101
|
Sheldon AD, Kafadar E, Fisher V, Greenwald MS, Aitken F, Negreira AM, Woods SW, Powers AR. Perceptual pathways to hallucinogenesis. Schizophr Res 2022; 245:77-89. [PMID: 35216865 PMCID: PMC9232894 DOI: 10.1016/j.schres.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/22/2022]
Abstract
Recent advances in computational psychiatry have provided unique insights into the neural and cognitive underpinnings of psychotic symptoms. In particular, a host of new data has demonstrated the utility of computational frameworks for understanding how hallucinations might arise from alterations in typical perceptual processing. Of particular promise are models based in Bayesian inference that link hallucinatory perceptual experiences to latent states that may drive them. In this piece, we move beyond these findings to ask: how and why do these latent states arise, and how might we take advantage of heterogeneity in that process to develop precision approaches to the treatment of hallucinations? We leverage specific models of Bayesian inference to discuss components that might lead to the development of hallucinations. Using the unifying power of our model, we attempt to place disparate findings in the study of psychotic symptoms within a common framework. Finally, we suggest directions for future elaboration of these models in the service of a more refined psychiatric nosology based on predictable, testable, and ultimately treatable information processing derangements.
Collapse
Affiliation(s)
- Andrew D Sheldon
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Eren Kafadar
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Victoria Fisher
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Maximillian S Greenwald
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Fraser Aitken
- School of Biomedical and Imaging Sciences, Kings College, London, UK
| | | | - Scott W Woods
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Albert R Powers
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America.
| |
Collapse
|
102
|
Chen M, Qi J, Poo M, Yang Y. Stability and dynamics of dendritic spines in macaque prefrontal cortex. Natl Sci Rev 2022; 9:nwac125. [PMID: 36196248 PMCID: PMC9521340 DOI: 10.1093/nsr/nwac125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Formation and elimination of synapses reflect structural plasticity of neuronal connectivity. Here we performed high-resolution two-photon imaging of dendritic spines in the prefrontal cortex of four macaque monkeys and found that spines were in general highly stable, with low percentages undergoing synaptic turnover. By observing the same spines at weekly intervals, we found that newly formed spines were more susceptible to elimination, with only 40% persisting over a period of months. Analyses of spatial distribution of large numbers of spines revealed that spine distribution was neither uniform nor random, favoring inter-spine distances of 2–4 μm. Furthermore, spine formation and elimination occurred more often in low- and high-density dendritic segments, respectively, and preferentially within a hot zone of ∼4 μm from existing spines. Our results demonstrate long-term stability and spatially regulated spine dynamics in the macaque cortex and provide a structural basis for understanding neural circuit plasticity in the primate brain.
Collapse
|
103
|
Plooster M, Brennwald P, Gupton SL. Endosomal trafficking in schizophrenia. Curr Opin Neurobiol 2022; 74:102539. [PMID: 35405628 PMCID: PMC9167700 DOI: 10.1016/j.conb.2022.102539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/03/2022]
Abstract
Schizophrenia is a severe and heritable neuropsychiatric disorder, which arises due to a combination of common genetic variation, rare loss of function variation, and copy number variation. Functional genomic evidence has been used to identify candidate genes affected by this variation, which revealed biological pathways that may be disrupted in schizophrenia. Understanding the contributions of these pathways are critical next steps in understanding schizophrenia pathogenesis. A number of genes involved in endocytosis are implicated in schizophrenia. In this review, we explore the history of endosomal trafficking in schizophrenia and highlight new endosomal candidate genes. We explore the function of these candidate genes and hypothesize how their dysfunction may contribute to schizophrenia.
Collapse
Affiliation(s)
- Melissa Plooster
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, United States.
| | - Patrick Brennwald
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, United States
| | - Stephanie L Gupton
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
104
|
Breach MR, Dye CN, Galan A, Lenz KM. Prenatal allergic inflammation in rats programs the developmental trajectory of dendritic spine patterning in brain regions associated with cognitive and social behavior. Brain Behav Immun 2022; 102:279-291. [PMID: 35245680 PMCID: PMC9070022 DOI: 10.1016/j.bbi.2022.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/04/2022] [Accepted: 02/26/2022] [Indexed: 12/01/2022] Open
Abstract
Allergic inflammation during pregnancy increases risk for a diagnosis of neurodevelopmental disorders such as Attention Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) in the offspring. Previously, we found a model of such inflammation, allergy-induced maternal immune activation (MIA), produced symptoms analogous to those associated with neurodevelopmental disorders in rats, including reduced juvenile play behavior, hyperactivity, and cognitive inflexibility. These behaviors were preceded by perinatal changes in microglia colonization and phenotype in multiple relevant brain regions. Given the role that microglia play in synaptic patterning as well as evidence for altered synaptic architecture in neurodevelopmental disorders, we investigated whether allergic MIA altered the dynamics of dendritic spine patterning throughout key regions of the rat forebrain across neurodevelopment. Adult virgin female rats were sensitized to the allergen, ovalbumin, with alum adjuvant, bred, and allergically challenged on gestational day 15. Brain tissue was collected from male and female offspring on postnatal days (P) 5, 15, 30, and 100-120 and processed for Golgi-Cox staining. Mean dendritic spine density was calculated for neurons in brain regions associated with cognition and social behavior, including the medial prefrontal cortex (mPFC), basal ganglia, septum, nucleus accumbens (NAc), and amygdala. Allergic MIA reduced dendritic spine density in the neonatal (P5) and juvenile (P15) mPFC, but these mPFC spine deficits were normalized by P30. Allergic inflammation reduced spine density in the septum of juvenile (P30) rats, with an interaction suggesting increased density in males and reduced density in females. MIA-induced reductions in spine density were also found in the female basal ganglia at P15, as well as in the NAc at P30. Conversely, MIA-induced increases were found in the NAc in adulthood. While amygdala dendritic spine density was generally unaffected throughout development, MIA reduced density in both medial and basolateral subregions in adult offspring. Correlational analyses revealed disruption to amygdala-related networks in the neonatal animals and cortico-striatal related networks in juvenile and adult animals in a sex-specific manner. Collectively, these data suggest that communication within and between these cognitive and social brain regions may be altered dynamically throughout development after prenatal exposure to allergic inflammation. They also provide a basis for future intervention studies targeted at rescuing spine and behavior changes via immunomodulatory treatments.
Collapse
Affiliation(s)
- Michaela R. Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Courtney N. Dye
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Anabel Galan
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M. Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
105
|
Park DK, Petshow S, Anisimova M, Barragan EV, Gray JA, Stein IS, Zito K. Reduced d-serine levels drive enhanced non-ionotropic NMDA receptor signaling and destabilization of dendritic spines in a mouse model for studying schizophrenia. Neurobiol Dis 2022; 170:105772. [PMID: 35605760 PMCID: PMC9352378 DOI: 10.1016/j.nbd.2022.105772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 10/31/2022] Open
Abstract
Schizophrenia is a psychiatric disorder that affects over 20 million people globally. Notably, schizophrenia is associated with decreased density of dendritic spines and decreased levels of d-serine, a co-agonist required for opening of the N-methyl-d-aspartate receptor (NMDAR). We hypothesized that lowered d-serine levels associated with schizophrenia would enhance ion flux-independent signaling by the NMDAR, driving destabilization and loss of dendritic spines. We tested our hypothesis using the serine racemase knockout (SRKO) mouse model, which lacks the enzyme for d-serine production. We show that activity-dependent spine growth is impaired in SRKO mice, but can be acutely rescued by exogenous d-serine. Moreover, we find a significant bias of synaptic plasticity toward spine shrinkage in the SRKO mice as compared to wild-type littermates. Notably, we demonstrate that enhanced ion flux-independent signaling through the NMDAR contributes to this bias toward spine destabilization, which is exacerbated by an increase in synaptic NMDARs in hippocampal synapses of SRKO mice. Our results support a model in which lowered d-serine levels associated with schizophrenia enhance ion flux-independent NMDAR signaling and bias toward spine shrinkage and destabilization.
Collapse
|
106
|
Li S, Li J, Liu J, Wang J, Li X, Huo Y, Li Y, Liu Y, Li M, Xiao X, Luo XJ. Regulatory variants at 2q33.1 confer schizophrenia risk by modulating distal gene TYW5 expression. Brain 2022; 145:770-786. [PMID: 34581804 PMCID: PMC9014752 DOI: 10.1093/brain/awab357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Genome-wide association studies have shown that genetic variants at 2q33.1 are strongly associated with schizophrenia. However, potential causal variants in this locus and their roles in schizophrenia remain unknown. Here, we identified two functional variants (rs796364 and rs281759) that disrupt CTCF, RAD21 and FOXP2 binding at 2q33.1. We systematically investigated the regulatory mechanisms of these two variants with serial experiments, including reporter gene assays and electrophoretic mobility shift assay. Intriguingly, these two single nucleotide polymorphisms physically interacted with TYW5 and showed the most significant associations with TYW5 expression in human brain. Consistently, CRISPR-Cas9-mediated genome editing confirmed the regulatory effect of the two single nucleotide polymorphisms on TYW5 expression. Additionally, expression analysis indicated that TYW5 was significantly upregulated in brains of schizophrenia cases compared with controls, suggesting that rs796364 and rs281759 might confer schizophrenia risk by modulating TYW5 expression. We over-expressed TYW5 in mouse neural stem cells and rat primary neurons to mimic its upregulation in schizophrenia and found significant alterations in the proliferation and differentiation of neural stem cells, as well as dendritic spine density following TYW5 overexpression, indicating its important roles in neurodevelopment and spine morphogenesis. Furthermore, we independently confirmed the association between rs796364 and schizophrenia in a Chinese cohort of 8202 subjects. Finally, transcriptome analysis revealed that TYW5 affected schizophrenia-associated pathways. These lines of evidence consistently revealed that rs796364 and rs281759 might contribute to schizophrenia risk by regulating the expression of TYW5, a gene whose expression dysregulation affects two important schizophrenia pathophysiological processes (i.e. neurodevelopment and dendritic spine formation).
Collapse
Affiliation(s)
- Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Junyang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yongxia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yifan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yixing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
107
|
Computational synthesis of cortical dendritic morphologies. Cell Rep 2022; 39:110586. [PMID: 35385736 DOI: 10.1016/j.celrep.2022.110586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/22/2021] [Accepted: 03/08/2022] [Indexed: 12/30/2022] Open
Abstract
Neuronal morphologies provide the foundation for the electrical behavior of neurons, the connectomes they form, and the dynamical properties of the brain. Comprehensive neuron models are essential for defining cell types, discerning their functional roles, and investigating brain-disease-related dendritic alterations. However, a lack of understanding of the principles underlying neuron morphologies has hindered attempts to computationally synthesize morphologies for decades. We introduce a synthesis algorithm based on a topological descriptor of neurons, which enables the rapid digital reconstruction of entire brain regions from few reference cells. This topology-guided synthesis generates dendrites that are statistically similar to biological reconstructions in terms of morpho-electrical and connectivity properties and offers a significant opportunity to investigate the links between neuronal morphology and brain function across different spatiotemporal scales. Synthesized cortical networks based on structurally altered dendrites associated with diverse brain pathologies revealed principles linking branching properties to the structure of large-scale networks.
Collapse
|
108
|
Kietzman HW, Shapiro LP, Trinoskey-Rice G, Gourley SL. Cell adhesion presence during adolescence controls the architecture of projection-defined prefrontal cortical neurons and reward-related action strategies later in life. Dev Cogn Neurosci 2022; 54:101097. [PMID: 35325840 PMCID: PMC8938620 DOI: 10.1016/j.dcn.2022.101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 01/17/2023] Open
Abstract
Adolescent brain development is characterized by neuronal remodeling in the prefrontal cortex; relationships with behavior are largely undefined. Integrins are cell adhesion factors that link the extracellular matrix with intracellular actin cytoskeleton. We find that β1-integrin presence in the prelimbic prefrontal cortex (PL) during adolescence, but not adulthood, is necessary for mice to select actions based on reward likelihood and value. As such, adult mice that lacked β1-integrin during adolescence failed to modify response strategies when rewards lost value or failed to be delivered. This pattern suggests that β1-integrin-mediated neuronal development is necessary for PL function in adulthood. We next visualized adolescent PL neurons, including those receiving input from the basolateral amygdala (BLA) - thought to signal salience - and projecting to the dorsomedial striatum (DMS) - the striatal output by which the PL controls goal-seeking behavior. Firstly, we found that these projection-defined neurons had a distinct morphology relative to general layer V PL neurons. Secondly, β1-integrin loss triggered the overexpression of stubby-type dendritic spines at the expense of mature spines, including on projection-defined neurons. This phenotype was not observed when β1-integrins were silenced before or after adolescence. Altogether, our experiments localize β1-integrin-mediated cell adhesion within a developing di-synaptic circuit coordinating adaptive action.
Collapse
Affiliation(s)
- Henry W Kietzman
- Medical Scientist Training Program, Emory University School of Medicine, United States; Departments of Pediatrics and Psychiatry, Emory University School of Medicine, United States; Graduate Program in Neuroscience, Emory University, United States; Yerkes National Primate Research Center, Emory University, United States
| | - Lauren P Shapiro
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, United States; Yerkes National Primate Research Center, Emory University, United States; Graduate Program in Molecular and Systems Pharmacology, Emory University, United States
| | - Gracy Trinoskey-Rice
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, United States; Yerkes National Primate Research Center, Emory University, United States
| | - Shannon L Gourley
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, United States; Graduate Program in Neuroscience, Emory University, United States; Yerkes National Primate Research Center, Emory University, United States; Graduate Program in Molecular and Systems Pharmacology, Emory University, United States; Children's Healthcare of Atlanta, United States.
| |
Collapse
|
109
|
Li W, Lv L, Luo XJ. In vivo study sheds new light on the dendritic spine pathology hypothesis of schizophrenia. Mol Psychiatry 2022; 27:1866-1868. [PMID: 35079121 DOI: 10.1038/s41380-022-01449-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China.,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, 453002, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China.,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, 453002, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
| |
Collapse
|
110
|
Dion-Albert L, Bandeira Binder L, Daigle B, Hong-Minh A, Lebel M, Menard C. Sex differences in the blood-brain barrier: Implications for mental health. Front Neuroendocrinol 2022; 65:100989. [PMID: 35271863 DOI: 10.1016/j.yfrne.2022.100989] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Prevalence of mental disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ) are increasing at alarming rates in our societies. Growing evidence points toward major sex differences in these conditions, and high rates of treatment resistance support the need to consider novel biological mechanisms outside of neuronal function to gain mechanistic insights that could lead to innovative therapies. Blood-brain barrier alterations have been reported in MDD, BD and SZ. Here, we provide an overview of sex-specific immune, endocrine, vascular and transcriptional-mediated changes that could affect neurovascular integrity and possibly contribute to the pathogenesis of mental disorders. We also identify pitfalls in current literature and highlight promising vascular biomarkers. Better understanding of how these adaptations can contribute to mental health status is essential not only in the context of MDD, BD and SZ but also cardiovascular diseases and stroke which are associated with higher prevalence of these conditions.
Collapse
Affiliation(s)
- Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Luisa Bandeira Binder
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Beatrice Daigle
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Amandine Hong-Minh
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada.
| |
Collapse
|
111
|
Abstract
OBJECTIVE Cognitive impairments in schizophrenia are associated with lower gamma oscillation power in the prefrontal cortex (PFC). Gamma power depends in part on excitatory drive to fast-spiking parvalbumin interneurons (PVIs). Excitatory drive to cortical neurons varies in strength, which could affect how these neurons regulate network oscillations. The authors investigated whether variability in excitatory synaptic strength across PVIs could contribute to lower prefrontal gamma power in schizophrenia. METHODS In postmortem PFC from 20 matched pairs of comparison and schizophrenia subjects, levels of vesicular glutamate transporter 1 (VGlut1) and postsynaptic density 95 (PSD95) proteins were quantified to assess variability in excitatory synaptic strength across PVIs. A computational model network was then used to simulate how variability in excitatory synaptic strength across fast-spiking (a defining feature of PVIs) interneurons (FSIs) regulates gamma power. RESULTS The variability of VGlut1 and PSD95 levels at excitatory inputs across PVIs was larger in schizophrenia relative to comparison subjects. This alteration was not influenced by schizophrenia-associated comorbid factors, was not present in monkeys chronically exposed to antipsychotic medications, and was not present in calretinin interneurons. In the model network, variability in excitatory synaptic strength across FSIs regulated gamma power by affecting network synchrony. Finally, greater synaptic variability interacted synergistically with other synaptic alterations in schizophrenia (i.e., fewer excitatory inputs to FSIs and lower inhibitory strength from FSIs) to robustly reduce gamma power. CONCLUSIONS The study findings suggest that greater variability in excitatory synaptic strength across PVIs, in combination with other modest synaptic alterations in these neurons, can markedly lower PFC gamma power in schizophrenia.
Collapse
Affiliation(s)
- Daniel W Chung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh
| | - Matthew A Geramita
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh
| |
Collapse
|
112
|
Abplanalp SJ, Green MF. Symptom Structure in Schizophrenia: Implications of Latent Variable Modeling vs Network Analysis. Schizophr Bull 2022; 48:538-543. [PMID: 35243503 PMCID: PMC9077428 DOI: 10.1093/schbul/sbac020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The structure of schizophrenia symptoms has a substantial impact on the development of pharmacological and psychosocial interventions. Typically, reflective latent variable models (eg, confirmatory factor analysis) or formative latent variable models (eg, principal component analysis) have been used to examine the structure of schizophrenia symptoms. More recently, network analysis is appearing as a method to examine symptom structure. However, latent variable modeling and network analysis results can lead to different inferences about the nature of symptoms. Given the critical role of correctly identifying symptom structure in schizophrenia treatment and research, we present an introduction to latent variable modeling and network analysis, along with their distinctions and implications for examining the structure of schizophrenia symptoms. We also provide a simulation demonstration highlighting the statistical equivalence between these models and the subsequent importance of an a priori rationale that should help guide model selection.
Collapse
Affiliation(s)
- Samuel J Abplanalp
- To whom correspondence should be addressed; VA Greater Los Angeles Healthcare System, MIRECC 210A, Bldg. 210, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA; tel: 317-445-5810, e-mail:
| | - Michael F Green
- Desert Pacific Mental Illness Research, Education and Clinical Center, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
113
|
Acute sleep deprivation upregulates serotonin 2A receptors in the frontal cortex of mice via the immediate early gene Egr3. Mol Psychiatry 2022; 27:1599-1610. [PMID: 35001075 PMCID: PMC9210263 DOI: 10.1038/s41380-021-01390-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/27/2021] [Accepted: 11/12/2021] [Indexed: 01/07/2023]
Abstract
Serotonin 2A receptors (5-HT2ARs) mediate the hallucinogenic effects of psychedelic drugs and are a key target of the leading class of medications used to treat psychotic disorders. These findings suggest that dysfunction of 5-HT2ARs may contribute to the symptoms of schizophrenia, a mental illness characterized by perceptual and cognitive disturbances. Indeed, numerous studies have found that 5-HT2ARs are reduced in the brains of individuals with schizophrenia. However, the mechanisms that regulate 5-HT2AR expression remain poorly understood. Here, we show that a physiologic environmental stimulus, sleep deprivation, significantly upregulates 5-HT2AR levels in the mouse frontal cortex in as little as 6-8 h (for mRNA and protein, respectively). This induction requires the activity-dependent immediate early gene transcription factor early growth response 3 (Egr3) as it does not occur in Egr3 deficient (-/-) mice. Using chromatin immunoprecipitation, we show that EGR3 protein binds to the promoter of Htr2a, the gene that encodes the 5-HT2AR, in the frontal cortex in vivo, and drives expression of in vitro reporter constructs via two EGR3 binding sites in the Htr2a promoter. These results suggest that EGR3 directly regulates Htr2a expression, and 5-HT2AR levels, in the frontal cortex in response to physiologic stimuli. Analysis of publicly available post-mortem gene expression data revealed that both EGR3 and HTR2A mRNA are reduced in the prefrontal cortex of schizophrenia patients compared to controls. Together these findings suggest a mechanism by which environmental stimuli alter levels of a brain receptor that may mediate the symptoms, and treatment, of mental illness.
Collapse
|
114
|
Molinard-Chenu A, Godel M, Rey A, Musardo S, Bodogan T, Vutskits L, Bellone C, Dayer A. Down-regulation of the schizophrenia risk-gene Dgcr2 alters early microcircuit development in the mouse medial prefrontal cortex. Int J Dev Neurosci 2022; 82:277-285. [PMID: 35212007 PMCID: PMC9313615 DOI: 10.1002/jdn.10175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in the generation, migration and integration of different subtypes of neurons in the medial prefrontal cortex (mPFC) microcircuit could play an important role in vulnerability to schizophrenia. Using in vivo cell‐type specific manipulation of pyramidal neurons (PNs) progenitors, we aim to investigate the role of the schizophrenia risk‐gene DiGeorge Critical Region 2 (Dgcr2) on cortical circuit formation in the mPFC of developing mice. This report describes how Dgcr2 knock down in upper‐layer PNs impacts the functional maturation of PNs and interneurons (INs) in the mPFC. First, we demonstrate that Dgcr2 knock‐down disrupts laminar positioning, dendritic morphology and excitatory activity of upper‐layer PNs. Interestingly, inhibitory activity is also modified in Dgcr2 knock‐down PNs, suggesting a broader microcircuit alteration involving interneurons. Further analyses show that the histological maturation of parvalbumin (PV) INs is not dramatically impaired, thus implying that other INs subtypes might be at play in the reported microcircuit alteration. Overall, this study unravels how local functional deficits of the early postnatal development of the mPFC can be induced by Dgcr2 knock‐down in PNs.
Collapse
Affiliation(s)
- Aude Molinard-Chenu
- Department of Psychiatry, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Michel Godel
- Department of Psychiatry, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Alicia Rey
- Department of Psychiatry, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Stefano Musardo
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Timea Bodogan
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Laszlo Vutskits
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva 4, Switzerland
| | - Camilla Bellone
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Alexandre Dayer
- Department of Psychiatry, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| |
Collapse
|
115
|
Hribkova H, Svoboda O, Bartecku E, Zelinkova J, Horinkova J, Lacinova L, Piskacek M, Lipovy B, Provaznik I, Glover JC, Kasparek T, Sun YM. Clozapine Reverses Dysfunction of Glutamatergic Neurons Derived From Clozapine-Responsive Schizophrenia Patients. Front Cell Neurosci 2022; 16:830757. [PMID: 35281293 PMCID: PMC8904748 DOI: 10.3389/fncel.2022.830757] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
The cellular pathology of schizophrenia and the potential of antipsychotics to target underlying neuronal dysfunctions are still largely unknown. We employed glutamatergic neurons derived from induced pluripotent stem cells (iPSC) obtained from schizophrenia patients with known histories of response to clozapine and healthy controls to decipher the mechanisms of action of clozapine, spanning from molecular (transcriptomic profiling) and cellular (electrophysiology) levels to observed clinical effects in living patients. Glutamatergic neurons derived from schizophrenia patients exhibited deficits in intrinsic electrophysiological properties, synaptic function and network activity. Deficits in K+ and Na+ currents, network behavior, and glutamatergic synaptic signaling were restored by clozapine treatment, but only in neurons from clozapine-responsive patients. Moreover, neurons from clozapine-responsive patients exhibited a reciprocal dysregulation of gene expression, particularly related to glutamatergic and downstream signaling, which was reversed by clozapine treatment. Only neurons from clozapine responders showed return to normal function and transcriptomic profile. Our results underscore the importance of K+ and Na+ channels and glutamatergic synaptic signaling in the pathogenesis of schizophrenia and demonstrate that clozapine might act by normalizing perturbances in this signaling pathway. To our knowledge this is the first study to demonstrate that schizophrenia iPSC-derived neurons exhibit a response phenotype correlated with clinical response to an antipsychotic. This opens a new avenue in the search for an effective treatment agent tailored to the needs of individual patients.
Collapse
Affiliation(s)
- Hana Hribkova
- Department of Biology, Masaryk University, Brno, Czechia
| | - Ondrej Svoboda
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Elis Bartecku
- Department of Psychiatry, Faculty of Medicine and University Hospital Brno, Brno, Czechia
| | - Jana Zelinkova
- Department of Biology, Masaryk University, Brno, Czechia
| | - Jana Horinkova
- Department of Psychiatry, Faculty of Medicine and University Hospital Brno, Brno, Czechia
| | - Lubica Lacinova
- Center of Bioscience, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Piskacek
- Department of Pathological Physiology, Masaryk University, Brno, Czechia
| | - Bretislav Lipovy
- Department of Burns and Plastic Surgery, Faculty of Medicine and University Hospital Brno, Brno, Czechia
| | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Joel C. Glover
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Tomas Kasparek
- Department of Psychiatry, Faculty of Medicine and University Hospital Brno, Brno, Czechia
- *Correspondence: Tomas Kasparek,
| | - Yuh-Man Sun
- Department of Biology, Masaryk University, Brno, Czechia
| |
Collapse
|
116
|
Sarkar T, Patro N, Patro IK. Perinatal exposure to synergistic multiple stressors lead to cellular and behavioral deficits mimicking Schizophrenia like pathology. Biol Open 2022; 11:274201. [PMID: 35107124 PMCID: PMC8918990 DOI: 10.1242/bio.058870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
Protein malnourishment and immune stress are potent perinatal stressors, encountered by children born under poor socioeconomic conditions. Thus, it is necessary to investigate how such stressors synergistically contribute towards developing neurological disorders in affected individuals. Pups from Wistar females, maintained on normal (high-protein, HP:20%) and low-protein (LP:8%) diets were used. Single and combined exposures of Poly I:C (viral mimetic: 5 mg/kg body weight) and Lipopolysaccharide (LPS; bacterial endotoxin: 0.3 mg/kg body weight) were injected to both HP and LP pups at postnatal days (PND) 3 and 9 respectively, creating eight groups: HP (control); HP+Poly I:C; HP+LPS; HP+Poly I:C+LPS; LP; LP+Poly I:C; LP+LPS; LP+Poly I:C+LPS (multi-hit). The effects of stressors on hippocampal cytoarchitecture and behavioral abilities were studied at PND 180. LP animals were found to be more vulnerable to immune stressors than HP animals and symptoms like neuronal damage, spine loss, downregulation of Egr 1 and Arc proteins, gliosis and behavioral deficits were maximum in the multi-hit group. Thus, from these findings it is outlined that cellular and behavioral changes that occur following multi-hit exposure may predispose individuals to developing Schizophrenia-like pathologies during adulthood. Summary: This study reports that exposure to perinatal multi-hit stress (protein malnourishment and immune stress) causes changes in the hippocampal cells alongside behavioral deficits which are also observed in Schizophrenic condition.
Collapse
Affiliation(s)
- Tiyasha Sarkar
- School of Studies in Neuroscience, Jiwaji University, Gwalior-474011, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior-474011, India
| | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior-474011, India
| |
Collapse
|
117
|
Li Y, Ma C, Li S, Wang J, Li W, Yang Y, Li X, Liu J, Yang J, Liu Y, Li K, Li J, Huang D, Chen R, Lv L, Xiao X, Li M, Luo X. Regulatory Variant rs2535629 in ITIH3 Intron Confers Schizophrenia Risk By Regulating CTCF Binding and SFMBT1 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104786. [PMID: 34978167 PMCID: PMC8867204 DOI: 10.1002/advs.202104786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies have identified 3p21.1 as a robust risk locus for schizophrenia. However, the underlying molecular mechanisms remain elusive. Here a functional regulatory variant (rs2535629) is identified that disrupts CTCF binding at 3p21.1. It is confirmed that rs2535629 is also significantly associated with schizophrenia in Chinese population and the regulatory effect of rs2535629 is validated. Expression quantitative trait loci analysis indicates that rs2535629 is associated with the expression of three distal genes (GLT8D1, SFMBT1, and NEK4) in the human brain, and CRISPR-Cas9-mediated genome editing confirmed the regulatory effect of rs2535629 on GLT8D1, SFMBT1, and NEK4. Interestingly, differential expression analysis of GLT8D1, SFMBT1, and NEK4 suggested that rs2535629 may confer schizophrenia risk by regulating SFMBT1 expression. It is further demonstrated that Sfmbt1 regulates neurodevelopment and dendritic spine density, two key pathological characteristics of schizophrenia. Transcriptome analysis also support the potential role of Sfmbt1 in schizophrenia pathogenesis. The study identifies rs2535629 as a plausibly causal regulatory variant at the 3p21.1 risk locus and demonstrates the regulatory mechanism and biological effect of this functional variant, indicating that this functional variant confers schizophrenia risk by altering CTCF binding and regulating expression of SFMBT1, a distal gene which plays important roles in neurodevelopment and synaptic morphogenesis.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Changguo Ma
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research CenterKunming UniversityKunmingYunnan650214China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Junyang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Wenqiang Li
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453002China
- Henan Key Lab of Biological PsychiatryInternational Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangHenan453002China
| | - Yongfeng Yang
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453002China
- Henan Key Lab of Biological PsychiatryInternational Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangHenan453002China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of EducationInstitutes of Physical Science and Information TechnologyAnhui UniversityHefeiAnhui230601China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Jinfeng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Yixing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Kaiqin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Jiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Di Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Rui Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Luxian Lv
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453002China
- Henan Key Lab of Biological PsychiatryInternational Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangHenan453002China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Xiong‐Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingYunnan650204China
- KIZ‐CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| |
Collapse
|
118
|
Analysis of mRNA and Protein Levels of CAP2, DLG1 and ADAM10 Genes in Post-Mortem Brain of Schizophrenia, Parkinson's and Alzheimer's Disease Patients. Int J Mol Sci 2022; 23:ijms23031539. [PMID: 35163460 PMCID: PMC8835961 DOI: 10.3390/ijms23031539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia (SCZ) is a mental illness characterized by aberrant synaptic plasticity and connectivity. A large bulk of evidence suggests genetic and functional links between postsynaptic abnormalities and SCZ. Here, we performed quantitative PCR and Western blotting analysis in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of SCZ patients to investigate the mRNA and protein expression of three key spine shapers: the actin-binding protein cyclase-associated protein 2 (CAP2), the sheddase a disintegrin and metalloproteinase 10 (ADAM10), and the synapse-associated protein 97 (SAP97). Our analysis of the SCZ post-mortem brain indicated increased DLG1 mRNA in DLPFC and decreased CAP2 mRNA in the hippocampus of SCZ patients, compared to non-psychiatric control subjects, while the ADAM10 transcript was unaffected. Conversely, no differences in CAP2, SAP97, and ADAM10 protein levels were detected between SCZ and control individuals in both brain regions. To assess whether DLG1 and CAP2 transcript alterations were selective for SCZ, we also measured their expression in the superior frontal gyrus of patients affected by neurodegenerative disorders, like Parkinson’s and Alzheimer’s disease. Interestingly, also in Parkinson’s disease patients, we found a selective reduction of CAP2 mRNA levels relative to controls but unaltered protein levels. Taken together, we reported for the first time altered CAP2 expression in the brain of patients with psychiatric and neurological disorders, thus suggesting that aberrant expression of this gene may contribute to synaptic dysfunction in these neuropathologies.
Collapse
|
119
|
Zick JL, Crowe DA, Blackman RK, Schultz K, Bergstrand DW, DeNicola AL, Carter RE, Ebner TJ, Lanier LM, Netoff TI, Chafee MV. Disparate insults relevant to schizophrenia converge on impaired spike synchrony and weaker synaptic interactions in prefrontal local circuits. Curr Biol 2022; 32:14-25.e4. [PMID: 34678162 PMCID: PMC10038008 DOI: 10.1016/j.cub.2021.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 08/25/2021] [Accepted: 10/05/2021] [Indexed: 01/29/2023]
Abstract
Schizophrenia results from hundreds of known causes, including genetic, environmental, and developmental insults that cooperatively increase risk of developing the disease. In spite of the diversity of causal factors, schizophrenia presents with a core set of symptoms and brain abnormalities (both structural and functional) that particularly impact the prefrontal cortex. This suggests that many different causal factors leading to schizophrenia may cause prefrontal neurons and circuits to fail in fundamentally similar ways. The nature of convergent malfunctions in prefrontal circuits at the cell and synaptic levels leading to schizophrenia are not known. Here, we apply convergence-guided search to identify core pathological changes in the functional properties of prefrontal circuits that lie downstream of mechanistically distinct insults relevant to the disease. We compare the impacts of blocking NMDA receptors in monkeys and deleting a schizophrenia risk gene in mice on activity timing and effective communication in prefrontal local circuits. Although these manipulations operate through distinct molecular pathways and biological mechanisms, we found they produced convergent pathophysiological effects on prefrontal local circuits. Both manipulations reduced the frequency of synchronous (0-lag) spiking between prefrontal neurons and weakened functional interactions between prefrontal neurons at monosynaptic lags as measured by information transfer between the neurons. The two observations may be related, as reduction in synchronous spiking between prefrontal neurons would be expected to weaken synaptic connections between them via spike-timing-dependent synaptic plasticity. These data suggest that the link between spike timing and synaptic connectivity could comprise the functional vulnerability that multiple risk factors exploit to produce disease.
Collapse
Affiliation(s)
- Jennifer L Zick
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Crowe
- Department of Biology, Augsburg University, Minneapolis, MN 55454, USA
| | - Rachael K Blackman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, MN 55455, USA
| | - Kelsey Schultz
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Adele L DeNicola
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lorene M Lanier
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Theoden I Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew V Chafee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Brain Sciences Center, VA Medical Center, Minneapolis, MN 55417, USA.
| |
Collapse
|
120
|
Thalamic dopamine D2-receptor availability in schizophrenia: a study on antipsychotic-naive patients with first-episode psychosis and a meta-analysis. Mol Psychiatry 2022; 27:1233-1240. [PMID: 34759359 PMCID: PMC9054658 DOI: 10.1038/s41380-021-01349-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Pharmacological and genetic evidence support a role for an involvement of the dopamine D2-receptor (D2-R) in the pathophysiology of schizophrenia. Previous molecular imaging studies have suggested lower levels of D2-R in thalamus, but results are inconclusive. The objective of the present study was to use improved methodology to compare D2-R density in whole thalamus and thalamic subregions between first-episode psychosis patients and healthy controls. Differences in thalamocortical connectivity was explored based on the D2-R results. 19 antipsychotic-naive first-episode psychosis patients and 19 age- and sex-matched healthy controls were examined using high-resolution Positron Emission Tomography (PET) and the high-affinity D2-R radioligand [11C]FLB457. The main outcome was D2-R binding potential (BPND) in thalamus, and it was predicted that patients would have lower binding. Diffusion tensor imaging (DTI) was performed in a subgroup of 11 patients and 15 controls. D2-R binding in whole thalamus was lower in patients compared with controls (Cohen's dz = -0.479, p = 0.026, Bayes Factor (BF) > 4). Among subregions, lower BPND was observed in the ROI representing thalamic connectivity to the frontal cortex (Cohen's dz = -0.527, p = 0.017, BF > 6). A meta-analysis, including the sample of this study, confirmed significantly lower thalamic D2-R availability in patients. Exploratory analyses suggested that patients had lower fractional anisotropy values compared with controls (Cohen's d = -0.692, p = 0.036) in the inferior thalamic radiation. The findings support the hypothesis of a dysregulation of thalamic dopaminergic neurotransmission in schizophrenia, and it is hypothesized that this could underlie a disturbance of thalamocortical connectivity.
Collapse
|
121
|
Yan Z, Rein B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications. Mol Psychiatry 2022; 27:445-465. [PMID: 33875802 PMCID: PMC8523584 DOI: 10.1038/s41380-021-01092-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/13/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
The prefrontal cortex (PFC) serves as the chief executive officer of the brain, controlling the highest level cognitive and emotional processes. Its local circuits among glutamatergic principal neurons and GABAergic interneurons, as well as its long-range connections with other brain regions, have been functionally linked to specific behaviors, ranging from working memory to reward seeking. The efficacy of synaptic signaling in the PFC network is profundedly influenced by monoaminergic inputs via the activation of dopamine, adrenergic, or serotonin receptors. Stress hormones and neuropeptides also exert complex effects on the synaptic structure and function of PFC neurons. Dysregulation of PFC synaptic transmission is strongly linked to social deficits, affective disturbance, and memory loss in brain disorders, including autism, schizophrenia, depression, and Alzheimer's disease. Critical neural circuits, biological pathways, and molecular players that go awry in these mental illnesses have been revealed by integrated electrophysiological, optogenetic, biochemical, and transcriptomic studies of PFC. Novel epigenetic mechanism-based strategies are proposed as potential avenues of therapeutic intervention for PFC-involved diseases. This review provides an overview of PFC network organization and synaptic modulation, as well as the mechanisms linking PFC dysfunction to the pathophysiology of neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. Insights from the preclinical studies offer the potential for discovering new medical treatments for human patients with these brain disorders.
Collapse
Affiliation(s)
- Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | | |
Collapse
|
122
|
Nobukawa S, Wagatsuma N, Ikeda T, Hasegawa C, Kikuchi M, Takahashi T. Effect of steady-state response versus excitatory/inhibitory balance on spiking synchronization in neural networks with log-normal synaptic weight distribution. Cogn Neurodyn 2021; 16:871-885. [PMID: 35847535 PMCID: PMC9279535 DOI: 10.1007/s11571-021-09757-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 01/18/2023] Open
Abstract
AbstractSynchronization of neural activity, especially at the gamma band, contributes to perceptual functions. In several psychiatric disorders, deficits of perceptual functions are reflected in synchronization abnormalities. Plausible cause of this impairment is an alteration in the balance between excitation and inhibition (E/I balance); a disruption in the E/I balance leads to abnormal neural interactions reminiscent of pathological states. Moreover, the local lateral excitatory-excitatory synaptic connections in the cortex exhibit excitatory postsynaptic potentials (EPSPs) that follow a log-normal amplitude distribution. This long-tailed distribution is considered an important factor for the emergence of spatiotemporal neural activity. In this context, we hypothesized that manipulating the EPSP distribution under abnormal E/I balance conditions would provide insights into psychiatric disorders characterized by deficits in perceptual functions, potentially revealing the mechanisms underlying pathological neural behaviors. In this study, we evaluated the synchronization of neural activity with external periodic stimuli in spiking neural networks in cases of both E/I balance and imbalance with or without a long-tailed EPSP amplitude distribution. The results showed that external stimuli of a high frequency lead to a decrease in the degree of synchronization with an increasing ratio of excitatory to inhibitory neurons in the presence, but not in the absence, of high-amplitude EPSPs. This monotonic reduction can be interpreted as an autonomous, strong-EPSP-dependent spiking activity selectively interfering with the responses to external stimuli. This observation is consistent with pathological findings. Thus, our modeling approach has potential to improve the understanding of the steady-state response in both healthy and pathological states.
Collapse
Affiliation(s)
- Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, 2–17–1 Tsudanuma, Narashino, Chiba 275–0016 Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551 Japan
| | - Nobuhiko Wagatsuma
- Faculty of Science, Department of Information Science, Toho University, Chiba, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Department of Psychiatry and Behavioral Science, Kanazawa University, Kanazawa, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Neuropsychiatry, University of Fukui, Yoshida, Japan
- Uozu Shinkei Sanatorium, Toyama, Japan
| |
Collapse
|
123
|
Li Y, Li S, Liu J, Huo Y, Luo XJ. The schizophrenia susceptibility gene NAGA regulates dendritic spine density: further evidence for the dendritic spine pathology of schizophrenia. Mol Psychiatry 2021; 26:7102-7104. [PMID: 34376824 DOI: 10.1038/s41380-021-01261-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Yifan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yongxia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
124
|
Andreou D, Jørgensen KN, Nerland S, Smelror RE, Wedervang-Resell K, Johannessen CH, Myhre AM, Andreassen OA, Blennow K, Zetterberg H, Agartz I. Lower plasma total tau in adolescent psychosis: Involvement of the orbitofrontal cortex. J Psychiatr Res 2021; 144:255-261. [PMID: 34700214 DOI: 10.1016/j.jpsychires.2021.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Schizophrenia is thought to be a neurodevelopmental disorder with neuronal migration, differentiation and maturation disturbances. Tau is a microtubule-associated protein with a crucial role in these processes. Lower circulating tau levels have been reported in adults with schizophrenia, but this association has not been investigated in adolescent psychosis. We aimed to test the hypotheses that a) adolescents with early-onset psychosis (EOP; age of onset <18 years) display lower plasma tau concentrations compared to healthy controls, and b) among patients with psychosis, tau levels are linked to structural brain measures associated with the microtubule-associated tau (MAPT) gene and psychosis. We included 37 adolescent patients with EOP (mean age 16.4 years) and 59 adolescent healthy controls (mean age 16.2 years). We investigated putative patient-control differences in plasma total tau concentrations measured by a Single molecule array (Simoa) immunoassay. We explored the correlations between tau and selected structural brain measures based on T1-weighted MRI scans processed in FreeSurfer v6.0. We found significantly lower plasma tau concentrations in patients compared to healthy controls (p = 0.017, partial eta-squared = 0.061). Tau was not associated with antipsychotic use or the antipsychotic dosage. Among patients but not healthy controls, tau levels were positively correlated with the cortical orbitofrontal surface area (p = 0.013, R-squared = 0.24). The results are suggestive of a tau-related neurodevelopmental disturbance in adolescent psychosis.
Collapse
Affiliation(s)
- Dimitrios Andreou
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden.
| | - Kjetil Nordbø Jørgensen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Stener Nerland
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Runar Elle Smelror
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Kirsten Wedervang-Resell
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Child and Adolescent Mental Health Research Unit, Department of Research and Innovation, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Cecilie Haggag Johannessen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Margrethe Myhre
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Research and Innovation, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
125
|
Plooster M, Rossi G, Farrell MS, McAfee JC, Bell JL, Ye M, Diering GH, Won H, Gupton SL, Brennwald P. Schizophrenia-Linked Protein tSNARE1 Regulates Endosomal Trafficking in Cortical Neurons. J Neurosci 2021; 41:9466-9481. [PMID: 34642214 PMCID: PMC8580139 DOI: 10.1523/jneurosci.0556-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
TSNARE1, which encodes the protein tSNARE1, is a high-confidence gene candidate for schizophrenia risk, but nothing is known about its cellular or physiological function. We identified the major gene products of TSNARE1 and their cytoplasmic localization and function in endosomal trafficking in cortical neurons. We validated three primary isoforms of TSNARE1 expressed in human brain, all of which encode a syntaxin-like Qa SNARE domain. RNA-sequencing data from adult and fetal human brain suggested that the majority of tSNARE1 lacks a transmembrane domain that is thought to be necessary for membrane fusion. Biochemical data demonstrate that tSNARE1 can compete with Stx12 for incorporation into an endosomal SNARE complex, supporting its possible role as an inhibitory SNARE. Live-cell imaging in cortical neurons from mice of both sexes demonstrated that brain tSNARE1 isoforms localized to the endosomal network. The most abundant brain isoform, tSNARE1c, localized most frequently to Rab7+ late endosomes, and endogenous tSNARE1 displayed a similar localization in human neural progenitor cells and neuroblastoma cells. In mature rat neurons from both sexes, tSNARE1 localized to the dendritic shaft and dendritic spines, supporting a role for tSNARE1 at the postsynapse. Expression of either tSNARE1b or tSNARE1c, which differ only in their inclusion or exclusion of an Myb-like domain, delayed the trafficking of the dendritic endosomal cargo Nsg1 into late endosomal and lysosomal compartments. These data suggest that tSNARE1 regulates endosomal trafficking in cortical neurons, likely by negatively regulating early endosomal to late endosomal trafficking.SIGNIFICANCE STATEMENT Schizophrenia is a severe and polygenic neuropsychiatric disorder. Understanding the functions of high-confidence candidate genes is critical toward understanding how their dysfunction contributes to schizophrenia pathogenesis. TSNARE1 is one of the high-confidence candidate genes for schizophrenia risk, yet nothing was known about its cellular or physiological function. Here we describe the major isoforms of TSNARE1 and their cytoplasmic localization and function in the endosomal network in cortical neurons. Our results are consistent with the hypothesis that the majority of brain tSNARE1 acts as a negative regulator to endolysosomal trafficking.
Collapse
Affiliation(s)
- Melissa Plooster
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Guendalina Rossi
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Martilias S Farrell
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jessica C McAfee
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jessica L Bell
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Michael Ye
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Graham H Diering
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Hyejung Won
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Patrick Brennwald
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
126
|
Mirabella F, Desiato G, Mancinelli S, Fossati G, Rasile M, Morini R, Markicevic M, Grimm C, Amegandjin C, Termanini A, Peano C, Kunderfranco P, di Cristo G, Zerbi V, Menna E, Lodato S, Matteoli M, Pozzi D. Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity 2021; 54:2611-2631.e8. [PMID: 34758338 PMCID: PMC8585508 DOI: 10.1016/j.immuni.2021.10.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023]
Abstract
Early prenatal inflammatory conditions are thought to be a risk factor for different neurodevelopmental disorders. Maternal interleukin-6 (IL-6) elevation during pregnancy causes abnormal behavior in offspring, but whether these defects result from altered synaptic developmental trajectories remains unclear. Here we showed that transient IL-6 elevation via injection into pregnant mice or developing embryos enhanced glutamatergic synapses and led to overall brain hyperconnectivity in offspring into adulthood. IL-6 activated synaptogenesis gene programs in glutamatergic neurons and required the transcription factor STAT3 and expression of the RGS4 gene. The STAT3-RGS4 pathway was also activated in neonatal brains during poly(I:C)-induced maternal immune activation, which mimics viral infection during pregnancy. These findings indicate that IL-6 elevation at early developmental stages is sufficient to exert a long-lasting effect on glutamatergic synaptogenesis and brain connectivity, providing a mechanistic framework for the association between prenatal inflammatory events and brain neurodevelopmental disorders.
Collapse
Affiliation(s)
- Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Genni Desiato
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy
| | - Sara Mancinelli
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giuliana Fossati
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
| | - Raffaella Morini
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marija Markicevic
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland
| | - Christina Grimm
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland
| | - Clara Amegandjin
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada; CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alberto Termanini
- Bioinformatic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, 20089 Rozzano, Milan, Italy; Genomic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- Bioinformatic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Graziella di Cristo
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada; CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Valerio Zerbi
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland; Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich 8057, Switzerland
| | - Elisabetta Menna
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy.
| | - Davide Pozzi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
127
|
Jeon P, Limongi R, Ford SD, Mackinley M, Dempster K, Théberge J, Palaniyappan L. Progressive Changes in Glutamate Concentration in Early Stages of Schizophrenia: A Longitudinal 7-Tesla MRS Study. ACTA ACUST UNITED AC 2021; 2:sgaa072. [PMID: 34746793 PMCID: PMC8561748 DOI: 10.1093/schizbullopen/sgaa072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progressive reduction in glutamatergic transmission has been proposed as an important component of the illness trajectory of schizophrenia. Despite its popularity, to date, this notion has not been convincingly tested in patients in early stages of schizophrenia. In a longitudinal 7T magnetic resonance spectroscopy (1H-MRS), we quantified glutamate at the dorsal anterior cingulate cortex in 21 participants with a median lifetime antipsychotic exposure of less than 3 days and followed them up after 6 months of treatment. Ten healthy controls were also scanned at 2 time points. While patients had significantly lower overall glutamate levels than healthy controls (F(1,27) = 5.23, P = .03), we did not observe a progressive change of glutamate concentration in patients (F(1,18) = 0.47, P = .50), and the group by time interaction was not significant (F(1,27) = 0.86, P = .36). On average, patients with early psychosis receiving treatment showed a 0.02 mM/y increase, while healthy controls showed a 0.06 mM/y reduction of MRS glutamate levels. Bayesian analysis of our observations does not support early, post-onset glutamate loss in schizophrenia. Interestingly, it provides evidence in favor of a lack of progressive glutamate change in our schizophrenia sample—indicating that the glutamate level at the onset of illness was the best predictor of the levels 6 months after treatment. A more nuanced view of glutamatergic physiology, linked to early cortical maturation, may be required to understand glutamate-mediated dynamics in schizophrenia.
Collapse
Affiliation(s)
- Peter Jeon
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Lawson Health Research Institute, Imaging Division, London, Ontario, Canada
| | - Roberto Limongi
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Sabrina D Ford
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Michael Mackinley
- Department of Neuroscience, Western University, London, Ontario, Canada
| | - Kara Dempster
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jean Théberge
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Lawson Health Research Institute, Imaging Division, London, Ontario, Canada.,St. Joseph's Health Care, Diagnostic Imaging, London, Ontario, Canada.,Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Lena Palaniyappan
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Psychiatry, Western University, London, Ontario, Canada
| |
Collapse
|
128
|
Chadha R, Alganem K, Mccullumsmith RE, Meador-Woodruff JH. mTOR kinase activity disrupts a phosphorylation signaling network in schizophrenia brain. Mol Psychiatry 2021; 26:6868-6879. [PMID: 33990769 DOI: 10.1038/s41380-021-01135-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
The AKT-mTOR signaling transduction pathway plays an important role in neurodevelopment and synaptic plasticity. mTOR is a serine/threonine kinase that modulates signals from multiple neurotransmitters and phosphorylates specific proteins to regulate protein synthesis and cytoskeletal organization. There is substantial evidence demonstrating abnormalities in AKT expression and activity in different schizophrenia (SZ) models. However, direct evidence for dysregulated mTOR kinase activity and its consequences on downstream effector proteins in SZ pathophysiology is lacking. Recently, we reported reduced phosphorylation of mTOR at an activating site and abnormal mTOR complex formation in the SZ dorsolateral prefrontal cortex (DLPFC). Here, we expand on our hypothesis of disrupted mTOR signaling in the SZ brain and studied the expression and activity of downstream effector proteins of mTOR complexes and the kinase activity profiles of SZ subjects. We found that S6RP phosphorylation, downstream of mTOR complex I, is reduced, whereas PKCα phosphorylation, downstream of mTOR complex II, is increased in SZ DLPFC. In rats chronically treated with haloperidol, we showed that S6RP phosphorylation is increased in the rat frontal cortex, suggesting a potential novel mechanism of action for antipsychotics. We also demonstrated key differences in kinase signaling networks between SZ and comparison subjects for both males and females using kinome peptide arrays. We further investigated the role of mTOR kinase activity by inhibiting it with rapamycin in postmortem tissue and compared the impact of mTOR inhibition in SZ and comparison subjects using kinome arrays. We found that SZ subjects are globally more sensitive to rapamycin treatment and AMP-activated protein kinase (AMPK) contributes to this differential kinase activity. Together, our findings provide new insights into the role of mTOR as a master regulator of kinase activity in SZ and suggest potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Radhika Chadha
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Robert E Mccullumsmith
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
129
|
Fernández-Teruel A, Oliveras I, Cañete T, Rio-Álamos C, Tapias-Espinosa C, Sampedro-Viana D, Sánchez-González A, Sanna F, Torrubia R, González-Maeso J, Driscoll P, Morón I, Torres C, Aznar S, Tobeña A, Corda MG, Giorgi O. Neurobehavioral and neurodevelopmental profiles of a heuristic genetic model of differential schizophrenia- and addiction-relevant features: The RHA vs. RLA rats. Neurosci Biobehav Rev 2021; 131:597-617. [PMID: 34571119 DOI: 10.1016/j.neubiorev.2021.09.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022]
Abstract
The Roman High- (RHA) and Low-(RLA) avoidance rat lines/strains were generated through bidirectional selective breeding for rapid (RHA) vs. extremely poor (RLA) two-way active avoidance acquisition. Compared with RLAs and other rat strains/stocks, RHAs are characterized by increased impulsivity, deficits in social behavior, novelty-induced hyper-locomotion, impaired attentional/cognitive abilities, vulnerability to psychostimulant sensitization and drug addiction. RHA rats also exhibit decreased function of the prefrontal cortex (PFC) and hippocampus, increased functional activity of the mesolimbic dopamine system and a dramatic deficit of central metabotropic glutamate-2 (mGlu2) receptors (due to a stop codon mutation at cysteine 407 in Grm2 -cys407*-), along with increased density of 5-HT2A receptors in the PFC, alterations of several synaptic markers and increased density of pyramidal "thin" (immature) dendrític spines in the PFC. These characteristics suggest an immature brain of RHA rats, and are reminiscent of schizophrenia features like hypofrontality and disruption of the excitation/inhibition cortical balance. RHA rats represent a promising heuristic model of neurodevelopmental schizophrenia-relevant features and comorbidity with drug addiction vulnerability.
Collapse
Affiliation(s)
- Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | | | - Carles Tapias-Espinosa
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Ana Sánchez-González
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Francesco Sanna
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy
| | - Rafael Torrubia
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | - Ignacio Morón
- Department of Psychobiology and Centre of Investigation of Mind, Brain, and Behaviour (CIMCYC), University of Granada, Spain
| | - Carmen Torres
- Department of Psychology, University of Jaén, 23071, Jaén, Spain.
| | - Susana Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Copenhagen University Hospital, 2400, Copenhagen, Denmark.
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Maria G Corda
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy.
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy.
| |
Collapse
|
130
|
Human iPSC-Derived Glia as a Tool for Neuropsychiatric Research and Drug Development. Int J Mol Sci 2021; 22:ijms221910254. [PMID: 34638595 PMCID: PMC8508580 DOI: 10.3390/ijms221910254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022] Open
Abstract
Neuropsychiatric disorders such as schizophrenia or autism spectrum disorder represent a leading and growing burden on worldwide mental health. Fundamental lack in understanding the underlying pathobiology compromises efficient drug development despite the immense medical need. So far, antipsychotic drugs reduce symptom severity and enhance quality of life, but there is no cure available. On the molecular level, schizophrenia and autism spectrum disorders correlate with compromised neuronal phenotypes. There is increasing evidence that aberrant neuroinflammatory responses of glial cells account for synaptic pathologies through deregulated communication and reciprocal modulation. Consequently, microglia and astrocytes emerge as central targets for anti-inflammatory treatment to preserve organization and homeostasis of the central nervous system. Studying the impact of neuroinflammation in the context of neuropsychiatric disorders is, however, limited by the lack of relevant human cellular test systems that are able to represent the dynamic cellular processes and molecular changes observed in human tissue. Today, patient-derived induced pluripotent stem cells offer the opportunity to study neuroinflammatory mechanisms in vitro that comprise the genetic background of affected patients. In this review, we summarize the major findings of iPSC-based microglia and astrocyte research in the context of neuropsychiatric diseases and highlight the benefit of 2D and 3D co-culture models for the generation of efficient in vitro models for target screening and drug development.
Collapse
|
131
|
Khanal P, Hotulainen P. Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins. Cells 2021; 10:cells10092392. [PMID: 34572042 PMCID: PMC8468246 DOI: 10.3390/cells10092392] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Dendritic spines are small, bulbous protrusions along neuronal dendrites where most of the excitatory synapses are located. Dendritic spine density in normal human brain increases rapidly before and after birth achieving the highest density around 2-8 years. Density decreases during adolescence, reaching a stable level in adulthood. The changes in dendritic spines are considered structural correlates for synaptic plasticity as well as the basis of experience-dependent remodeling of neuronal circuits. Alterations in spine density correspond to aberrant brain function observed in various neurodevelopmental and neuropsychiatric disorders. Dendritic spine initiation affects spine density. In this review, we discuss the importance of spine initiation in brain development, learning, and potential complications resulting from altered spine initiation in neurological diseases. Current literature shows that two Bin Amphiphysin Rvs (BAR) domain-containing proteins, MIM/Mtss1 and SrGAP3, are involved in spine initiation. We review existing literature and open databases to discuss whether other BAR-domain proteins could also take part in spine initiation. Finally, we discuss the potential molecular mechanisms on how BAR-domain proteins could regulate spine initiation.
Collapse
Affiliation(s)
- Pushpa Khanal
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland;
- HiLIFE-Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland;
- Correspondence:
| |
Collapse
|
132
|
Toritsuka M, Yoshino H, Makinodan M, Ikawa D, Kimoto S, Yamamuro K, Okamura K, Akamatsu W, Okada Y, Matsumoto T, Hashimoto K, Ogawa Y, Saito Y, Watanabe K, Aoki C, Takada R, Fukami SI, Hamano-Iwasa K, Okano H, Kishimoto T. Developmental dysregulation of excitatory-to-inhibitory GABA-polarity switch may underlie schizophrenia pathology: A monozygotic-twin discordant case analysis in human iPS cell-derived neurons. Neurochem Int 2021; 150:105179. [PMID: 34500023 DOI: 10.1016/j.neuint.2021.105179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/26/2021] [Accepted: 09/05/2021] [Indexed: 01/04/2023]
Abstract
Schizophrenia is a major psychiatric disorder, but the molecular mechanisms leading to its initiation or progression remain unclear. To elucidate the pathophysiology of schizophrenia, we used an in vitro neuronal cell culture model involving human induced pluripotent stem cells (hiPSCs) derived from a monozygotic-twin discordant schizophrenia pair. The cultured neurons differentiated from hiPSCs were composed of a mixture of glutamatergic excitatory neurons and gamma aminobutyric acid (GABA)ergic inhibitory neurons. In the electrophysiological analysis, a different pattern of spontaneous neuronal activity was observed under the condition without any stimulants. The frequency of spontaneous excitatory post-synaptic currents (sEPSCs) was significantly higher in the hiPSC-derived neurons of the patient with schizophrenia than in the control sibling at day-in-vitro 30. However, the synaptic formation was not different between the patient with schizophrenia and the control sibling during the same culture period. To explain underlying mechanisms of higher excitability of presynaptic cells, we focused on the potassium-chloride co-transporter KCC2, which contributes to excitatory-to-inhibitory GABA polarity switch in developing neurons. We also revealed the altered expression pattern of KCC2 in hiPSC-derived neurons from the patient with schizophrenia, which could contribute to understanding the pathology of schizophrenia in the developing nervous system.
Collapse
Affiliation(s)
- Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan.
| | - Hiroki Yoshino
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Daisuke Ikawa
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan; Sakai Municipal Mental Health Center, 4-3-1 Asahigaoka-naka-machi, Sakai-ku, Sakai-shi, Osaka, 590-0808, Japan
| | - Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Kazuya Okamura
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Wado Akamatsu
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Yohei Okada
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Takuya Matsumoto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazumichi Hashimoto
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan; Department of Psychiatry, Tenri Hospital Shirakawa Branch, 604 Iwaya-cho, Tenri, Nara, 632-0003, Japan
| | - Yoichi Ogawa
- Department of Neurophysiology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Kyosuke Watanabe
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Chieko Aoki
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Ryohei Takada
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Shin-Ichi Fukami
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Kaori Hamano-Iwasa
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| |
Collapse
|
133
|
Arnsten AFT, Datta D, Wang M. The genie in the bottle-magnified calcium signaling in dorsolateral prefrontal cortex. Mol Psychiatry 2021; 26:3684-3700. [PMID: 33319854 PMCID: PMC8203737 DOI: 10.1038/s41380-020-00973-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Neurons in the association cortices are particularly vulnerable in cognitive disorders such as schizophrenia and Alzheimer's disease, while those in primary visual cortex remain relatively resilient. This review proposes that the special molecular mechanisms needed for higher cognitive operations confer vulnerability to dysfunction, atrophy, and neurodegeneration when regulation is lost due to genetic and/or environmental insults. Accumulating data suggest that higher cortical circuits rely on magnified levels of calcium (from NMDAR, calcium channels, and/or internal release from the smooth endoplasmic reticulum) near the postsynaptic density to promote the persistent firing needed to maintain, manipulate, and store information without "bottom-up" sensory stimulation. For example, dendritic spines in the primate dorsolateral prefrontal cortex (dlPFC) express the molecular machinery for feedforward, cAMP-PKA-calcium signaling. PKA can drive internal calcium release and promote calcium flow through NMDAR and calcium channels, while in turn, calcium activates adenylyl cyclases to produce more cAMP-PKA signaling. Excessive levels of cAMP-calcium signaling can have a number of detrimental effects: for example, opening nearby K+ channels to weaken synaptic efficacy and reduce neuronal firing, and over a longer timeframe, driving calcium overload of mitochondria to induce inflammation and dendritic atrophy. Thus, calcium-cAMP signaling must be tightly regulated, e.g., by agents that catabolize cAMP or inhibit its production (PDE4, mGluR3), and by proteins that bind calcium in the cytosol (calbindin). Many genetic or inflammatory insults early in life weaken the regulation of calcium-cAMP signaling and are associated with increased risk of schizophrenia (e.g., GRM3). Age-related loss of regulatory proteins which result in elevated calcium-cAMP signaling over a long lifespan can additionally drive tau phosphorylation, amyloid pathology, and neurodegeneration, especially when protective calcium binding proteins are lost from the cytosol. Thus, the "genie" we need for our remarkable cognitive abilities may make us vulnerable to cognitive disorders when we lose essential regulation.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
134
|
Berdenis van Berlekom A, Notman N, Sneeboer MAM, Snijders GJLJ, Houtepen LC, Nispeling DM, He Y, Dracheva S, Hol EM, Kahn RS, de Witte LD, Boks MP. DNA methylation differences in cortical grey and white matter in schizophrenia. Epigenomics 2021; 13:1157-1169. [PMID: 34323598 PMCID: PMC8386513 DOI: 10.2217/epi-2021-0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/09/2021] [Indexed: 01/27/2023] Open
Abstract
Aim: Identify grey- and white-matter-specific DNA-methylation differences between schizophrenia (SCZ) patients and controls in postmortem brain cortical tissue. Materials & methods: Grey and white matter were separated from postmortem brain tissue of the superior temporal and medial frontal gyrus from SCZ (n = 10) and control (n = 11) cases. Genome-wide DNA-methylation analysis was performed using the Infinium EPIC Methylation Array (Illumina, CA, USA). Results: Four differentially methylated regions associated with SCZ status and tissue type (grey vs white matter) were identified within or near KLF9, SFXN1, SPRED2 and ALS2CL genes. Gene-expression analysis showed differential expression of KLF9 and SFXN1 in SCZ. Conclusion: Our data show distinct differences in DNA methylation between grey and white matter that are unique to SCZ, providing new leads to unravel the pathogenesis of SCZ.
Collapse
Affiliation(s)
- Amber Berdenis van Berlekom
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nina Notman
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marjolein AM Sneeboer
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gijsje JLJ Snijders
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lotte C Houtepen
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Danny M Nispeling
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Yujie He
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Stella Dracheva
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education, & Clinical Center (VISN 2 South), James J Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education, & Clinical Center (VISN 2 South), James J Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Lot D de Witte
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
135
|
Onwordi EC, Whitehurst T, Mansur A, Statton B, Berry A, Quinlan M, O'Regan DP, Rogdaki M, Marques TR, Rabiner EA, Gunn RN, Vernon AC, Natesan S, Howes OD. The relationship between synaptic density marker SV2A, glutamate and N-acetyl aspartate levels in healthy volunteers and schizophrenia: a multimodal PET and magnetic resonance spectroscopy brain imaging study. Transl Psychiatry 2021; 11:393. [PMID: 34282130 PMCID: PMC8290006 DOI: 10.1038/s41398-021-01515-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Glutamatergic excitotoxicity is hypothesised to underlie synaptic loss in schizophrenia pathogenesis, but it is unknown whether synaptic markers are related to glutamatergic function in vivo. Additionally, it has been proposed that N-acetyl aspartate (NAA) levels reflect neuronal integrity. Here, we investigated whether synaptic vesicle glycoprotein 2 A (SV2A) levels are related to glutamatergic markers and NAA in healthy volunteers (HV) and schizophrenia patients (SCZ). Forty volunteers (SCZ n = 18, HV n = 22) underwent [11C]UCB-J positron emission tomography and proton magnetic resonance spectroscopy (1H-MRS) imaging in the left hippocampus and anterior cingulate cortex (ACC) to index [11C]UCB-J distribution volume ratio (DVR), and creatine-scaled glutamate (Glu/Cr), glutamate and glutamine (Glx/Cr) and NAA (NAA/Cr). In healthy volunteers, but not patients, [11C]UCB-J DVR was significantly positively correlated with Glu/Cr, in both the hippocampus and ACC. Furthermore, in healthy volunteers, but not patients, [11C]UCB-J DVR was significantly positively correlated with Glx/Cr, in both the hippocampus and ACC. There were no significant relationships between [11C]UCB-J DVR and NAA/Cr in the hippocampus or ACC in healthy volunteers or patients. Therefore, an appreciable proportion of the brain 1H-MRS glutamatergic signal is related to synaptic density in healthy volunteers. This relationship is not seen in schizophrenia, which, taken with lower synaptic marker levels, is consistent with lower levels of glutamatergic terminals and/or a lower proportion of glutamatergic relative to GABAergic terminals in the ACC in schizophrenia.
Collapse
Affiliation(s)
- Ellis Chika Onwordi
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK.
| | - Thomas Whitehurst
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Ayla Mansur
- Department of Brain Sciences, Imperial College London, The Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Invicro, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Ben Statton
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Alaine Berry
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Marina Quinlan
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Declan P O'Regan
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Maria Rogdaki
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK
| | - Tiago Reis Marques
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK
| | - Eugenii A Rabiner
- Invicro, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Roger N Gunn
- Department of Brain Sciences, Imperial College London, The Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Invicro, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London, SE5 9RT, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Sridhar Natesan
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Oliver D Howes
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK.
| |
Collapse
|
136
|
Gallagher BR, Zhao Y. Expansion microscopy: A powerful nanoscale imaging tool for neuroscientists. Neurobiol Dis 2021; 154:105362. [PMID: 33813047 PMCID: PMC8600979 DOI: 10.1016/j.nbd.2021.105362] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 01/13/2023] Open
Abstract
One of the biggest unsolved questions in neuroscience is how molecules and neuronal circuitry create behaviors, and how their misregulation or dysfunction results in neurological disease. Light microscopy is a vital tool for the study of neural molecules and circuits. However, the fundamental optical diffraction limit precludes the use of conventional light microscopy for sufficient characterization of critical signaling compartments and nanoscopic organizations of synapse-associated molecules. We have witnessed rapid development of super-resolution microscopy methods that circumvent the resolution limit by controlling the number of emitting molecules in specific imaging volumes and allow highly resolved imaging in the 10-100 nm range. Most recently, Expansion Microscopy (ExM) emerged as an alternative solution to overcome the diffraction limit by physically magnifying biological specimens, including nervous systems. Here, we discuss how ExM works in general and currently available ExM methods. We then review ExM imaging in a wide range of nervous systems, including Caenorhabditis elegans, Drosophila, zebrafish, mouse, and human, and their applications to synaptic imaging, neuronal tracing, and the study of neurological disease. Finally, we provide our prospects for expansion microscopy as a powerful nanoscale imaging tool in the neurosciences.
Collapse
Affiliation(s)
- Brendan R Gallagher
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yongxin Zhao
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
137
|
Maini K, Gould H, Hicks J, Iqbal F, Patterson J, Edinoff AN, Cornett EM, Kaye AM, Viswanath O, Urits I, Kaye AD. Aripiprazole Lauroxil, a Novel Injectable Long-Acting Antipsychotic Treatment for Adults with Schizophrenia: A Comprehensive Review. Neurol Int 2021; 13:279-296. [PMID: 34287335 PMCID: PMC8293312 DOI: 10.3390/neurolint13030029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE OF REVIEW This is a comprehensive review of the literature regarding the use of Aripiprazole lauroxil for schizophrenia. This review presents the background, evidence, and indications for using aripiprazole lauroxil to treat schizophrenia in the context of current theories on the development of schizophrenia. RECENT FINDINGS Schizophrenia is a chronic mental health disorder that currently affects approximately 3.3 million people in the United States. Its symptoms, which must be present for more than six months, are comprised of disorganized behavior and speech, a diminished capacity to comprehend reality, hearing voices unheard by others, seeing things unseen by others, delusions, decreased social commitment, and decreased motivation. The majority of these symptoms can be managed with antipsychotic medication. Aripiprazole lauroxil is a long-acting intramuscular injection that works as a combination of partial agonist activity at D2 and 5-HT1A receptors combined with antagonist activity at 5-HT2A receptors. It can be dosed as a 4-, 6-, or 8-week injection, depending on oral dosage. Aripiprazole lauroxil was FDA approved in October of 2015. SUMMARY Schizophrenia is a severe psychiatric disorder if left untreated. There are multiple medications to help treat schizophrenia. One antipsychotic agent, aripiprazole lauroxil, offers long duration injections that optimize and improve compliance. Known side effects include weight gain, akathisia, neuroleptic malignant syndrome, tardive dyskinesia, and orthostatic hypotension. Aripiprazole lauroxil is an FDA-approved drug that can be administered monthly, every six weeks, or every two months and has been shown to be both safe and effective.
Collapse
Affiliation(s)
- Kunal Maini
- Department of Psychiatry, Louisiana State University Shreveport, Shreveport, LA 71103, USA; (K.M.); (J.P.II)
| | - Haley Gould
- Shreveport School of Medicine, Louisiana State University, Shreveport, LA 71103, USA; (H.G.); (J.H.); (F.I.)
| | - Jessica Hicks
- Shreveport School of Medicine, Louisiana State University, Shreveport, LA 71103, USA; (H.G.); (J.H.); (F.I.)
| | - Fatima Iqbal
- Shreveport School of Medicine, Louisiana State University, Shreveport, LA 71103, USA; (H.G.); (J.H.); (F.I.)
| | - James Patterson
- Department of Psychiatry, Louisiana State University Shreveport, Shreveport, LA 71103, USA; (K.M.); (J.P.II)
| | - Amber N. Edinoff
- Department of Psychiatry, Louisiana State University Shreveport, Shreveport, LA 71103, USA; (K.M.); (J.P.II)
| | - Elyse M. Cornett
- Department of Anesthesiology, Louisiana State University Shreveport, Shreveport, LA 71103, USA; (E.M.C.); (I.U.); (A.D.K.)
| | - Adam M. Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| | - Omar Viswanath
- College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA;
- Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE 68124, USA
- Valley Anesthesiology and Pain Consultants—Envision Physician Services, Phoenix, AZ 85004, USA
| | - Ivan Urits
- Department of Anesthesiology, Louisiana State University Shreveport, Shreveport, LA 71103, USA; (E.M.C.); (I.U.); (A.D.K.)
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Alan D. Kaye
- Department of Anesthesiology, Louisiana State University Shreveport, Shreveport, LA 71103, USA; (E.M.C.); (I.U.); (A.D.K.)
| |
Collapse
|
138
|
Huang Y, Jiang H, Zheng Q, Fok AHK, Li X, Lau CG, Lai CSW. Environmental enrichment or selective activation of parvalbumin-expressing interneurons ameliorates synaptic and behavioral deficits in animal models with schizophrenia-like behaviors during adolescence. Mol Psychiatry 2021; 26:2533-2552. [PMID: 33473150 DOI: 10.1038/s41380-020-01005-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Synaptic deficit-induced excitation and inhibition (E/I) imbalance have been implicated in the pathogenesis of schizophrenia. Using in vivo two-photon microscopy, we examined the dynamic plasticity of dendritic spines of pyramidal neurons (PNs) and "en passant" axonal bouton of parvalbumin-expressing interneurons (PVINs) in the frontal association (FrA) cortex in two adolescent mouse models with schizophrenia-like behaviors. Simultaneous imaging of PN dendritic spines and PV axonal boutons showed that repeated exposure to N-methyl-D-aspartate receptor (NMDAR) antagonist MK801 during adolescence disrupted the normal developmental balance of excitatory and inhibitory synaptic structures. This MK801-induced structural E/I imbalance significantly correlated with animal recognition memory deficits and could be ameliorated by environmental enrichment (EE). In addition, selective chemogenetic activation of PVINs in the FrA mimicked the effects of EE on both synaptic plasticity and animal behavior, while selective inhibition of PVIN abolished EE's beneficial effects. Electrophysiological recordings showed that chronic MK801 treatment significantly suppressed the frequency of mEPSC/mIPSC ratio of layer (L) 2/3 PNs and significantly reduced the resting membrane potential of PVINs, the latter was rescued by selective activation of PVINs. Such manipulations of PVINs also showed similar effects in PV-Cre; ErbB4fl/fl animal model with schizophrenia-like behaviors. EE or selective activation of PVINs in the FrA restored behavioral deficits and structural E/I imbalance in adolescent PV-Cre; ErbB4fl/fl mice, while selective inhibition of PVINs abolished EE's beneficial effects. Our findings suggest that the PVIN activity in the FrA plays a crucial role in regulating excitatory and inhibitory synaptic structural dynamics and animal behaviors, which may provide a potential therapeutic target for schizophrenia treatment.
Collapse
Affiliation(s)
- Yuhua Huang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hehai Jiang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Qiyu Zheng
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Albert Hiu Ka Fok
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiaoyang Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - C Geoffrey Lau
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong. .,State Key Laboratory of Cognitive and Brain Research, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
139
|
Jin T, Rehani P, Ying M, Huang J, Liu S, Roussos P, Wang D. scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks. Genome Med 2021; 13:95. [PMID: 34044854 PMCID: PMC8161957 DOI: 10.1186/s13073-021-00908-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-omics), to predict cell-type disease genes and regulatory networks including transcription factors and regulatory elements. With applications to schizophrenia and Alzheimer's disease, we predicted disease genes and regulatory networks for excitatory and inhibitory neurons, microglia, and oligodendrocytes. Further enrichment analyses revealed cross-disease and disease-specific functions and pathways at the cell-type level. Our machine learning analysis also found that cell-type disease genes improved clinical phenotype predictions. scGRNom is a general-purpose tool available at https://github.com/daifengwanglab/scGRNom .
Collapse
Affiliation(s)
- Ting Jin
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Peter Rehani
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Present address: Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Mufang Ying
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Present address: Department of Statistics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jiawei Huang
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Panagiotis Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA.
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA.
- Department of Computer Sciences, University of Wisconsin - Madison, Madison, WI, 53706, USA.
| |
Collapse
|
140
|
Mizuki Y, Sakamoto S, Okahisa Y, Yada Y, Hashimoto N, Takaki M, Yamada N. Mechanisms Underlying the Comorbidity of Schizophrenia and Type 2 Diabetes Mellitus. Int J Neuropsychopharmacol 2021; 24:367-382. [PMID: 33315097 PMCID: PMC8130204 DOI: 10.1093/ijnp/pyaa097] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/29/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The mortality rate of patients with schizophrenia is high, and life expectancy is shorter by 10 to 20 years. Metabolic abnormalities including type 2 diabetes mellitus (T2DM) are among the main reasons. The prevalence of T2DM in patients with schizophrenia may be epidemiologically frequent because antipsychotics induce weight gain as a side effect and the cognitive dysfunction of patients with schizophrenia relates to a disordered lifestyle, poor diet, and low socioeconomic status. Apart from these common risk factors and risk factors unique to schizophrenia, accumulating evidence suggests the existence of common susceptibility genes between schizophrenia and T2DM. Functional proteins translated from common genetic susceptibility genes are known to regulate neuronal development in the brain and insulin in the pancreas through several common cascades. In this review, we discuss common susceptibility genes, functional cascades, and the relationship between schizophrenia and T2DM. Many genetic and epidemiological studies have reliably associated the comorbidity of schizophrenia and T2DM, and it is probably safe to think that common cascades and mechanisms suspected from common genes' functions are related to the onset of both schizophrenia and T2DM. On the other hand, even when genetic analyses are performed on a relatively large number of comorbid patients, the results are sometimes inconsistent, and susceptibility genes may carry only a low or moderate risk. We anticipate future directions in this field.
Collapse
Affiliation(s)
- Yutaka Mizuki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
- Shimonoseki Hospital
| | - Shinji Sakamoto
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Yuko Okahisa
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Yuji Yada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
- Okayama Psychiatric Medical Center
| | - Nozomu Hashimoto
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
- Okayama Psychiatric Medical Center
| | - Manabu Takaki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Norihito Yamada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| |
Collapse
|
141
|
Michael Deans PJ, Brennand KJ. Applying stem cells and CRISPR engineering to uncover the etiology of schizophrenia. Curr Opin Neurobiol 2021; 69:193-201. [PMID: 34010781 DOI: 10.1016/j.conb.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a highly heritable, polygenic disorder. A growing list of common genetic variants have been associated with schizophrenia; there is a clear need to understand the role of these risk factors in the etiology of disease. The majority of these variants occur in noncoding regions of the genome and are thought to regulate the expression of one or more genes in a cell type-specific fashion. Recent advances in stem cell biology and molecular genetics have resulted in two invaluable advances: hiPSC technology makes possible the generation of donor-specific disease-relevant neural cell types, whereas CRISPR-based techniques can be applied to manipulate individual variants and/or their gene targets. New multiplexed gene manipulation and CRISPR screening techniques show great promise toward dissecting the complex interactions between the myriad disease-associated variants. This review outlines key advances in hiPSC and CRISPR technology, describing their applications and future potential in the field of schizophrenia research.
Collapse
Affiliation(s)
- Peter James Michael Deans
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
142
|
Gisabella B, Babu J, Valeri J, Rexrode L, Pantazopoulos H. Sleep and Memory Consolidation Dysfunction in Psychiatric Disorders: Evidence for the Involvement of Extracellular Matrix Molecules. Front Neurosci 2021; 15:646678. [PMID: 34054408 PMCID: PMC8160443 DOI: 10.3389/fnins.2021.646678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances and memory dysfunction are key characteristics across psychiatric disorders. Recent advances have revealed insight into the role of sleep in memory consolidation, pointing to key overlap between memory consolidation processes and structural and molecular abnormalities in psychiatric disorders. Ongoing research regarding the molecular mechanisms involved in memory consolidation has the potential to identify therapeutic targets for memory dysfunction in psychiatric disorders and aging. Recent evidence from our group and others points to extracellular matrix molecules, including chondroitin sulfate proteoglycans and their endogenous proteases, as molecules that may underlie synaptic dysfunction in psychiatric disorders and memory consolidation during sleep. These molecules may provide a therapeutic targets for decreasing strength of reward memories in addiction and traumatic memories in PTSD, as well as restoring deficits in memory consolidation in schizophrenia and aging. We review the evidence for sleep and memory consolidation dysfunction in psychiatric disorders and aging in the context of current evidence pointing to the involvement of extracellular matrix molecules in these processes.
Collapse
Affiliation(s)
| | | | | | | | - Harry Pantazopoulos
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
143
|
Delevich K, Klinger M, Okada NJ, Wilbrecht L. Coming of age in the frontal cortex: The role of puberty in cortical maturation. Semin Cell Dev Biol 2021; 118:64-72. [PMID: 33985902 DOI: 10.1016/j.semcdb.2021.04.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022]
Abstract
Across species, adolescence is a period of growing independence that is associated with the maturation of cognitive, social, and affective processing. Reorganization of neural circuits within the frontal cortex is believed to contribute to the emergence of adolescent changes in cognition and behavior. While puberty coincides with adolescence, relatively little is known about which aspects of frontal cortex maturation are driven by pubertal development and gonadal hormones. In this review, we highlight existing work that suggests puberty plays a role in the maturation of specific cell types in the medial prefrontal cortex (mPFC) of rodents, and highlight possible routes by which gonadal hormones influence frontal cortical circuit development.
Collapse
Affiliation(s)
- Kristen Delevich
- Department of Psychology, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| | - Madeline Klinger
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Nana J Okada
- Department of Psychology, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
144
|
Halff EF, Cotel MC, Natesan S, McQuade R, Ottley CJ, Srivastava DP, Howes OD, Vernon AC. Effects of chronic exposure to haloperidol, olanzapine or lithium on SV2A and NLGN synaptic puncta in the rat frontal cortex. Behav Brain Res 2021; 405:113203. [PMID: 33636238 DOI: 10.1016/j.bbr.2021.113203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/03/2023]
Abstract
Positron emission tomography studies using the synaptic vesicle glycoprotein 2A (SV2A) radioligand [11C]-UCB-J provide in vivo evidence for synaptic dysfunction and/or loss in the cingulate and frontal cortex of patients with schizophrenia. In exploring potential confounding effects of antipsychotic medication, we previously demonstrated that chronic (28-day) exposure to clinically relevant doses of haloperidol does not affect [3H]-UCB-J radioligand binding in the cingulate and frontal cortex of male rats. Furthermore, neither chronic haloperidol nor olanzapine exposure had any effect on SV2A protein levels in these brain regions. These data do not exclude the possibility, however, that more subtle changes in SV2A may occur at pre-synaptic terminals, or the post-synaptic density, following chronic antipsychotic drug exposure. Moreover, relatively little is known about the potential effects of psychotropic drugs other than antipsychotics on SV2A. To address these questions directly, we herein used immunostaining and confocal microscopy to explore the effect of chronic (28-day) exposure to clinically relevant doses of haloperidol, olanzapine or the mood stabilizer lithium on presynaptic SV2A, postsynaptic Neuroligin (NLGN) puncta and their overlap as a measure of total synaptic density in the rat prefrontal and anterior cingulate cortex. We found that, under the conditions tested here, exposure to antipsychotics had no effect on SV2A, NLGN, or overall synaptic puncta count. In contrast, chronic lithium exposure significantly increased NLGN puncta density relative to vehicle, with no effect on either SV2A or total synaptic puncta. Future studies are required to understand the functional consequences of these changes.
Collapse
Affiliation(s)
- Els F Halff
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK; Psychiatric Imaging group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Marie-Caroline Cotel
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RT, UK
| | - Sridhar Natesan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK; Psychiatric Imaging group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Psychiatric Imaging group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, 72 Du Cane Road, London W12 0HS, UK
| | - Richard McQuade
- Psychobiology Research Group, School of Neurology, Neurobiology and Psychiatry, Newcastle University, NE2 4HH, Newcastle upon Tyne, UK
| | - Chris J Ottley
- Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RT, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK; Psychiatric Imaging group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Psychiatric Imaging group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, 72 Du Cane Road, London W12 0HS, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; South London and Maudsley NHS Foundation Trust, Camberwell, London, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RT, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK.
| |
Collapse
|
145
|
Parellada E, Gassó P. Glutamate and microglia activation as a driver of dendritic apoptosis: a core pathophysiological mechanism to understand schizophrenia. Transl Psychiatry 2021; 11:271. [PMID: 33958577 PMCID: PMC8102516 DOI: 10.1038/s41398-021-01385-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Schizophrenia disorder remains an unsolved puzzle. However, the integration of recent findings from genetics, molecular biology, neuroimaging, animal models and translational clinical research offers evidence that the synaptic overpruning hypothesis of schizophrenia needs to be reassessed. During a critical period of neurodevelopment and owing to an imbalance of excitatory glutamatergic pyramidal neurons and inhibitory GABAergic interneurons, a regionally-located glutamate storm might occur, triggering excessive dendritic pruning with the activation of local dendritic apoptosis machinery. The apoptotic loss of dendritic spines would be aggravated by microglia activation through a recently described signaling system from complement abnormalities and proteins of the MHC, thus implicating the immune system in schizophrenia. Overpruning of dendritic spines coupled with aberrant synaptic plasticity, an essential function for learning and memory, would lead to brain misconnections and synaptic inefficiency underlying the primary negative symptoms and cognitive deficits of schizophrenia. This driving hypothesis has relevant therapeutic implications, including the importance of pharmacological interventions during the prodromal phase or the transition to psychosis, targeting apoptosis, microglia cells or the glutamate storm. Future research on apoptosis and brain integrity should combine brain imaging, CSF biomarkers, animal models and cell biology.
Collapse
Affiliation(s)
- Eduard Parellada
- Barcelona Clínic Schizophrenia Unit (BCSU). Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Catalonia, Spain.
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| | - Patricia Gassó
- Barcelona Clínic Schizophrenia Unit (BCSU). Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Catalonia, Spain
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
146
|
Panja D, Li Y, Ward ME, Li Z. miR-936 is Increased in Schizophrenia and Inhibits Neural Development and AMPA Receptor-Mediated Synaptic Transmission. Schizophr Bull 2021; 47:1795-1805. [PMID: 33940617 PMCID: PMC8530405 DOI: 10.1093/schbul/sbab046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression and play important roles in the development and function of synapses. miR-936 is a primate-specific miRNA increased in the dorsolateral prefrontal cortex (DLPFC) of individuals with schizophrenia. The significance of miR-936 increase to schizophrenia is unknown. Here, we show that miR-936 in the human DLPFC is enriched in cortical layer 2/3 and expressed in glutamatergic and GABAergic neurons. miR-936 is increased from layers 2 to 6 of the DLPFC in schizophrenia samples. In neurons derived from human induced pluripotent stem cells (iNs), miR-936 reduces the number of excitatory synapses, inhibits AMPA receptor-mediated synaptic transmission, and increases intrinsic excitability. These effects are mediated by its target gene TMOD2. These results indicate that miR-936 restricts the number of synapses and the strength of glutamatergic synaptic transmission by inhibiting TMOD2 expression. miR-936 upregulation in the DLPFC, therefore, can reduce glutamatergic synapses and weaken excitatory synaptic transmission, which underlie the synaptic pathology and hypofrontality in schizophrenia.
Collapse
Affiliation(s)
- Debabrata Panja
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - You Li
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Michael E Ward
- Inherited Neurodegenerative Diseases Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Zheng Li
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD,To whom correspondence should be addressed; National Institute of Mental Health, National Institutes of Health, Bldg 35A, Room 2C-1010, Bethesda, MD 20892, USA; tel: +1 301 594 2269, fax: +1 301 480 2561, e-mail:
| |
Collapse
|
147
|
Folorunso OO, Harvey TL, Brown SE, Cruz C, Shahbo E, Ajjawi I, Balu DT. Forebrain expression of serine racemase during postnatal development. Neurochem Int 2021; 145:104990. [PMID: 33592203 PMCID: PMC8012237 DOI: 10.1016/j.neuint.2021.104990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 12/23/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are important for synaptogenesis, synaptic maturation and refinement during the early postnatal weeks after birth. Defective synapse formation or refinement underlie cognitive and emotional abnormalities in various neurodevelopmental disorders (NDDs), including schizophrenia (Sz) and autism spectrum disorder (ASD). Serine racemase (SR) is a neuronal enzyme that produces D-serine, a co-agonist required for full NMDAR activation. NMDAR hypofunction as a result of genetic SR elimination and reduced synaptic availability of D-serine reduces neuronal dendritic arborization and spine density. In adult mouse brain, the expression of SR parallels that of NMDARs across forebrain regions including the striatum, amygdala, hippocampus, and medial prefrontal cortex (mPFC). However, there have yet to be studies providing a detailed characterization of the spatial and temporal expression of SR during early periods of synaptogenesis. Here, we examined the postnatal expression of SR in cortical and subcortical brain regions important for learning, memory and emotional regulation, during the first four weeks after birth. Using dual-antigen immunofluorescence, we demonstrate that the number of SR+ neurons steadily increases with postnatal age across the mPFC, amygdala, hippocampus and striatum. We also identified differences in the rate of SR protein induction both across and within brain regions. Analyzing existing human post-mortem brain in situ data, there was a similar developmental mRNA expression profile of SRR and GRIN1 (GluN1 subunit) from infancy through the first decade of life. Our findings further support a developmental role for D-serine mediated NMDAR activation regulating synaptogenesis and neural circuit refinement, which has important implications for the pathophysiology of Sz and other NDDs.
Collapse
Affiliation(s)
- Oluwarotimi O Folorunso
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, United States; Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States
| | - Theresa L Harvey
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States
| | - Stephanie E Brown
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States
| | - Cristina Cruz
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States; Harvard University, Cambridge, MA, 02138, United States
| | - Ellie Shahbo
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States; Harvard University, Cambridge, MA, 02138, United States
| | - Ismail Ajjawi
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States; Harvard University, Cambridge, MA, 02138, United States
| | - Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, United States; Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States.
| |
Collapse
|
148
|
Rolls ET. Attractor cortical neurodynamics, schizophrenia, and depression. Transl Psychiatry 2021; 11:215. [PMID: 33846293 PMCID: PMC8041760 DOI: 10.1038/s41398-021-01333-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
The local recurrent collateral connections between cortical neurons provide a basis for attractor neural networks for memory, attention, decision-making, and thereby for many aspects of human behavior. In schizophrenia, a reduction of the firing rates of cortical neurons, caused for example by reduced NMDA receptor function or reduced spines on neurons, can lead to instability of the high firing rate attractor states that normally implement short-term memory and attention in the prefrontal cortex, contributing to the cognitive symptoms. Reduced NMDA receptor function in the orbitofrontal cortex by reducing firing rates may produce negative symptoms, by reducing reward, motivation, and emotion. Reduced functional connectivity between some brain regions increases the temporal variability of the functional connectivity, contributing to the reduced stability and more loosely associative thoughts. Further, the forward projections have decreased functional connectivity relative to the back projections in schizophrenia, and this may reduce the effects of external bottom-up inputs from the world relative to internal top-down thought processes. Reduced cortical inhibition, caused by a reduction of GABA neurotransmission, can lead to instability of the spontaneous firing states of cortical networks, leading to a noise-induced jump to a high firing rate attractor state even in the absence of external inputs, contributing to the positive symptoms of schizophrenia. In depression, the lateral orbitofrontal cortex non-reward attractor network system is over-connected and has increased sensitivity to non-reward, providing a new approach to understanding depression. This is complemented by under-sensitivity and under-connectedness of the medial orbitofrontal cortex reward system in depression.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
149
|
Martínez-Torres NI, Vázquez-Hernández N, Martín-Amaya-Barajas FL, Flores-Soto M, González-Burgos I. Ibotenic acid induced lesions impair the modulation of dendritic spine plasticity in the prefrontal cortex and amygdala, a phenomenon that underlies working memory and social behavior. Eur J Pharmacol 2021; 896:173883. [PMID: 33513334 DOI: 10.1016/j.ejphar.2021.173883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/08/2023]
Abstract
The lesions induced by Ibotenic acid (IA) emulate some of the symptoms associated with schizophrenia, such as impaired working memory that is predominantly organized by the medial prefrontal cortex (mPFC), or difficulties in social interactions that aremainly organized by the amygdala (AMG). The plastic capacity of dendritic spines in neurons of the mPFC and AMG is modulated by molecules that participate in the known deterioration of working memory, although the influence of these on the socialization of schizophrenic patients is unknown. Here, the effect of a neonatal IA induced lesion on social behavior and working memory was evaluated in adult rats, along with the changes in cytoarchitecture of dendritic spines and their protein content, specifically the postsynaptic density protein 95 (PSD-95), Synaptophysin (Syn), AMPA receptors, and brain-derived neurotrophic factor (BDNF). Both working memory and social behavior were impaired, and the density of the spines, as well as their PSD-95, Syn, AMPA receptor and BDNF content was lower in IA lesioned animals. The proportional density of thin, mushroom, stubby and wide spines resulted in plastic changes that suggest the activation of compensatory processes in the face of the adverse effects of the lesion. In addition, the reduction in the levels of the modulating factors also suggests that the signaling pathways in which such factors are implicated would be altered in the brains of patients with schizophrenia. Accordingly, the experimental study of such signaling pathways is likely to aid the development of more effective pharmacological strategies for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Néstor I Martínez-Torres
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Guadalajara, Jal., Mexico; Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, Jal., Mexico
| | - Nallely Vázquez-Hernández
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Guadalajara, Jal., Mexico
| | | | - Mario Flores-Soto
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Guadalajara, Jal., Mexico
| | - Ignacio González-Burgos
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Guadalajara, Jal., Mexico.
| |
Collapse
|
150
|
Jacob MS, Roach BJ, Hamilton HK, Carrión RE, Belger A, Duncan E, Johannesen J, Keshavan M, Loo S, Niznikiewicz M, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, McGlashan TH, Perkins DO, Stone W, Tsuang M, Walker EF, Woods SW, Mathalon DH. Visual cortical plasticity and the risk for psychosis: An interim analysis of the North American Prodrome Longitudinal Study. Schizophr Res 2021; 230:26-37. [PMID: 33667856 PMCID: PMC8328744 DOI: 10.1016/j.schres.2021.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 11/08/2020] [Accepted: 01/29/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Adolescence/early adulthood coincides with accelerated pruning of cortical synapses and the onset of schizophrenia. Cortical gray matter reduction and dysconnectivity in schizophrenia are hypothesized to result from impaired synaptic plasticity mechanisms, including long-term potentiation (LTP), since deficient LTP may result in too many weak synapses that are then subject to over-pruning. Deficient plasticity has already been observed in schizophrenia. Here, we assessed whether such deficits are present in the psychosis risk syndrome (PRS), particularly those who subsequently convert to full psychosis. METHODS An interim analysis was performed on a sub-sample from the NAPLS-3 study, including 46 healthy controls (HC) and 246 PRS participants. All participants performed an LTP-like visual cortical plasticity paradigm involving assessment of visual evoked potentials (VEPs) elicited by vertical and horizontal line gratings before and after high frequency ("tetanizing") visual stimulation with one of the gratings to induce "input-specific" neuroplasticity (i.e., VEP changes specific to the tetanized stimulus). Non-parametric, cluster-based permutation testing was used to identify electrodes and timepoints that demonstrated input-specific plasticity effects. RESULTS Input-specific pre-post VEP changes (i.e., increased negative voltage) were found in a single spatio-temporal cluster covering multiple occipital electrodes in a 126-223 ms time window. This plasticity effect was deficient in PRS individuals who subsequently converted to psychosis, relative to PRS non-converters and HC. CONCLUSIONS Input-specific LTP-like visual plasticity can be measured from VEPs in adolescents and young adults. Interim analyses suggest that deficient visual cortical plasticity is evident in those PRS individuals at greatest risk for transition to psychosis.
Collapse
Affiliation(s)
- Michael S. Jacob
- VA San Francisco Healthcare System, San Francisco, CA, USA,Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Brian J. Roach
- VA San Francisco Healthcare System, San Francisco, CA, USA
| | - Holly K. Hamilton
- VA San Francisco Healthcare System, San Francisco, CA, USA,Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ricardo E. Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY, USA,Department of Psychiatry, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erica Duncan
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA,Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Jason Johannesen
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
| | - Sandra Loo
- Semel Institute for Neuroscience and Human Behavior, Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Margaret Niznikiewicz
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E. Bearden
- Semel Institute for Neuroscience and Human Behavior, Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristin S. Cadenhead
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Tyrone D. Cannon
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA,Department of Psychology, Yale University, School of Medicine, New Haven, CT, USA
| | - Barbara A. Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY, USA,Department of Psychiatry, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, USA,Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Thomas H. McGlashan
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - Diana O. Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Stone
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
| | - Ming Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | | | - Scott W. Woods
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - Daniel H. Mathalon
- VA San Francisco Healthcare System, San Francisco, CA, USA,Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|