101
|
Yoo CM, Quan L, Cannon AE, Wen J, Blancaflor EB. AGD1, a class 1 ARF-GAP, acts in common signaling pathways with phosphoinositide metabolism and the actin cytoskeleton in controlling Arabidopsis root hair polarity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:1064-76. [PMID: 22098134 DOI: 10.1111/j.1365-313x.2011.04856.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Arabidopsis thaliana AGD1 gene encodes a class 1 adenosine diphosphate ribosylation factor-gtpase-activating protein (ARF-GAP). Previously, we found that agd1 mutants have root hairs that exhibit wavy growth and have two tips that originate from a single initiation point. To gain new insights into how AGD1 modulates root hair polarity we analyzed double mutants of agd1 and other loci involved in root hair development, and evaluated dynamics of various components of root hair tip growth in agd1 by live cell microscopy. Because AGD1 contains a phosphoinositide (PI) binding pleckstrin homology (PH) domain, we focused on genetic interactions between agd1 and root hair mutants altered in PI metabolism. Rhd4, which is knocked-out in a gene encoding a phosphatidylinositol-4-phosphate (PI-4P) phosphatase, was epistatic to agd1. In contrast, mutations to PIP5K3 and COW1, which encode a type B phosphatidylinositol-4-phosphate 5-kinase 3 and a phosphatidylinositol transfer protein, respectively, enhanced the root hair defects of agd1. Enhanced root hair defects were also observed in double mutants to AGD1 and ACT2, a root hair-expressed vegetative actin isoform. Consistent with our double-mutant studies, targeting of tip growth components involved in PI signaling (PI-4P), secretion (RABA4b) and actin regulation (ROP2), were altered in agd1 root hairs. Furthermore, tip cytosolic calcium ([Ca²⁺](cyt) ) oscillations were disrupted in root hairs of agd1. Taken together, our results indicate that AGD1 links PI signaling to cytoskeletal-, [Ca²⁺](cyt-) , ROP2-, and RABA4b-mediated root hair development.
Collapse
Affiliation(s)
- Cheol-Min Yoo
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc., 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | |
Collapse
|
102
|
Hunter CT, Kirienko DH, Sylvester AW, Peter GF, McCarty DR, Koch KE. Cellulose Synthase-Like D1 is integral to normal cell division, expansion, and leaf development in maize. PLANT PHYSIOLOGY 2012; 158:708-24. [PMID: 22123901 PMCID: PMC3271761 DOI: 10.1104/pp.111.188466] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/26/2011] [Indexed: 05/03/2023]
Abstract
The Cellulose Synthase-Like D (CslD) genes have important, although still poorly defined, roles in cell wall formation. Here, we show an unexpected involvement of CslD1 from maize (Zea mays) in cell division. Both division and expansion were altered in the narrow-organ and warty phenotypes of the csld1 mutants. Leaf width was reduced by 35%, due mainly to a 47% drop in the number of cell files across the blade. Width of other organs was also proportionally reduced. In leaf epidermis, the deficiency in lateral divisions was only partially compensated by a modest, uniform increase in cell width. Localized clusters of misdivided epidermal cells also led to the formation of warty lesions, with cell clusters bulging from the epidermal layer, and some cells expanding to volumes 75-fold greater than normal. The decreased cell divisions and localized epidermal expansions were not associated with detectable changes in the cell wall composition of csld1 leaf blades or epidermal peels, yet a greater abundance of thin, dense walls was indicated by high-resolution x-ray tomography of stems. Cell-level defects leading to wart formation were traced to sites of active cell division and expansion at the bases of leaf blades, where cytokinesis and cross-wall formation were disrupted. Flow cytometry confirmed a greater frequency of polyploid cells in basal zones of leaf blades, consistent with the disruption of cytokinesis and/or the cell cycle in csld1 mutants. Collectively, these data indicate a previously unrecognized role for CSLD activity in plant cell division, especially during early phases of cross-wall formation.
Collapse
Affiliation(s)
- Charles T Hunter
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | | | |
Collapse
|
103
|
Emerging role of ER quality control in plant cell signal perception. Protein Cell 2012; 3:10-6. [PMID: 22259121 DOI: 10.1007/s13238-012-2004-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 12/26/2011] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum quality control (ER-QC) is a conserved mechanism in surveillance of secreted signaling factors during cell-to-cell communication in eukaryotes. Recent data show that the ER-QC plays important roles in diverse cell-to-cell signaling processes during immune response, vegetative and reproductive development in plants. Pollen tube guidance is a precisely guided cell-cell communication process between the male and female gametophytes during plant reproduction. Recently, the female signal has been identified as small secreted peptides, but how the pollen tube responds to this signal is still unclear. In this review, we intend to summarize the role of ER-QC in plants and discuss the recent advances regarding our understanding of the mechanism of pollen tube response to the female signals.
Collapse
|
104
|
Keskin BC, Yuca E, Ertekin O, Yüksel B, Memon AR. Expression characteristics of ARF1 and SAR1 during development and the de-etiolation process. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:24-32. [PMID: 21973219 DOI: 10.1111/j.1438-8677.2011.00482.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
ARF1 (ADP-ribosylation factor 1) and SAR1 (secretion-associated RAS super family) are involved in the formation and budding of vesicles throughout plant endomembrane systems. The molecular mechanisms of this transport have been studied extensively in mammalian and yeast cells. However, very little is known about the mechanisms of coat protein complex (COP) formation and recruitment of COP-vesicle cargoes in plants. To provide insights into vesicular trafficking in Pisum sativum L., we investigated mRNA and protein expression patterns of ARF1 and SAR1 in roots and shoots at early growth stages and in the de-etiolation process. We showed that ARF1 was concentrated mostly in the crude Golgi fractions, and SAR1 was concentrated predominantly in the crude ER fractions of de-etiolated shoots. ARF1 and SAR1 proteins were several times more abundant in shoots relative to roots. In total protein homogenates, the expression level of SAR1 and ARF1 was higher in shoots of dark-grown pea plants than light-grown plants. In contrast, ARF1 was higher in roots of light-grown pea relative to roots of dark-grown pea. With ageing, the ARF1 mRNA in roots was reduced, while SAR1 expression increased. Unlike ARF1 transcripts, ARF1 protein levels did not fluctuate significantly in root and shoot tissue during early development. The relative abundance of SAR1 protein in root tissues may suggest a high level of vesicular transport from the ER to the Golgi. Experimental results suggested that white light probably affects the regulation of ARF1 and SAR1 protein levels. On the other hand, short-term white light affects SAR1 but not ARF1.
Collapse
Affiliation(s)
- B Cevher Keskin
- Plant Molecular Biology Laboratory, TUBITAK, The Scientific and Technological Research Council of Turkey, Marmara Research Center, Genetic Engineering and Biotechnology Institute, Gebze, Kocaeli, Turkey.
| | | | | | | | | |
Collapse
|
105
|
Rounds CM, Lubeck E, Hepler PK, Winship LJ. Propidium iodide competes with Ca(2+) to label pectin in pollen tubes and Arabidopsis root hairs. PLANT PHYSIOLOGY 2011; 157:175-87. [PMID: 21768649 PMCID: PMC3165868 DOI: 10.1104/pp.111.182196] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/14/2011] [Indexed: 05/02/2023]
Abstract
We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca(2+) binding. We first show that Ca(2+) is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca(2+) in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca(2+)-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca(2+) gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca(2+) in tip growth.
Collapse
Affiliation(s)
| | | | - Peter K. Hepler
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003 (C.M.R., P.K.H.); School of Natural Science, Hampshire College, Amherst, Massachusetts 01002 (E.L., L.J.W.)
| | | |
Collapse
|
106
|
Saavedra L, Balbi V, Lerche J, Mikami K, Heilmann I, Sommarin M. PIPKs are essential for rhizoid elongation and caulonemal cell development in the moss Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:635-47. [PMID: 21554449 DOI: 10.1111/j.1365-313x.2011.04623.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
PtdIns-4,5-bisphosphate is a lipid messenger of eukaryotic cells that plays a critical role in processes such as cytoskeleton organization, intracellular vesicular trafficking, secretion, cell motility, regulation of ion channels and nuclear signalling pathways. The enzymes responsible for the synthesis of PtdIns(4,5)P₂ are phosphatidylinositol phosphate kinases (PIPKs). The moss Physcomitrella patens contains two PIPKs, PpPIPK1 and PpPIPK2. To study their physiological role, both genes were disrupted by targeted homologous recombination and as a result mutant plants with lower PtdIns(4,5)P₂ levels were obtained. A strong phenotype for pipk1, but not for pipk2 single knockout lines, was obtained. The pipk1 knockout lines were impaired in rhizoid and caulonemal cell elongation, whereas pipk1-2 double knockout lines showed dramatic defects in protonemal and gametophore morphology manifested by the absence of rapidly elongating caulonemal cells in the protonemal tissue, leafy gametophores with very short rhizoids, and loss of sporophyte production. pipk1 complemented by overexpression of PpPIPK1 fully restored the wild-type phenotype whereas overexpression of the inactive PpPIPK1E885A did not. Overexpression of PpPIPK2 in the pipk1-2 double knockout did not restore the wild-type phenotype demonstrating that PpPIPK1 and PpPIPK2 are not functionally redundant. In vivo imaging of the cytoskeleton network revealed that the shortened caulonemal cells in the pipk1 mutants was the result of the absence of the apicobasal gradient of cortical F-actin cables normally observed in wild-type caulonemal cells. Our data indicate that both PpPIPKs play a crucial role in the development of the moss P. patens, and particularly in the regulation of tip growth.
Collapse
Affiliation(s)
- Laura Saavedra
- Department of Biochemistry, Centre for Chemistry and Chemical Engineering, Lund University, PO Box 124, SE-22100 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
107
|
Honsbein A, Blatt MR, Grefen C. A molecular framework for coupling cellular volume and osmotic solute transport control. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2363-2370. [PMID: 21115662 DOI: 10.1093/jxb/erq386] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Eukaryotic cells expand using vesicle traffic to increase membrane surface area. Expansion in walled eukaryotes is driven by turgor pressure which depends fundamentally on the uptake and accumulation of inorganic ions. Thus, ion uptake and vesicle traffic must be controlled coordinately for growth. How this coordination is achieved is still poorly understood, yet is so elemental to life that resolving the underlying mechanisms will have profound implications for our understanding of cell proliferation, development, and pathogenesis, and will find applications in addressing the mineral and water use by plants in the face of global environmental change. Recent discoveries of interactions between trafficking and ion transport proteins now open the door to an entirely new approach to understanding this coordination. Some of the advances to date in identifying key protein partners in the model plant Arabidopsis and in yeast at membranes vital for cell volume and turgor control are outlined here. Additionally, new evidence is provided of a wider participation among Arabidopsis Kv-like K(+) channels in selective interaction with the vesicle-trafficking protein SYP121. These advances suggest some common paradigms that will help guide further exploration of the underlying connection between ion transport and membrane traffic and should transform our understanding of cellular homeostasis in eukaryotes.
Collapse
Affiliation(s)
- Annegret Honsbein
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cellular and Systems Biology, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
108
|
Yokota K, Hayashi M. Function and evolution of nodulation genes in legumes. Cell Mol Life Sci 2011; 68:1341-51. [PMID: 21380559 PMCID: PMC11114672 DOI: 10.1007/s00018-011-0651-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Root nodule (RN) symbiosis has a unique feature in which symbiotic bacteria fix atmospheric nitrogen. The symbiosis is established with a limited species of land plants, including legumes. How RN symbiosis evolved is still a mystery, but recent findings on legumes genes that are necessary for RN symbiosis may give us a clue.
Collapse
Affiliation(s)
- Keisuke Yokota
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan.
| | | |
Collapse
|
109
|
Peremyslov VV, Mockler TC, Filichkin SA, Fox SE, Jaiswal P, Makarova KS, Koonin EV, Dolja VV. Expression, splicing, and evolution of the myosin gene family in plants. PLANT PHYSIOLOGY 2011; 155:1191-204. [PMID: 21233331 PMCID: PMC3046578 DOI: 10.1104/pp.110.170720] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants possess two myosin classes, VIII and XI. The myosins XI are implicated in organelle transport, filamentous actin organization, and cell and plant growth. Due to the large size of myosin gene families, knowledge of these molecular motors remains patchy. Using deep transcriptome sequencing and bioinformatics, we systematically investigated myosin genes in two model plants, Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon). We improved myosin gene models and found that myosin genes undergo alternative splicing. We experimentally validated the gene models for Arabidopsis myosin XI-K, which plays the principal role in cell interior dynamics, as well as for its Brachypodium ortholog. We showed that the Arabidopsis gene dubbed HDK (for headless derivative of myosin XI-K), which emerged through a partial duplication of the XI-K gene, is developmentally regulated. A gene with similar architecture was also found in Brachypodium. Our analyses revealed two predominant patterns of myosin gene expression, namely pollen/stamen-specific and ubiquitous expression throughout the plant. We also found that several myosins XI can be rhythmically expressed. Phylogenetic reconstructions indicate that the last common ancestor of the angiosperms possessed two myosins VIII and five myosins XI, many of which underwent additional lineage-specific duplications.
Collapse
|
110
|
Cai G, Faleri C, Del Casino C, Emons AMC, Cresti M. Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules. PLANT PHYSIOLOGY 2011; 155:1169-90. [PMID: 21205616 PMCID: PMC3046577 DOI: 10.1104/pp.110.171371] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Accepted: 12/27/2010] [Indexed: 05/18/2023]
Abstract
Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tubes in relation to the dynamics of actin filaments, microtubules, and the endomembrane system using specific antibodies to highly conserved peptide sequences. The role of the cytoskeleton and membrane flow was investigated using specific inhibitors (latrunculin B, 2,3-butanedione monoxime, taxol, oryzalin, and brefeldin A). Both enzymes are associated with the plasma membrane, but cellulose synthase is present along the entire length of pollen tubes (with a higher concentration at the apex) while callose synthase is located in the apex and in distal regions. In longer pollen tubes, callose synthase accumulates consistently around callose plugs, indicating its involvement in plug synthesis. Actin filaments and endomembrane dynamics are critical for the distribution of callose synthase and cellulose synthase, showing that enzymes are transported through Golgi bodies and/or vesicles moving along actin filaments. Conversely, microtubules appear to be critical in the positioning of callose synthase in distal regions and around callose plugs. In contrast, cellulose synthases are only partially coaligned with cortical microtubules and unrelated to callose plugs. Callose synthase also comigrates with tubulin by Blue Native-polyacrylamide gel electrophoresis. Membrane sucrose synthase, which expectedly provides UDP-glucose to callose synthase and cellulose synthase, binds to actin filaments depending on sucrose concentration; its distribution is dependent on the actin cytoskeleton and the endomembrane system but not on microtubules.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento Scienze Ambientali G. Sarfatti, Università di Siena, 53100 Siena, Italy.
| | | | | | | | | |
Collapse
|
111
|
Qin YM, Zhu YX. How cotton fibers elongate: a tale of linear cell-growth mode. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:106-11. [PMID: 20943428 DOI: 10.1016/j.pbi.2010.09.010] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/02/2010] [Accepted: 09/10/2010] [Indexed: 05/18/2023]
Abstract
Cotton fibers (cotton lint) are single-celled trichomes that differentiate from the ovule epidermis. Unidirectional and fast-growing cells generally expand at the dome-shaped apical zone (tip-growth mode); however, previous studies suggest that elongating fiber cells expand via a diffuse-growth mode. Tip-localized Ca(2+) gradient and active secretary vesicle trafficking are two important phenomena of tip-growth. Recently, a high Ca(2+) gradient is found in the cytoplasm of fast-elongating cotton fiber cells near the growing tip. Several protein coding genes participating in vesicle coating and transport are highly expressed in elongating fiber cells. Taken together with the observation that ethylene acts as a positive regulator for cotton fiber and several Arabidopsis tissues that are known to elongate via tip growth prompted us to propose a linear-growth mode for similar cell types.
Collapse
Affiliation(s)
- Yong-Mei Qin
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, 100871, China
| | | |
Collapse
|
112
|
Li S, van Os GM, Ren S, Yu D, Ketelaar T, Emons AMC, Liu CM. Expression and functional analyses of EXO70 genes in Arabidopsis implicate their roles in regulating cell type-specific exocytosis. PLANT PHYSIOLOGY 2010; 154:1819-30. [PMID: 20943851 PMCID: PMC2996038 DOI: 10.1104/pp.110.164178] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 10/08/2010] [Indexed: 05/18/2023]
Abstract
During exocytosis, Golgi-derived vesicles are tethered to the target plasma membrane by a conserved octameric complex called the exocyst. In contrast to a single gene in yeast and most animals, plants have greatly increased number of EXO70 genes in their genomes, with functions very much unknown. Reverse transcription-polymerase chain reactions were performed on all 23 EXO70 genes in Arabidopsis (Arabidopsis thaliana) to examine their expression at the organ level. Cell-level expression analyses were performed using transgenic plants carrying β-glucuronidase reporter constructs, showing that EXO70 genes are primarily expressed in potential exocytosis-active cells such as tip-growing and elongating cells, developing xylem elements, and guard cells, whereas no expression was observed in cells of mature organs such as well-developed leaves, stems, sepals, and petals. Six EXO70 genes are expressed in distinct but partially overlapping stages during microspore development and pollen germination. A mutation in one of these genes, EXO70C1 (At5g13150), led to retarded pollen tube growth and compromised male transmission. This study implies that multiplications of EXO70 genes may allow plants to acquire cell type- and/or cargo-specific regulatory machinery for exocytosis.
Collapse
|
113
|
Han B, Chen S, Dai S, Yang N, Wang T. Isobaric tags for relative and absolute quantification- based comparative proteomics reveals the features of plasma membrane-associated proteomes of pollen grains and pollen tubes from Lilium davidii. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:1043-1058. [PMID: 21106004 DOI: 10.1111/j.1744-7909.2010.00996.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mature pollen grains (PGs) from most plant species are metabolically quiescent. However, once pollinated onto stigma, they quickly hydrate and germinate. A PG can give rise to a vegetative cell-derived polarized pollen tube (PT), which represents a specialized polar cell. The polarized PT grows by the tip and requires interaction of different signaling molecules localized in the apical plasma membrane and active membrane trafficking. The mechanisms underlying the interaction and membrane trafficking are not well understood. In this work, we purified PG and PT plasma-membrane vesicles from Lilium davidii Duch. using the aqueous two-phase partition technique, then enriched plasma membrane proteins by using Brij58 and KCl to remove loosely bound contaminants. We identified 223 integral and membrane-associated proteins in the plasma membrane of PGs and PTs by using isobaric tags for relative and absolute quantification (iTRAQ) and 2-D high-performance liquid chromatography-tandem mass spectrometry. More than 68% of the proteins have putative transmembrane domains and/or lipid-modified motifs. Proteins involved in signal transduction, membrane trafficking and transport are predominant in the plasma-membrane proteome. We revealed most components of the clathrin-dependent endocytosis pathway. Statistical analysis revealed 14 proteins differentially expressed in the two development stages: in PTs, six upregulated and eight downregulated are mainly involved in signaling, transport and membrane trafficking. These results provide novel insights into polarized PT growth.
Collapse
Affiliation(s)
- Bing Han
- Research Center for Molecular & Developmental Biology, Key Laboratory of Photosynthesis & Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100093, China
| | | | | | | | | |
Collapse
|
114
|
AtMYB103 is a crucial regulator of several pathways affecting Arabidopsis anther development. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1112-22. [PMID: 21104372 DOI: 10.1007/s11427-010-4060-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 06/28/2009] [Indexed: 10/18/2022]
Abstract
Previous reports indicated that AtMYB103 has an important role in tapetum development, callose dissolution, and exine formation in A. thaliana anthers. Here, we further characterized its function in anther development by expression pattern analysis, transmission electron microscopy observation of the knockout mutant, and microarray analysis of downstream genes. A total of 818 genes differentially expressed between ms188 and the wild-type were identified by global expression profiling analysis. Functional classification showed that loss-of-function of AtMYB103 impairs cell wall modification, lipid metabolic pathways, and signal transduction throughout anther development. RNA in situ hybridization confirmed that transcription factors acting downstream of AtMYB103 (At1g06280 and At1g02040) were expressed in the tapetum and microspores at later stages, suggesting that they might have important roles in microsporogenesis. These results indicated that AtMYB103 is a crucial regulator of Arabidopsis anther development.
Collapse
|
115
|
Liu J, Piette BMAG, Deeks MJ, Franklin-Tong VE, Hussey PJ. A compartmental model analysis of integrative and self-regulatory ion dynamics in pollen tube growth. PLoS One 2010; 5:e13157. [PMID: 20949135 PMCID: PMC2950844 DOI: 10.1371/journal.pone.0013157] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/14/2010] [Indexed: 11/19/2022] Open
Abstract
Sexual reproduction in higher plants relies upon the polarised growth of pollen tubes. The growth-site at the pollen tube tip responds to signalling processes to successfully steer the tube to an ovule. Essential features of pollen tube growth are polarisation of ion fluxes, intracellular ion gradients, and oscillating dynamics. However, little is known about how these features are generated and how they are causally related. We propose that ion dynamics in biological systems should be studied in an integrative and self-regulatory way. Here we have developed a two-compartment model by integrating major ion transporters at both the tip and shank of pollen tubes. We demonstrate that the physiological features of polarised growth in the pollen tube can be explained by the localised distribution of transporters at the tip and shank. Model analysis reveals that the tip and shank compartments integrate into a self-regulatory dynamic system, however the oscillatory dynamics at the tip do not play an important role in maintaining ion gradients. Furthermore, an electric current travelling along the pollen tube contributes to the regulation of ion dynamics. Two candidate mechanisms for growth-induced oscillations are proposed: the transition of tip membrane into shank membrane, and growth-induced changes in kinetic parameters of ion transporters. The methodology and principles developed here are applicable to the study of ion dynamics and their interactions with other functional modules in any plant cellular system.
Collapse
Affiliation(s)
- Junli Liu
- School of Biological and Biomedical Sciences, University of Durham, Durham, United Kingdom
- Biophysical Sciences Institute, University of Durham, Durham, United Kingdom
| | - Bernard M. A. G. Piette
- Department of Mathematical Sciences, University of Durham, Durham, United Kingdom
- Biophysical Sciences Institute, University of Durham, Durham, United Kingdom
| | - Michael J. Deeks
- School of Biological and Biomedical Sciences, University of Durham, Durham, United Kingdom
- Biophysical Sciences Institute, University of Durham, Durham, United Kingdom
| | | | - Patrick J. Hussey
- School of Biological and Biomedical Sciences, University of Durham, Durham, United Kingdom
- Biophysical Sciences Institute, University of Durham, Durham, United Kingdom
| |
Collapse
|
116
|
Ischebeck T, Vu LH, Jin X, Stenzel I, Löfke C, Heilmann I. Functional cooperativity of enzymes of phosphoinositide conversion according to synergistic effects on pectin secretion in tobacco pollen tubes. MOLECULAR PLANT 2010; 3:870-81. [PMID: 20603382 DOI: 10.1093/mp/ssq031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The Arabidopsis phosphoinositide kinases PI4Kβ1 and PIP5K5 have been implicated in the control of directional vesicle trafficking underlying polar tip growth in pollen tubes. PI4Kβ1 and PIP5K5 catalyze key consecutive steps of phosphoinositide conversion, and it appears obvious that phosphatidylinositol-4-phosphate formed by PI4Kβ1 might act as a substrate for phosphatidylinositol-4,5-bisphosphate formation by PIP5K5. However, this hypothesis has not been experimentally addressed and distinct localization patterns of PI4Kβ1, PIP5K5, and also PI-synthases (PIS) generating phosphatidylinositol suggest additional complexity. Here, the synergistic functionality of enzymes of phosphoinositide conversion was assessed. In tobacco and Arabidopsis pollen tubes, phosphoinositides influence the apical secretion of pectin, and increased pectin deposition results in characteristic morphological alterations. Catalytically active and dominant negative variants of PI4Kβ1 and PIP5K5 were systematically co-expressed in tobacco pollen tubes and the incidence of morphologies related to enhanced pectin secretion was evaluated. The data support a proposed functional interplay of PI4Kβ1 and PIP5K5 at the trans-Golgi network, mediating directional vesicle trafficking. Co-expression experiments additionally including PIS isoforms, PIS1 or PIS2, indicate that pectin secretion is synergistically mediated by PI4Kβ1 and PIP5K5 acting on PtdIns formed by PIS2 rather than PIS1. Possible ramifications for the preferential channeling of phosphoinositide intermediates between particular isoforms of PI pathway enzymes are discussed.
Collapse
Affiliation(s)
- Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
117
|
Zhang H, Qu X, Bao C, Khurana P, Wang Q, Xie Y, Zheng Y, Chen N, Blanchoin L, Staiger CJ, Huang S. Arabidopsis VILLIN5, an actin filament bundling and severing protein, is necessary for normal pollen tube growth. THE PLANT CELL 2010; 22:2749-67. [PMID: 20807879 PMCID: PMC2947167 DOI: 10.1105/tpc.110.076257] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A dynamic actin cytoskeleton is essential for pollen germination and tube growth. However, the molecular mechanisms underlying the organization and turnover of the actin cytoskeleton in pollen remain poorly understood. Villin plays a key role in the formation of higher-order structures from actin filaments and in the regulation of actin dynamics in eukaryotic cells. It belongs to the villin/gelsolin/fragmin superfamily of actin binding proteins and is composed of six gelsolin-homology domains at its core and a villin headpiece domain at its C terminus. Recently, several villin family members from plants have been shown to sever, cap, and bundle actin filaments in vitro. Here, we characterized a villin isovariant, Arabidopsis thaliana VILLIN5 (VLN5), that is highly and preferentially expressed in pollen. VLN5 loss-of-function retarded pollen tube growth and sensitized actin filaments in pollen grains and tubes to latrunculin B. In vitro biochemical analyses revealed that VLN5 is a typical member of the villin family and retains a full suite of activities, including barbed-end capping, filament bundling, and calcium-dependent severing. The severing activity was confirmed with time-lapse evanescent wave microscopy of individual actin filaments in vitro. We propose that VLN5 is a major regulator of actin filament stability and turnover that functions in concert with oscillatory calcium gradients in pollen and therefore plays an integral role in pollen germination and tube growth.
Collapse
Affiliation(s)
- Hua Zhang
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolu Qu
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chanchan Bao
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Parul Khurana
- Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907-2064
| | - Qiannan Wang
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yurong Xie
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yiyan Zheng
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Naizhi Chen
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Laurent Blanchoin
- Institut de Recherches en Technologie et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire Végétale, Commissariat à l’Energie Atomique/Centre National de la Recherche Scientifique/Université Joseph Fourier, F38054 Grenoble, France
| | - Christopher J. Staiger
- Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907-2064
| | - Shanjin Huang
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Address correspondence to
| |
Collapse
|
118
|
Peremyslov VV, Prokhnevsky AI, Dolja VV. Class XI myosins are required for development, cell expansion, and F-Actin organization in Arabidopsis. THE PLANT CELL 2010; 22:1883-97. [PMID: 20581304 PMCID: PMC2910955 DOI: 10.1105/tpc.110.076315] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 05/26/2010] [Accepted: 06/10/2010] [Indexed: 05/18/2023]
Abstract
The actomyosin system is conserved throughout eukaryotes. Although F-actin is essential for cell growth and plant development, roles of the associated myosins are poorly understood. Using multiple gene knockouts in Arabidopsis thaliana, we investigated functional profiles of five class XI myosins, XI-K, XI-1, XI-2, XI-B, and XI-I. Plants lacking three myosins XI showed stunted growth and delayed flowering, whereas elimination of four myosins further exacerbated these defects. Loss of myosins led to decreased leaf cell expansion, with the most severe defects observed in the larger leaf cells. Root hair length in myosin-deficient plants was reduced approximately 10-fold, with quadruple knockouts showing morphological abnormalities. It was also found that trafficking of Golgi and peroxisomes was entirely myosin dependent. Surprisingly, myosins were required for proper organization of F-actin and the associated endoplasmic reticulum networks, revealing a novel, architectural function of the class XI myosins. These results establish critical roles of myosin-driven transport and F-actin organization during polarized and diffuse cell growth and indicate that myosins are key factors in plant growth and development.
Collapse
|
119
|
Campàs O, Mahadevan L. Shape and dynamics of tip-growing cells. Curr Biol 2010; 19:2102-7. [PMID: 20022245 DOI: 10.1016/j.cub.2009.10.075] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 10/14/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
Abstract
Walled cells have the ability to remodel their shape while sustaining an internal turgor pressure that can reach values up to 10 atmospheres [1-7]. Although it is undisputed that this requires a tight and simultaneous regulation of cell wall assembly and mechanics, previous theoretical studies on tip growth focused either on the mechanical behavior of the cell wall or on its assembly [8-14]. To study the interplay between growth and mechanics in shaping a walled cell, we examine the particularly simple geometry of tip-growing cells [1, 3, 15, 16], which elongate via the assembly and expansion of cell wall in the apical region of the cell. We describe the observed irreversible expansion of the cell wall during growth as the extension of an inhomogeneous viscous fluid shell under the action of turgor pressure, fed by a material source in the neighborhood of the growing tip. This allows us to determine theoretically the radius of the cell and its growth velocity in terms of the turgor pressure and the secretion rate and rheology of the cell wall material. We derive simple scaling laws for the geometry of the cell and find that a single dimensionless parameter, which characterizes the relative roles of cell wall assembly and expansion, is sufficient to explain the observed variability in shapes of tip-growing cells. More generally, our description provides a framework to understand cell growth and remodeling in plants (pollen tubes [17], root hairs, etc. [18]), fungi (hyphal growth [19, 20] and fission and budding yeast [3]), and some bacteria [21], in the context of both tip growth and diffuse growth.
Collapse
Affiliation(s)
- Otger Campàs
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
120
|
Staiger CJ, Poulter NS, Henty JL, Franklin-Tong VE, Blanchoin L. Regulation of actin dynamics by actin-binding proteins in pollen. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1969-86. [PMID: 20159884 DOI: 10.1093/jxb/erq012] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A dynamic network of polymers, the actin cytoskeleton, co-ordinates numerous fundamental cellular processes. In pollen tubes, organelle movements and cytoplasmic streaming, organization of the tip zone, vesicle trafficking, and tip growth have all been linked to actin-based function. Further, during the self-incompatibility response of Papaver rhoeas, destruction of the cytoskeleton is a primary target implicated in the rapid cessation of pollen tube growth and alterations in actin dynamics are associated with the initiation of programmed cell death. Surprisingly, these diverse cellular processes are accomplished with only a small amount of filamentous actin and a huge pool of polymerizable monomers. These observations hint at incredibly fast and complex actin dynamics in pollen. To understand the molecular mechanisms regulating actin dynamics in plant cells, the abundant actin monomer-binding proteins, a major filament nucleator, a family of bundling and severing proteins, and a modulator of growth at the barbed-end of actin filaments have been characterized biochemically. The activities of these proteins are generally consistent with textbook models for actin turnover. For example, the three monomer-binding proteins, profilin, ADF, and CAP, are thought to function synergistically to enhance turnover and the exchange of subunits between monomer and polymer pools. How individual actin filaments behave in living cells, however, remains largely unexplored. Actin dynamics were examined using variable angle epifluorescence microscopy (VAEM) in expanding hypocotyl epidermal cells. Our observations of single filament behaviour are not consistent with filament turnover by treadmilling, but rather represent a novel property called stochastic dynamics. A new model for the dynamic control of actin filament turnover in plant cells is presented.
Collapse
Affiliation(s)
- Christopher J Staiger
- Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907-2064, USA.
| | | | | | | | | |
Collapse
|
121
|
Szymanski DB, Cosgrove DJ. Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr Biol 2010; 19:R800-11. [PMID: 19906582 DOI: 10.1016/j.cub.2009.07.056] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Underlying the architectural complexity of plants are diverse cell types that, under the microscope, easily reveal relationships between cell structure and specialized functions. Much less obvious are the mechanisms by which the cellular growth machinery and mechanical properties of the cell interact to dictate cell shape. The recent combined use of mutants, genomic analyses, sophisticated spectroscopies, and live cell imaging is providing new insight into how cytoskeletal systems and cell wall biosynthetic activities are integrated during morphogenesis. The purpose of this review is to discuss the unique geometric properties and physical processes that regulate plant cell expansion, then to overlay on this mechanical system some of the recent discoveries about the protein machines and cellular polymers that regulate cell shape. In the end, we hope to make clear that there are many interesting opportunities to develop testable mathematical models that improve our understanding of how subcellular structures, protein motors, and extracellular polymers can exert effects at spatial scales that span cells, tissues, and organs.
Collapse
Affiliation(s)
- Daniel B Szymanski
- Department of Agronomy, Lily Hall of Life Sciences, 915 West State Street, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
122
|
Abstract
The exocyst is an octameric vesicle tethering complex that functions upstream of SNARE mediated exocytotic vesicle fusion with the plasma membrane. All proteins in the complex have been conserved during evolution, and genes that encode the exocyst subunits are present in the genomes of all plants investigated to date. Although the plant exocyst has not been studied in great detail, it is likely that the basic function of the exocyst in vesicle tethering is conserved. Nevertheless, genomic and genetic studies suggest that the exocyst complex in plants may have more diversified roles than that in budding yeast. In this review, we compare the knowledge about the exocyst in plant cells to the well-studied exocyst in budding yeast, in order to explore similarities and differences in expression and function between these organisms, both of which have walled cells.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Plant Cell Biology, Wageningen University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
123
|
Chae K, Kieslich CA, Morikis D, Kim SC, Lord EM. A gain-of-function mutation of Arabidopsis lipid transfer protein 5 disturbs pollen tube tip growth and fertilization. THE PLANT CELL 2009; 21:3902-14. [PMID: 20044438 PMCID: PMC2814499 DOI: 10.1105/tpc.109.070854] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 11/11/2009] [Accepted: 11/28/2009] [Indexed: 05/18/2023]
Abstract
During compatible pollination of the angiosperms, pollen tubes grow in the pistil transmitting tract (TT) and are guided to the ovule for fertilization. Lily (Lilium longiflorum) stigma/style Cys-rich adhesin (SCA), a plant lipid transfer protein (LTP), is a small, secreted peptide involved in pollen tube adhesion-mediated guidance. Here, we used a reverse genetic approach to study biological roles of Arabidopsis thaliana LTP5, a SCA-like LTP. The T-DNA insertional gain-of-function mutant plant for LTP5 (ltp5-1) exhibited ballooned pollen tubes, delayed pollen tube growth, and decreased numbers of fertilized eggs. Our reciprocal cross-pollination study revealed that ltp5-1 results in both male and female partial sterility. RT-PCR and beta-glucuronidase analyses showed that LTP5 is present in pollen and the pistil TT in low levels. Pollen-targeted overexpression of either ltp5-1 or wild-type LTP5 resulted in defects in polar tip growth of pollen tubes and thereby decreased seed set, suggesting that mutant ltp5-1 acts as a dominant-active form of wild-type LTP5 in pollen tube growth. The ltp5-1 protein has additional hydrophobic C-terminal sequences, compared with LTP5. In our structural homology/molecular dynamics modeling, Tyr-91 in ltp5-1, replacing Val-91 in LTP5, was predicted to interact with Arg-45 and Tyr-81, which are known to interact with a lipid ligand in maize (Zea mays) LTP. Thus, Arabidopsis LTP5 plays a significant role in reproduction.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Plant/genetics
- Antigens, Plant/metabolism
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Base Sequence
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- DNA, Bacterial/genetics
- Fertilization/genetics
- Gene Expression Regulation, Plant
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Phylogeny
- Plant Infertility/genetics
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Pollen Tube/growth & development
- Protein Structure, Tertiary
- RNA, Plant/genetics
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Keun Chae
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Chris A. Kieslich
- Department of Bioengineering, University of California, Riverside, California 92521
| | - Dimitrios Morikis
- Center for Plant Cell Biology, University of California, Riverside, California 92521
- Department of Bioengineering, University of California, Riverside, California 92521
| | - Seung-Chul Kim
- Department of Biological Sciences, Sung Kyun Kwan University, Jangan-gu, Suwon, Gyeonggi-do 440-746, Korea
| | - Elizabeth M. Lord
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
124
|
Kotchoni SO, Zakharova T, Mallery EL, Le J, El-Assal SED, Szymanski DB. The association of the Arabidopsis actin-related protein2/3 complex with cell membranes is linked to its assembly status but not its activation. PLANT PHYSIOLOGY 2009; 151:2095-109. [PMID: 19801398 PMCID: PMC2785977 DOI: 10.1104/pp.109.143859] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/28/2009] [Indexed: 05/18/2023]
Abstract
In growing plant cells, the combined activities of the cytoskeleton, endomembrane, and cell wall biosynthetic systems organize the cytoplasm and define the architecture and growth properties of the cell. These biosynthetic machineries efficiently synthesize, deliver, and recycle the raw materials that support cell expansion. The precise roles of the actin cytoskeleton in these processes are unclear. Certainly, bundles of actin filaments position organelles and are a substrate for long-distance intracellular transport, but the functional linkages between dynamic actin filament arrays and the cell growth machinery are poorly understood. The Arabidopsis (Arabidopsis thaliana) "distorted group" mutants have defined protein complexes that appear to generate and convert small GTPase signals into an Actin-Related Protein2/3 (ARP2/3)-dependent actin filament nucleation response. However, direct biochemical knowledge about Arabidopsis ARP2/3 and its cellular distribution is lacking. In this paper, we provide biochemical evidence for a plant ARP2/3. The plant complex utilizes a conserved assembly mechanism. ARPC4 is the most critical core subunit that controls the assembly and steady-state levels of the complex. ARP2/3 in other systems is believed to be mostly a soluble complex that is locally recruited and activated. Unexpectedly, we find that Arabidopsis ARP2/3 interacts strongly with cell membranes. Membrane binding is linked to complex assembly status and not to the extent to which it is activated. Mutant analyses implicate ARP2 as an important subunit for membrane association.
Collapse
|
125
|
Ye J, Zheng Y, Yan A, Chen N, Wang Z, Huang S, Yang Z. Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes. THE PLANT CELL 2009; 21:3868-84. [PMID: 20023198 PMCID: PMC2814512 DOI: 10.1105/tpc.109.068700] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 11/07/2009] [Accepted: 11/18/2009] [Indexed: 05/18/2023]
Abstract
Cytoplasmic actin cables are the most prominent actin structures in plant cells, but the molecular mechanism underlying their formation is unknown. The function of these actin cables, which are proposed to modulate cytoplasmic streaming and intracellular movement of many organelles in plants, has not been studied by genetic means. Here, we show that Arabidopsis thaliana formin3 (AFH3) is an actin nucleation factor responsible for the formation of longitudinal actin cables in pollen tubes. The Arabidopsis AFH3 gene encodes a 785-amino acid polypeptide, which contains a formin homology 1 (FH1) and a FH2 domain. In vitro analysis revealed that the AFH3 FH1FH2 domains interact with the barbed end of actin filaments and have actin nucleation activity in the presence of G-actin or G actin-profilin. Overexpression of AFH3 in tobacco (Nicotiana tabacum) pollen tubes induced excessive actin cables, which extended into the tubes' apices. Specific downregulation of AFH3 eliminated actin cables in Arabidopsis pollen tubes and reduced the level of actin polymers in pollen grains. This led to the disruption of the reverse fountain streaming pattern in pollen tubes, confirming a role for actin cables in the regulation of cytoplasmic streaming. Furthermore, these tubes became wide and short and swelled at their tips, suggesting that actin cables may regulate growth polarity in pollen tubes. Thus, AFH3 regulates the formation of actin cables, which are important for cytoplasmic streaming and polarized growth in pollen tubes.
Collapse
Affiliation(s)
- Jianrong Ye
- College of Biological Science, China Agricultural University, Beijing 100193, China
- China Agricultural University-University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yiyan Zheng
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - An Yan
- China Agricultural University-University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Naizhi Chen
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhangkui Wang
- College of Biological Science, China Agricultural University, Beijing 100193, China
- China Agricultural University-University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shanjin Huang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Address correspondence to or
| | - Zhenbiao Yang
- China Agricultural University-University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- Address correspondence to or
| |
Collapse
|
126
|
Pertl H, Schulze WX, Obermeyer G. The Pollen Organelle Membrane Proteome Reveals Highly Spatial−Temporal Dynamics during Germination and Tube Growth of Lily Pollen. J Proteome Res 2009; 8:5142-52. [DOI: 10.1021/pr900503f] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Heidi Pertl
- Molecular Plant Biophysics and Biochemistry, Deptartment of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria, and Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | - Waltraud X. Schulze
- Molecular Plant Biophysics and Biochemistry, Deptartment of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria, and Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | - Gerhard Obermeyer
- Molecular Plant Biophysics and Biochemistry, Deptartment of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria, and Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| |
Collapse
|
127
|
McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vidali L, Winship LJ, Hepler PK. Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. THE PLANT CELL 2009; 21:3026-40. [PMID: 19861555 PMCID: PMC2782290 DOI: 10.1105/tpc.109.069260] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/28/2009] [Accepted: 10/14/2009] [Indexed: 05/18/2023]
Abstract
We examined exocytosis during oscillatory growth in lily (Lilium formosanum and Lilium longiflorum) and tobacco (Nicotiana tabacum) pollen tubes using three markers: (1) changes in cell wall thickness by Nomarski differential interference contrast (DIC), (2) changes in apical cell wall fluorescence in cells stained with propidium iodide (PI), and (3) changes in apical wall fluorescence in cells expressing tobacco pectin methyl esterase fused to green fluorescent protein (PME-GFP). Using PI fluorescence, we quantified oscillatory changes in the amount of wall material from both lily and tobacco pollen tubes. Measurement of wall thickness by DIC was only possible with lily due to limitations of microscope resolution. PME-GFP, a direct marker for exocytosis, only provides information in tobacco because its expression in lily causes growth inhibition and cell death. We show that exocytosis in pollen tubes oscillates and leads the increase in growth rate; the mean phase difference between exocytosis and growth is -98 degrees +/- 3 degrees in lily and -124 degrees +/- 4 degrees in tobacco. Statistical analyses reveal that the anticipatory increase in wall material predicts, to a high degree, the rate and extent of the subsequent growth surge. Exocytosis emerges as a prime candidate for the initiation and regulation of oscillatory pollen tube growth.
Collapse
Affiliation(s)
| | - Joseph G. Kunkel
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Maurice Bosch
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University Plas Gogerddan, Aberystwyth, SY23 3EB, United Kingdom
| | - Caleb M. Rounds
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | | | - Peter K. Hepler
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
128
|
Wang W, Wen Y, Berkey R, Xiao S. Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal Haustorium renders broad-spectrum resistance to powdery mildew. THE PLANT CELL 2009; 21:2898-913. [PMID: 19749153 PMCID: PMC2768920 DOI: 10.1105/tpc.109.067587] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/27/2009] [Accepted: 08/25/2009] [Indexed: 05/18/2023]
Abstract
Powdery mildew fungal pathogens penetrate the plant cell wall and develop a feeding structure called the haustorium to steal photosynthetate from the host cell. Here, we report that the broad-spectrum mildew resistance protein RPW8.2 from Arabidopsis thaliana is induced and specifically targeted to the extrahaustorial membrane (EHM), an enigmatic interfacial membrane believed to be derived from the host cell plasma membrane. There, RPW8.2 activates a salicylic acid (SA) signaling-dependent defense strategy that concomitantly enhances the encasement of the haustorial complex and onsite accumulation of H(2)O(2), presumably for constraining the haustorium while reducing oxidative damage to the host cell. Targeting of RPW8.2 to the EHM, however, is SA independent and requires function of the actin cytoskeleton. Natural mutations that impair either defense activation or EHM targeting of RPW8.2 compromise the efficacy of RPW8.2-mediated resistance. Thus, the interception of haustoria is key for RPW8-mediated broad-spectrum mildew resistance.
Collapse
|
129
|
Blanco FA, Peltzer Meschini E, Zanetti ME, Aguilar OM. A small GTPase of the Rab family is required for root hair formation and preinfection stages of the common bean-Rhizobium symbiotic association. THE PLANT CELL 2009; 21:2797-810. [PMID: 19749154 PMCID: PMC2768941 DOI: 10.1105/tpc.108.063420] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 08/04/2009] [Accepted: 08/17/2009] [Indexed: 05/18/2023]
Abstract
Legume plants are able to establish a symbiotic relationship with soil bacteria from the genus Rhizobium, leading to the formation of nitrogen-fixing root nodules. Successful nodulation requires both the formation of infection threads (ITs) in the root epidermis and the activation of cell division in the cortex to form the nodule primordium. This study describes the characterization of RabA2, a common bean (Phaseolus vulgaris) cDNA previously isolated as differentially expressed in root hairs infected with Rhizobium etli, which encodes a protein highly similar to small GTPases of the RabA2 subfamily. This gene is expressed in roots, particularly in root hairs, where the protein was found to be associated with vesicles that move along the cell. The role of this gene during nodulation has been studied in common bean transgenic roots using a reverse genetic approach. Examination of root morphology in RabA2 RNA interference (RNAi) plants revealed that the number and length of the root hairs were severely reduced in these plants. Upon inoculation with R. etli, nodulation was completely impaired and no induction of early nodulation genes (ENODs), such as ERN1, ENOD40, and Hap5, was detected in silenced hairy roots. Moreover, RabA2 RNAi plants failed to induce root hair deformation and to initiate ITs, indicating that morphological changes that precede bacterial infection are compromised in these plants. We propose that RabA2 acts in polar growth of root hairs and is required for reorientation of the root hair growth axis during bacterial infection.
Collapse
|
130
|
Shi YY, Tao WJ, Liang SP, Lü Y, Zhang L. Analysis of the tip-to-base gradient of CaM in pollen tube pulsant growth using in vivo CaM-GFP system. PLANT CELL REPORTS 2009; 28:1253-64. [PMID: 19536549 DOI: 10.1007/s00299-009-0725-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 05/27/2023]
Abstract
Ca(2+)-CaM signaling is involved in pollen tube development. However, the distribution and function of CaM and the downstream components of Ca(2+)-CaM signal in pollen tube development still need more exploration. Here we obtained the CaM-GFP fusion protein transgenic line of Nicotiana tobacum SRI, which allowed us to monitor CaM distribution pattern in vivo and provided a useful tool to observe CaM response to various exogenous stimulations and afforded solid evidences of the essential functions of CaM in pollen tube growth. CaM-GFP fusion gene was constructed under the control of Lat52-7 pollen-specific promoter and transformed into Nicotiana tobacum SRI. High level of CaM-GFP fluorescence was detected at the germinal pores and the tip-to-base gradient of fluorescence was observed in developing pollen tubes. The distribution of CaM at apical dome had close relationship with the pulsant growth mode of pollen tubes: when CaM aggregated at the apical dome, pollen tubes stepped into growth state; When CaM showed non-polarized distribution, pollen tubes stopped growing. In addition, after affording exogenous Ca(2+), calmidazolium (antagonism of CaM) or Brefeldin A (an inhibitor of membrane trafficking), CaM turned to a uniform distribution at the apical dome and pollen tube growth was held back. Taken together, our results showed that CaM played a vital role in pollen tube elongation and growth rate, and the oscillation of tip-to-base gradient of CaM was required for the normal pulsant growth of pollen tube.
Collapse
Affiliation(s)
- Ya-Ya Shi
- Key Lab of MOE for Plant Developmental Biology, Wuhan University, 430072, Wuhan, People's Republic of China
| | | | | | | | | |
Collapse
|
131
|
Myers C, Romanowsky SM, Barron YD, Garg S, Azuse CL, Curran A, Davis RM, Hatton J, Harmon AC, Harper JF. Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:528-39. [PMID: 19392698 DOI: 10.1111/j.1365-313x.2009.03894.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium signals are critical for the regulation of polarized growth in many eukaryotic cells, including pollen tubes and neurons. In plants, the regulatory pathways that code and decode Ca(2+) signals are poorly understood. In Arabidopsis thaliana, genetic evidence presented here indicates that pollen tube tip growth involves the redundant activity of two Ca(2+)-dependent protein kinases (CPKs), isoforms CPK17 and -34. Both isoforms appear to target to the plasma membrane, as shown by imaging of CPK17-yellow fluorescent protein (YFP) and CPK34-YFP in growing pollen tubes. Segregation analyses from two independent sets of T-DNA insertion mutants indicate that a double disruption of CPK17 and -34 results in an approximately 350-fold reduction in pollen transmission efficiency. The near sterile phenotype of homozygous double mutants could be rescued through pollen expression of a CPK34-YFP fusion. In contrast, a transgene rescue was blocked by mutations engineered to disrupt the Ca(2+)-activation mechanism of CPK34 (CPK34-YFP-E465A,E500A), providing in vivo evidence linking Ca(2+) activation to a biological function of a CPK. While double mutant pollen tubes displayed normal morphology, relative growth rates for the most rapidly growing tubes were reduced by more than three-fold compared with wild type. In addition, while most mutant tubes appeared to grow far enough to reach ovules, the vast majority (>90%) still failed to locate and fertilize ovules. Together, these results provide genetic evidence that CPKs are essential to pollen fitness, and support a mechanistic model in which CPK17 and -34 transduce Ca(2+) signals to increase the rate of pollen tube tip growth and facilitate a response to tropism cues.
Collapse
Affiliation(s)
- Candace Myers
- Biochemistry Department MS200, University of Nevada, Reno, NV 89557, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Hwang JU, Vernoud V, Szumlanski A, Nielsen E, Yang Z. A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr Biol 2009; 18:1907-16. [PMID: 19108776 DOI: 10.1016/j.cub.2008.11.057] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 11/15/2022]
Abstract
BACKGROUND Highly elongated eukaryotic cells (e.g., neuronal axons, fungal hyphae, and pollen tubes) are generated through continuous apically restricted growth (tip growth), which universally requires tip-localized Rho GTPases. We used the oscillating pollen tube as a model system to determine the function and regulation of Rho GTPases in tip growth. Our previous work showed that the spatiotemporal dynamics of the apical cap of the activated Rho-like GTPase from Plant 1 (ROP1) are critical for tip growth in pollen tubes. However, the underlying mechanism for the generation and maintenance of this dynamic apical cap is poorly understood. RESULTS A screen for mutations that enhance ROP1-overexpression-induced depolarization of pollen-tube growth identified REN1 (ROP1 enhancer 1) in Arabidopsis, whose null mutations turn elongated pollen tubes into bulbous cells. REN1 encodes a novel Rho GTPase-activating protein (RhoGAP) required for restricting the ROP1 activity to the pollen-tube tip. REN1 was localized to exocytic vesicles accumulated in the pollen-tube apex, as well as to the apical plasma membrane at the site of ROP1 activation. The apical localization of REN1 and its function in controlling growth polarity was compromised by disruption of ROP1-dependent F-actin and vesicular trafficking, which indicates that REN1 targeting and function is regulated by ROP1 downstream signaling. CONCLUSIONS Our findings suggest that the REN1 RhoGAP controls a negative-feedback-based global inhibition of ROP1. This function provides a critical self-organizing mechanism, by which ROP signaling is spatially limited to the growth site and temporally oscillates during continuous tip growth. Similar spatiotemporal control of Rho GTPase signaling may also play an important role in cell-polarity control in other systems, including tip growth in fungi and cell movement in animals.
Collapse
Affiliation(s)
- Jae-Ung Hwang
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
133
|
Boavida LC, Shuai B, Yu HJ, Pagnussat GC, Sundaresan V, McCormick S. A collection of Ds insertional mutants associated with defects in male gametophyte development and function in Arabidopsis thaliana. Genetics 2009; 181:1369-85. [PMID: 19237690 PMCID: PMC2666506 DOI: 10.1534/genetics.108.090852] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 02/13/2009] [Indexed: 11/18/2022] Open
Abstract
Functional analyses of the Arabidopsis genome require analysis of the gametophytic generation, since approximately 10% of the genes are expressed in the male gametophyte and approximately 9% in the female gametophyte. Here we describe the genetic and molecular characterization of 67 Ds insertion lines that show reduced transmission through the male gametophyte. About half of these mutations are male gametophytic-specific mutations, while the others also affect female transmission. Genomic sequences flanking both sides of the Ds element were recovered for 39 lines; for 16 the Ds elements were inserted in or close to coding regions, while 7 were located in intergenic/unannotated regions of the genome. For the remaining 16 lines, chromosomal rearrangements such as translocations or deletions, ranging between 30 and 500 kb, were associated with the transposition event. The mutants were classified into five groups according to the developmental processes affected; these ranged from defects in early stages of gametogenesis to later defects affecting pollen germination, pollen tube growth, polarity or guidance, or pollen tube-embryo sac interactions or fertilization. The isolated mutants carry Ds insertions in genes with diverse biological functions and potentially specify new functions for several unannotated or unknown proteins.
Collapse
Affiliation(s)
- Leonor C Boavida
- Plant Gene Expression Center and Plant and Microbial Biology, US Department of Agriculture/Agricultural Research Service, Albany, California 94710, USA
| | | | | | | | | | | |
Collapse
|
134
|
Tsaneva-Atanasova K, Burgo A, Galli T, Holcman D. Quantifying neurite growth mediated by interactions among secretory vesicles, microtubules, and actin networks. Biophys J 2009; 96:840-57. [PMID: 19186125 DOI: 10.1016/j.bpj.2008.10.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/21/2008] [Indexed: 01/26/2023] Open
Abstract
Neurite growth is a fundamental process of neuronal development, which requires both membrane expansions by exocytosis and cytoskeletal dynamics. However, the specific contribution of these processes has not been yet assessed quantitatively. To study and quantify the growth process, we construct a biophysical model in which we relate the overall neurite outgrowth rate to the vesicle dynamics. By considering the complex motion of vesicles in the cell soma, we demonstrate from biophysical consideration that the main step of finding the neurite initiation site relies mainly on a two-dimensional diffusion/sequestration/fusion at the cell surface and we obtain a novel formula for the flux of vesicles at the neurite base. In the absence of microtubules, we show that a nascent neurite initiated by vesicular delivery can only reach a small length. By adding the microtubule dynamics to the secretory pathway and using stochastic analysis and simulations, we study the complex dynamics of neurite growth. Within this model, depending on the coupling parameter between the microtubules and the neurite, we find different regimes of growth, which describe dendritic and axonal growth. To validate one aspect of our model, we demonstrate that the experimental flux of TI-VAMP but not Synaptobrevin 2 vesicles contributes to the neurite growth. We conclude that although vesicles can be generated randomly in the cell body, the search for the neurite position using the microtubule network and diffusion is quite fast. Furthermore, when the TI-VAMP vesicular flow is large enough, the interactions between the microtubule bundle and the neurite control the growth process. In addition, all of these processes intimately cooperate to mediate the various modes of neurite growth: the model predicts three different growing modes including, in addition to the stable axonal growth and the stochastic dendritic growth, a fast oscillatory regime. Finally our study demonstrates that cytoskeletal dynamics is necessary to generate long protrusion, while vesicular delivery alone can only generate small neurite.
Collapse
|
135
|
Heilmann I. Using genetic tools to understand plant phosphoinositide signalling. TRENDS IN PLANT SCIENCE 2009; 14:171-9. [PMID: 19217341 DOI: 10.1016/j.tplants.2008.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 11/28/2008] [Accepted: 12/09/2008] [Indexed: 05/07/2023]
Abstract
Phosphoinositides (PIs) are regulatory lipids that control various physiological processes in eukaryotic organisms. As in other eukaryotes, the plant PI system is a central regulator of metabolism. The analysis of mutant plants that lack certain PI species has revealed their physiological relevance; however, knowledge of the factors controlling the distribution of PIs and the effects on their target proteins is still limited. To understand PI functions better, genetic approaches should be combined with biochemical analyses and cell biology, as has been done in several recent publications. Here, I highlight plant-specific physiological processes that are controlled by PIs and suggest future avenues of research. A detailed understanding of the functions and effects of PIs might offer new opportunities for modulating plant growth and hardiness against environmental influences.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Plant Biochemistry, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
136
|
Szumlanski AL, Nielsen E. The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. THE PLANT CELL 2009; 21:526-44. [PMID: 19208902 PMCID: PMC2660625 DOI: 10.1105/tpc.108.060277] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 01/16/2009] [Accepted: 01/26/2009] [Indexed: 05/03/2023]
Abstract
During reproduction in flowering plants, pollen grains form a tube that grows in a polarized fashion through the female tissues to eventually fertilize the egg cell. These highly polarized pollen tubes have a rapid rate of growth that is supported by a tip-focused delivery of membrane and cell wall components. To gain a better understanding of how this growth is regulated, we investigated the function RABA4D, a member of the Arabidopsis thaliana RabA4 subfamily of Rab GTPase proteins. Here, we show that RABA4D was expressed in a pollen-specific manner and that enhanced yellow fluorescent protein (EYFP)-RabA4d-labeled membrane compartments localized to the tips of growing pollen tubes. Mutant pollen in which the RABA4D gene was disrupted displayed bulged pollen tubes with a reduced rate of growth in vitro and displayed altered deposition of some cell wall components. Expression of EYFP-RabA4d restored wild-type phenotypes to the raba4d mutant pollen tubes, while expression of EYFP-RabA4b did not rescue the raba4d phenotype. In vivo, disruption of RABA4D resulted in a male-specific transmission defect with mutant raba4d pollen tubes displaying aberrant growth in the ovary and reduced guidance at the micropyle. We propose that RabA4d plays an important role in the regulation of pollen tube tip growth.
Collapse
Affiliation(s)
- Amy L Szumlanski
- Department of Molecular Cellular and Developmental Biology, University of Michigan, An Arbor, Michigan 48109, USA
| | | |
Collapse
|
137
|
Barjaktarović Ž, Schütz W, Madlung J, Fladerer C, Nordheim A, Hampp R. Changes in the effective gravitational field strength affect the state of phosphorylation of stress-related proteins in callus cultures of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:779-89. [PMID: 19129159 PMCID: PMC2652066 DOI: 10.1093/jxb/ern324] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 05/04/2023]
Abstract
In a recent study it was shown that callus cell cultures of Arabidopsis thaliana respond to changes in gravitational field strengths by changes in protein expression. Using ESI-MS/MS for proteins with differential abundance after separation by 2D-PAGE, 28 spots which changed reproducibly and significantly in amount (P <0.05) after 2 h of hypergravity (18 up-regulated, 10 down-regulated) could be identified. The corresponding proteins were largely involved in stress responses, including the detoxification of reactive oxygen species (ROS). In the present study, these investigations are extended to phosphorylated proteins. For this purpose, callus cell cultures of Arabidopsis thaliana were exposed to hypergravity (8 g) and simulated weightlessness (random positioning; RP) for up to 30 min, a period of time which yielded the most reliable data. The first changes, however, were visible as early as 10 min after the start of treatment. In comparison to 1 g controls, exposure to hypergravity resulted in 18 protein spots, and random positioning in 25, respectively, with increased/decreased signal intensity by at least 2-fold (P <0.05). Only one spot (alanine aminotransferase) responded the same way under both treatments. After 30 min of RP, four spots appeared, which could not be detected in control samples. Among the protein spots altered in phosphorylation, it was possible to identify 24 from those responding to random positioning and 12 which responded to 8 g. These 12 proteins (8 g) are partly (5 out of 12) the same as those changed in expression after exposure to 2 h of hypergravity. The respective proteins are involved in scavenging and detoxification of ROS (32%), primary metabolism (20.5%), general signalling (14.7%), protein translation and proteolysis (14.7%), and ion homeostasis (8.8%). Together with our recent data on protein expression, it is assumed that changes in gravitational fields induce the production of ROS. Our data further indicate that responses toward RP are more by post-translational protein modulation (most changes in the degree of phosphorylation occur under RP-treatment) than by protein expression (hypergravity).
Collapse
Affiliation(s)
- Žarko Barjaktarović
- University of Tübingen, Botany Institute, Physiological Ecology of Plants, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Wolfgang Schütz
- University of Tübingen, Interfaculty Institute for Cell Biology, Proteom Centrum Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Johannes Madlung
- University of Tübingen, Interfaculty Institute for Cell Biology, Proteom Centrum Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Claudia Fladerer
- University of Tübingen, Interfaculty Institute for Cell Biology, Proteom Centrum Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Alfred Nordheim
- University of Tübingen, Interfaculty Institute for Cell Biology, Proteom Centrum Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Rüdiger Hampp
- University of Tübingen, Botany Institute, Physiological Ecology of Plants, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| |
Collapse
|
138
|
Arsovski AA, Villota MM, Rowland O, Subramaniam R, Western TL. MUM ENHANCERS are important for seed coat mucilage production and mucilage secretory cell differentiation in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2601-12. [PMID: 19401413 PMCID: PMC2692007 DOI: 10.1093/jxb/erp102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/20/2009] [Accepted: 03/11/2009] [Indexed: 05/17/2023]
Abstract
Pollination triggers not only embryo development but also the differentiation of the ovule integuments to form a specialized seed coat. The mucilage secretory cells of the Arabidopsis thaliana seed coat undergo a complex differentiation process in which cell growth is followed by the synthesis and secretion of pectinaceous mucilage. A number of genes have been identified affecting mucilage secretory cell differentiation, including MUCILAGE-MODIFIED4 (MUM4). mum4 mutants produce a reduced amount of mucilage and cloning of MUM4 revealed that it encodes a UDP-L-rhamnose synthase that is developmentally up-regulated to provide rhamnose for mucilage pectin synthesis. To identify additional genes acting in mucilage synthesis and secretion, a screen for enhancers of the mum4 phenotype was performed. Eight mum enhancers (men) have been identified, two of which result from defects in known mucilage secretory cell genes (MUM2 and MYB61). Our results show that, in a mum4 background, mutations in MEN1, MEN4, and MEN5 lead to further reductions in mucilage compared to mum4 single mutants, suggesting that they are involved in mucilage synthesis or secretion. Conversely, mutations in MEN2 and MEN6 appear to affect mucilage release rather than quantity. With the exception of men4, whose single mutant exhibits reduced mucilage, none of these genes have a single mutant phenotype, suggesting that they would not have been identified outside the compromised mum4 background.
Collapse
Affiliation(s)
| | - Maria M. Villota
- Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa, ON, Canada K1A 0C6
| | - Owen Rowland
- Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Rajagopal Subramaniam
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa, ON, Canada K1A 0C6
| | - Tamara L. Western
- Department of Biology, McGill University, Montreal, QC, Canada H3A 1B1
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
139
|
|
140
|
Signaling in Vesicle Traffic: Protein-Lipid Interface in Regulation of Plant Endomembrane Dynamics. SIGNALING IN PLANTS 2009. [DOI: 10.1007/978-3-540-89228-1_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
141
|
Žárský V, Fowler J. ROP (Rho-Related Protein from Plants) GTPases for Spatial Control of Root Hair Morphogenesis. PLANT CELL MONOGRAPHS 2009. [DOI: 10.1007/978-3-540-79405-9_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
142
|
Abstract
Self-incompatibility (SI) is a genetically controlled system adopted by many flowering plants to avoid inbreeding and thus to maintain species diversity. Generally, self-pollen rejection occurs through active pollen and pistil recognition and subsequent signaling responses. So far, three different molecular controls of pollen and pistil recognition have been characterized and are exemplified by three families: the Solanaceae, the Papaveraceae, and the Brassicaceae. With more components involved in these SI systems coming to light, recent studies have provided intriguing insights into the downstream reactions that follow the initial SI signal perception. The process of pollen rejection is closely associated with rapid and effective proteolytic events, including the ubiquitin-proteasome pathway and the vacuolar sorting pathway. Here, we review our current understanding of the roles of proteolysis in SI responses of flowering plants.
Collapse
Affiliation(s)
- Yijing Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100101, China
| | | | | |
Collapse
|
143
|
Drakakaki G, Robert S, Raikhel NV, Hicks GR. Chemical dissection of endosomal pathways. PLANT SIGNALING & BEHAVIOR 2009; 4:57-62. [PMID: 19704710 PMCID: PMC2634075 DOI: 10.4161/psb.4.1.7314] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 05/18/2023]
Abstract
Membrane trafficking and associated signal transduction pathways are critical for plant development and responses to environment. These transduction pathways, including those for brassinosteroids and auxins, require endocytosis to endosomes and recycling back to the plasma membrane. A major challenge toward understanding these processes and their biological roles has been the highly dynamic nature of endomembrane trafficking. To effectively study endocytosis and recycling, which occur in a time frame of minutes, bioactive chemicals provide a powerful and exacting tool. Pharmacological inhibitors such as Brefeldin A (BFA) and the newly identified Endosidin 1 (ES1) have been used to define endosome compartments. ES1 is a clear example of the ability of chemicals to dissect even distinct subpopulations of endosomes involved in trafficking and signal transduction. The ability to characterize and dissect such highly dynamic pathways in a temporal and spatial manner is possible only using pharmacological reagents which can act rapidly and reversibly.
Collapse
Affiliation(s)
- Georgia Drakakaki
- Center for Plant Cell Biology, Institute for Integrative Genome Biology & Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
144
|
Žárský V, Cvrčková F, Potocký M, Hála M. Exocytosis and cell polarity in plants - exocyst and recycling domains. THE NEW PHYTOLOGIST 2009; 183:255-272. [PMID: 19496948 DOI: 10.1111/j.1469-8137.2009.02880.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In plants, exocytosis is a central mechanism of cell morphogenesis. We still know surprisingly little about some aspects of this process, starting with exocytotic vesicle formation, which may take place at the trans-Golgi network even without coat assistance, facilitated by the local regulation of membrane lipid organization. The RabA4b guanosine triphosphatase (GTPase), recruiting phosphatidylinositol-4-kinase to the trans-Golgi network, is a candidate vesicle formation organizer. However, in plant cells, there are obviously additional endosomal source compartments for secretory vesicles. The Rho/Rop GTPase regulatory module is central for the initiation of exocytotically active domains in plant cell cortex (activated cortical domains). Most plant cells exhibit several distinct plasma membrane domains, established and maintained by endocytosis-driven membrane recycling. We propose the concept of a 'recycling domain', uniting the activated cortical domain and the connected endosomal compartments, as a dynamic spatiotemporal entity. We have recently described the exocyst tethering complex in plant cells. As a result of the multiplicity of its putative Exo70 subunits, this complex may belong to core regulators of recycling domain organization, including the generation of multiple recycling domains within a single cell. The conventional textbook concept that the plant secretory pathway is largely constitutive is misleading.
Collapse
Affiliation(s)
- Viktor Žárský
- Department of Plant Physiology, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Fatima Cvrčková
- Department of Plant Physiology, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Michal Hála
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| |
Collapse
|
145
|
Wang HY, Wang J, Gao P, Jiao GL, Zhao PM, Li Y, Wang GL, Xia GX. Down-regulation of GhADF1 gene expression affects cotton fibre properties. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:13-23. [PMID: 18761653 DOI: 10.1111/j.1467-7652.2008.00367.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cotton fibre is the most important natural fibres for textile industry. To date, the mechanism that governs the development of fibre traits is largely unknown. In this study, we have characterized the function of a member of the actin depolymerizing factor (ADF) family in Gossypium hirsutum by down-regulation of the gene (designated as GhADF1) expression in the transgenic cotton plants. We observed that both the fibre length and strength of the GhADF1-underexpressing plants increased as compared to the wild-type fibre, and transgenic fibres contained more abundant F-actin filaments in the cortical region of the cells. Moreover, the secondary cell wall of the transgenic fibre appeared thicker and the cellulose content was higher than that of the control fibre. Our results suggest that organization of actin cytoskeleton regulated by actin-associated proteins such as GhADF1 plays a critical role in the processes of elongation and secondary cell wall formation during fibre development. Additionally, our study provided a candidate intrinsic gene for the improvement of fibre traits via genetic engineering.
Collapse
Affiliation(s)
- Hai-Yun Wang
- National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Robert S, Raikhel NV, Hicks GR. Powerful partners: Arabidopsis and chemical genomics. THE ARABIDOPSIS BOOK 2009; 7:e0109. [PMID: 22303245 PMCID: PMC3243329 DOI: 10.1199/tab.0109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chemical genomics (i.e. genomics scale chemical genetics) approaches capitalize on the ability of low molecular mass molecules to modify biological processes. Such molecules are used to modify the activity of a protein or a pathway in a manner that it is tunable and reversible. Bioactive chemicals resulting from forward or reverse chemical screens can be useful in understanding and dissecting complex biological processes due to the essentially limitless variation in structure and activities inherent in chemical space. A major advantage of this approach as a powerful addition to conventional plant genetics is the fact that chemical genomics can address loss-of-function lethality and redundancy. Furthermore, the ability of chemicals to be added at will and to act quickly can permit the study of processes that are highly dynamic such as endomembrane trafficking. An important aspect of utilizing small molecules effectively is to characterize bioactive chemicals in detail including an understanding of structure-activity relationships and the identification of active and inactive analogs. Bioactive chemicals can be useful as reagents to probe biological pathways directly. However, the identification of cognate targets and their pathways is also informative and can be achieved by screens for genetic resistance or hypersensitivity in Arabidopsis thaliana or other organisms from which the results can be translated to plants. In addition, there are approaches utilizing "tagged" chemical libraries that possess reactive moieties permitting the immobilization of active compounds. This opens the possibility for biochemical purification of putative cognate targets. We will review approaches to screen for bioactive chemicals that affect biological processes in Arabidopsis and provide several examples of the power and challenges inherent in this new approach in plant biology.
Collapse
Affiliation(s)
- Stéphanie Robert
- Center for Plant Cell Biology & Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
- Current address: VIB Department of Plant Systems Biology, University of Ghent, 9052 Ghent, Belgium
| | - Natasha V. Raikhel
- Center for Plant Cell Biology & Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Glenn R. Hicks
- Center for Plant Cell Biology & Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
- Address correspondence to
| |
Collapse
|
147
|
Abstract
Cell polarization is intimately linked to plant development, growth, and responses to the environment. Major advances have been made in our understanding of the signaling pathways and networks that regulate cell polarity in plants owing to recent studies on several model systems, e.g., tip growth in pollen tubes, cell morphogenesis in the leaf epidermis, and polar localization of PINs. From these studies we have learned that plant cells use conserved mechanisms such as Rho family GTPases to integrate both plant-specific and conserved polarity cues and to coordinate the cytoskeketon dynamics/reorganization and vesicular trafficking required for polarity establishment and maintenance. This review focuses upon signaling mechanisms for cell polarity formation in Arabidopsis, with an emphasis on Rho GTPase signaling in polarized cell growth and how these mechanisms compare with those for cell polarity signaling in yeast and animal systems.
Collapse
Affiliation(s)
- Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124, USA.
| |
Collapse
|
148
|
Overlapping functions of the four class XI myosins in Arabidopsis growth, root hair elongation, and organelle motility. Proc Natl Acad Sci U S A 2008; 105:19744-9. [PMID: 19060218 DOI: 10.1073/pnas.0810730105] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flowering plants have evolved multigene families of the class XI myosin motors, the functions of which remain poorly understood. Here, we investigated functional profiles of the Arabidopsis myosins that belong to two paralogous pairs, XI-K/XI-1 and XI-2/XI-B, using single and double gene-knockout mutants. It was found that the myosins XI-K, XI-2, and XI-B, but not XI-1 have overlapping and additive roles in the root hair elongation. A nonidentical set of the three myosins, XI-K, XI-1, and XI-2, exhibited partially redundant and additive roles in the transport of Golgi stacks, peroxisomes, and mitochondria. Conspicuously, the double xi-k/1 knockout plants that showed the largest cumulative reduction of the organelle velocities also exhibited a stunted plant growth and reduced fecundity phenotype. Collectively, these results suggest that the rapid, myosin-powered organelle trafficking is required for the optimal plant growth, whereas a distinct myosin function, presumably the vesicular transport, is involved in elongation of the root hairs. In addition, our data imply that the myosin gene duplication in plants has been followed by a gradual functional specialization of the resulting pairs of myosin paralogs.
Collapse
|
149
|
Grefen C, Blatt MR. SNAREs--molecular governors in signalling and development. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:600-9. [PMID: 18945636 DOI: 10.1016/j.pbi.2008.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/19/2008] [Accepted: 08/25/2008] [Indexed: 05/24/2023]
Abstract
SNARE (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) proteins drive membrane fusion and contribute to membrane and protein targeting and delivery in all eukaryotic cells. SNAREs are essential to the mechanics of cell growth and development, and they facilitate a number of homeostatic and evoked responses in plants, from hormone signalling to pathogen defence. Additionally, there is now unambiguous evidence that SNAREs play roles in anchoring other membrane proteins and in facilitating ion channel gating through direct, physical interaction with channel proteins. What is the physiological significance of these additional features of plant SNAREs? We explore possible interpretations and suggest functions as scaffolds for effective signal transmission between proteins and, by analogy with a mechanical device invented by James Watt, as molecular governors to coordinate solute transport with cell expansion and growth.
Collapse
Affiliation(s)
- Christopher Grefen
- Laboratory of Plant Physiology and Biophysics, IBLS-Plant Sciences, University of Glasgow, Glasgow G12 8QQ UK
| | | |
Collapse
|
150
|
Ischebeck T, Stenzel I, Heilmann I. Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. THE PLANT CELL 2008; 20:3312-30. [PMID: 19060112 PMCID: PMC2630452 DOI: 10.1105/tpc.108.059568] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 11/13/2008] [Accepted: 11/21/2008] [Indexed: 05/18/2023]
Abstract
Phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P(2)] occurs in the apical plasma membrane of growing pollen tubes. Because enzymes responsible for PtdIns(4,5)P(2) production at that location are uncharacterized, functions of PtdIns(4,5)P(2) in pollen tube tip growth are unresolved. Two candidate genes encoding pollen-expressed Arabidopsis thaliana phosphatidylinositol-4-phosphate 5-kinases (PI4P 5-kinases) of Arabidopsis subfamily B were identified (PIP5K4 and PIP5K5), and their recombinant proteins were characterized as being PI4P 5-kinases. Pollen of T-DNA insertion lines deficient in both PIP5K4 and PIP5K5 exhibited reduced pollen germination and defects in pollen tube elongation. Fluorescence-tagged PIP5K4 and PIP5K5 localized to an apical plasma membrane microdomain in Arabidopsis and tobacco (Nicotiana tabacum) pollen tubes, and overexpression of either PIP5K4 or PIP5K5 triggered multiple tip branching events. Further studies using the tobacco system revealed that overexpression caused massive apical pectin deposition accompanied by plasma membrane invaginations. By contrast, callose deposition and cytoskeletal structures were unaltered in the overexpressors. Morphological effects depended on PtdIns(4,5)P(2) production, as an inactive enzyme variant did not produce any effects. The data indicate that excessive PtdIns(4,5)P(2) production by type B PI4P 5-kinases disturbs the balance of membrane trafficking and apical pectin deposition. Polar tip growth of pollen tubes may thus be modulated by PtdIns(4,5)P(2) via regulatory effects on membrane trafficking and/or apical pectin deposition.
Collapse
Affiliation(s)
- Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37077 Göttingen, Germany
| | | | | |
Collapse
|