101
|
Abstract
Mammalian hibernation is characterized by profound reductions in metabolism, oxygen consumption and heart rate. As a result, the animal enters a state of suspended animation where core body temperatures can plummet as low as -2.9 degrees C. Not only can hibernating mammals survive these physiological extremes, but they also return to a normothermic state of activity without reperfusion injury or other ill effects. This review examines recent findings on the genes, proteins and small molecules that control the induction and maintenance of hibernation in mammals. The molecular events involved with remodeling metabolism, inducing hypothermia and maintaining organ function are discussed and considered with respect to analogous processes in non-hibernating mammals such as mice and humans. The advent of sequenced genomes from three distantly related hibernators, a bat, hedgehog and ground squirrel, provides additional opportunities for molecular biologists to explore the mechanistic aspects of this biological adaptation in greater detail.
Collapse
Affiliation(s)
- Matthew T Andrews
- Department of Biology, University of Minnesota Duluth, 1035 Kirby Drive, Duluth, MN 55812, USA.
| |
Collapse
|
102
|
Stratmann M, Schibler U. Properties, entrainment, and physiological functions of mammalian peripheral oscillators. J Biol Rhythms 2006; 21:494-506. [PMID: 17107939 DOI: 10.1177/0748730406293889] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In mammals, the circadian timing system is composed of multiple oscillators that are organized in a hierarchical manner. The central pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, is believed to orchestrate countless subsidiary clocks in the periphery. These peripheral oscillators are cell-autonomous, self-sustained, resilient to cell division, and virtually insensitive to large fluctuations in general transcription rates. However, they are probably not coupled within an organ, and daily zeitgeber signals emanating from the SCN appear to be required to ensure phase coherence within and between tissues. Peripheral clocks are implicated in a variety of biochemical pathways, and recent results tightly link circadian rhythms to several aspects of metabolism. Thus, the expression of many key enzymes conducting rate-limiting steps in various metabolic pathways is regulated in a circadian fashion by core clock components or clock-controlled transcription factors. Genetic loss-of-function studies have now established a role for mammalian circadian clock components in energy homeostasis and xenobiotic detoxification, and the latter manifests itself in the daytime-dependent modulation of drug efficacy and toxicity.
Collapse
Affiliation(s)
- Markus Stratmann
- Department of Molecular Biology, National Center of Competence in Research Frontiers in Genetics, Sciences III, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
103
|
Gelegen C, Collier DA, Campbell IC, Oppelaar H, Kas MJH. Behavioral, physiological, and molecular differences in response to dietary restriction in three inbred mouse strains. Am J Physiol Endocrinol Metab 2006; 291:E574-81. [PMID: 16670152 DOI: 10.1152/ajpendo.00068.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Food restriction paradigms are widely used in animal studies to investigate systems involved in energy regulation. We have observed behavioral, physiological, and molecular differences in response to food restriction in three inbred mouse strains, C57BL/6J, A/J, and DBA/2J. These are the progenitors of chromosome substitution and recombinant inbred mouse strains used for mapping complex traits. DBA/2J and A/J mice increased their locomotor activity during food restriction, and both displayed a decrease in body temperature, but the decrease was significantly larger in DBA/2J compared with A/J mice. C57BL/6J mice did not increase their locomotor activity and displayed a large decrease in their body temperature. The large decline in body temperature during food restriction in DBA/2J and C57BL/6J strains was associated with a robust reduction in plasma leptin levels. DBA/2J mice showed a marked decrease in white and brown adipose tissue masses and an upregulation of the antithermogenic hypothalamic neuropeptide Y Y(1) receptor. In contrast, A/J mice showed a reduction in body temperature to a lesser extent that may be explained by downregulation of the thermogenic melanocortin 3 receptor and by behavioral thermoregulation as a consequence of their increased locomotor activity. These data indicate that genetic background is an important parameter in controlling an animal's adaptation strategy in response to food restriction. Therefore, mouse genetic mapping populations based on these progenitor lines are highly valuable for investigating mechanisms underlying strain-dependent differences in behavioral physiology that are seen during reduced food availability.
Collapse
Affiliation(s)
- Cigdem Gelegen
- Department of Pharmacology and Anatomy, Behavioural Genomics Section, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
104
|
Levant B, Ozias MK, Carlson SE. Sex-specific effects of brain LC-PUFA composition on locomotor activity in rats. Physiol Behav 2006; 89:196-204. [PMID: 16875705 DOI: 10.1016/j.physbeh.2006.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 05/18/2006] [Accepted: 06/08/2006] [Indexed: 01/01/2023]
Abstract
Insufficient availability of n-3 polyunsaturated fatty acids (PUFAs) during pre- and neonatal development decreases accretion of docosahexaenoic acid (DHA, 22:6n-3) in the developing brain and is associated with sub-optimal sensory and cognitive function in humans, altered behavior in animals, and may contribute to neurodevelopmental disorders such as attention deficit hyperactivity disorder and schizophrenia. This study examined the effects of variation in dietary availability of n-3 PUFAs on brain fatty acid composition and the consequent effects on locomotor activity in male and female Long-Evans rats. Rats were raised from conception using purified diets and breeding protocols designed to produce four groups with distinct brain phospholipid compositions varying in DHA content and/or the proportion of n-3 and n-6 PUFAs. Locomotor behavior was measured for a 2-h period on postnatal days 28, 42, 56, and 70. In males, decreased brain DHA produced alterations in activity that were most pronounced post-adolescence and with the greatest decrease in DHA. However, the behavioral effects in males were not linearly related to brain DHA level. In contrast, no significant effects of variation in brain fatty acid composition were observed in females. This suggests that variation in brain DHA content produces sex-specific alterations in locomotor activity and that the neurochemical alterations underlying the observed behavioral changes vary depending on the degree of DHA depletion.
Collapse
Affiliation(s)
- Beth Levant
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA.
| | | | | |
Collapse
|
105
|
Elander L, Engström L, Hallbeck M, Blomqvist A. IL-1beta and LPS induce anorexia by distinct mechanisms differentially dependent on microsomal prostaglandin E synthase-1. Am J Physiol Regul Integr Comp Physiol 2006; 292:R258-67. [PMID: 16946079 DOI: 10.1152/ajpregu.00511.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent work demonstrated that the febrile response to peripheral immune stimulation with proinflammatory cytokine IL-1beta or bacterial wall lipopolysaccharide (LPS) is mediated by induced synthesis of prostaglandin E(2) by the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). The present study examined whether a similar mechanism might also mediate the anorexia induced by these inflammatory agents. Transgenic mice with a deletion of the Ptges gene, which encodes mPGES-1, and wild-type controls were injected intraperitoneally with IL-1beta, LPS, or saline. Mice were free fed, and food intake was continuously monitored with an automated system for 12 h. Body weight was recorded every 24 h for 4 days. The IL-1beta induced anorexia in wild-type but not knock-out mice, and so it was almost completely dependent on mPGES-1. In contrast, LPS induced anorexia of the same magnitude in both phenotypes, and hence it was independent of mPGES-1. However, when the mice were prestarved for 22 h, LPS induced anorexia and concomitant body weight loss in the knock-out animals that was attenuated compared with the wild-type controls. These data suggest that IL-1beta and LPS induce anorexia by distinct immune-to-brain signaling pathways and that the anorexia induced by LPS is mediated by a mechanism different from the fever induced by LPS. However, nutritional state and/or motivational factors also seem to influence the pathways for immune signaling to the brain. Furthermore, both IL-1beta and LPS caused reduced meal size but not meal frequency, suggesting that both agents exerted an anhedonic effect during these experimental conditions.
Collapse
Affiliation(s)
- Louise Elander
- Division of Cell Biology, Department of Biomedicine and Surgery, Faculty of Health Sciences, Linköping University, S-58185 Linköping, Sweden
| | | | | | | |
Collapse
|
106
|
Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 2006; 292:R18-36. [PMID: 16917020 DOI: 10.1152/ajpregu.00327.2006] [Citation(s) in RCA: 534] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aging is an inherently complex process that is manifested within an organism at genetic, molecular, cellular, organ, and system levels. Although the fundamental mechanisms are still poorly understood, a growing body of evidence points toward reactive oxygen species (ROS) as one of the primary determinants of aging. The "oxidative stress theory" holds that a progressive and irreversible accumulation of oxidative damage caused by ROS impacts on critical aspects of the aging process and contributes to impaired physiological function, increased incidence of disease, and a reduction in life span. While compelling correlative data have been generated to support the oxidative stress theory, a direct cause-and-effect relationship between the accumulation of oxidatively mediated damage and aging has not been strongly established. The goal of this minireview is to broadly describe mechanisms of in vivo ROS generation, examine the potential impact of ROS and oxidative damage on cellular function, and evaluate how these responses change with aging in physiologically relevant situations. In addition, the mounting genetic evidence that links oxidative stress to aging is discussed, as well as the potential challenges and benefits associated with the development of anti-aging interventions and therapies.
Collapse
Affiliation(s)
- Kevin C Kregel
- Department of Integrative Physiology and Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
107
|
Gluck EF, Stephens N, Swoap SJ. Peripheral ghrelin deepens torpor bouts in mice through the arcuate nucleus neuropeptide Y signaling pathway. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1303-9. [PMID: 16825418 DOI: 10.1152/ajpregu.00232.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many small mammals have the ability to enter torpor, characterized by a controlled drop in body temperature (Tb). We hypothesized that ghrelin would modulate torpor bouts, because torpor is induced by fasting in mice coincident with elevated circulating ghrelin. Female National Institutes of Health (NIH) Swiss mice were implanted with a Tb telemeter and housed at an ambient temperature (Ta) of 18 degrees C. On fasting, all mice entered a bout of torpor (minimum Tb: 23.8+/-2.0 degrees C). Peripheral ghrelin administration (100 microg) during fasting significantly deepened the bout of torpor (Tb minimum: 19.4+/-0.5 degrees C). When the arcuate nucleus (ARC) of the hypothalamus, a ghrelin receptor-rich region of the brain, was chemically ablated with monosodium glutamate (MSG), fasted mice failed to enter torpor (minimum Tb=31.6+/-0.6 degrees C). Furthermore, ghrelin administration had no effect on the Tb minimum of ARC-ablated mice (31.8+/-0.8 degrees C). Two major pathways that regulate food intake reside in the ARC, the anorexigenic alpha-melanocyte stimulating hormone (alpha-MSH) pathway and the orexigenic neuropeptide Y (NPY) signaling pathway. Both Ay mice, which have the alpha-MSH pathway blocked, and Npy-/-mice exhibited shallow, aborted torpor bouts in response to fasting (Tb minimum: 29.1+/-0.6 degrees C and 29.9+/-1.2 degrees C, respectively). Ghrelin deepened torpor in Ay mice (Tb minimum: 22.8+/-1.3 degrees C), but had no effect in Npy-/-mice (Tb minimum: 29.5+/-0.8 degrees C). Collectively, these data suggest that ghrelin's actions on torpor are mediated via NPY neurons within the ARC.
Collapse
|
108
|
van Bogaert MJV, Groenink L, Oosting RS, Westphal KGC, van der Gugten J, Olivier B. Mouse strain differences in autonomic responses to stress. GENES BRAIN AND BEHAVIOR 2006; 5:139-49. [PMID: 16507005 DOI: 10.1111/j.1601-183x.2005.00143.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In humans, anxiety disorders are often accompanied by an overactive autonomic nervous system, reflected in increased body temperature (BT) and heart rate (HR). In rodents, comparable effects are found after exposure to stress. These autonomic parameters can give important information on stress and anxiety responses in mice. In the present experiments, stress reactivity of three frequently used mouse strains [129 Sv/Ev, Swiss Webster (SW) and C57 BL/6] was assessed using their autonomic stress responses. BT, HR and activity were telemetrically measured. Undisturbed circadian rhythms already showed clear differences between the mouse strains. Hereafter, autonomic responses to stressors with increasing intensity were measured. Strain differences were found in magnitude and duration of the stress responses, especially after high-intensity stressors. Generally, C57BL/6 mice showed the largest autonomic response, SW the lowest and the 129Sv/Ev the intermediate response. Interestingly, the observed ranking in autonomic stress response does not match the behavioral stress responsivity of these strains. Finally, sensitivity to the anxiolytic diazepam (0, 1, 2, 4 and 8 mg/kg) was tested using the stress-induced hyperthermia paradigm. Pharmacological sensitivity to diazepam differed between the strains with the 129Sv/Ev being most sensitive. These studies show that simultaneous measurement of behavioral and autonomic parameters under stressful conditions contributes considerably to a better interpretation of anxiety and stress levels in mice.
Collapse
Affiliation(s)
- M J V van Bogaert
- Department of Psychopharmacology, Utrecht Institute of Pharmaceutical Sciences, Behavioural Genomics Section, Rudolf Magnus Institute of Neuroscience, the Netherlands.
| | | | | | | | | | | |
Collapse
|
109
|
Zhang J, Kaasik K, Blackburn MR, Lee CC. Constant darkness is a circadian metabolic signal in mammals. Nature 2006; 439:340-3. [PMID: 16421573 DOI: 10.1038/nature04368] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 10/26/2005] [Indexed: 01/19/2023]
Abstract
Environmental light is the 'zeitgeber' (time-giver) of circadian behaviour. Constant darkness is considered a 'free-running' circadian state. Mammals encounter constant darkness during hibernation. Ablation of the master clock synchronizer, the suprachiasmatic nucleus, abolishes torpor, a hibernation-like state, implicating the circadian clock in this phenomenon. Here we report a mechanism by which constant darkness regulates the gene expression of fat catabolic enzymes in mice. Genes for murine procolipase (mClps) and pancreatic lipase-related protein 2 (mPlrp2) are activated in a circadian manner in peripheral organs during 12 h dark:12 h dark (DD) but not light-dark (LD) cycles. This mechanism is deregulated in circadian-deficient mPer1-/-/mPer2m/m mice. We identified circadian-regulated 5'-AMP, which is elevated in the blood of DD mice, as a key mediator of this response. Synthetic 5'-AMP induced torpor and mClps expression in LD animals. Torpor induced by metabolic stress was associated with elevated 5'-AMP levels in DD mice. Levels of glucose and non-esterified fatty acid in the blood are reversed in DD and LD mice. Induction of mClps expression by 5'-AMP in LD mice was reciprocally linked to blood glucose levels. Our findings uncover a circadian metabolic rhythm in mammals.
Collapse
Affiliation(s)
- Jianfa Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
110
|
Novak CM, Kotz CM, Levine JA. Central orexin sensitivity, physical activity, and obesity in diet-induced obese and diet-resistant rats. Am J Physiol Endocrinol Metab 2006; 290:E396-403. [PMID: 16188908 DOI: 10.1152/ajpendo.00293.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nonexercise activity thermogenesis (NEAT), the most variable component of energy expenditure, can account for differential capacities for human weight gain. Also highly variable, spontaneous physical activity (SPA) may similarly affect weight balance in animals. In the following study, we utilized the rat model of obesity, the diet-induced obese (DIO) rat, as well as the diet-resistant (DR) rat strain, to investigate how access to a high-fat diet alters SPA and the associated energy expenditure (i.e., NEAT). DIO and DR rats showed no differences in the amount of SPA before access to the high-fat diet. After 29 days on a high-fat diet, the DIO rats showed significant decreases in SPA, whereas the DR rats did not. Next, we wanted to determine whether the DIO and DR rats showed differential sensitivity to microinjections of orexin into the paraventricular nucleus of the hypothalamus (PVN). Unilateral guide cannulae were implanted, aimed at the PVN. Orexin A (0, 0.125, 0.25, and 1.0 nmol in 500 nl) was microinjected through the guide cannula into the PVN, then SPA and energy expenditure were measured for 2 h. Using the response to vehicle as a baseline, the DR rats showed significantly greater increase in NEAT compared with the DIO rats. These data indicate that diet-induced obesity is associated with decreases in SPA and a lack of increase in NEAT. A putative mechanism for changes in NEAT that accompany obesity is a decreased sensitivity to the NEAT-activating effects of neuropeptides such as orexin.
Collapse
Affiliation(s)
- Colleen M Novak
- Endocrine Research Unit, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
111
|
Ayala JE, Bracy DP, McGuinness OP, Wasserman DH. Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse. Diabetes 2006; 55:390-7. [PMID: 16443772 DOI: 10.2337/diabetes.55.02.06.db05-0686] [Citation(s) in RCA: 308] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite increased use of the hyperinsulinemic-euglycemic clamp to study insulin action in mice, the effects of experimental parameters on the results obtained have not been addressed. In our studies, we determined the influences of sampling sites, fasting duration, and insulin delivery on results obtained from clamps in conscious mice. Carotid artery and jugular vein catheters were implanted in C57BL/6J mice (n = 6-10/group) fed a normal diet for sampling and infusions. After a 5-day recovery period, mice underwent a 120-min clamp (2.5-mU . kg(-1) . min(-1) insulin infusion; approximately 120-130 mg/dl glucose) while receiving [3-(3)H]glucose to determine glucose appearance (endoR(a)) and disappearance (R(d)). Sampling large volumes (approximately 100 mul) from the cut tail resulted in elevated catecholamines and basal glucose compared with artery sampling. Catecholamines were not elevated when taking small samples ( approximately 5 mul) from the cut tail. Overnight (18-h) fasting resulted in greater loss of total body, lean, and fat masses and hepatic glycogen but resulted in enhanced insulin sensitivity compared with 5-h fasting. Compared with a 16-mU/kg insulin prime, a 300-mU/kg prime resulted in hepatic insulin resistance and slower acquisition of steady-state glucose infusion rates (GIR) after a 5-h fast. The steady-state GIR was expedited after the 300-mU/kg prime in 18-h-fasted mice. The GIR and R(d) rose with increasing insulin infusions (0.8, 2.5, 4, and 20 mU . kg(-1) . min(-1)), but endoR(a) was fully suppressed with doses higher than 0.8 mU . kg(-1) . min(-1). Thus, common variations in experimental factors yield different results and should be considered in designing and interpreting clamps.
Collapse
Affiliation(s)
- Julio E Ayala
- Vanderbilt-NIDDK (National Institutes of Diabetes and Digestive and Kidney Diseases) Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
112
|
Abstract
The objective of the study was to investigate the temperature impact on the elasticity of porcine thoracic aorta. Under general anesthesia, 16 Landrace pigs were subjected to thoracotomy, and the descending thoracic aorta was removed and stored in normal saline. Serial sections of the vessel created cylindrical aortic specimens which were tested in a uniaxial tension device to determine the elastic properties of the aortic wall. In the control, Group A (n = 8), the aortic tissues were tested while immersed in normal saline bath of temperature TA = 37.0 +/- 0.5 degrees C, while in Group B, the temperature was TB = 40.0 +/- 0.5 degrees C. Each experiment took place only after the tissues had remained for 15 min in temperature TA or TB. For the results, the stiffness modulus of Group B showed a significant decrease (P < 0.05) at medium strain level deformation (e = 1, SB1 = 114 +/- 8 Pa) as well as at high strain level deformation (e = 2, SB1 = 1182 +/- 48 Pa) in comparison with the control, Group A (e = 1, SA1 = 147 +/- 15 Pa; e = 2, SA1 = 1479 +/- 64 Pa). It is concluded that temperature increase facilitates, in vitro, the expansion of descending thoracic aorta. We assume that thermal treatment may be another means against the stiffening of aorta, which calls for further research.
Collapse
Affiliation(s)
- Athanasios Tsatsaris
- Laboratory for Experimental Surgery and Surgical Research, School of Medicine, University of Athens, Athens, Greece.
| |
Collapse
|
113
|
Sponarova J, Mustard KJ, Horakova O, Flachs P, Rossmeisl M, Brauner P, Bardova K, Thomason-Hughes M, Braunerova R, Janovska P, Hardie DG, Kopecky J. Involvement of AMP-activated protein kinase in fat depot-specific metabolic changes during starvation. FEBS Lett 2005; 579:6105-10. [PMID: 16229840 DOI: 10.1016/j.febslet.2005.09.078] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 09/22/2005] [Indexed: 10/25/2022]
Abstract
The mechanisms controlling fat depot-specific metabolism are poorly understood. During starvation of mice, downregulation of lipogenic genes, suppression of fatty acid synthesis, and increases in lipid oxidation were all more pronounced in epididymal than in subcutaneous fat. In epididymal fat, relatively strong upregulation of uncoupling protein 2 and phosphoenolpyruvate carboxykinase genes was found. In mice maintained both at 20 and 30 degrees C, AMP-activated protein kinase was activated in epididymal but did not change in subcutaneous fat. Our results suggest that AMPK may have a role in the different response of various fat depots to starvation.
Collapse
Affiliation(s)
- Jana Sponarova
- Department of Adipose Tissue Biology, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Resuehr D, Olcese J. Caloric restriction and melatonin substitution: Effects on murine circadian parameters. Brain Res 2005; 1048:146-52. [PMID: 15913571 DOI: 10.1016/j.brainres.2005.04.063] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/19/2005] [Accepted: 04/22/2005] [Indexed: 12/15/2022]
Abstract
Aging effects have been reported in endocrine, metabolic and behavioral circadian rhythms. The effects of age on the circadian system have been investigated primarily in rats and hamsters and only seldom in mice. Our aim was to assess the effects of two common "anti-aging" treatments, namely caloric restriction (CR) and melatonin substitution, on the circadian system of mice. Animals were subjected to phase delays of the light-dark cycle and constant darkness (DD). The most pronounced change in the murine circadian system was the length of the endogenous period, tau, which increased with age regardless of treatment. CR had diverse effects e.g., enabling a more rapid phase shift response while concomitantly leading to a fragmented circadian phenotype with considerable activity during the rest (light) phase. Melatonin enforced the adaptation to the light/dark cycle, thus facilitating a rapid re-entrainment to phase delayed lighting conditions. Interestingly, the melatonin-substituted animals displayed an increase in locomotor activity under constant darkness and in 50% of all cases a biphasic (split) activity pattern. These results contribute to the phenotypic evaluation of two very different approaches to intervene in the age-related degeneration of the mammalian circadian system. As both CR and melatonin have negative and positive effects on the behavioral expression of clock function (i.e., fragmentation of rhythms vs. faster re-entrainment), their usefulness in managing age-related circadian disorders may be limited.
Collapse
Affiliation(s)
- David Resuehr
- Institute for Hormone and Fertility Research, Centre for Innovative Medicine, University of Hamburg, Falkenried 88, 20251 Hamburg, Germany
| | | |
Collapse
|
115
|
Klaus S, Rudolph B, Dohrmann C, Wehr R. Expression of uncoupling protein 1 in skeletal muscle decreases muscle energy efficiency and affects thermoregulation and substrate oxidation. Physiol Genomics 2005; 21:193-200. [PMID: 15687481 DOI: 10.1152/physiolgenomics.00299.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle uncoupling by ectopic expression of mitochondrial uncoupling protein 1 (UCP1) has been shown to result in a lean phenotype in mice characterized by increased energy expenditure (EE), resistance to diet-induced obesity, and improved glucose tolerance. Here, we investigated in detail the effect of ectopic UCP1 expression in skeletal muscle on thermoregulation and energy homeostasis in HSA-mUCP1 transgenic mice. Thermoneutrality was determined to be ∼30°C for both wild-type (WT) and transgenic mice. EE, body temperature (Tb), activity, and respiratory quotient (RQ) were then measured over 24 h at ambient temperatures (Ta) of 30, 22, and 5°C. HSA-mUCP1 transgenic mice showed increased activity-related EE and heat loss but similar basal metabolic rate compared with WT. Tbat resting periods was progressively decreased with declining Tain HSA-mUCP1 transgenic mice but not in WT. Compared with WT littermates, the transgenic HSA-mUCP1 mice displayed increased RQ levels during night time, indicative of increased overall glucose oxidation, and failed to decrease their RQ levels with declining Ta. Thus increased EE caused by skeletal muscle uncoupling is clearly due to a decreased muscle energy efficiency during activity combined with increased glucose oxidation and a compromised thermoregulation associated with increased overall heat loss. At Tas below thermoneutrality, this puts increasing energy demands on the animals, whereas at thermoneutrality most differences in energy metabolism are not apparent any more.
Collapse
Affiliation(s)
- Susanne Klaus
- German Institute of Human Nutrition Potsdam-Rehbruecke, Group of Energy Metabolism, Nuthetal, Germany.
| | | | | | | |
Collapse
|
116
|
Good DJ. Using Obese Mouse Models in Research: Special Considerations for IACUC Members, Animal Care Technicians, and Researchers. Lab Anim (NY) 2005; 34:30-7. [PMID: 15685190 DOI: 10.1038/laban0205-30] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 11/09/2004] [Indexed: 11/09/2022]
Abstract
The mouse is the animal most commonly used to study the underlying causes of and treatments for obesity. The author reviews many of the issues that should be considered by all involved in research with mice expressing this phenotype, and describes some procedures exclusive to obesity research.
Collapse
Affiliation(s)
- Deborah J Good
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
117
|
Higami Y, Yamaza H, Shimokawa I. Laboratory Findings of Caloric Restriction in Rodents and Primates. Adv Clin Chem 2005; 39:211-37. [PMID: 16013673 DOI: 10.1016/s0065-2423(04)39008-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yoshikazu Higami
- Department of Pathology and Gerontology, Nagasaki University Graduate School of Biomedical Science, Nagasaki 852-8523, Japan
| | | | | |
Collapse
|
118
|
Affiliation(s)
- Caleb E Finch
- Andrus Gerontology Center and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|