101
|
Kawabe JI, Ushikubi F, Hasebe N. Prostacyclin in Vascular Diseases - Recent Insights and Future Perspectives -. Circ J 2010; 74:836-43. [DOI: 10.1253/circj.cj-10-0195] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun-ichi Kawabe
- Departments of Cardiovascular Regeneration and Innovation, Asahikawa Medical College
| | | | - Naoyuki Hasebe
- Departments of Cardiovascular Regeneration and Innovation, Asahikawa Medical College
- Department of Internal Medicine, Cardiovascular, Respiratory and Neurology Division, Asahikawa Medical College
| |
Collapse
|
102
|
Weber JE, Oakley AJ, Christ AN, Clark AG, Hayes JD, Hall R, Hume DA, Board PG, Smythe ML, Flanagan JU. Identification and characterisation of new inhibitors for the human hematopoietic prostaglandin D2 synthase. Eur J Med Chem 2009; 45:447-54. [PMID: 19939518 DOI: 10.1016/j.ejmech.2009.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 07/18/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
Abstract
Prostaglandin D(2) synthesised by the hematopoietic prostaglandin D(2) synthase has a pro-inflammatory effect in allergic asthma, regulating many hallmark characteristics of the disease. Here we describe identification of hematopoietic prostaglandin D(2) synthase inhibitors including cibacron blue, bromosulfophthalein and ethacrynic acid. Expansion around the drug-like ethacrynic acid identified a novel inhibitor, nocodazole, and a fragment representing its aromatic core. Nocodazole binding was further characterised by docking calculations in combination with conformational strain analysis. The benzyl thiophene core was predicted to be buried in the active site, binding in the putative prostaglandin binding site, and a likely hydrogen bond donor site identified. X-ray crystallographic studies supported the predicted binding mode.
Collapse
Affiliation(s)
- Jane E Weber
- The University of Queensland, Institute for Molecular Bioscience, Building 80, St Lucia, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Inada T, Arai K, Kawamura M, Hatanaka K, Sato Y, Noshiro M, Harada Y. Contribution of the prostaglandin E2/E-prostanoid 2 receptor signaling pathway in abscess formation in rat zymosan-induced pleurisy. J Pharmacol Exp Ther 2009; 331:860-70. [PMID: 19726696 DOI: 10.1124/jpet.109.155358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Abscess formation is a classic host response to infection by many pathogenic microorganisms. Here, we studied the role of prostaglandins (PGs) and their signal transduction in abscess formation. Zymosan was injected into the pleural cavity of rats. Expression of enzymes involved in PG synthesis, their receptors, and cytokines in exudate leukocytes and abscesses were analyzed by polymerase chain reaction, Western blotting, and immunohistochemistry. Treatment with ketorolac, a cyclooxygenase (COX)-1 inhibitor, or N-[2-cyclohexyloxy-4-nitrophenyl] methanesulfonamide (NS-398), a COX-2 inhibitor, reduced the size of abscesses and the number of cells recovered from the abscess. COX-2 was detected in leukocytes of the exudate and a marginal area of abscesses. Among detected terminal PG synthases, the major one was cytosolic PGE synthase. Membrane-bound PGE synthase (mPGES)-1 was detected in cells that were similar to the COX-2-expressing cells in morphology and localization. A high level of the E-prostanoid (EP)(2) receptor and a low level of the EP(4) receptor were detected. The expression pattern of the EP(2) receptor paralleled that of COX-2 and mPGES-1. 11,15-O-Dimethyl PGE(2) (ONO-AE1-259), an EP(2) receptor agonist, and rolipram, a phosphodiesterase type-4 inhibitor, reversed the effects of COX inhibitors on abscess formation. In contrast, 16-(3-methoxymethyl) phenyl-omega-tetranor-3,7-dithia PGE(1) (ONO-AE1-329), an EP(4) receptor agonist, did not reverse the effects of NS-398. Moreover, NS-398 reduced the mRNA levels in exudate leukocytes of some proinflammatory and fibrogenic cytokines, which was reversed by ONO-AE1-259. These results suggest that PGE(2) generated via COX-1 and COX-2 may interact with the EP(2) receptor and may up-regulate in cAMP-dependent fashion the production of cytokines that promote abscess formation.
Collapse
Affiliation(s)
- Toshihisa Inada
- Department of Mediator and Signal Transduction Pharmacology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
104
|
Mohamed ME, Lazarus CM. Prostanoid production inSaccharomyces cerevisiaeprovides a novel assay for nonsteroidal anti-inflammatory drugs. FEMS Yeast Res 2009; 9:420-7. [DOI: 10.1111/j.1567-1364.2008.00477.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
105
|
Prostaglandin H synthase Type 2 is differentially expressed in endometrium based on pregnancy status in pony mares and responds to oxytocin and conceptus secretions in explant culture. Anim Reprod Sci 2009; 117:99-105. [PMID: 19443143 DOI: 10.1016/j.anireprosci.2009.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/16/2009] [Accepted: 03/27/2009] [Indexed: 11/23/2022]
Abstract
The equine embryo must signal its presence to the uterus for pregnancy to continue to term. Mobility of the conceptus throughout the uterus is crucial for its survival, and this action presumably permits the conceptus to transmit its antiluteolytic signal to the endometrium. Studies were completed to establish whether this unidentified antiluteolytic signal targets prostaglandin G/H synthase 2 (PGHS2), a rate limiting enzyme in converting arachidonic acid to prostaglandins (PGs). In the first study, quantitative RT-PCR was used to determine the relative abundance of PGHS2 mRNA in endometrium derived from estrous cyclic and pregnant mares on day 14 post-ovulation. PGHS2 mRNA abundance was substantially greater in endometrium from estrous cyclic mares. Additional studies were completed to better understand PGHS2 in equine endometrium. An estrogen and progesterone treatment regimen in ovariectomized mares was developed as a test model for detecting endometrial PGHS2 mRNA. Also, exposing endometrial explants to conceptus secretions (conditioned culture medium) decreased PGHS2 mRNA abundance whereas exposing explants to oxytocin increased PGHS2 mRNA abundance. Exposure to conceptus secretions also decreased PGF2alpha concentrations in explant-conditioned medium whereas oxytocin supplementation increased PGF2alpha concentrations in medium. These data support the hypothesis that PGHS2 is a target for the antiluteolytic signal produced by equine conceptuses during early pregnancy. Also, the endometrial explant culture system used for these studies can serve as a model for identifying and characterizing the maternal recognition of pregnancy factor in equids.
Collapse
|
106
|
van der Merwe JQ, Ohland CL, Hirota CL, MacNaughton WK. Prostaglandin E2 derived from cyclooxygenases 1 and 2 mediates intestinal epithelial ion transport stimulated by the activation of protease-activated receptor 2. J Pharmacol Exp Ther 2009; 329:747-52. [PMID: 19190238 DOI: 10.1124/jpet.108.145466] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteinase-activated receptor (PAR)(2) is activated by trypsin-like serine proteinases and has been implicated in intestinal inflammation. However, its role in the regulation of intestinal mucosal function remains unclear. Using the intestinal epithelial cell line, SCBN, we have studied the stimulus-secretion coupling mechanisms of PAR(2)-induced epithelial chloride transport, focusing on cyclooxygenase (COX)-1 and COX-2 activities and prostaglandin (PG) E(2) secretion. SCBN monolayers were grown on Snapwell supports, mounted in modified Ussing chambers, and exposed to the activating peptide, SLIGRL-NH(2) (50 microM), to activate PAR(2). Pretreatment with inhibitors of cytosolic PLA(2) (cPLA(2)) (AACOCF3, arachidonyltrifluoromethyl ketone), COX-1 [SC560, 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole], and COX-2 (celecoxib) resulted in a significant concentration-dependent attenuation of PAR(2)-induced changes in short-circuit current. Immunoblot analysis showed a PAR(2)-induced increase in cPLA(2) phosphorylation that was blocked by the mitogen-activated protein kinase kinase inhibitor, PD98059 [2-(2-amino-3methoxyphenyl)-4H-1benzopyran-4-one, C(16)H(13)NO(3)], and the pan-protein kinase C inhibitor, GFX (bisindolylmaleimide). PAR(2) stimulation also resulted in a large increase in the production of PGE(2) as determined by enzyme-linked immunosorbent assay and was also blocked by PD98059 and GFX. Immunofluorescence and immunoblot analysis determined that EP2 and EP4 are expressed at the basolateral membrane of SCBN cells. Through the use of selective inhibitors (EP2, AH6809 [6-isopropoxy-9-oxoxanthene-2-carboxylic acid]; EP4, GW627368X [N-[2[4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl] acetyl]benzene sulphonamide]), it was found that both EP2 and EP4 were involved in mediating the PAR(2)-induced chloride secretory response. We conclude that basolateral PAR(2) activation induces epithelial chloride secretion that is mediated by cPLA(2), COX-1, COX-2, and the subsequent release of PGE(2). The production of PGE(2) results in an autocrine secretory response that is dependent on basolateral EP2 and EP4 receptors.
Collapse
|
107
|
Watanabe Y, Namba A, Honda K, Aida Y, Matsumura H, Shimizu O, Suzuki N, Tanabe N, Maeno M. IL-1beta stimulates the expression of prostaglandin receptor EP4 in human chondrocytes by increasing production of prostaglandin E2. Connect Tissue Res 2009; 50:186-93. [PMID: 19444759 DOI: 10.1080/03008200802588451] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Prostaglandin (PG) E(2), which exerts its actions via the PG receptors EP1-4, is produced from arachidonic acid by cyclooxygenase (COX)-1 and COX-2. The aim of this study was to investigate the mechanisms by which interleukin (IL)-1beta induces the expression of PG receptors in cultured human chondrocytes and to explore the role of PGE(2) in this process. The cells were cultured with 0, 10, or 100 U/mL IL-1beta with or without 1 muM celecoxib, a specific inhibitor of COX-2, for up to 28 days. Expression of the genes encoding COX-1, COX-2, and EP1-4 was quantified using real-time PCR, and expression of the corresponding proteins was examined using immunohistochemical staining. PGE(2) production was determined using ELISA. IL-1beta treatment caused a marked dose- and time-dependent increase in the levels of PGE(2), COX-2, and EP4 as compared with the untreated control. It did not affect the expression of COX-1, and it decreased the expression of EP1 and EP2. EP3 expression was not detected in either the absence or the presence of IL-1beta. When celecoxib was also present, IL-1beta failed to stimulate PGE(2) production and EP4 expression, but its stimulatory effect on COX-2 expression and its inhibitory effect on EP1 and EP2 expression were unchanged. IL-1beta increases the production of PGE(2), COX-2, and the PG receptor EP4 in cultured human chondrocytes. The increase in EP4 expression appears to be a result of the increased PGE(2) production.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Nihon University Graduate School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Nicolaou A, Masoodi M, Mir A. Lipidomic analysis of prostanoids by liquid chromatography-electrospray tandem mass spectrometry. Methods Mol Biol 2009; 579:271-286. [PMID: 19763481 DOI: 10.1007/978-1-60761-322-0_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lipidomics aim to generate qualitative and quantitative information on different classes of lipids and their species, and when applied in conjunction with proteomic and genomic assays, facilitate the comprehensive study of lipid metabolism in cellular, organ, or body systems. Advances in mass spectrometry have underpinned the expansion of lipidomic methodologies. Prostanoids are potent autacoids present in a plethora of cellular systems, known best for their intimate role in inflammation. Electrospray ionisation (ESI) allows the efficient ionisation of prostanoids in aqueous systems. ESI can be readily coupled to liquid chromatography (LC) followed by tandem mass spectrometry (MS/MS)-based detection, thus allowing the development of a potent and selective LC/ESI-MS/MS quantitative assays. The protocol we describe in this chapter outlines the steps we follow to (a) extract prostanoids from solid or liquid samples, (b) semi-purify the metabolites using solid phase extraction (c) set-up the HPLC separation using reverse phase chromatography and (d) set-up the MS/MS assay using a triple quadrupole mass spectrometer. The experimental details and notes presented here are based on the detailed protocols followed in our group.
Collapse
Affiliation(s)
- Anna Nicolaou
- Division of Pharmaceutics and Pharmacological Chemistry, School of Pharmacy, Life Sciences, University of Bradford, West Yorkshire, UK
| | | | | |
Collapse
|
109
|
Silva E, Gaivão M, Leitão S, Amaro A, Costa LLD, Mateus L. Blood COX-2 and PGES gene transcription during the peripartum period of dairy cows with normal puerperium or with uterine infection. Domest Anim Endocrinol 2008; 35:314-23. [PMID: 18692980 DOI: 10.1016/j.domaniend.2008.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 12/22/2022]
Abstract
In the dairy cow, puerperal uterine intra-luminal concentrations of PGE(2) are related to the establishment and severity of uterine infections. Here we evaluated whether the blood concentrations of PGE(2) and the gene transcription profiles of enzymes involved in its synthesis (cyclooxygenase-2 and prostaglandin E synthase) could be used as markers of predisposition and/or presence of puerperal uterine infections. We also studied the relationship between the endocrine status and the leukocyte profiles around parturition and the transcription patterns of the genes. Finally, we have characterized the in vitro gene transcription and expression response to a challenge of LPS. Gene transcription profiles, quantified by real-time PCR, were similar in normal puerperium and metritis/endometritis cows, indicating that they are not suitable markers of predisposition to/presence of puerperal uterine infections. Transcription decreased from 2 weeks before parturition until parturition, when a minimum was attained, and then increased during the first week postpartum. The lowest gene transcription, at parturition, was coincidental with the highest total leukocytes, polymorphonuclear neutrophils and CD14 positive cell numbers. It is suggested that by this mechanism, a large number of PMN can be recruited into the uterus after parturition, avoiding an excessive acute inflammatory response. The lowest gene transcription was also coincidental with the surge in cortisol concentrations, indicating that this hormone plays a main immunomodulatory role around parturition. Gene transcription was significantly greater after stimulation with LPS than in non-stimulated blood. We suggest that this PGE(2) producing cells might arrive to the uterine lumen, contributing to the local PGE(2) concentrations and mediating the inflammatory response.
Collapse
Affiliation(s)
- E Silva
- C.I.I.S.A., Faculty of Veterinary Medicine, Technical University of Lisbon (UTL), Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
110
|
Khan SN, Solaris J, Ramsey KE, Yang X, Bostrom MP, Stephan D, Daluiski A. Identification of novel gene expression in healing fracture callus tissue by DNA microarray. HSS J 2008; 4:149-60. [PMID: 18752025 PMCID: PMC2553169 DOI: 10.1007/s11420-008-9087-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 06/23/2008] [Indexed: 02/07/2023]
Abstract
Fracture healing requires controlled expression of thousands of genes. Only a small fraction of these genes have been isolated and fewer yet have been shown to play a direct role in fracture healing. The purpose of this study was threefold: (1) to develop a reproducible open femur model of fracture healing that produces consistent fracture calluses for subsequent RNA extraction, (2) to use this model to determine temporal expression patterns of known and unknown genes using DNA microarray expression profiling, and (3) to identify and validate novel gene expression in fracture healing. In the initial arm of the study, a total of 56 wild-type C57BL/6 mice were used. An open, stabilized diaphyseal femur fracture was created. Animals were killed at 1, 5, 7, 10, 14, 21, and 35 days after surgery and the femurs were harvested for analysis. At each time point, fractures were radiographed and sectioned for histologic analyses. Tissue from fracture callus at all stages following fracture yielded reproducibly large amounts of mRNA. Expression profiling revealed that genes cluster by function in a manner similar to the histologic stages of fracture healing. Based on the expression profiling of fracture tissue, temporal expression patterns of several genes known to be involved in fracture healing were verified. Novel expression of multiple genes in fracture callous tissue was also revealed including leptin and leptin receptor. In order to test whether leptin signaling is required for fracture repair, mice deficient in leptin or its receptor were fractured using the same model. Fracture calluses of mice deficient in both leptin or leptin receptor are larger than wild-type mice fractures, likely due to a delay in mineralization, revealing a previously unrecognized role of leptin signaling in fracture healing. This novel model of murine fracture repair is useful in examining both global changes in gene expression as well as individual signaling pathways, which can be used to identify specific molecular mechanisms of fracture healing.
Collapse
Affiliation(s)
- Safdar N. Khan
- Department of Orthopaedic Surgery, University of California, 4860 Y Street, Suite 1700, Davis, Sacramento, CA 95817 USA
| | - Jorge Solaris
- The Hospital for Special Surgery, 523 E 72nd Street, New York, NY 10021 USA
| | - Keri E. Ramsey
- Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85004 USA
| | - Xu Yang
- The Hospital for Special Surgery, 523 E 72nd Street, New York, NY 10021 USA
| | | | - Dietrich Stephan
- Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85004 USA
| | - Aaron Daluiski
- The Hospital for Special Surgery, 523 E 72nd Street, New York, NY 10021 USA
| |
Collapse
|
111
|
Francois H, Makhanova N, Ruiz P, Ellison J, Mao L, Rockman HA, Coffman TM. A role for the thromboxane receptor in L-NAME hypertension. Am J Physiol Renal Physiol 2008; 295:F1096-102. [PMID: 18684890 DOI: 10.1152/ajprenal.00369.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Actions of the lipid mediator thromboxane (Tx) A2 acting through the TP receptor contribute to the pathogenesis of cardiovascular disease. To further explore the role of TxA2 in hypertension, we examined the consequences of deficiency of the TP receptor on the course of hypertension associated with endothelial dysfunction and salt sensitivity. To this end, the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) was administered to TP-deficient (Tp-/-) and wild-type (Tp+/+) control mice in drinking water for 21 wk along with a high-salt (HS; 6% NaCl) diet. Administration of L-NAME increased urinary excretion of TxB2 to a similar extent in both Tp+/+ and Tp-/- animals. L-NAME also caused significant and sustained elevations in blood pressure that reached a maximum between weeks 3 and 6. However, the severity of hypertension was attenuated in the Tp-/- mice throughout the study period (P<0.001). At the end of the study, the wild-type mice developed significant cardiac hypertrophy (23.6+/-2% increase in heart-to-body weight ratio). The severity of cardiac hypertrophy was attenuated in the TP-deficient group (11.1+/-2.6%; P<0.05). In contrast, kidney hypertrophy was exaggerated in the Tp-/- mice compared with controls (37.1+/-5.4 vs. 12.3+/-2.3%; P<0.01). Moreover, the severity of glomerulosclerosis, tubule vacuolization, and interstitial chronic inflammation was also enhanced in the Tp-/- group (P<0.01). Thus, in L-NAME hypertension, TP receptors contribute to elevated blood pressure and cardiac hypertrophy. In this model, TP receptors also provided unexpected protection against kidney injury.
Collapse
Affiliation(s)
- Helene Francois
- Department of Medicine, Duke University Medical Center, Rm. 2018 MSRB II, 106 Research Drive, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Iñiguez MA, Cacheiro-Llaguno C, Cuesta N, Díaz-Muñoz MD, Fresno M. Prostanoid function and cardiovascular disease. Arch Physiol Biochem 2008; 114:201-9. [PMID: 18629685 DOI: 10.1080/13813450802180882] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prostanoids, including prostaglandins (PGs) and thromboxanes (TXs) are synthesized from arachidonic acid by the combined action of cyclooxygenases (COXs) and PG and TX synthases. Finally after their synthesis, prostanoids are quickly released to the extracellular medium exerting their effects upon interaction with prostanoid receptors present in the neighbouring cells. These agents exert important actions in the cardiovascular system, modulating vascular homeostasis and participating in the pathogenesis of vascular diseases as thrombosis and atherosclerosis. Among prostanoids, Tromboxane (TX)A(2), a potent platelet activator and vasoconstrictor and prostacyclin (PGI2), a platelet inhibitor and vasodilator, are the most important in controlling vascular homeostasis. Although multiple studies using pharmacological inhibitors and genetically deficient mice have demonstrated the importance of prostanoid-mediated actions on cardiovascular physiology, further analysis on the prostanoid mediated actions in the vascular system are required to better understand the benefits and risks for the use of COX inhibitors in cardiovascular diseases.
Collapse
Affiliation(s)
- Miguel A Iñiguez
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
113
|
Black AT, Gray JP, Shakarjian MP, Mishin V, Laskin DL, Heck DE, Laskin JD. UVB light upregulates prostaglandin synthases and prostaglandin receptors in mouse keratinocytes. Toxicol Appl Pharmacol 2008; 232:14-24. [PMID: 18597804 DOI: 10.1016/j.taap.2008.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/16/2008] [Accepted: 05/17/2008] [Indexed: 11/19/2022]
Abstract
Prostaglandins belong to a class of cyclic lipid-derived mediators synthesized from arachidonic acid via COX-1, COX-2 and various prostaglandin synthases. Members of this family include prostaglandins such as PGE(2), PGF(2alpha), PGD(2) and PGI(2) (prostacyclin) as well as thromboxane. In the present studies we analyzed the effects of UVB on prostaglandin production and prostaglandin synthase expression in primary cultures of undifferentiated and calcium-differentiated mouse keratinocytes. Both cell types were found to constitutively synthesize PGE(2), PGD(2) and the PGD(2) metabolite PGJ(2). Twenty-four hours after treatment with UVB (25 mJ/cm(2)), production of PGE(2) and PGJ(2) increased, while PGD(2) production decreased. This was associated with increased expression of COX-2 mRNA and protein. UVB (2.5-25 mJ/cm(2)) also caused marked increases in mRNA expression for the prostanoid synthases PGDS, mPGES-1, mPGES-2, PGFS and PGIS, as well as expression of receptors for PGE(2) (EP1 and EP2), PGD(2) (DP and CRTH2) and prostacyclin (IP). UVB was more effective in inducing COX-2 and DP in differentiated cells and EP1 and IP in undifferentiated cells. UVB readily activated keratinocyte PI-3-kinase (PI3K)/Akt, JNK and p38 MAP signaling pathways which are known to regulate COX-2 expression. While inhibition of PI3K suppressed UVB-induced mPGES-1 and CRTH2 expression, JNK inhibition suppressed mPGES-1, PGIS, EP2 and CRTH2, and p38 kinase inhibition only suppressed EP1 and EP2. These data indicate that UVB modulates expression of prostaglandin synthases and receptors by distinct mechanisms. Moreover, both the capacity of keratinocytes to generate prostaglandins and their ability to respond to these lipid mediators are stimulated by exposure to UVB.
Collapse
Affiliation(s)
- Adrienne T Black
- Department of Pharmacology and Toxicology, Rutgers University, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Curfs DMJ, Ghesquiere SAI, Vergouwe MN, van der Made I, Gijbels MJJ, Greaves DR, Verbeek JS, Hofker MH, de Winther MPJ. Macrophage secretory phospholipase A2 group X enhances anti-inflammatory responses, promotes lipid accumulation, and contributes to aberrant lung pathology. J Biol Chem 2008; 283:21640-8. [PMID: 18511424 DOI: 10.1074/jbc.m710584200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secreted phospholipase A2 group X (sPLA(2)-X) is one of the most potent enzymes of the phospholipase A(2) lipolytic enzyme superfamily. Its high catalytic activity toward phosphatidylcholine (PC), the major phospholipid of cell membranes and low-density lipoproteins (LDL), has implicated sPLA(2)-X in chronic inflammatory conditions such as atherogenesis. We studied the role of sPLA(2)-X enzyme activity in vitro and in vivo, by generating sPLA(2)-X-overexpressing macrophages and transgenic macrophage-specific sPLA(2)-X mice. Our results show that sPLA(2)-X expression inhibits macrophage activation and inflammatory responses upon stimulation, characterized by reduced cell adhesion and nitric oxide production, a decrease in tumor necrosis factor (TNF), and an increase in interleukin (IL)-10. These effects were mediated by an increase in IL-6, and enhanced production of prostaglandin E(2) (PGE(2)) and 15-deoxy-Delta12,14-prostaglandin J(2) (PGJ(2)). Moreover, we found that overexpression of active sPLA(2)-X in macrophages strongly increases foam cell formation upon incubation with native LDL but also oxidized LDL (oxLDL), which is mediated by enhanced expression of scavenger receptor CD36. Transgenic sPLA(2)-X mice died neonatally because of severe lung pathology characterized by interstitial pneumonia with massive granulocyte and surfactant-laden macrophage infiltration. We conclude that overexpression of the active sPLA(2)-X enzyme results in enhanced foam cell formation but reduced activation and inflammatory responses in macrophages in vitro. Interestingly, enhanced sPLA(2)-X activity in macrophages in vivo leads to fatal pulmonary defects, suggesting a crucial role for sPLA(2)-X in inflammatory lung disease.
Collapse
Affiliation(s)
- Daniëlle M J Curfs
- Departments of Molecular Genetics and Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Cyclooxygenase and prostaglandin synthases in atherosclerosis: Recent insights and future perspectives. Pharmacol Ther 2008; 118:161-80. [DOI: 10.1016/j.pharmthera.2008.01.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 11/26/2007] [Accepted: 01/18/2008] [Indexed: 12/24/2022]
|
116
|
Shi J, Misso NL, Kedda MA, Horn J, Welch MD, Duffy DL, Williams C, Thompson PJ. Cyclooxygenase-2 gene polymorphisms in an Australian population: association of the -1195G > A promoter polymorphism with mild asthma. Clin Exp Allergy 2008; 38:913-20. [PMID: 18489027 DOI: 10.1111/j.1365-2222.2008.02986.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cyclooxygenase (COX)-2 is an inducible enzyme responsible for catalysing the formation of prostaglandins (PGs) in settings of inflammation. Single nucleotide polymorphisms (SNPs) of the COX-2 gene may influence gene transcription and PG production in the asthmatic airway. OBJECTIVE To evaluate the frequencies of COX-2 SNPs in an Australian Caucasian population, and determine potential associations between common COX-2 promoter SNPs and asthma, asthma severity and aspirin-intolerant asthma (AIA). METHODS The frequencies of 25 COX-2 SNPs were determined in a random population (n=176). The SNPs with a minor allele frequency of >10% were then studied in asthmatic (n=663), non-asthmatic controls (n=513) and AIA subjects (n=58). Genotype, allele and haplotype associations were assessed. Functional assessment of SNPs was performed by transfection into HeLa cells measured using the luciferase dual-reporter assay system. RESULTS Eighteen COX-2 SNPs were not detected, five were rare and two promoter SNPs, -1195G>A (rs689465), and -1290A>G (rs689466), were further studied. The A allele of the -1195 SNP was present at a significantly higher frequency among all asthmatic subjects (P=0.012). Over 60% of the asthmatic individuals were -1195A homozygotes compared with 54.6% of the control subjects (odds ratio, 1.35; 95% CI, 1.06-1.72, P=0.03). After classifying for severity, the mild asthmatics represented 64.6% of -1195AA individuals, the highest of all the asthma groups compared with 54.6% of the control subjects (odds ratio, 1.5; 95% CI, 1.12-2.02, P=0.02). The -1290A/-1195G/-765G haplotype was associated with a reduced incidence of asthma (odds ratio, 0.76; 95% CI, 0.61-0.95, P=0.017). CONCLUSION The -1195G>A polymorphism appears to be associated with asthma, and in particular with mild asthma.
Collapse
Affiliation(s)
- J Shi
- Lung Institute of Western Australia and Centre for Asthma, Allergy and Respiratory Research, The University of Western Australia, Perth, WA, Australia
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
Eicosanoids are a large group of oxygenated fatty acids [viz., omega-3 (n-3) and omega-6 (n-6) C(20) polyunsaturated fatty acids], the most important source being the omega-6 cell membrane-derived arachidonic acid (AA). Eicosanoids are produced by many different cell types; through their ligation and activation of specific membrane-bound and intracellular receptors, they regulate myriad physiological and pathological functions, including body temperature (T(b)). However, the thermoregulatory role of eicosanoids has mainly been associated with fever, i.e., with T(b) changes induced during illness; their importance in maintaining T(b) during health remains unclear. In this review, we address the question of whether AA-derived mediators (viz., prostaglandins, leukotrienes and other lipoxygenase metabolites, and the endocannabinoids/endovanilloids) are involved in normal (non-febrile) thermoregulation. We conclude that although prostaglandin E(2) is a principal mediator of fever, it is unlikely to be involved in the maintenance of normal T(b). Other eicosanoids reviewed also seem to have no major role in non-febrile thermoregulation. Newly discovered signaling pathways for eicosanoids, such as the endovanilloid system, may participate in thermoregulation, but further studies are required before definitive conclusions can be made.
Collapse
Affiliation(s)
- David M Aronoff
- Division of Infectious Diseases, Department of Internal Medicine, The University of Michigan Health Systems, Ann Arbor, MI 48109-0642, USA.
| | | |
Collapse
|
118
|
|
119
|
Abstract
In response to various growth factors, hormones or cytokines, arachidonic acid can be mobilized from phospholipids pools and converted to bioactive eicosanoids through cyclooxygenase (COX), lipoxygenase (LOX) or P-450 epoxygenase pathway. The COX pathway generates five major prostanoids (prostaglandin D(2), prostaglandin E(2), prostaglandin F(2)alpha, prostaglandin I(2) and thromboxane A(2)) that play important roles in diverse biological processes. Studies suggest that different prostanoids and their own synthase can play distinct roles in tumor progression and cancer metastasis. COX-2 and PGE(2) synthase have been most well documented in the regulation of various aspects of tumor progression and metastasis. PGE(2), for example, can stimulate angiogenesis or other signaling pathways by binding to its receptors termed EPs. Therefore, targeting downstream prostanoids may provide a new avenue to impede tumor progression. In this review, aberrant expression and functions of several prostanoid synthetic enzymes in cancer will be discussed. The possible regulation of tumor progression by prostaglandins and their receptors will also be discussed.
Collapse
Affiliation(s)
- Man-Tzu Wang
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine and Cancer Institute, PO Box 19626, Springfield, IL 62794-9626, USA
| | | | | |
Collapse
|
120
|
Tsaplina LA, Vrzheshch PV. Cyclooxygenase and peroxidase inactivation of prostaglandin-H-synthase during catalysis. BIOCHEMISTRY (MOSCOW) 2007; 72:631-9. [PMID: 17630907 DOI: 10.1134/s0006297907060053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Prostaglandin-H-synthase (PGHS) is a bifunctional enzyme catalyzing cyclooxygenase and peroxidase reactions and undergoing irreversible inactivation during catalysis. A new method for kinetic studies of both PGHS activities in the course of cyclooxygenase as well as peroxidase reactions and also preincubation with hydroperoxides is suggested. It is shown that peroxidase activity is retained after complete cyclooxygenase inactivation and cyclooxygenase activity is retained after complete peroxidase inactivation. Two-stage cyclooxygenase inactivation occurs on preincubation of PGHS with hydrogen peroxide. Studies on inactivation under various conditions indicate that chemical mechanisms of cyclooxygenase and peroxidase inactivation are different. The data allow development of kinetic models.
Collapse
Affiliation(s)
- L A Tsaplina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia
| | | |
Collapse
|
121
|
Müller-Decker K, Fürstenberger G. The cyclooxygenase-2-mediated prostaglandin signaling is causally related to epithelial carcinogenesis. Mol Carcinog 2007; 46:705-10. [PMID: 17546626 DOI: 10.1002/mc.20326] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Epidemiologic, pharmacologic, clinical, and experimental studies document the importance of prostaglandin (PG) signaling in cancer development, including non-melanoma skin cancer lesions in humans and mice. First of all, enzymes involved in PG biosynthesis, such as cyclooxygenase (COX)-2 and/or membrane prostaglandin E synthase (mPGES)-1, were found to be overexpressed in a wide range of premalignant and malignant epithelial tumors, including those of the skin, breast, esophagus, stomach, colorectum, pancreas, and bladder. On the other hand, 15-hydroxy-prostaglandin dehydrogenase (15-PGDH), which is involved in the degradation pathway of PG including PGE(2,) thus counteracting the activities of COX-2 and PGES, was found to be downregulated in human epithelial tumors, indicating a tumor suppressor activity of this enzyme. Most remarkably, genetic studies showed that mice, which are deficient in COX-2 and/or PGES are resistant to the development of cancer of skin, colon, and stomach. In contrast, the forced overexpression of COX-2 in proliferative compartments of simple or stratified epithelia such as skin epidermis, urinary bladder, mammary gland, and pancreas results in spontaneous hyperplasia and dysplasia in transgenic mice. In skin, the pathological changes are found to be due to an abnormal process of terminal differentiation, while in other tissues, hyperproliferation seems to be the main contributor to the pre-invasive neoplasms. Moreover, the COX-2 transgenic mouse lines are sensitized for cancer development.
Collapse
Affiliation(s)
- Karin Müller-Decker
- Deutsches Krebsforschungszentrum Heidelberg, Eicosanoids and Tumor Development, Heidelberg, Germany
| | | |
Collapse
|
122
|
Krötz F. Preserving vascular prostacyclin levels by microsomal prostaglandin E(2) synthase isoform 1 inhibition: a new strategy for vasoprotection? J Thromb Haemost 2007; 5:1409-10. [PMID: 17488348 DOI: 10.1111/j.1538-7836.2007.02614.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- F Krötz
- Cardiology Division, Medizinische Poliklinik, Ludwig-Maximilians-Universität, München, Germany.
| |
Collapse
|
123
|
Neumann M, Dülsner E, Fürstenberger G, Müller-Decker K. The expression pattern of prostaglandin E synthase and EP receptor isoforms in normal mouse skin and preinvasive skin neoplasms. Exp Dermatol 2007; 16:445-53. [PMID: 17437488 DOI: 10.1111/j.1600-0625.2007.00549.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prostaglandin (PG) E(2), the predominant PG in skin, accumulates in experimentally produced mouse skin tumors. PGE(2) induces proliferation of mouse keratinocytes in vitro, epidermal hyperplasia and dysplasia, a promoted epidermis phenotype, and angiogenesis in keratin 5 promoter (K5) cyclooxygenase (COX)-2-transgenic NMRI mouse skin in vivo. PGE(2) is synthesized by COX-catalysed oxygenation of arachidonic acid to PGH(2) and its conversion to PGE(2) by prostaglandin E synthase (PGES) isoforms. PGE(2) signals via PGE(2) receptor isoforms EP1-EP4. Here, we investigated the expression profiles of PGES and EP receptors in wild type NMRI mouse skin constitutively expressing COX-1 when compared with the hyperplastic/dysplastic skin of homozygous K5 COX-2-transgenic mice and papillomas of both genotypes, which, in addition to COX-1, overexpress COX-2. The three PGES are constitutively expressed in normal and transgenic skin independent of the COX expression status. In papillomas, the increased PGE(2) levels correlate with an increased expression of mPGES-1 and cPGES. All four EP receptors were expressed in normal and transgenic skin. Only EP3 was slightly increased in transgenic skin. In papillomas of both genotypes, the expression levels of EP1 and EP4 were low when compared with those in wild type back skin. EP2 was the predominant receptor in papillomas of wild type and transgenic mice. In papillomas of wild type mice EP3 levels were slightly elevated when compared with transgenic tumors. EP1 and EP2 were localized in basal keratinocytes, sebaceous glands and CD31-positive vessels. Thus, normal and preinvasive mouse skin express the complete protein repertoire for PGE(2) biosynthesis and signalling.
Collapse
Affiliation(s)
- Melanie Neumann
- Section Eicosanoids and Tumor Development, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
124
|
Hishinuma T, Suzuki K, Saito M, Yamaguchi H, Suzuki N, Tomioka Y, Kaneko I, Ono M, Goto J. Simultaneous quantification of seven prostanoids using liquid chromatography/tandem mass spectrometry: the effects of arachidonic acid on prostanoid production in mouse bone marrow-derived mast cells. Prostaglandins Leukot Essent Fatty Acids 2007; 76:321-9. [PMID: 17590322 DOI: 10.1016/j.plefa.2007.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/23/2007] [Accepted: 04/04/2007] [Indexed: 11/28/2022]
Abstract
We have developed a method for the simultaneous estimation of the levels of the prostanoids 6-keto prostaglandin (PG) Flalpha, PGB2, PGD2, PGE2, PGF2(alpha), PGJ2, and thromboxane (TX) B2 in blood- or serum-containing medium using liquid chromatography-tandem mass spectrometry. These prostanoids and their deuterium derivatives, which were used as internal standards, were subjected to solid-phase extraction using Empore C18 HD disk cartridges and analyzed in the selected reaction-monitoring mode. A linear response curve starting at 10 pg of prostanoid/tube was observed for each prostanoid. The accuracy of the method was demonstrated with samples containing known amounts of the prostanoids. Furthermore, we used this method to analyze the prostanoids produced in mouse bone marrow-derived mast cells stimulated with arachidonic acid, which resulted in the production of PGD2, PGE2, PGF2alpha, and TXB2. The results suggest that this simultaneous quantification method is useful for the analysis of the production of biomedically important prostanoids.
Collapse
Affiliation(s)
- Takanori Hishinuma
- Graduate School of Pharmaceutical Sciences, Tohoku University, and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Zerani M, Dall'Aglio C, Maranesi M, Gobbetti A, Brecchia G, Mercati F, Boiti C. Intraluteal regulation of prostaglandin F2α-induced prostaglandin biosynthesis in pseudopregnant rabbits. Reproduction 2007; 133:1005-16. [PMID: 17616729 DOI: 10.1530/rep-06-0107] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The objective of the present study was to investigate in rabbit corpora lutea (CL), at both the cellular and molecular level, intraluteal cyclooxygenase (COX)-1, COX-2 and prostaglandin (PG) E2-9-ketoreductase (PGE2-9-K) enzymatic activities as well asin vitroPGE2 and PGF2α synthesis following PGF2α treatment at either early- (day-4) or mid-luteal (day-9) stage of pseudopregnancy. By immunohistochemistry, positive staining for COX-2 was localized in luteal and endothelial cells of stromal arteries at both the stages. In CL of both stages, basal COX-2 mRNA levels were poorly expressed, but rose (P< 0.01) 4- to 10-fold 1.5–6 h after treatment and then gradually decreased within 24 h. Compared to mid-stage, day-4 CL had lower (P< 0.01) COX-2 and PGE2-9-K basal activities, and PGF2α synthesis rate, but higher (P< 0.01) PGE2 production. Independent of luteal stage, PGF2α treatment did not affect COX-1 activity. In day-4 CL, PGF2α induced an increase (P< 0.01) in both COX-2 activity and PGF2α synthesis, whereas that of PGE2 remained unchanged. In day-9 CL, PGF2α up-regulated (P< 0.01) both COX-2 and PGE-9-K activities, and PGF2α production, but decreased (P< 0.01) PGE2 synthesis. All changes in gene expression and enzymatic activities occurred within 1.5 h after PGF2α challenge and were more marked in day-9 CL. Our data suggest that PGF2α directs intraluteal PG biosynthesis in mature CL, by affecting the CL biosynthetic machinery to increase the PGF2α synthesis in an auto-amplifying manner, with the activation of COX-2 and PGE-9-K; this may partly explain their differentially, age-dependent, luteolytic capacity to exogenous PGF2α in rabbits.
Collapse
Affiliation(s)
- M Zerani
- Dipartimento di Biologia Molecolare, Cellulare e Animale, Università di Camerino, via F Camerini 1, Camerino, Italy
| | | | | | | | | | | | | |
Collapse
|
126
|
Rossiello L, Ruocco E, Signoriello G, Micheli P, Rienzo M, Napoli C, Rossiello R. Evidence of COX-1 and COX-2 expression in Kaposi's sarcoma tissues. Eur J Cancer 2007; 43:1232-41. [PMID: 17467980 DOI: 10.1016/j.ejca.2007.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 03/14/2007] [Accepted: 03/15/2007] [Indexed: 12/27/2022]
Abstract
Cyclooxygenases (COXs) are enzymes catalysing prostaglandin synthesis and are implicated in the carcinogenesis of some cancer types. In addition, an important role of these enzymes in herpesvirus infections was demonstrated and it has recently been proposed that COX-2 may participate in herpesvirus-induced neoplasia such as Kaposi's sarcoma (KS). To date no immunohistochemical study has been performed to determine the identification of COX-1 and COX-2 in KS. We have investigated 35 cases of classic KS and 27 cases of epidemic KS form in order to study the distribution and localisation of COXs. We have examined by immunohistochemistry the expression of COX-1 and COX-2 in classic and epidemic forms of KS also in relationship to the characteristic morphological phases (patch, plaque and nodular stage) of KS and cell localisation by double immunostaining. Moreover, we have obtained COX-1 and COX-2 expression by Western blot analysis. Our results establish that (a) COX-1 and COX-2 are overexpressed significantly in classic and epidemic KS compared with control skin tissues (P<0.01 and P>0.03, respectively, for COX-1; P<0.01 and P>0.03, respectively, for COX-2); (b) the extent and intensity staining for both COXs were higher in classic than in epidemic form of KS. Our data support the hypothesis that both COXs may be involved in the pathogenesis of KS.
Collapse
Affiliation(s)
- Luigi Rossiello
- Department of Dermatology, II University of Naples, Naples 80131, Italy.
| | | | | | | | | | | | | |
Collapse
|
127
|
Idzko M, Hammad H, van Nimwegen M, Kool M, Vos N, Hoogsteden HC, Lambrecht BN. Inhaled iloprost suppresses the cardinal features of asthma via inhibition of airway dendritic cell function. J Clin Invest 2007; 117:464-72. [PMID: 17273558 PMCID: PMC1783814 DOI: 10.1172/jci28949] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 12/05/2006] [Indexed: 12/16/2022] Open
Abstract
Inhalation of iloprost, a stable prostacyclin (PGI(2)) analog, is a well-accepted and safe treatment for pulmonary arterial hypertension. Although iloprost mainly acts as a vasodilator by binding to the I prostanoid (IP) receptor, recent evidence suggests that signaling via this receptor also has antiinflammatory effects through unclear mechanisms. Here we show in a murine model of asthma that iloprost inhalation suppressed the cardinal features of asthma when given during the priming or challenge phase. As a mechanism of action, iloprost interfered with the function of lung myeloid DCs, critical antigen-presenting cells of the airways. Iloprost treatment inhibited the maturation and migration of lung DCs to the mediastinal LNs, thereby abolishing the induction of an allergen-specific Th2 response in these nodes. The effect of iloprost was DC autonomous, as iloprost-treated DCs no longer induced Th2 differentiation from naive T cells or boosted effector cytokine production in primed Th2 cells. These data should pave the way for a clinical effectiveness study using inhaled iloprost for the treatment of asthma.
Collapse
Affiliation(s)
- Marco Idzko
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Pneumology, University of Freiburg, Freiburg, Germany
| | - Hamida Hammad
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Pneumology, University of Freiburg, Freiburg, Germany
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Pneumology, University of Freiburg, Freiburg, Germany
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Pneumology, University of Freiburg, Freiburg, Germany
| | - Nanda Vos
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Pneumology, University of Freiburg, Freiburg, Germany
| | - Henk C. Hoogsteden
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Pneumology, University of Freiburg, Freiburg, Germany
| | - Bart N. Lambrecht
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Pneumology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
128
|
Nakano M, Denda N, Matsumoto M, Kawamura M, Kawakubo Y, Hatanaka K, Hiramoto Y, Sato YI, Noshiro M, Harada Y. Interaction between cyclooxygenase (COX)-1- and COX-2-products modulates COX-2 expression in the late phase of acute inflammation. Eur J Pharmacol 2007; 559:210-8. [PMID: 17258197 DOI: 10.1016/j.ejphar.2006.11.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 11/30/2006] [Accepted: 11/30/2006] [Indexed: 12/30/2022]
Abstract
Prostanoid production depends on the activity of two cyclooxygenase (COX) isoforms. It is appreciated that COX-1 plays a role in physiological processes, whereas COX-2 acts in pathological conditions. However their roles, particularly roles of COX-1, have not yet been fully established in inflammation. Here, we examined the effects of COX inhibitors, having differential isoform selectivity, on the late phase of rat carrageenin-induced pleurisy to elucidate the role of COX-2 expressed in the draining lymph nodes and found substantial contribution of COX-1-product(s). Protein and mRNA of COX-2 were detectable with Western blotting analysis and reverse-transcription polymerase chain reaction (RT-PCR) analysis in parathymic lymph nodes, peaking at 48 h after induction of pleurisy. Microsomal prostaglandin E synthase (mPGES)-1 was detectable by immunohistochemical analysis in cells with dendritic processes, a morphological characteristic similar to that of COX-2 expressing cells. Although aspirin, indomethacin and a COX-1 inhibitor, ketorolac, significantly decreased the volume of pleural exudate, they did not affect the levels of COX-2 and mPGES-1 in the lymph node 24 h after induction of pleurisy. In contrast, COX-2 inhibitors, nimesulide and NS-398, had no effect on the exudate volume, but they increased the number of COX-2- and mPGES-1-expressing cells and extension of their dendritic processes with significant increase in the COX-2 level, which were antagonised by ketorolac. These results suggest that COX-2-expressing cells may negatively self-regulate their functions by producing PGE2 via mPGES-1: migration into the draining lymph node and their differentiation. Moreover, COX-1- and COX-2-derived prostanoids may play differential or sometimes antagonistic roles in the late phase of acute inflammation.
Collapse
Affiliation(s)
- Masashi Nakano
- Department of Mediator and Signal Transduction Pharmacology, Kitasato University Graduate School of Medical Sciences, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
The development of drugs that selectively inhibit cyclooxygenase-2 (COX-2) demonstrates translational research from bench to bedside based on underlying knowledge of micro-cellular structure and function. However, theoretical concerns about potentially prothrombotic effects of selective COX-2 inhibitors coupled with observations of increased cardiovascular risk have produced significant consternation and lead to the withdrawal of two of these agents from the market. A number of questions remain unanswered. It appears clear that both selective and non-selective COX inhibitors are associated with increases in blood pressure. In addition, blood pressure is often increased after starting nonsteroidal therapy, and we know that even small increases in blood pressure in subjects with pre-existing vascular disease are associated with substantial increases in the risk of cardiovascular morbidity. Given this line of reasoning, one might hypothesize that the observed increases in the risk of cardiovascular events associated with COX-inhibitors are largely due to increases in blood pressure in populations of subjects who are already at high risk. But can we generalize that the adverse cardiovascular effects observed for rofecoxib and valdecoxib are sufficient to indict the entire class of COX-2 inhibitors, or is this not a class effect, but dependent upon the degree of COX-2 selectivity? In either case, it seems prudent to recommend that subjects who are at higher risk for a cardiovascular event and receiving a COX-inhibitor should also be treated with low dose ASA with close follow up of blood pressure and efficacious use of anti-hypertensive medications. Finally, modest dietary salt restriction may help lessen the effects of COX-inhibitors on blood pressure.
Collapse
Affiliation(s)
- Daniel J Salzberg
- Division of Nephrology, University of Maryland School of Medicine, 22 S. Greene Street, Room N3W143 Baltimore, MD 21201-1595, USA
| | | |
Collapse
|
130
|
Cammas L, Reinaud P, Bordas N, Dubois O, Germain G, Charpigny G. Developmental regulation of prostacyclin synthase and prostacyclin receptors in the ovine uterus and conceptus during the peri-implantation period. Reproduction 2006; 131:917-27. [PMID: 16672356 DOI: 10.1530/rep.1.00799] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study documents the expression of prostacyclin (PGI2) synthase (PTGIS) and PGI2 receptors in the trophoblast and uterus of the ewe at the time of maternal recognition of pregnancy (i.e. days 7, 9, 12, 14 and 17). The membrane receptor for PGI2 (PTGIR) and the nuclear receptors, i.e. peroxisome proliferator-activated receptors (PPAR) and their heterodimer partners the retinoid X receptors (RXR), were analysed. In the endometrium, PTGIS transcript and protein were expressed at day 9 of pregnancy and levels declined from days 12 to 17. Immunohistochemistry and in situ hybridization indicated that PTGIS was mainly located in the luminal epithelium of the endometrium. Endometrial PTGIR, PPARA, PPARG and RXRG expression was regulated during the peri-implantation period whereas PPARD, RXRA and RXRB were consistently expressed. In the trophoblast, PTGIS transcript levels rose as development progressed and peaked at day 17. PTGIR and PPARA transcripts peaked before day 12 and then declined and became nearly undetectable by day 17, whereas PPARD and PPARG transcript levels rose steadily from days 12 to 17. Because the PPARs and the RXRs display different expression profiles, we suggest that different heterodimers may form and support distinct functions as development proceeds. Our results also underline the importance of PTGIS and PPARD in the trophoblast and PTGIR in the uterus, suggesting that PGI2 is of both uterine and trophoblastic origin and is involved in a complex signalling pathway at around the time of implantation in the ewe.
Collapse
Affiliation(s)
- L Cammas
- Biologie du Développement et de la Reproduction, INRA, Centre de Recherches de Jouy, 78352 Jouy en Josas Cedex, France
| | | | | | | | | | | |
Collapse
|
131
|
Astle S, Newton R, Thornton S, Vatish M, Slater DM. Expression and regulation of prostaglandin E synthase isoforms in human myometrium with labour. Mol Hum Reprod 2006; 13:69-75. [PMID: 17105783 DOI: 10.1093/molehr/gal093] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Since the controversies regarding the use of non-steroidal anti-inflammatory drugs (NSAIDs) and selective cyclo-oxygenase (COX)-2 antagonists for the treatment of preterm labour (PTL), more emphasis has been placed on investigating the terminal synthases involved in the production of prostaglandins (PGs) to allow more targeted therapy in PTL. Prostaglandin E(2) (PGE(2)) is synthesized by one of three enzymes, cytosolic prostaglandin E synthase (cPGES), microsomal PGES-1 (mPGES-1) and microsomal PGES-2 (mPGES-2). We have determined (i) the immuno-localization of all three PGES enzymes in lower segment pregnant human myometrium, (ii) the expression of PGES and COX-2 mRNA expression at term and preterm gestation with and without labour and (iii) the effect of interleukin (IL)-1beta on COX-2 and PGES mRNA and protein expression in human myometrial smooth muscle (HMSM) cell cultures. We show mPGES-1 protein located predominantly in myometrial and vascular smooth muscle cells (SMCs), whilst mPGES-2 protein is largely in stromal cells surrounding the SMC and cPGES is diffusely located throughout the myometrium. Expression of mPGES-2 mRNA increased with term labour and PTL and expression of COX-2 and mPGES-1 mRNA with term labour, whereas cPGES expression did not change. IL-1beta stimulated release of PGE(2) by HMSM cells and increased COX-2 and mPGES-1 mRNA and protein expression. Thus, COX-2 expression and mPGES-1 expression are co-ordinately up-regulated in lower segment myometrium with term labour and with IL-1beta treatment in HMSM cells.
Collapse
Affiliation(s)
- S Astle
- Clinical Sciences Research Institute, Warwick Medical School, UHCW Trust, Coventry, UK
| | | | | | | | | |
Collapse
|
132
|
Grzyb J, Latowski D, Strzałka K. Lipocalins - a family portrait. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:895-915. [PMID: 16504339 DOI: 10.1016/j.jplph.2005.12.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 12/12/2005] [Indexed: 05/06/2023]
Abstract
Lipocalins are a widely distributed group of proteins whose common feature is the presence of six-or eight-stranded beta-barrel in their tertiary structure and highly conservative motifs short conserved region, (SCR) in their amino acid sequences. The presence of three SCRs is typical for kernel lipocalins, while outlier lipocalins have only one or two such regions. Owing to their ability to bind and transport small, hydrophobic molecules, lipocalins participate in the distribution of such substances. However, the physiological significance of lipocalins is not limited to transfer processes. They play an important role in the regulation of immunological and developmental processes, and are also involved in the reactions of organisms to various stress factors and in the pathways of signal transduction. Of special interest is the enzymatic activity found in a few members of the lipocalin family, as well as the interaction with natural membranes, both directly with lipids and through membrane-localized protein receptors.
Collapse
Affiliation(s)
- Joanna Grzyb
- Department of Plant Physiology and Biochemistry, Faculty of Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, Poland
| | | | | |
Collapse
|
133
|
Fürstenberger G, Krieg P, Müller-Decker K, Habenicht AJR. What are cyclooxygenases and lipoxygenases doing in the driver's seat of carcinogenesis? Int J Cancer 2006; 119:2247-54. [PMID: 16921484 DOI: 10.1002/ijc.22153] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Substantial evidence supports a functional role for cyclooxygenase- and lipoxygenase-catalyzed arachidonic and linoleic acid metabolism in cancer development. Genetic intervention studies firmly established cause-effect relations for cyclooxygenase-2, but cyclooxygenase-1 may also be involved. In addition, pharmacologic cyclooxygenase inhibition was found to suppress carcinogenesis in both experimental mouse models and several cancers in humans. Arachidonic acid-derived eicosanoid or linoleic acid-derived hydro[peroxy]fatty acid signaling are likely to be involved impacting fundamental biologic phenomena as diverse as cell growth, cell survival, angiogenesis, cell invasion, metastatic potential and immunomodulation. However, long chain unsaturated fatty acid oxidation reactions indicate antipodal functions of distinct lipoxygenase isoforms in carcinogenesis, i.e., the 5- and platelet-type 12-lipoxygenase exhibit procarcinogenic activities, while 15-lipoxygenase-1 and 15-lipoxygenase-2 may suppress carcinogenesis.
Collapse
Affiliation(s)
- G Fürstenberger
- Research Group Eicosanoids and Tumor Development, Deutsches Krebsforschungszentrum Heidelberg, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
134
|
The role and regulation of the nuclear factor kappa B signalling pathway in human labour. Placenta 2006; 28:543-56. [PMID: 16843526 DOI: 10.1016/j.placenta.2006.05.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 05/23/2006] [Accepted: 05/25/2006] [Indexed: 10/24/2022]
Abstract
Within the discipline of reproductive biology, our understanding of one of the most fundamental biological processes is lacking--the cellular and molecular mechanisms that govern birth. This lack of understanding limits our ability to reduce the incidence of labour complications. The incidence of labour complications including: preterm labour; cervical incompetence; and post-date pregnancies has not diminished in decades. The key to improving the management of human labour and delivery is an understanding of how the multiple processes that are requisite for a successful labour and delivery are coordinated to achieve a timely birth. Processes of human labour include the formation of: contraction associated proteins; inflammatory mediators (e.g. cytokines); uterotonic phospholipid metabolites (e.g. prostaglandins); and the induction of extracellular matrix (ECM) remodelling. Increasingly, it is becoming evident that labour onset and birth are the result of cross-talk between multiple components of an integrated network. This hypothesis is supported by recent data implicating various upstream regulatory pathways in the control of key labour-associated processes, including the activity of enzymes involved in the formation of prostaglandins and extracellular matrix remodelling, and mediators of inflammation. Clearly, the biochemical pathways involved in the formation of these mediators represent potential sites for intervention that may translate to therapeutic interventions to delay or prevent preterm labour and delivery. Available data strongly implicate the nuclear factor-kappaB (NF-kappaB) family as candidate upstream regulators of multiple labour-associated processes. Not only do these data warrant further detailed analysis of the involvement of these pathways in the process of human labour but also promise new insights into the key mechanisms that trigger birth and the identification of new therapeutic interventions that will improve the management of labour.
Collapse
|
135
|
Stuhlmeier KM. Prostaglandin E2: a potent activator of hyaluronan synthase 1 in type-B-synoviocytes. Biochim Biophys Acta Gen Subj 2006; 1770:121-9. [PMID: 16904269 DOI: 10.1016/j.bbagen.2006.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 07/02/2006] [Accepted: 07/07/2006] [Indexed: 02/08/2023]
Abstract
We demonstrated earlier that the gene HAS1 is inactive in resting type-B-synoviocytes but can be readily activated by a series of proinflammatory cytokines including IL-1beta. Here we show that in type-B-synoviocytes mRNA levels for the gene COX-2 increase more than 200-fold in response to IL-1beta treatment, whereas COX-1 mRNA levels remain virtually unchanged. We tested a series of eicosanoids and demonstrate that PGE(2) is a very potent activator of HAS1 in synoviocytes. While mumol concentrations of PGI(2) are required to activate HAS1, low nmol concentrations of PGE(2) are sufficient. In addition, while two thromboxane A(2) analogs moderately activated HAS1 at higher concentrations, the lipoxygenase pathway product LTB(4) was without effect. A series of COX inhibitors blocked IL-1beta induced HAS1 activation. Similarly, sodium salicylate (NaSal) also suppressed IL-1beta induced HAS1 activation. Furthermore, electrophoretic mobility shift assays and PGE(2) ELISA experiments demonstrate that NaSal completely prevents PGE(2) release but does not interfere with NF-kappaB translocation. PGE(2) is a very powerful activator of HAS1 transcription and translation. Such data indicate that the effect of IL-1beta on HAS1 is mediated by prostaglandins. Additionally, NaSal is a potent suppressor of HAS1 activation. These findings point towards HAS1 as a gene of importance in inflammation.
Collapse
Affiliation(s)
- Karl M Stuhlmeier
- Ludwig Boltzmann Institute for Rheumatology and Balneology, Kurbadstrasse 10, 1100 Vienna, Austria.
| |
Collapse
|
136
|
Lappas M, Yee K, Permezel M, Rice GE. Lipopolysaccharide and TNF-α Activate the Nuclear Factor Kappa B Pathway in the Human Placental JEG-3 Cells. Placenta 2006; 27:568-75. [PMID: 16122789 DOI: 10.1016/j.placenta.2005.06.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 05/31/2005] [Accepted: 06/03/2005] [Indexed: 11/22/2022]
Abstract
Up-regulation of pro-inflammatory cytokines, cyclooxygenase (COX-2) and prostaglandins is a critical factor driving human term labour and inflammation-associated preterm labour. Nuclear factor kappa B (NF-kappaB) is activated in response to a number of inflammatory mediators, including cytokines and lipopolysaccharide (LPS). The aim of this study was (i) to investigate if TNF-alpha and LPS activate the NF-kappaB pathway; and (ii) to use short interfering RNA (siRNA) against inhibitor kappaB kinase (IKK)-beta to confirm the role of the NF-kappaB pathway in the regulation of pro-inflammatory mediators in human placental JEG-3 cells. JEG-3 cells (3 independent experiments) were (i) incubated in the presence or absence of 10 microg/ml LPS or 20 ng/ml TNF-alpha, or (ii) transfected with 100 nM IKK-beta siRNA. Incubation of JEG-3 cells with LPS and TNF-alpha increased the expression of cytoplasmic IKK-beta and phosphorylated IkappaB-alpha, and nuclear NF-kappaB proteins p50 and p65. This was associated with a concurrent increase in COX-2 protein, and IL-6 and PGF2alpha release from JEG-3 cells. Treatment of cells with BAY 11-7082 at 50 microM significantly inhibited basal, LPS- and TNF-alpha-induced NF-kappaB and COX-2 expression, and IL-6 and PGF2alpha release. Transfection of JEG-3 cells with IKK-beta siRNA significantly decreased IL-6 and PGF2alpha release. The data presented in this study demonstrate that pro-inflammatory mediators regulate the NF-kappaB transcription pathway in human JEG-3 cells, and the IKK-beta/NF-kappaB pathway is a regulator of inflammatory mediators in placental JEG-3 cells.
Collapse
Affiliation(s)
- M Lappas
- Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, 126 Clarendon Street, East Melbourne, Victoria 3002, Australia.
| | | | | | | |
Collapse
|
137
|
Müller-Decker K, Fürstenberger G, Annan N, Kucher D, Pohl-Arnold A, Steinbauer B, Esposito I, Chiblak S, Friess H, Schirmacher P, Berger I. Preinvasive duct-derived neoplasms in pancreas of keratin 5-promoter cyclooxygenase-2 transgenic mice. Gastroenterology 2006; 130:2165-78. [PMID: 16762637 DOI: 10.1053/j.gastro.2006.03.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 03/09/2006] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Basic research aimed at a better understanding of pancreatic carcinogenesis and improving the treatment of this disease is crucial because the majority of pancreatic cancers are highly aggressive and therapeutically nonaccessible. Cyclooxygenase (COX)-2, which is a key enzyme of prostaglandin (PG) biosynthesis, is overexpressed in around 75% of human carcinomas including those of the pancreas. METHODS The pathologic changes of transgenic mouse pancreas with keratin 5-promoter-driven expression and activity of COX-2 were characterized. RESULTS Aberrant expression of COX-2 in a few ductal cells and COX-2-mediated PG synthesis in the transgenic mice resulted in keratin 19- and mucin-positive intraductal papillary mucinous neoplasm- and pancreatic intraepithelial neoplasia-like structures, characterized by an increased proliferation index and serous cystadenomas. Moreover, Ras activation was enhanced and the HER-2/Neu receptor was overexpressed. Loss of acini, fibrosis, and inflammation were pronounced. Feeding a COX-2-selective inhibitor to the transgenic mice suppressed the accumulation of PG and the phenotype. The changes resemble the human disease in which COX-2 was overexpressed consistently. CONCLUSIONS We present strong evidence for a causal relationship between aberrant COX-2 overexpression and COX-2-mediated PG synthesis and the development of serous cystadenoma, intraductal papillary mucinous, and pancreatic intraepithelial neoplasms. This model offers the unique possibility of identifying molecular pathways leading to the formation and malignant progression of the various types of preinvasive lesions of pancreatic adenocarcinomas that show different dismal outcomes.
Collapse
Affiliation(s)
- Karin Müller-Decker
- Eicosanoids and Tumor Development Section, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Guillette LJ. Endocrine disrupting contaminants--beyond the dogma. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114 Suppl 1:9-12. [PMID: 16818240 PMCID: PMC1874172 DOI: 10.1289/ehp.8045] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Descriptions of endocrine disruption have largely been associated with wildlife and driven by observations documenting estrogenic, androgenic, antiandrogenic, and antithyroid actions. These actions, in response to exposure to ecologically relevant concentrations of various environmental contaminants, have now been established in numerous vertebrate species. However, many potential mechanisms and endocrine actions have not been studied. For example, the DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane] metabolite, p,p -DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene] is known to disrupt prostaglandin synthesis in the uterus of birds, providing part of the explanation for DDT-induced egg shell thinning. Few studies have examined prostaglandin synthesis as a target for endocrine disruption, yet these hormones are active in reproduction, immune responses, and cardiovascular physiology. Future studies must broaden the basic science approach to endocrine disruption, thereby expanding the mechanisms and endocrine end points examined. This goal should be accomplished even if the primary influence and funding continue to emphasize a narrower approach based on regulatory needs. Without this broader approach, research into endocrine disruption will become dominated by a narrow dogma, focusing on a few end points and mechanisms.
Collapse
Affiliation(s)
- Louis J Guillette
- Department of Zoology, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
139
|
Lathion C, Michalik L, Wahli W. Physiological ligands of PPARs in inflammation and lipid homeostasis. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460875.1.2.191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
140
|
Trappe T, Raue U, Williams R, Carrithers J, Hickner R. Effects of age and resistance exercise on skeletal muscle interstitial prostaglandin F(2alpha). Prostaglandins Leukot Essent Fatty Acids 2006; 74:175-81. [PMID: 16520030 DOI: 10.1016/j.plefa.2006.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 11/07/2005] [Accepted: 01/07/2006] [Indexed: 02/02/2023]
Abstract
Prostaglandin (PG) F2alpha has been shown to contribute to the anabolic events in skeletal muscle. We measured the skeletal muscle interstitial concentration of PGF2alpha at rest and following a standard bout of resistance exercise in eight young (27+/-2 year) and eight old (75+/-4 year) men. Interstitial PGF2alpha concentration was determined from microdialysate samples obtained from two microdialysis probes placed in the vastus lateralis. Microdialysates were collected 1h pre- and 5-6, 8-9, and 24-25 h postexercise. The exercise bout consisted of 4 exercises (3 sets of 8 replications at 80% 1 RM per exercise) emphasizing the quadriceps. Interstitial PGF2alpha levels were not different (P>0.05) between young and old at rest (1.50+/-0.35 vs. 1.52+/-0.30 ng ml-1) or at any time point following the resistance exercise bout. For the young and old combined there was a change (P<0.05) in PGF2alpha levels at 5-6 h (93%) and 8-9 h (95%), which had returned to preexercise levels by 24-25 h. These results show that PGF2alpha is increased in skeletal muscle following a standard bout of resistance exercise and aging does not alter interstitial levels of this PG at rest or after exercise. These data, coupled with previous findings, suggest that the anabolic factor PGF2alpha should be considered when discussing the complex processes that regulate muscle mass in young and old individuals.
Collapse
Affiliation(s)
- T Trappe
- Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA.
| | | | | | | | | |
Collapse
|
141
|
Slater DM, Astle S, Woodcock N, Chivers JE, de Wit NCJ, Thornton S, Vatish M, Newton R. Anti-inflammatory and relaxatory effects of prostaglandin E2 in myometrial smooth muscle. Mol Hum Reprod 2006; 12:89-97. [PMID: 16455619 DOI: 10.1093/molehr/gal005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The onset of human labour is complex and involves multiple mediators, prostaglandins, cytokines and chemokines. However, whilst prostaglandins are routinely used for labour induction and inhibitors of prostaglandin synthesis are used to prevent pre-term labour, these practices are not invariably successful, and the rationale for their use is equivocal. As COX-2 and prostaglandin E(2) (PGE(2)) production is increased towards term, we have investigated the effect of PGE(2) and other cAMP-elevating agents on events associated with labour induction. Time-dependent increases in granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-8 (IL-8) release were observed following treatment of primary human myometrial smooth muscle (HMSM) cells with IL-1beta, via mechanisms that required de novo transcription and translation. Prior treatment with PGE(2) (1 microM) produced 86 and 80% decreases in GM-CSF and IL-8 release, respectively. Similarly, the cAMP analogue, 8-bromo-cAMP (8Br-cAMP) and the phosphodiesterase-4 (PDE(4)) inhibitor, rolipram, also repressed GM-CSF and IL-8 release. In addition, PGE(2), 8Br-cAMP, rolipram and salbutamol all had a dose-dependent inhibitory effect on spontaneous myometrial contractions in vitro. In this study, PGE(2) reduced the release of factors associated with cervical ripening and attenuated force development in myometrial smooth muscle, raising the possibility that in myometrium, PGE(2) may act to down-regulate some of the processes that contribute to the onset of human labour and may be beneficial in helping to maintain pregnancy towards term.
Collapse
Affiliation(s)
- Donna M Slater
- Department of Biological Sciences, Biomedical Research Institute, University of Warwick, Coventry, UK
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Masoodi M, Nicolaou A. Lipidomic analysis of twenty-seven prostanoids and isoprostanes by liquid chromatography/electrospray tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:3023-9. [PMID: 16986207 PMCID: PMC1805459 DOI: 10.1002/rcm.2697] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Prostanoids are potent mediators of many physiological and pathophysiological processes. Of the many analytical methodologies used for their qualitative and quantitative analysis, electrospray tandem mass spectrometry coupled to liquid chromatography (LC/ESI-MS/MS) offers a rapid, sensitive and versatile system applicable to lipidomic analyses. We have developed an LC/ESI-MS/MS assay for twenty-seven mediators including prostaglandins, prostacyclines, thromboxanes, dihydroprostaglandins and isoprostanes. The assay was liner over the concentration range 1-100 pg/microL. The limits of detection and quantitation were 0.5-50 and 2-100 pg, respectively, whilst recoveries were from 83-116% depending on the metabolite. The assay can be applied to the profiling of prostanoids produced by a variety of biological fluids and extracts including brain, liver, plasma and urine, thus facilitating our understanding of the role of these lipid mediators in health and disease, as well as assisting in drug development.
Collapse
Affiliation(s)
| | - Anna Nicolaou
- Corresponding author: Dr A. Nicolaou, , Tel: +44 1274 234717, Fax: +44 1274 235600
| |
Collapse
|
143
|
Hull MA. Cyclooxygenase-2: how good is it as a target for cancer chemoprevention? Eur J Cancer 2005; 41:1854-63. [PMID: 16002278 DOI: 10.1016/j.ejca.2005.04.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 04/01/2005] [Indexed: 01/20/2023]
Abstract
There is now substantial evidence for a role for cyclooxygenase-2 (COX-2)-mediated prostaglandin (PG) signalling during carcinogenesis in a number of tissues and selective COX-2 inhibitors (coxibs) were considered attractive candidate chemoprevention agents. However, recent concerns over the toxicity of systemic selective COX-2 inhibition and the realisation that COX-1 may also contribute to carcinogenesis have cast some doubt on COX-2 inhibition as a safe and effective chemoprevention strategy. This review will describe the available evidence relating to the known benefits (preventive efficacy in rodent tumorigenesis models and limited human data from small randomised, controlled trials and epidemiological studies) and risks (cardiovascular and renal toxicity) of coxib therapy for cancer chemoprevention. Potential, alternative strategies for inhibition of COX-PG signalling that minimise or avoid systemic selective COX-2 inhibition will also be discussed.
Collapse
Affiliation(s)
- Mark A Hull
- Molecular Medicine Unit, Clinical Sciences Building, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, UK.
| |
Collapse
|
144
|
Chi Y, Khersonsky SM, Chang YT, Schuster VL. Identification of a new class of prostaglandin transporter inhibitors and characterization of their biological effects on prostaglandin E2 transport. J Pharmacol Exp Ther 2005; 316:1346-50. [PMID: 16269530 DOI: 10.1124/jpet.105.091975] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostaglandins (PGs) are involved in several major signaling pathways. Their effects are terminated when they are transported across cell membranes and oxidized intracellularly. The transport step of PG metabolism is carried out by the prostaglandin transporter (PGT). Inhibition of PGT would therefore be expected to change local or circulating concentrations of prostaglandins, and thus their biological effects. To develop PGT-specific inhibitors with high affinity, we designed a library of triazine compounds and screened 1842 small molecules by using Madin-Darby canine kidney cells stably expressing rat PGT. We found several effective PGT inhibitors. Among them, the most potent inhibitor had a Ki of 3.7 +/- 0.2 microM. These inhibitors allowed us to isolate the efflux process of PGE2 and to demonstrate that PGT does not transport PGE2 outwardly under physiological conditions.
Collapse
Affiliation(s)
- Yuling Chi
- Department of Medicine, Albert Einstein College of Medicine, Belfer Bldg., Rm. 1008, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
145
|
Iwata C, Akimoto N, Sato T, Morokuma Y, Ito A. Augmentation of Lipogenesis by 15-Deoxy-Δ12,14-Prostaglandin J2 in Hamster Sebaceous Glands: Identification of Cytochrome P-450-mediated 15-Deoxy-Δ12,14-Prostaglandin J2 Production. J Invest Dermatol 2005; 125:865-72. [PMID: 16297182 DOI: 10.1111/j.0022-202x.2005.23866.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prostaglandins (PGs) play important roles in the regulation of cutaneous cell functions under physiological and pathological conditions. In this study, we examined the involvement of PGs in sebocyte lipogenesis using non-steroidal anti-inflammatory drugs in vivo and in vitro. Hamster auricle sebocytes spontaneously differentiated to accumulate intracellular triacylglycerol (TG), under which the relative levels of 15-deoxy-Delta(12,14)-PGJ2 (15d-PGJ2) to PGF(2alpha) and PGE2 increased. 15d-PGJ2 was found to augment the formation of lipid droplets, which was because of an increase of TG synthesis by diacylglycerol acyltransferase (DGAT). Furthermore, sebocytes constitutively produced cyclooxygenase 2 (COX-2), but not COX-1, in vivo and in vitro. When sebocytes were treated with COX inhibitors such as indomethacin, diclofenac, or NS-398, the production of PGF(2alpha) and PGE2 decreased. The production of 15d-PGJ2, however, was increased in these inhibitor-treated sebocytes. In addition, indomethacin, diclofenac, and NS-398 augmented the synthesis of TG along with the increase in DGAT activity. Similarly, topical administration of indomethacin to hamster auricles caused the development of sebaceous glands with the augmentation of sebum deposition in vivo. Furthermore, indomethacin and NS-398-augmented 15d-PGJ2 production and TG synthesis were suppressed by a non-selective cytochrome P-450 (CYP) inhibitor, SKF-525A. A ligand activator of peroxisome proliferation activating receptor gamma (PPARgamma), troglitazone-induced synthesis of TG, however, was not altered even in the presence of SKF-525A. These results suggest that 15d-PGJ2 is a crucial stimulator of sebocyte lipogenesis by augmenting DGAT-mediated synthesis of TG. In addition to the COX-2-dependent pathway of PG synthesis, our findings suggest a sebocyte-specific pathway of 15d-PGJ2 production by CYP, the activity of which may be evoked by inhibiting COX-2.
Collapse
Affiliation(s)
- Chikakazu Iwata
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | | | | | | | | |
Collapse
|
146
|
Murphy RC, Barkley RM, Zemski Berry K, Hankin J, Harrison K, Johnson C, Krank J, McAnoy A, Uhlson C, Zarini S. Electrospray ionization and tandem mass spectrometry of eicosanoids. Anal Biochem 2005; 346:1-42. [PMID: 15961057 DOI: 10.1016/j.ab.2005.04.042] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 04/11/2005] [Accepted: 04/27/2005] [Indexed: 01/09/2023]
Affiliation(s)
- Robert C Murphy
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Mail Stop 8303, P.O. Box 6511, Aurora, CO 80045-0511, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Mitchell MD, Chang MC, Chaiworapongsa T, Lan HY, Helliwell RJA, Romero R, Sato TA. Identification of 9alpha,11beta-prostaglandin F2 in human amniotic fluid and characterization of its production by human gestational tissues. J Clin Endocrinol Metab 2005; 90:4244-8. [PMID: 15840748 DOI: 10.1210/jc.2004-2496] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT 9alpha,11beta-Prostaglandin F(2) (9alpha,11beta-PGF(2)) can contract uterine smooth muscle with a potency equal to PGF(2alpha). Its presence in the human uterus and production by human gestational tissues is unknown. OBJECTIVE These studies were performed to determine whether the PGD(2)-derived 9alpha,11beta-PGF(2) is both present in human amniotic fluid and synthesized by human gestational tissues and if so, whether labor-related substances could regulate its production. RESULTS Detectable concentrations of 9alpha,11beta-PGF(2) were found in amniotic fluid samples and appeared to increase in late gestation. All gestational tissues studied synthesized 9alpha,11beta-PGF(2), with the placenta having the highest basal production rate, followed by the amnion and then the choriodecidua. IL-1beta and TNFalpha caused concentration-dependent increases in 9alpha,11beta-PGF(2) production in human amnion and choriodecidual explants. Moreover, treatment of choriodecidual and placental explants with lipopolysaccharide resulted in a significant increase in 9alpha,11beta-PGF(2) production rates, reaching a maximum of 13-fold in the choriodecidua. Studies examining the effects of the addition of exogenous PGD(2) strongly indicated that the choriodecidua has significant ability to convert PGD(2) to 9alpha,11beta-PGF(2), whereas the amnion has little. CONCLUSIONS These results demonstrate for the first time that 9alpha,11beta-PGF(2) is present in human amniotic fluid and that it is produced by human gestational tissues and up-regulated by bacterial cell wall components and proinflammatory cytokines. We suggest that this prostaglandin may play a part in the mechanisms of human labor at term and preterm.
Collapse
Affiliation(s)
- Murray D Mitchell
- Liggins Institute, University of Auckland, 2-6 Park Avenue, Grafton, Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
148
|
Krotz F, Schiele TM, Klauss V, Sohn HY. Selective COX-2 inhibitors and risk of myocardial infarction. J Vasc Res 2005; 42:312-24. [PMID: 15976506 DOI: 10.1159/000086459] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 04/08/2005] [Indexed: 12/31/2022] Open
Abstract
Selective inhibitors of cyclooxygenase-2 (COX-2, 'coxibs') are highly effective anti-inflammatory and analgesic drugs that exert their action by preventing the formation of prostanoids. Recently some coxibs, which were designed to exploit the advantageous effects of non-steroidal anti-inflammatory drugs while evading their side effects, have been reported to increase the risk of myo cardial infarction and atherothrombotic events. This has led to the withdrawal of rofecoxib from global markets, and warnings have been issued by drug authorities about similar events during the use of celecoxib or valdecoxib/parecoxib, bringing about questions of an inherent atherothrombotic risk of all coxibs and consequences that should be drawn by health care professionals. These questions need to be addressed in light of the known effects of selective inhibition of COX-2 on the cardiovascular system. Although COX-2, in contrast to the cyclooxygenase-1 (COX-1) isoform, is regarded as an inducible enzyme that only has a role in pathophysiological processes like pain and inflammation, experimental and clinical studies have shown that COX-2 is constitutively expressed in tissues like the kidney or vascular endothelium, where it executes important physiological functions. COX-2-dependent formation of prostanoids not only results in the mediation of pain or inflammatory signals but also in the maintenance of vascular integrity. Especially prostacyclin (PGI(2)), which exerts vasodilatory and antiplatelet properties, is formed to a significant extent by COX-2, and its levels are reduced to less than half of normal when COX-2 is inhibited. This review outlines the rationale for the development of selective COX-2 inhibitors and the pathophysiological consequences of selective inhibition of COX-2 with special regard to vasoactive prostaglandins. It describes coxibs that are current ly available, evaluates the current knowledge on the risk of atherothrombotic events associated with their intake and critically discusses the consequences that should be drawn from these insights.
Collapse
Affiliation(s)
- Florian Krotz
- Institute of Cardiology, Medical Polyclinic, Ludwig Maximilians University, Munich, Germany.
| | | | | | | |
Collapse
|
149
|
Berry EBE, Keelan JA, Helliwell RJA, Gilmour RS, Mitchell MD. Nanomolar and micromolar effects of 15-deoxy-delta 12,14-prostaglandin J2 on amnion-derived WISH epithelial cells: differential roles of peroxisome proliferator-activated receptors gamma and delta and nuclear factor kappa B. Mol Pharmacol 2005; 68:169-78. [PMID: 15821150 DOI: 10.1124/mol.104.009449] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
15-Deoxy delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), an activator of peroxisome proliferator-activated receptor (PPAR)-gamma and -delta, is a prostanoid metabolite with anti-inflammatory actions. In intrauterine tissues, proinflammatory cytokines and prostaglandins have been identified as playing key roles in the maintenance of pregnancy and the onset of labor. We investigated and compared the early (<3 h) effects of 15d-PGJ(2) with rosiglitazone (PPAR-gamma ligand) and 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-thiazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (GW501516) (PPAR-delta ligand) on interleukin (IL)-1beta-induced prostaglandin and cytokine production by amnion-derived WISH cells. We show that 15d-PGJ(2) exerts differential effects depending on concentration. At low concentrations (<0.1 microM), 15d-PGJ(2) inhibited IL-1beta-stimulated prostaglandin E(2) (PGE(2)) but not cytokine (IL-6/IL-8) production or cyclooxygenase-2 (COX-2) expression. This effect was attenuated by a PPAR-gamma inhibitor [2-chloro-5-nitro-N-phenyl-benzamide (GW9662)], by transfection with a dominant-negative PPAR construct, and was reproduced by the PPAR-gamma ligand rosiglitazone. At higher concentrations (1-10 microM), 15d-PGJ(2) inhibited IL-1beta-stimulated PGE(2) and cytokine production and COX-2 expression, and this effect was not blocked by GW9662. Rosiglitazone at high concentrations (1-10 microM) stimulated PGE(2) production in the absence or presence of the dominant-negative PPAR. The PPAR-delta ligand GW501516 also inhibited IL-1beta-stimulated PGE(2) production but only at high concentrations (1 microM). IL-1beta-induced nuclear factor-kappaB (NF-kappaB) DNA binding activity was significantly inhibited by 15d-PGJ(2) (10 microM) and GW501516 (1 microM) but increased with 10 microM rosiglitazone. We conclude that 1) at low concentrations, 15d-PGJ(2) acts through a PPAR-gamma signaling pathway; b) at higher concentrations, its actions are mediated most likely through other pathways such as activation of PPAR-delta and/or inhibition of NF-kappaB; and 3) rosiglitazone exerts PPAR-independent effects at high concentrations (>1 microM).
Collapse
Affiliation(s)
- Elicia B E Berry
- Liggins Institute, University of Auckland, Faculty of Medical & Health Sciences, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
150
|
Scher JU, Pillinger MH. 15d-PGJ2: the anti-inflammatory prostaglandin? Clin Immunol 2005; 114:100-9. [PMID: 15639643 DOI: 10.1016/j.clim.2004.09.008] [Citation(s) in RCA: 252] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 09/23/2004] [Indexed: 01/22/2023]
Abstract
15-Deoxy-Delta-12,14-prostaglandin J2 (15d-PGJ2) is the most recently discovered prostaglandin. This cyclopentanone, the dehydration end product of PGD2, differs from other prostaglandins in several respects. There is no specific prostaglandin synthase (PGS) leading to 15d-PGJ2 production and no specific 15d-PGJ2 receptor has been identified to date. Instead, 15d-PGJ2 has been shown to act via PGD2 receptors (DP1 and DP2) and through interaction with intracellular targets. In particular, 15d-PGJ2 is recognized as the endogenous ligand for the intranuclear receptor PPARgamma. This property is responsible for many of the 15d-PGJ2 anti-inflammatory functions. In this review, we summarize the current understanding of 15d-PGJ2 synthesis, biology and main effects both in molecular physiology and pathological states.
Collapse
Affiliation(s)
- Jose U Scher
- The Division of Rheumatology, New York University School of Medicine, New York, NY 10003, USA
| | | |
Collapse
|