle cells. J Steroid Biochem Mol Biol 2010; 122:287-94. [PMID: 20478382 DOI: 10.1016/j.jsbmb.2010.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 04/20/2010] [Accepted: 05/06/2010] [Indexed: 12/30/2022]
Abstract
We have previously reported in C2C12 murine skeletal muscle cells that 10(-8)M 17β-estradiol promotes MAPKs stimulation which in turn mediates the activation of CREB and Elk-1 transcription factors. In this work, we demonstrated that the hormone induces ERK2 phosphorylation (without affecting ERK1 activation) and also stimulates p38 MAPK, both in a dose-dependent manner. Moreover, estrogen receptors involvement in MAPKs activation by the estrogen was studied. The use of ICI182780 (1 μM), an antagonist of ERs, and specific siRNAs to block ERα and ERβ expression, demonstrated that ERα mediates ERK2 activation but not p38 MAPK phosphorylation by 17β-estradiol, and that ERβ isoform is not implicated in MAPKs activation by the hormone. Furthermore, Src and PKC contribution in estrogen stimulation of the MAPKs was investigated. Compounds PP2 and Ro318220, Src and PKC family inhibitors, respectively abrogated ERK2 and p38 MAPK phosphorylation by 17β-estradiol. Of interest, the hormone was able to induce Src and PKCδ activation. In addition, Ro318220 decreased estrogen-dependent Src modulation implicating PKC in hormone upregulation of Src. Accordingly, PP2 and Ro318220 suppressed CREB and Elk-1 phosphorylation as well as c-Fos and c-Jun oncoprotein levels induced by 17β-estradiol. Altogether, these data indicate that 17β-estradiol activates ERK2 through ERα and p38 MAPK in an ERα/β-independent manner and that PKC and Src proteins are key upstream components on MAPKs activation in C2C12 skeletal muscle cells.
Collapse
Affiliation(s)
- Ana C Ronda
- Departamento de Biología, Bioquímica & Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | | | | |
Collapse
|
114
|
Roles of estrogen receptors alpha and beta in sexually dimorphic neuroprotection against glutamate toxicity. Neuroscience 2010; 170:1261-9. [PMID: 20732393 DOI: 10.1016/j.neuroscience.2010.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/24/2010] [Accepted: 08/11/2010] [Indexed: 02/05/2023]
Abstract
Although most agree that 17β-estradiol is neuroprotective via a variety of mechanisms, less is known about the role that biological sex plays in receptor-mediated estradiol neuroprotection. To address this issue we isolated primary cortical neurons from rat pups sorted by sex and assessed the ability of estradiol to protect the neurons from death induced by glutamate. Five-minute pretreatment with 10-50 nM 17β-estradiol protected female but not male neurons from glutamate toxicity 24 h later. Both estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) are expressed in these cultures. Experiments using an ERα selective agonist or antagonist indicate that this receptor is important for neuroprotection in female cortical neurons. The ERβ selective agonist conveys a small degree of neuroprotection to both male and female cortical neurons. Interestingly, we found that 17α estradiol and the novel membrane estrogen receptor (mER) agonist STX, but not bovine serum albumin conjugated estradiol or the GPR30 agonist G1 were neuroprotective in both male and female neurons. Taken together these data highlight a role for ERα in sexually dimorphic neuroprotection.
Collapse
|
115
|
Yang LC, Zhang QG, Zhou CF, Yang F, Zhang YD, Wang RM, Brann DW. Extranuclear estrogen receptors mediate the neuroprotective effects of estrogen in the rat hippocampus. PLoS One 2010; 5:e9851. [PMID: 20479872 PMCID: PMC2866326 DOI: 10.1371/journal.pone.0009851] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/04/2010] [Indexed: 11/26/2022] Open
Abstract
Background 17β-estradiol (E2) has been implicated to exert neuroprotective effects in the brain following cerebral ischemia. Classically, E2 is thought to exert its effects via genomic signaling mediated by interaction with nuclear estrogen receptors. However, the role and contribution of extranuclear estrogen receptors (ER) is unclear and was the subject of the current study. Methodology/Principal Findings To accomplish this goal, we employed two E2 conjugates (E2 dendrimer, EDC, and E2-BSA) that can interact with extranuclear ER and exert rapid nongenomic signaling, but lack the ability to interact with nuclear ER due to their inability to enter the nucleus. EDC or E2-BSA (10 µM) was injected icv 60 min prior to global cerebral ischemia (GCI). FITC-tagged EDC or E2-BSA revealed high uptake in the hippocampal CA1 region after icv injection, with a membrane (extranuclear) localization pattern in cells. Both EDC and E2-BSA exerted robust neuroprotection in the CA1 against GCI, and the effect was blocked by the ER antagonist, ICI182,780. EDC and E2-BSA both rapidly enhanced activation of the prosurvival kinases, ERK and Akt, while attenuating activation of the proapoptotic kinase, JNK following GCI, effects that were blocked by ICI182,780. Administration of an MEK or PI3K inhibitor blocked the neuroprotective effects of EDC and E2-BSA. Further studies showed that EDC increased p-CREB and BDNF in the CA1 region in an ERK- and Akt-dependent manner, and that cognitive outcome after GCI was preserved by EDC in an ER-dependent manner. Conclusions/Significance In conclusion, the current study demonstrates that activation of extranuclear ER results in induction of ERK-Akt-CREB-BDNF signaling in the hippocampal CA1 region, which significantly reduces ischemic neuronal injury and preserves cognitive function following GCI. The study adds to a growing literature that suggests that extranuclear ER can have important actions in the brain.
Collapse
Affiliation(s)
- Li-cai Yang
- Experimental and Research Center, North China Coal Medical University, Tangshan, Hebei, People's Republic of China
| | - Quan-Guang Zhang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Cai-feng Zhou
- Experimental and Research Center, North China Coal Medical University, Tangshan, Hebei, People's Republic of China
| | - Fang Yang
- Experimental and Research Center, North China Coal Medical University, Tangshan, Hebei, People's Republic of China
| | - Yi-dong Zhang
- Experimental and Research Center, North China Coal Medical University, Tangshan, Hebei, People's Republic of China
| | - Rui-min Wang
- Experimental and Research Center, North China Coal Medical University, Tangshan, Hebei, People's Republic of China
- * E-mail: (RMW); (DWB)
| | - Darrell W. Brann
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, United States of America
- * E-mail: (RMW); (DWB)
| |
Collapse
|
116
|
Effects of 17beta-estradiol replacement on the apoptotic effects caused by ovariectomy in the rat hippocampus. Life Sci 2010; 86:832-8. [PMID: 20394757 DOI: 10.1016/j.lfs.2010.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 03/22/2010] [Accepted: 04/06/2010] [Indexed: 12/12/2022]
Abstract
AIMS The aim of the present study was to investigate the effects of different periods of ovariectomy and 17beta-estradiol replacement on apoptotic cell death and expression of members of the Bcl-2 family in the rat hippocampus. MAIN METHODS Hippocampi were obtained from rats in proestrus, ovariectomized (15 days, 21 days and 36 days), ovariectomized for 15 days and then treated with 17beta-estradiol for 7 or 21 days, and rats ovariectomized and immediately treated with 17beta-estradiol for 21 days. The expression of Bcl-2 and Bax and the number of apoptotic cells were determined. KEY FINDINGS Ovariectomy decreased Bcl-2 expression and increased Bax expression and the number of apoptotic cells. Replacement with 17beta-estradiol (21 days) throughout the post-ovariectomy period reduced the number of apoptotic cells to the control levels, and prevented the effects of ovariectomy on Bax expression, but only partially restored the Bcl-2 expression. After 15 days of ovariectomy, the replacement with 17beta-estradiol for 21 days, but not for 7 days, restored the Bcl-2 and Bax expression and the percentage of apoptotic cells to the levels found in the proestrus control. SIGNIFICANCE The present results show that a physiological concentration of 17beta-estradiol may help maintain long-term neuronal viability by regulating the expression of members of the Bcl-2 family. Even after a period of hormonal deprivation, treatment with 17beta-estradiol is able to restore the expression of Bax and Bcl-2 to control levels, but the duration of the treatment is a key factor to obtain the desired effect. These data provide new understanding into the mechanisms contributing to the neuroprotective action of estrogen.
Collapse
|
117
|
Peng HY, Chen GD, Lai CY, Hsieh MC, Hsu HH, Wu HC, Lin TB. PI3K modulates estrogen-dependent facilitation of colon-to-urethra cross-organ reflex sensitization in ovariectomized female rats. J Neurochem 2010; 113:54-66. [DOI: 10.1111/j.1471-4159.2010.06577.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
118
|
Bredfeldt TG, Greathouse KL, Safe SH, Hung MC, Bedford MT, Walker CL. Xenoestrogen-induced regulation of EZH2 and histone methylation via estrogen receptor signaling to PI3K/AKT. Mol Endocrinol 2010; 24:993-1006. [PMID: 20351197 DOI: 10.1210/me.2009-0438] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although rapid, membrane-activated estrogen receptor (ER) signaling is no longer controversial, the biological function of this nongenomic signaling is not fully characterized. We found that rapid signaling from membrane-associated ER regulates the histone methyltransferase enhancer of Zeste homolog 2 (EZH2). In response to both 17beta-estradiol (E2) and the xenoestrogen diethylstilbestrol, ER signaling via phosphatidylinositol 3-kinase/protein kinase B phosphorylates EZH2 at S21, reducing levels of trimethylation of lysine 27 on histone H3 in hormone-responsive cells. During windows of uterine development that are susceptible to developmental reprogramming, activation of this ER signaling pathway by diethylstilbestrol resulted in phosphorylation of EZH2 and reduced levels of trimethylation of lysine 27 on histone H3 in chromatin of the developing uterus. Furthermore, activation of nongenomic signaling reprogrammed the expression profile of estrogen-responsive genes in uterine myometrial cells, suggesting this as a potential mechanism for developmental reprogramming caused by early-life exposure to xenoestrogens. These data demonstrate that rapid ER signaling provides a direct linkage between xenoestrogen-induced nuclear hormone receptor signaling and modulation of the epigenetic machinery during tissue development.
Collapse
Affiliation(s)
- Tiffany G Bredfeldt
- Department of Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Science Park Research Division, 1808 Park Road 1C, P.O. Box 389, Smithville, Texas 78957, USA
| | | | | | | | | | | |
Collapse
|
119
|
Rybalchenko V, Grillo MA, Gastinger MJ, Rybalchenko N, Payne AJ, Koulen P. The unliganded long isoform of estrogen receptor beta stimulates brain ryanodine receptor single channel activity alongside with cytosolic Ca2+. J Recept Signal Transduct Res 2010; 29:326-41. [PMID: 19899956 DOI: 10.3109/10799890903295168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ca(2+) release from intracellular stores mediated by endoplasmic reticulum membrane ryanodine receptors (RyR) plays a key role in activating and synchronizing downstream Ca(2+)-dependent mechanisms, in different cells varying from apoptosis to nuclear transcription and development of defensive responses. Recently discovered, atypical "nongenomic" effects mediated by estrogen receptors (ER) include rapid Ca(2+) release upon estrogen exposure in conditions implicitly suggesting involvement of RyRs. In the present study, we report various levels of colocalization between RyR type 2 (RyR2) and ER type beta (ER beta) in the neuronal cell line HT-22, indicating a possible functional interaction. Electrophysiological analyses revealed a significant increase in single-channel ionic currents generated by mouse brain RyRs after application of the soluble monomer of the long form ER beta (ER beta 1). The effect was due to a strong increase in open probability of RyR higher open channel sublevels at cytosolic [Ca(2+)] concentrations of 100 nM, suggesting a synergistic action of ER beta 1 and Ca(2+) in RyR activation, and a potential contribution to Ca(2+)-induced Ca(2+) release rather than to basal intracellular Ca(2+) concentration level at rest. This RyR/ER beta interaction has potential effects on cellular physiology, including roles of shorter ER beta isoforms and modulation of the RyR/ER beta complexes by exogenous estrogens.
Collapse
|
120
|
Du S, Sandoval F, Trinh P, Voskuhl RR. Additive effects of combination treatment with anti-inflammatory and neuroprotective agents in experimental autoimmune encephalomyelitis. J Neuroimmunol 2009; 219:64-74. [PMID: 20006910 DOI: 10.1016/j.jneuroim.2009.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 11/17/2009] [Accepted: 11/24/2009] [Indexed: 01/02/2023]
Abstract
We studied the effects of combination treatment with an anti-inflammatory agent, interferon (IFN)-beta, and a putative neuroprotective agent, an estrogen receptor (ER)-beta ligand, during EAE. Combination treatment significantly attenuated EAE disease severity, preserved axonal densities in spinal cord, and reduced CNS inflammation. Combining ERbeta treatment with IFNbeta reduced IL-17, while it abrogated IFNbeta-mediated increases in Th1 and Th2 cytokines from splenocytes. Additionally, combination treatment reduced VLA-4 expression on CD4+ T cells, while it abrogated IFNbeta-mediated decreases in MMP-9. Our data demonstrate that combination treatments can result in complex effects that could not have been predicted based on monotherapy data alone.
Collapse
Affiliation(s)
- Sienmi Du
- University of California, Los Angeles, Department of Neurology, UCLA Multiple Sclerosis Program, 635 Charles E Young Drive South, Neuroscience Research Building 1, Room 479, Los Angeles, CA 90095, United States
| | | | | | | |
Collapse
|
121
|
Lossi L, Gambino G, Ferrini F, Alasia S, Merighi A. Posttranslational regulation of BCL2 levels in cerebellar granule cells: A mechanism of neuronal survival. Dev Neurobiol 2009; 69:855-70. [PMID: 19672954 DOI: 10.1002/dneu.20744] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Apoptosis can be modulated by K(+) and Ca(2+) inside the cell and/or in the extracellular milieu. In murine organotypic cultures, membrane potential-regulated Ca(2+) signaling through calcineurin phosphatase has a pivotal role in development and maturation of cerebellar granule cells (CGCs). P8 cultures were used to analyze the levels of expression of B cell lymphoma 2 (BCL2) protein, and, after particle-mediated gene transfer in CGCs, to study the posttranslational modifications of BCL2 fused to a fluorescent tag in response to a perturbation of K(+)/Ca(2+) homeostasis. There are no changes in Bcl2 mRNA after real time PCR, whereas the levels of the fusion protein (monitored by calculating the density of transfected CGCs under the fluorescence microscope) and of BCL2 (inWestern blotting) are increased. After using a series of agonists/antagonists for ion channels at the cell membrane or the endoplasmic reticulum (ER), and drugs affecting protein synthesis/degradation, accumulation of BCL2 was related to a reduction in posttranslational cleavage by macroautophagy. The ER functionally links the [K(+)](e) and [Ca(2+)](i) to the BCL2 content in CGCs along two different pathways. The first, triggered by elevated [K(+)](e) under conditions of immaturity, is independent of extracellular Ca(2+) and operates via IP3 channels. The second leads to influx of extracellular Ca(2+) following activation of ryanodine channels in the presence of physiological [K(+)](e), when CGCs are maintained in mature status. This study identifies novel mechanisms of neuroprotection in immature and mature CGCs involving the posttranslational regulation of BCL2.
Collapse
Affiliation(s)
- Laura Lossi
- Dipartimento di Morfofisiologia Veterinaria, Università degli Studi di Torino, Italy.
| | | | | | | | | |
Collapse
|
122
|
Liu M, Dziennis S, Hurn PD, Alkayed NJ. Mechanisms of gender-linked ischemic brain injury. Restor Neurol Neurosci 2009; 27:163-79. [PMID: 19531872 DOI: 10.3233/rnn-2009-0467] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Biological sex is an important determinant of stroke risk and outcome. Women are protected from cerebrovascular disease relative to men, an observation commonly attributed to the protective effect of female sex hormones, estrogen and progesterone. However, sex differences in brain injury persist well beyond the menopause and can be found in the pediatric population, suggesting that the effects of reproductive steroids may not completely explain sexual dimorphism in stroke. We review recent advances in our understanding of sex steroids (estradiol, progesterone and testosterone) in the context of ischemic cell death and neuroprotection. Understanding the molecular and cell-based mechanisms underlying sex differences in ischemic brain injury will lead to a better understanding of basic mechanisms of brain cell death and is an important step toward designing more effective therapeutic interventions in stroke.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, UHS-2, Portland, OR 97239-3098, USA.
| | | | | | | |
Collapse
|
123
|
Vanoye-Carlo A, Mendoza-Rodriguez CA, Morales T, Langley E, Cerbón M. Estrogen receptors increased expression during hippocampal neuroprotection in lactating rats. J Steroid Biochem Mol Biol 2009; 116:1-7. [PMID: 19467858 DOI: 10.1016/j.jsbmb.2009.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 02/10/2009] [Accepted: 02/12/2009] [Indexed: 11/28/2022]
Abstract
Estrogen receptor (ER)-mediated neuroprotection has been demonstrated in both in vitro and in vivo model systems. Two types of estrogen receptors, ERalpha and ERbeta, are the major mediators of the biological functions of estrogens. In the hippocampus, ERbeta is prevalent over ERalpha. Recently, we reported that during the final phase of lactation there is a neuroprotective mechanism in the hippocampus of the adult female rat against neuronal damage induced by systemic kainic acid administration vs. virgin (metestrus) rats. In this study, we assessed differential ER expression and localization in CA1, CA3 and dentate gyrus regions of dorsal hippocampus of metestrus and lactating adult rats at day 19 of lactation, during basal conditions (metestrus and L19, respectively) and 24h after systemic kainate administration. ERs were assessed by western blot and immunohistochemistry. We found a significant increase in the expression of ERs in the hippocampus during lactation as compared with metestrus. ERbeta was significantly increased in the CA1 and CA3 of lactating rats after the kainic acid insult. In addition, we observed a relocalization of ERbeta from the cytoplasm to the nucleus of neuronal cells. Our results suggest that there is a strong correlation between expression of ERs, especially ERbeta, in lactating CA1 and CA3 hippocampus regions in response to kainate administration, and neuroprotection observed during this reproductive period. This may be one of the mechanisms involved in the protection of the maternal brain to ensure offspring survival.
Collapse
Affiliation(s)
- América Vanoye-Carlo
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | | | | | | | | |
Collapse
|
124
|
|
125
|
Bethea CL, Reddy AP, Tokuyama Y, Henderson JA, Lima FB. Protective actions of ovarian hormones in the serotonin system of macaques. Front Neuroendocrinol 2009; 30:212-38. [PMID: 19394356 PMCID: PMC2704571 DOI: 10.1016/j.yfrne.2009.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 12/19/2022]
Abstract
The serotonin neurons of the dorsal and medial raphe nuclei project to all areas of the forebrain and play a key role in mood disorders. Hence, any loss or degeneration of serotonin neurons could have profound ramifications. In a monkey model of surgical menopause with hormone replacement and no neural injury, E and P decreased gene expression in the dorsal raphe nucleus of c-jun n-terminal kinase (JNK1) and kynurenine mono-oxygenase (KMO) that promote cell death. In concert, E and P increased gene expression of superoxide dismutase (SOD1), VEGF, and caspase inhibitory proteins that promote cellular resilience in the dorsal raphe nucleus. Subsequently, we showed that ovarian steroids inhibit pivotal genes in the caspase-dependent and caspase-independent pathways in laser-captured serotonin neurons including apoptosis activating factor (Apaf1), apoptosis-inducing factor (AIF) and second mitochondria-derived activator of caspases (Smac/Diablo). SOD1 was also increased specifically in laser-captured serotonin neurons. Examination of protein expression in the dorsal raphe block revealed that JNK1, phosphoJNK1, AIF and the translocation of AIF from the mitochondria to the nucleus decreased with hormone therapy, whereas pivotal execution proteins in the caspase pathway were unchanged. In addition, cyclins A, B, D1 and E were inhibited, which would prevent re-entry into the cell cycle and catastrophic death. These data indicated that in the absence of gross injury to the midbrain, ovarian steroids inhibit the caspase-independent pathway and cell cycle initiation in serotonin neurons. To determine if these molecular actions prevented cellular vulnerability or death, we examined DNA fragmentation in the dorsal raphe nucleus with the TUNEL assay (terminal deoxynucleotidyl transferase nick end labeling). Ovarian steroids significantly decreased the number of TUNEL-positive cells in the dorsal raphe. Moreover, TUNEL staining prominently colocalized with TPH immunostaining, a marker for serotonin neurons. In summary, ovarian steroids increase the cellular resilience of serotonin neurons and may prevent serotonin neuron death in women facing decades of life after menopause. The survival of serotonin neurons would support cognition and mental health.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Divisions of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, United States.
| | | | | | | | | |
Collapse
|
126
|
Pike CJ, Carroll JC, Rosario ER, Barron AM. Protective actions of sex steroid hormones in Alzheimer's disease. Front Neuroendocrinol 2009; 30:239-58. [PMID: 19427328 PMCID: PMC2728624 DOI: 10.1016/j.yfrne.2009.04.015] [Citation(s) in RCA: 382] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/25/2009] [Accepted: 04/28/2009] [Indexed: 12/19/2022]
Abstract
Risk for Alzheimer's disease (AD) is associated with age-related loss of sex steroid hormones in both women and men. In post-menopausal women, the precipitous depletion of estrogens and progestogens is hypothesized to increase susceptibility to AD pathogenesis, a concept largely supported by epidemiological evidence but refuted by some clinical findings. Experimental evidence suggests that estrogens have numerous neuroprotective actions relevant to prevention of AD, in particular promotion of neuron viability and reduction of beta-amyloid accumulation, a critical factor in the initiation and progression of AD. Recent findings suggest neural responsiveness to estrogen can diminish with age, reducing neuroprotective actions of estrogen and, consequently, potentially limiting the utility of hormone therapies in aged women. In addition, estrogen neuroprotective actions are also modulated by progestogens. Specifically, continuous progestogen exposure is associated with inhibition of estrogen actions whereas cyclic delivery of progestogens may enhance neural benefits of estrogen. In recent years, emerging literature has begun to elucidate a parallel relationship of sex steroid hormones and AD risk in men. Normal age-related testosterone loss in men is associated with increased risk to several diseases including AD. Like estrogen, testosterone has been established as an endogenous neuroprotective factor that not only increases neuronal resilience against AD-related insults, but also reduces beta-amyloid accumulation. Androgen neuroprotective effects are mediated both directly by activation of androgen pathways and indirectly by aromatization to estradiol and initiation of protective estrogen signaling mechanisms. The successful use of hormone therapies in aging men and women to delay, prevent, and or treat AD will require additional research to optimize key parameters of hormone therapy and may benefit from the continuing development of selective estrogen and androgen receptor modulators.
Collapse
Affiliation(s)
- Christian J Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | |
Collapse
|
127
|
Zhang L, Li X, Zhao L, Zhang L, Zhang G, Wang J, Wei L. Nongenomic effect of estrogen on the MAPK signaling pathway and calcium influx in endometrial carcinoma cells. J Cell Biochem 2009; 106:553-62. [PMID: 19160418 DOI: 10.1002/jcb.22017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
17beta-Estradiol (E2) is well known to interact with intracellular receptors that act as nuclear transcription factors. However, abundant evidence now indicates that E2 can also rapidly induce several nongenomic effects through signaling pathways related to cell growth, preservation, and differentiation. We studied the nongenomic effects of E2 in two human endometrial carcinoma cell lines, Ishikawa (estrogen receptor (ER) positive) and Hec-1A (ER negative or low) by cultivating them with either E2 or its membrane-impermeable conjugate, E2-BSA. We found that phosphorylation of Erk1/2 could be induced by either E2 or E2-BSA in Ishikawa cells. In Hec-1A cells, only E2 was able to induce Erk1/2 phosphorylation. Although the existence of a nongenomic component to the response was indicated by the finding that it could not be completely inhibited by the ER antagonist ICI182780,and it can also be inhibited by calcium inhibitor Nifedipine partly. Phosphorylation of Akt could not be induced, either by E2 or E2-BSA, in either cell line. Both E2 and E2-BSA elicited calcium influx in Ishikawa cells. In contrast to these nongenomic effects, only E2 was able to stimulate expression of the anti-apoptotic-protein Bcl-2. Taken together, these data indicate that nongenomic effects such as Erk1/2 phosphorylation and calcium influx can be initiated from the membrane in Ishikawa cell, and calcium can activate Erk1/2 phosphorylation. Except for ER, there must be other binding location of estrogen in endometrial cancer cells, and the nongenomic effects of estrogen initiated from plasma membrane by E2-BSA cannot lead to transcriptional effect of Bcl-2 expression.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Gynecology, Peking University People's Hospital, Xi Cheng District, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
An increase in L-type voltage-gated calcium channel (LTCC) current is a prominent biomarker of brain aging and is believed to contribute to cognitive decline and vulnerability to neuropathologies. Studies examining age-related changes in LTCCs have focused primarily on males, although estrogen (17beta-estradiol, E2) affects calcium-dependent activities associated with cognition. Therefore, to better understand brain aging in females, the effects of chronic E2 replacement on LTCC current activity in hippocampal neurons of young and aged ovariectomized rats were determined. The zipper slice preparation was used to expose cornu ammonis 1 (CA1) pyramidal neurons for recording LTCC currents using the cell-attached patch-clamp technique. We found that an age-related increase in LTCC current in neurons from control animals was prevented by E2 treatment. In addition, in situ hybridization revealed that within stratum pyramidale of the CA1 area, mRNA expression of the Ca(v)1.2 LTCC subunit, but not the Ca(v)1.3 subunit, was decreased in aged E2-treated rats. Thus, the reported benefits of E2 on cognition and neuronal health may be attributed, at least in part, to its age-related decrease in LTCC current.
Collapse
|
129
|
Raval AP, Saul I, Dave KR, DeFazio RA, Perez-Pinzon MA, Bramlett H. Pretreatment with a single estradiol-17beta bolus activates cyclic-AMP response element binding protein and protects CA1 neurons against global cerebral ischemia. Neuroscience 2009; 160:307-18. [PMID: 19272413 PMCID: PMC2711690 DOI: 10.1016/j.neuroscience.2009.02.065] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 02/03/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
Abstract
Estradiol-17beta is released from the ovaries in a cyclic manner during the normal estrous cycle in rats. During the transition from the diestrous to proestrous stage, the 17beta-estradiol increases in blood circulation. We hypothesized that a higher serum level of endogenous 17beta-estradiol would protect hippocampal pyramidal neurons against global cerebral ischemia via activation of the cyclic-AMP response element binding protein (CREB)-mediated signaling cascade. Furthermore, we asked if a single 17beta-estradiol bolus provides protection against ischemia in the absence of endogenous estradiol. To test these hypotheses, rats were subjected to global cerebral ischemia at different stages of the estrous cycle. Ischemia was produced by bilateral carotid occlusion and systemic hypotension. Brains were examined for histopathology at 7 days of reperfusion. Higher serum levels of 17beta-estradiol (at proestrus and estrus stages) correlated with increased immunoreactivity of pCREB in hippocampus and ischemic tolerance. At diestrus, when circulating gonadal hormone concentrations were lowest, the pCREB protein content of hippocampus was reduced and showed the least number of normal neurons after ischemia compared to other stages of the estrous cycle. A similar phosphorylation pattern was also observed for mitogen-activated protein kinase (MAPK) and calcium-calmodulin-dependent protein kinase (CaMKII) in hippocampus. The cyclic variation in ovarian hormones did not reflect phosphorylation of protein kinase B (Akt). To test the efficacy of a single bolus of 17beta-estradiol before ischemia, ovariectomized rats were treated with 17beta-estradiol (5/10/50 microg/kg) or vehicle (oil) and 48/72/96 h later rats were exposed to cerebral ischemia. A single 17beta-estradiol bolus treatment in ovariectomized rats significantly increased CREB mRNA activation and protected CA1 pyramidal neurons against ischemia. These results suggest that an exogenous bolus of 17beta-estradiol to ovariectomized rats protects hippocampus against ischemia via activation of the CREB pathway in a manner similar to the endogenous estrous cycle.
Collapse
Affiliation(s)
- A P Raval
- Cerebral Vascular Disease Research Center, Department of Neurology (D4-5), Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101, USA.
| | | | | | | | | | | |
Collapse
|
130
|
17beta-estradiol-mediated neuroprotection and ERK activation require a pertussis toxin-sensitive mechanism involving GRK2 and beta-arrestin-1. J Neurosci 2009; 29:4228-38. [PMID: 19339617 DOI: 10.1523/jneurosci.0550-09.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
17-beta-Estradiol (E2) is a steroid hormone involved in numerous bodily functions, including several brain functions. In particular, E2 is neuroprotective against excitotoxicity and other forms of brain injuries, a property that requires the extracellular signal-regulated kinase (ERK) pathway and possibly that of other signaling molecules. The mechanism and identity of the receptor(s) involved remain unclear, although it has been suggested that E2 receptor alpha (ERalpha) and G proteins are involved. We, therefore, investigated whether E2-mediated neuroprotection and ERK activation were linked to pertussis toxin (PTX)-sensitive G-protein-coupled effector systems. Biochemical and image analysis of organotypic hippocampal slices and cortical neuronal cultures showed that E2-mediated neuroprotection as well as E2-induced ERK activation were sensitive to PTX. The sensitivity to PTX suggested a possible role of G-protein- and beta-arrestin-mediated mechanisms. Western immunoblots from E2-treated cortical neuronal cultures revealed an increase in phosphorylation of both G-protein-coupled receptor-kinase 2 and beta-arrestin-1, a G-protein-coupled receptor adaptor protein. Transfection of neurons with beta-arrestin-1 small interfering RNA prevented E2-induced ERK activation. Coimmunoprecipitation experiments indicated that E2 increased the recruitment of beta-arrestin-1 and c-Src to ERalpha. These findings suggested that ERalpha is regulated by a mechanism associated with receptor desensitization and downregulation. In support of this idea, we found that E2 treatment of cortical synaptoneurosomes resulted in internalization of ERalpha, whereas treatment of cortical neurons with the ER agonists E-6-BSA-FITC [beta-estradiol-6-(O-carboxymethyl)oxime-bovine serum albumin conjugated with fluorescein isothiocyanate] and E-6-biotin [1,3,5(10)-estratrien-3,17beta-diol-6-one-6-carboxymethloxime-NH-propyl-biotin] resulted in agonist internalization. These results demonstrate that E2-mediated neuroprotection and ERK activation involve ERalpha activation of G-protein- and beta-arrestin-mediated mechanisms.
Collapse
|
131
|
Lee ESY, Yin Z, Milatovic D, Jiang H, Aschner M. Estrogen and tamoxifen protect against Mn-induced toxicity in rat cortical primary cultures of neurons and astrocytes. Toxicol Sci 2009; 110:156-67. [PMID: 19383943 DOI: 10.1093/toxsci/kfp081] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic exposure to manganese (Mn) leads to a neurological disorder, manganism, which shares multiple common features with idiopathic Parkinson disease (IPD). 17beta-Estradiol (E2) and some selective estrogen receptor modulators, including tamoxifen (TX), afford neuroprotection in various experimental models of neurodegeneration. However, the neuroprotective effects and mechanisms of E2/TX in Mn-induced toxicity have yet to be documented. Herein, we studied the ability of E2/TX to protect rat cortical primary neuronal and astroglial cultures from Mn-induced toxicity. Cell viability, Western blot, and reactive oxygen species (ROS) generation were assessed. Results established that both E2 (10nM) and TX (1 microM) attenuated Mn-induced toxicity. The protective effects of E2/TX were more pronounced in astrocytes versus neurons. The E2-mediated attenuation of Mn-induced ROS generation in astrocytes at 6-h treatment (where no cell death was detected) was mediated by a classical estrogen receptor (ER) pathway and the TX-mediated effect on Mn-induced ROS generation was not mediated via classical ER-dependent mechanisms and likely by its antioxidant properties. The phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway was involved in both E2- and TX-induced attenuation of Mn-induced ROS formation (6 h) in astrocytes. Treatments with Mn for a longer duration (24 h) led to significant cell death, and the protective effects of E2 and TX were (1) not mediated by a classical ER pathway and (2) associated with activation of both mitogen-activated protein kinase/extracellular signal-regulated kinase and PI3K/Akt signaling pathways. Taken together, the results suggest that both E2 and TX offer effective therapeutic means for neuroprotection against Mn-induced toxicity.
Collapse
Affiliation(s)
- Eun-Sook Y Lee
- Department of Neurology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208, USA.
| | | | | | | | | |
Collapse
|
132
|
Valdés JJ, Weeks OI. Estradiol and lithium chloride specifically alter NMDA receptor subunit NR1 mRNA and excitotoxicity in primary cultures. Brain Res 2009; 1268:1-12. [PMID: 19285052 DOI: 10.1016/j.brainres.2009.02.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/27/2009] [Accepted: 02/23/2009] [Indexed: 12/22/2022]
Abstract
Glutamate facilitates calcium influx via NMDAR, and excess calcium influx increases excitotoxicity--a pathological characteristic of neurological diseases. Both 17beta-estradiol (E2) and lithium influence NMDAR expression/signaling and excitotoxicity. This led us to hypothesize that combined E2 and lithium will alter NMDAR expression and excitotoxicity. We tested this hypothesis using primary cell cultures from the cortex and hippocampus of C57BL/6J fetal mice pretreated with E2, lithium chloride (LiCl) and combined E2/LiCl for 12, 24 or 48 h. We examined cultures for brain cell type and changes in cell type caused by experimental procedures using glia and neuron gene specific primers. These cultures expressed increased glial fibrillary acidic protein (GFAP) mRNA with low neurofilament-heavy chain (NF-H) mRNA expression. Subsequent analysis of cortical cell cultures indicated that combined E2/LiCl decreased NR1 mRNA expression after a 12 and 48 h treatment period. Combined E2/LiCl also reduced NR1 mRNA expression in hippocampal cultures but only after a 48 h treatment period. LiCl-treated hippocampal cultures also reduced NR1 mRNA expression after a 24 and 48 h treatment. We next examined the response of 48 h pretreated cultures to a toxic level of glutamate. Excitotoxicity was measured using fluorescein diacetate/propidium iodide (FDA/PI) cell viability assay. Results from FDA/PI assay revealed that LiCl pretreatment increased viability for cortical cultures while E2 and combined E2/LiCl reduced viability. All pretreatments for hippocampal cultures failed to increase viability. Our results showed combined E2/LiCl reduced NR1 mRNA and prevented protection against glutamate excitotoxicity in glial primary cultures.
Collapse
Affiliation(s)
- James J Valdés
- Florida International University, Department of Biological Sciences, 229 Health and Life Sciences Building, 11200 SW 8th St., Miami, FL 33199, USA
| | - Ophelia I Weeks
- Florida International University, Department of Biological Sciences, 229 Health and Life Sciences Building, 11200 SW 8th St., Miami, FL 33199, USA.
| |
Collapse
|
133
|
Fan L, Pandey SC, Cohen RS. Estrogen affects levels of Bcl-2 protein and mRNA in medial amygdala of ovariectomized rats. J Neurosci Res 2009; 86:3655-64. [PMID: 18655204 DOI: 10.1002/jnr.21801] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The survival factor Bcl-2 is a cyclic AMP response element-binding protein (CREB) gene product implicated in mediating some of estrogen's effects on neuroprotection. Previously, we showed an effect of estradiol benzoate (E) on numbers of neuron-specific protein (NeuN)- and phosphorylated CREB (pCREB)-positive cells in medial (MeA), but not central (CeA), amygdala of ovariectomized rats. To determine whether these effects are accompanied by an E-induced increase in Bcl-2, we examined the effects of E on levels of Bcl-2 protein and mRNA in MeA and CeA of ovariectomized rats treated with E regimens resulting in moderate (2.5 microg E for 4 or 14 days) or high (10 microg E for 14 days) plasma estradiol levels. As a physiological control, we showed that all E treatments increased uterine wet weight relative to vehicle; 10 microg E for 14 days also increased uterine weight compared with that seen with lower E levels. Western blot analysis revealed that all E groups displayed an increase in uterine Bcl-2 protein levels compared with vehicle. We found that 2.5 microg and 10 microg E for 14 days increased levels of Bcl-2 gold immunolabeling compared with vehicle and 2.5 microg E for 4 days in MeA, but not CeA. We measured Bcl-2 mRNA levels in vehicle and 2.5 microg E-treated 14-day groups. There was a significant increase in Bcl-2 mRNA levels in MeA, but not CeA, of E-treated ovariectomized rats compared with vehicle controls. The E-induced increase in protein and mRNA levels of Bcl-2 in MeA may be important for neuroprotection in this region.
Collapse
Affiliation(s)
- Lu Fan
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | |
Collapse
|
134
|
Zhao L, Mao Z, Brinton RD. A select combination of clinically relevant phytoestrogens enhances estrogen receptor beta-binding selectivity and neuroprotective activities in vitro and in vivo. Endocrinology 2009; 150:770-83. [PMID: 18818291 DOI: 10.1210/en.2008-0715] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have previously shown that a number of naturally occurring phytoestrogens and derivatives were effective to induce some measures of neuroprotective responses but at a much lower magnitude than those induced by the female gonadal estrogen 17beta-estradiol. In the present study, we sought to investigate whether a combination of select phytoestrogens could enhance neural responses without affecting the reproductive system. We performed a range of comparative analyses of the estrogen receptor (ER) alpha/beta binding profile, and in vitro to in vivo estrogenic activities in neural and uterine tissues induced by clinically relevant phytoestrogens: genistein, daidzein, equol, and IBSO03569, when used alone or in combination. Our analyses revealed that both the ERalpha/beta binding profile and neural activities associated with individual phytoestrogens are modifiable when used in combination. Specifically, the combination of genistein plus daidzein plus equol resulted in the greatest binding selectivity for ERbeta and an overall improved efficacy/safety profile when compared with single or other combined formulations, including: 1) an approximate 30% increase in ERbeta-binding selectivity (83-fold over ERalpha); 2) a greater effect on neuronal survival against toxic insults in primary neurons; 3) an enhanced activity in promoting neural proactive defense mechanisms against neurodegeneration, including mitochondrial function and beta-amyloid degradation; and 4) no effect on uterine growth. These observations suggest that select phytoestrogens in combination have the therapeutic potential of an alternative approach to conventional estrogen therapy for long-term safe use to reduce the increased risk of cognitive decline and neurodegenerative disease associated with menopause in women.
Collapse
Affiliation(s)
- Liqin Zhao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
135
|
Moos WH, Dykens JA, Nohynek D, Rubinchik E, Howell N. Review of the effects of 17α-estradiol in humans: a less feminizing estrogen with neuroprotective potential. Drug Dev Res 2009. [DOI: 10.1002/ddr.20284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
136
|
Huppmann S, Römer S, Altmann R, Obladen M, Berns M. 17beta-estradiol attenuates hyperoxia-induced apoptosis in mouse C8-D1A cell line. J Neurosci Res 2009; 86:3420-6. [PMID: 18618675 DOI: 10.1002/jnr.21777] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In premature infants, oxygen free radicals generated following neonatal resuscitation are associated with subsequent diseases such as retinopathy of prematurity and bronchopulmonary dysplasia. Recent studies in brain tissue samples have shown that nonphysiologic oxygen levels play a key role in induction of apoptosis in the developing brain. Estrogen is a well-established agent in neuroprotection and, therefore, is thought to be neuroprotective even in the premature brain. Astrocytes appear to have a critical role in protection and survival of neurons in the brain. As one of the glial cell types, they have a great potential for possible involvement in the mediation of estrogen neuroprotective effects. The aim of our study was to analyze whether astrocytes in cell cultures are damaged by hyperoxia and whether 17beta-estradiol (E2) can protect them against apoptosis. Additionally, we investigated the mechanism of the protection by E2, hypothesizing that it is mediated through extracellular signal-regulated kinase (ERK1/2). Cells underwent eightfold more apoptosis when cultivated in hyperoxia compared with normoxia. Addition of E2 reduced apoptosis in hyperoxia by more than 50%. Levels of ERK1/2 and phosphorylated ERK1/2 were increased after hyperoxia compared with normoxia. Preincubation with E2 prior to exposure to hyperoxia resulted in decreased levels of ERK1/2 and pERK1/2. Hyperoxia induces apoptosis in C8-D1A cells, and E2 seems to be a protecting factor for astrocytes in hyperoxia. This effect is not mediated through up-regulation of pERK1/2.
Collapse
Affiliation(s)
- Stephanie Huppmann
- Department of Neonatology, Charité, Campus Virchow Klinikum, Berlin, Germany.
| | | | | | | | | |
Collapse
|
137
|
Cao Z, Gao W, Tao G, Fan Y, Liu F, Gao Y. Thirty-five percent oxygen pre-conditioning protects PC12 cells against death induced by hypoxia. Free Radic Res 2008; 43:58-67. [PMID: 19061057 DOI: 10.1080/10715760802585244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The present study is designed to investigate the effect of pre-conditioning with 35% O2 on PC12 cell death induced by hypoxia. This study investigated whether 35% O2 pre-conditioning for 3 h, followed by 12 h recovery, can protect PC12 cells against death induced by subsequent exposure to hypoxia for 72 h. The result showed that pre-conditioning with 35% O2 partly blocked the decrease in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction induced by hypoxia in PC12 cells. PC12 cells pre-conditioned with 35% O2 could generate a small quantity of reactive oxygen species (ROS), which activated the extracellular signal-regulated kinase (ERK) signalling pathway, then the over-expression of the B-cell lymphoma/leukaemia-2 (Bcl-2) was induced, which subsequently protected PC12 cell against death resulting from hypoxia exposure. In conclusion, 35% O2 pre-conditioning could protect PC12 cells against hypoxic insult.
Collapse
Affiliation(s)
- Zhongping Cao
- Department of Pathophysiology and High Altitude Physiology, Key Laborary of High Aititude Medicine of Educative Ministry, The Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | |
Collapse
|
138
|
Wang JM, Brinton RD. Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential. BMC Neurosci 2008; 9 Suppl 2:S11. [PMID: 19090984 PMCID: PMC2604895 DOI: 10.1186/1471-2202-9-s2-s11] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one) promotes neural progenitor proliferation in vitro in cultures of rodent hippocampal and human cortical neural progenitors, and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation. Methods In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging. Results Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC50 of 110 ± 15 nM and a maximal response occurring at three days in vitro. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La3+, or the L-type calcium channel blocker nifedipine. Furthermore, the GABAA receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise. Conclusion Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABAA receptor and L-type calcium channel. These data suggest that APα-induced intracellular calcium concentration increase serves as the initiation mechanism whereby APα promotes neurogenesis.
Collapse
Affiliation(s)
- Jun Ming Wang
- Department of Pharmacology and Pharmaceutical Sciences and Program in Neuroscience, University of Southern California, Los Angeles, CA 90089, USA.
| | | |
Collapse
|
139
|
Abstract
Accumulating evidence indicates that ovarian hormones regulate a wide variety of non-reproductive functions in the central nervous system by interacting with several molecular and cellular processes. A growing animal literature using both adult and aged rodent models indicates that 17beta-estradiol, the most potent of the biologically relevant estrogens, facilitates some forms of learning and memory, in particular those that involve hippocampal-dependent tasks. A recently developed triple-transgenic mouse (3xTg-AD) has been widely used as an animal model of Alzheimer's disease, as this mouse exhibits an age-related and progressive neuropathological phenotype that includes both plaque and tangle pathology mainly restricted to hippocampus, amygdala and cerebral cortex. In this report, we examine recent studies that compare the effects of ovarian hormones on synaptic transmission and synaptic plasticity in adult and aged rodents. A better understanding of the non-reproductive functions of ovarian hormones has far-reaching implications for hormone therapy to maintain health and function within the nervous system throughout aging.
Collapse
Affiliation(s)
- Michael R Foy
- Department of Psychology, Loyola Marymount University, Los Angeles, CA 90045, USA.
| | | | | | | |
Collapse
|
140
|
Brinton RD. Estrogen regulation of glucose metabolism and mitochondrial function: therapeutic implications for prevention of Alzheimer's disease. Adv Drug Deliv Rev 2008; 60:1504-11. [PMID: 18647624 PMCID: PMC2993571 DOI: 10.1016/j.addr.2008.06.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 06/12/2008] [Indexed: 02/06/2023]
Abstract
Estrogen-induced signaling pathways in hippocampal and cortical neurons converge upon the mitochondria to enhance mitochondrial function and to sustain aerobic glycolysis and citric acid cycle-driven oxidative phosphorylation and ATP generation. Data derived from experimental and clinical paradigms investigating estrogen intervention in healthy systems and prior to neurodegenerative insult indicate enhanced neural defense and survival through maintenance of calcium homeostasis, enhanced glycolysis coupled to the citric acid cycle (aerobic glycolysis), sustained and enhanced mitochondrial function, protection against free radical damage, efficient cholesterol trafficking and beta amyloid clearance. The convergence of E(2) mechanisms of action onto mitochondrial is also a potential point of vulnerability when activated in a degenerating neural system and could exacerbate the degenerative processes through increased load on dysregulated calcium homeostasis. The data indicate that as the continuum of neurological health progresses from healthy to unhealthy so too do the benefits of estrogen or hormone therapy. If neurons are healthy at the time of estrogen exposure, their response to estrogen is beneficial for both neuronal survival and neurological function. In contrast, if neurological health is compromised, estrogen exposure over time exacerbates neurological demise. The healthy cell bias of estrogen action hypothesis provides a lens through which to assess the disparities in outcomes across the basic to clinical domains of scientific inquiry and on which to predict future applications of estrogen and hormone therapeutic interventions sustain neurological health and to prevent age-associated neurodegenerative diseases such as Alzheimer's. Overall, E(2) promotes the energetic capacity of brain mitochondria by maximizing aerobic glycolysis (oxidative phosphorylation coupled to pyruvate metabolism). The enhanced aerobic glycolysis in the aging brain would be predicted to prevent conversion of the brain to using alternative sources of fuel such as the ketone body pathway characteristic of Alzheimer's.
Collapse
Affiliation(s)
- Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy Pharmaceutical Sciences Center, Los Angeles, California 90033, USA.
| |
Collapse
|
141
|
Jones TT, Brewer GJ. Critical age-related loss of cofactors of neuron cytochrome C oxidase reversed by estrogen. Exp Neurol 2008; 215:212-9. [PMID: 18930048 DOI: 10.1016/j.expneurol.2008.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/22/2008] [Accepted: 09/11/2008] [Indexed: 11/25/2022]
Abstract
The mechanistic basis for the correlation between mitochondrial dysfunction and neurodegenerative disease is unclear, but evidence supports involvement of cytochrome C oxidase (CCO) deficits with age. Neurons isolated from the brains of 24 month and 9 month rats and cultured in common conditions provide a model of intrinsic neuronal aging. In situ CCO activity was decreased in 24 month neurons relative to 9 month neurons. Possible CCO-related deficits include holoenzyme activity, cofactor, and substrate. No difference was found between neurons from 24 month and 9 month rats in mitochondrial counts per neuron, CCO activity in submitochondrial particles, or basal respiration. Immunostaining for cytochrome C in individual mitochondria revealed an age-related deficit of this electron donor. 24 month neurons did not have adequate respiratory capacity to upregulate respiration after a glutamate stimulus, in spite of a two-fold upregulation of respiration seen in 9 month neurons. Respiration in 24 month neurons was inhibited by lower concentrations of potassium cyanide, suggesting a 50% deficit in functional enzyme in 24 month compared to 9 month neurons. In addition to cytochrome C, CCO requires cardiolipin to function. Staining with nonylacridine orange revealed an age-related deficit in cardiolipin. Treatment of 24 month neurons with 17-beta-estradiol restored cardiolipin levels (10 ng/mL) and upregulated respiration under glutamate stress (1 pg/mL). Attempts to induce mitochondrial turnover by neuronal multiplication also rejuvenated CCO activity in 24 month neurons. These data suggest cytochrome C and cardiolipin levels are deficient in 24 month neurons, preventing normal upregulation of respiration needed for oxidative phosphorylation in response to stress. Furthermore, the data suggest this deficit can be corrected with estrogen treatment.
Collapse
Affiliation(s)
- Torrie T Jones
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, 825 Rutledge, Springfield, IL 62702, USA.
| | | |
Collapse
|
142
|
Abstract
L-type voltage-gated Ca(2+)channels (VGCC) play an important role in dendritic development, neuronal survival, and synaptic plasticity. Recent studies have demonstrated that the gonadal steroid estrogen rapidly induces Ca(2+) influx in hippocampal neurons, which is required for neuroprotection and potentiation of LTP. The mechanism by which estrogen rapidly induces this Ca(2+) influx is not clearly understood. We show by electrophysiological studies that extremely low concentrations of estrogens acutely potentiate VGCC in hippocampal neurons, hippocampal slices, and HEK-293 cells transfected with neuronal L-type VGCC, in a manner that was estrogen receptor (ER)-independent. Equilibrium, competitive, and whole-cell binding assays indicate that estrogen directly interacts with the VGCC. Furthermore, a L-type VGCC antagonist to the dihydropyridine site displaced estrogen binding to neuronal membranes, and the effects of estrogen were markedly attenuated in a mutant, dihydropyridine-insensitive L-type VGCC, demonstrating a direct interaction of estrogens with L-type VGCC. Thus, estrogen-induced potentiation of calcium influx via L-type VGCC may link electrical events with rapid intracellular signaling seen with estrogen exposure leading to modulation of synaptic plasticity, neuroprotection, and memory formation.
Collapse
|
143
|
Gajjar D, Patel D, Alapure B, Praveen MR, Patel A, Johar K, Vasavada AR. Rapid action of oestradiol against hydrogen peroxide-induced oxidative stress in cataractous lens epithelium: an in vitro study. Eye (Lond) 2008; 23:1456-63. [DOI: 10.1038/eye.2008.284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
144
|
|
145
|
Brinton RD. The healthy cell bias of estrogen action: mitochondrial bioenergetics and neurological implications. Trends Neurosci 2008; 31:529-37. [PMID: 18774188 PMCID: PMC10124615 DOI: 10.1016/j.tins.2008.07.003] [Citation(s) in RCA: 268] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 01/18/2023]
Abstract
The 'healthy cell bias of estrogen action' hypothesis examines the role that regulating mitochondrial function and bioenergetics play in promoting neural health and the mechanistic crossroads that lead to divergent outcomes following estrogen exposure. Estrogen-induced signaling pathways in hippocampal and cortical neurons converge upon the mitochondria to enhance aerobic glycolysis coupled to the citric acid cycle, mitochondrial respiration and ATP generation. Convergence of estrogen-induced signaling onto mitochondria is also a point of vulnerability when activated in diseased neurons which exacerbates degeneration through increased load on dysregulated calcium homeostasis. As the continuum of neurological health progresses from healthy to unhealthy so too do the benefits of estrogen or hormone therapy. The healthy cell bias of estrogen action hypothesis provides a lens through which to assess disparities in outcomes across basic and clinical science and on which to predict outcomes of estrogen interventions for sustaining neurological health and preventing age-associated neurodegenerative diseases such as Alzheimer's.
Collapse
Affiliation(s)
- Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy Pharmaceutical Sciences Center, Los Angeles, CA 90033, USA.
| |
Collapse
|
146
|
Yune TY, Park HG, Lee JY, Oh TH. Estrogen-Induced Bcl-2 Expression after Spinal Cord Injury Is Mediated through Phosphoinositide-3-Kinase/Akt-Dependent CREB Activation. J Neurotrauma 2008; 25:1121-31. [DOI: 10.1089/neu.2008.0544] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Tae Y. Yune
- Age-Related and Brain Diseases Research Center, Kyunghee University, Seoul, Korea
| | - Hong G. Park
- Age-Related and Brain Diseases Research Center, Kyunghee University, Seoul, Korea
| | - Jee Y. Lee
- Age-Related and Brain Diseases Research Center, Kyunghee University, Seoul, Korea
- Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Tae H. Oh
- Age-Related and Brain Diseases Research Center, Kyunghee University, Seoul, Korea
| |
Collapse
|
147
|
Abstract
Anesthesiologists are frequently confronted with patients who are at risk for neurological complications due to perioperative stroke or prior traumatic brain injury. In this review, we address the growing and fascinating body of data that suggests gender and sex steroids influence the pathophysiology of injury and outcome for these patients. Cerebral ischemia, traumatic brain injury, and epilepsy are reviewed in the context of potential sex differences in mechanisms and outcomes of brain injury and the role of estrogen, progesterone, and androgens in shaping these processes. Lastly, implications for current and future perioperative and intensive care are identified.
Collapse
Affiliation(s)
- Kamila Vagnerova
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
148
|
Caspase inhibitor infusion protects an avian song control circuit from seasonal-like neurodegeneration. J Neurosci 2008; 28:7130-6. [PMID: 18614682 DOI: 10.1523/jneurosci.0663-08.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Sex steroids such as androgens and estrogens have trophic effects on the brain and can ameliorate neurodegeneration, and the withdrawal of circulating steroids induces neurodegeneration in several hormone-sensitive brain areas. Very little is known about the underlying molecular mechanisms that mediate neuronal regression caused by hormone-withdrawal, however. Here we show that reduction of programmed cell death by local infusion of caspase inhibitors rescues a telencephalic nucleus in the adult avian song control system from neurodegeneration that is induced by hormone withdrawal. This treatment also has trans-synaptic effects that provide some protection of an efferent target region. We found that unilateral infusion of caspase inhibitors in vivo in adult white-crowned sparrows rescued neurons within the hormone-sensitive song nucleus HVC (used as a proper name) from programmed cell death for as long as seven days after withdrawal of testosterone and a shift to short-day photoperiod and that the activation of caspase-3 was reduced by 59% on average in the ipsilateral HVC compared with the unmanipulated contralateral HVC. Caspase inhibitor infusion near HVC was sufficient to preserve neuron size ipsilaterally in a downstream nucleus, the robust nucleus of the arcopallium. This is the first report that sustained local application of caspase inhibitors can protect a telencephalic brain area from neurodegeneration in vivo and that a degenerating neural circuit rescued with caspase inhibitors produces sufficient trophic support to protect attributes of a downstream target that would otherwise degenerate. These results strengthen the case for the possible therapeutic use of caspase inhibitors under certain neurodegenerative conditions.
Collapse
|
149
|
Activation of ERbeta increases levels of phosphorylated nNOS and NO production through a Src/PI3K/Akt-dependent pathway in hypothalamic neurons. Neuropharmacology 2008; 55:878-85. [PMID: 18652836 DOI: 10.1016/j.neuropharm.2008.06.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/06/2008] [Accepted: 06/26/2008] [Indexed: 11/22/2022]
Abstract
Estrogen plays a role in restoring homeostatic balance during the stress response by altering hypothalamic function and NO production in the brain. While we know that estrogen acts on the hypothalamus to stimulate the NO system through an ERbeta-dependent mechanism in neurons, the molecular mechanisms responsible for these effects are unknown. Because phosphorylation of nNOS at Ser(1412) increases nNOS activity which leads to increased NO production, we investigated the effects of ERbeta activation on nNOS phosphorylation at Ser(1412) and NO production in primary hypothalamic neurons. Using the selective ERbeta agonist, DPN (10nM), we show that activation of ERbeta rapidly increases phosphorylation levels of nNOS at Ser(1412) and NO production. We also show that the PI3K pathway, but not the MAPK pathway, mediates the increases in levels of Ser(1412) phosphorylation and NO production induced by ERbeta activation, as the selective PI3K inhibitor, LY294002 (10microM), blocked the effects of ERbeta activation. Finally, we demonstrate that Src kinase acts upstream of the PI3K/Akt pathway based on our finding that the selective Src inhibitor, PP2 (10microM), blocked the increases in nNOS phosphorylation levels, NO production, and PI3K/Akt activity induced by ERbeta activation. Together, our results show that Src kinase mediates ERbeta-induced increases in phosphorylation levels of nNOS at Ser(1412) and NO production by activating the PI3K/Akt pathway. These findings provide novel insight into the signaling mechanisms through which E2 stimulates the NO system in hypothalamic neurons.
Collapse
|
150
|
Foster TC, Rani A, Kumar A, Cui L, Semple-Rowland SL. Viral vector-mediated delivery of estrogen receptor-alpha to the hippocampus improves spatial learning in estrogen receptor-alpha knockout mice. Mol Ther 2008; 16:1587-1593. [PMID: 18594506 DOI: 10.1038/mt.2008.140] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 03/06/2008] [Indexed: 01/01/2023] Open
Abstract
Estrogen, which influences both classical genomic and rapid membrane-associated signaling cascades, has been implicated in the regulation of hippocampal function, including spatial learning. Gene mutation studies suggest that estrogen effects are mediated by estrogen receptor-alpha (ER-alpha); however, because gonadal steroids influence the organization of the hippocampus during development, it has been difficult to distinguish developmental effects from those specific to adults. In this study we show that lentiviral delivery of the gene encoding ER-alpha to the hippocampus of adult ER-alpha-knockout (ER-alphaKO) mice restores hippocampal responsiveness to estrogen and rescues spatial learning. We propose that constitutive estrogen receptor activity is important for maintaining hippocampus-dependent memory function in adults.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610-0244, USA.
| | | | | | | | | |
Collapse
|