101
|
Zhao X, Xie H, Zhao X, Zhang J, Li Z, Yin W, Yuan A, Zhou H, Manan S, Nazar M, Iqbal B, Li G, Du D. Combined Inhibitory Effect of Canada Goldenrod Invasion and Soil Microplastics on Rice Growth. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11947. [PMID: 36231243 PMCID: PMC9565921 DOI: 10.3390/ijerph191911947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Alien plant invasion and residual soil microplastics (MPs) are growing threats to agricultural crop production. This study determined the adverse effects of Canadian goldenrod (Solidago canadensis L.) invasion and residual soil MPs on rice growth and development. The biomass, phenological indices, photosynthetic parameters, and antioxidant enzyme activities of rice were measured on the 50th and 80th day of post-plantation. Biomass and phenotypic results indicated the more harmful effects of the combination of S. canadensis invasion and residual soil MPs compared to S. canadensis invasion or residual soil MPs effects alone. Moreover, the interaction effect of S. canadensis invasion and residual soil MPs markedly reduced the ascorbate peroxidase and catalase belowground, while they increased in the aboveground parts of the rice. However, the S. canadensis invasion and residual soil MPs interactive treatments lowered the superoxide dismutase concentrations in the belowground parts of the rice plants while elevating the peroxidase and reactive oxygen species concentrations in both the belowground and aboveground parts compared to the other treatments. Among all treatments, S. canadensis invasion alone had the most negligible negative impact on rice biomass and growth indices. Our study suggests that soil MPs could negatively affect crop production with invasive alien plants, and the combined effects were more harmful than either of the single factors. Our findings will lay the groundwork for analyzing the impacts of invasive alien plants on rice crops.
Collapse
Affiliation(s)
- Xiaoxun Zhao
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Hongliang Xie
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Korea
| | - Jiaqi Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zhiliang Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weiqing Yin
- Zhenjiang Environmental Monitoring Center of Jiangsu Province, Zhenjiang 212004, China
| | - Aiguo Yuan
- Zhenjiang New District Environmental Monitoring Station Co., Ltd., Zhenjiang 212132, China
| | - Huan Zhou
- Zhenjiang New District Environmental Monitoring Station Co., Ltd., Zhenjiang 212132, China
| | - Sehrish Manan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mudasir Nazar
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Babar Iqbal
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Daolin Du
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
102
|
Zou Z, Li S, Wu J, Guo S, Zhang Y, Huang M, Valsami-Jones E, Lynch I, Liu X, Wang J, Zou J. Effects of nanopolystyrene addition on nitrogen fertilizer fate, gaseous loss of N from the soil, and soil microbial community composition. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129509. [PMID: 35810517 DOI: 10.1016/j.jhazmat.2022.129509] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 06/09/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastics and microplastics are the degradation products of plastics waste and have become a dominant pollutant in the environment. However, little is known about the ecological impacts of nanoplastic particles in the agroecosystem. We conducted a mesocosm experiment to examine nanopolystyrene effects on fertilizer nitrogen (N) fate, N gaseous losses and soil microbial communities using Chinese cabbage (Brassica Campestris ssp.) as the model plant. The two-factorial experiment was designed as the addition of 15N-labeled urea exposed without and with ~50 nm nanopolystyrene (0, 0.05%, and 0.1%). Nanopolystyrene addition had a detectable effect on soil mineral N content. The 15N uptake of plants was reduced in aboveground biomass but enhanced in roots with increasing nanopolystyrene concentration. Nanopolystyrene addition decreased soil nitrous oxide and ammonia emissions by 27% and 37%, respectively. Nanopolystyrene addition consistently reduced the abundance of ammonia oxidizer genes but showed contrasting effects on denitrifying genes. Metagenomic sequencing data revealed no significant effects of nanopolystyrene on the N-cycle pathway, while it significantly altered the composition of bacterial and fungal communities. This study provided the first insights into the nanopolystyrene induced linkage of root growth with more root N uptake and less gaseous N losses and the associated changes in the microbial community.
Collapse
Affiliation(s)
- Ziheng Zou
- School of Earth System Science, Tianjin University, 300072 Tianjin, China; School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Shuqing Li
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jie Wu
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Shumin Guo
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yihe Zhang
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Mengyuan Huang
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Xueyan Liu
- School of Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Jinyang Wang
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China.
| | - Jianwen Zou
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
103
|
Liu J, Wang P, Wang Y, Zhang Y, Xu T, Zhang Y, Xi J, Hou L, Li L, Zhang Z, Lin Y. Negative effects of poly(butylene adipate-co-terephthalate) microplastics on Arabidopsis and its root-associated microbiome. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129294. [PMID: 35728316 DOI: 10.1016/j.jhazmat.2022.129294] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The degradable plastic poly(butylene adipate-co-terephthalate) (PBAT) is considered a potential replacement for low-density polyethylene (LDPE) as the main component of mulch film. However, it is not clear whether PBAT is harmful to the plant-soil system. Thus, we determined the effects of LDPE microplastics (LDPE-MPs) and PBAT microplastics (PBAT-MPs) on the growth of Arabidopsis. The inhibitory effect of PBAT-MPs was greater than that of LDPE-MPs on the growth of Arabidopsis. Transcriptome analysis showed that PBAT-MPs severely disrupted the photosynthetic system of Arabidopsis and increased the expression levels of genes in drug transport-related pathways. PBAT-MPs increased the relative abundances of Bradyrhizobium, Hydrogenophaga, and Arthrobacter in the bulk soil and rhizosphere soil. The abundances of Variovorax, Flavobacterium, and Microbacterium increased in the plant root zone only under PBAT-MPs. Functional prediction analysis suggested that microorganisms in the soil and plant root zone could degrade xenobiotics. Furthermore, the degradation products from PBAT comprising adipic acid, terephthalic acid, and butanediol were more toxic than PBAT-MPs. Our findings demonstrate that PBAT-MPs may be degraded by microorganisms to produce chemicals that are highly toxic to plants. Thus, biodegradable plastics may pose a great risk to the environment.
Collapse
Affiliation(s)
- Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peiyuan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yufan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yujia Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tengqi Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiqiong Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiao Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijun Hou
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
104
|
Yildiztugay E, Ozfidan-Konakci C, Arikan B, Alp FN, Elbasan F, Zengin G, Cavusoglu H, Sakalak H. The hormetic dose-risks of polymethyl methacrylate nanoplastics on chlorophyll a fluorescence transient, lipid composition and antioxidant system in Lactuca sativa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119651. [PMID: 35752396 DOI: 10.1016/j.envpol.2022.119651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/27/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastic pollution has become an increasing problem due to over-consumption and degradation in ecosystems. A little is known about ecological toxicity and the potential risks of nanoplastics on plants. To better comprehend the hormetic effects of nanoplastics, the experimental design was conducted on the impacts of polymethyl methacrylate (PMMA) on water status, growth, gas exchange, chlorophyll a fluorescence transient, reactive oxygen species (ROS) content (both content and fluorescence visualization), lipid peroxidation and antioxidant capacity (comparatively between leaves and roots). For this purpose, PMMA (10, 20, 50 and 100 mg L-1) was hydroponically applied to Lactuca sativa for 15 days(d). PMMA exposure resulted a decline in the growth, water content and osmotic potential. As based on assimilation rate (A), stomatal conductance (gs), and intercellular CO2 concentrations (Ci), the decreased stomatal limitation (Ls) and, A/Ci and increased intrinsic mesophyll efficiency proved low carboxylation efficiency showing impaired photosynthesis as a non-stomatal limitation. PMMA toxicity increased the trapping fluxes and absorption with a decrease in electron transport fluxes caused the disruption in reaction centers of photosystems. The leaves and roots had a similar effect against PMMA toxicity, with increased superoxide dismutase (SOD) activity. Although, catalase (CAT) and peroxidase (POX) of leaves increased under 10 mg L-1 PMMA, these defense activities failed to prevent radicals from attacking. Compared to the leaves, the lettuce roots showed an intriguing result for AsA-GSH cycle against PMMA exposure. In the roots, the lowest PMMA application provided the high ascorbate/dehydroascorbate (AsA/DHA), GSH/GSSG and the pool of AsA/glutathione (GSH) and non-suppressed GSH redox state. Also, 10 mg L-1 PMMA helped remove high hydrogen peroxide (H2O2) by both glutathione peroxidase (GPX) and glutathione S-transferase (GST). Since this improvement in the antioxidant system could not be continued in roots after higher applications than 20 mg L-1 PMMA, TBARS (Thiobarbituric acid-reactive substances), indicating the level of lipid peroxidation, and H2O2 increased. Our findings obtained from PMMA-applied lettuce provide new information to advance the tolerance mechanism against nanoplastic pollution.
Collapse
Affiliation(s)
- Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fatma Nur Alp
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fevzi Elbasan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Halit Cavusoglu
- Department of Physics, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Huseyin Sakalak
- Graduate School of Natural and Applied Sciences, Nanotechnology and Advanced Materials, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| |
Collapse
|
105
|
Mészáros E, Bodor A, Szierer Á, Kovács E, Perei K, Tölgyesi C, Bátori Z, Feigl G. Indirect effects of COVID-19 on the environment: How plastic contamination from disposable surgical masks affect early development of plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129255. [PMID: 35739774 PMCID: PMC9158377 DOI: 10.1016/j.jhazmat.2022.129255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 05/23/2023]
Abstract
Personal protective equipment, used extensively during the COVID-19 pandemic, heavily burdened the environment due to improper waste management. Owing to their fibrous structure, layered non-woven polypropylene (PP) disposable masks release secondary fragments at a much higher rate than other plastic waste types, thus, posing a barely understood new form of ecological hazard. Here we show that PP mask fragments of different sizes induce morphogenic responses in plants during their early development. Using in vitro systems and soil-filled rhizotrons, we found that several PP mask treatments modified the root growth of Brassica napus (L.) regardless of the experimental system. The environment around the root and mask fragments seemed to influence the effect of PP fabric fragment contamination on early root growth. In soil, primary root length was clearly inhibited by larger PP mask fragments at 1 % concentration, while the two smallest sizes of applied mask fragments caused distinct, concentration-dependent changes in the lateral root numbers. Our results indicate that PP can act as a stressor: contamination by PP surgical masks affects plant growth and hence, warrants attention. Further investigations regarding the effects of plastic pollution on plant-soil interactions involving various soil types are urgently needed.
Collapse
Affiliation(s)
- Enikő Mészáros
- Department of Plant Biology, University of Szeged, Hungary
| | - Attila Bodor
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary; Department of Biotechnology, University of Szeged, Hungary
| | - Ádám Szierer
- Department of Plant Biology, University of Szeged, Hungary
| | - Etelka Kovács
- Department of Biotechnology, University of Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Hungary
| | | | - Zoltán Bátori
- Department of Ecology, University of Szeged, Hungary
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, Hungary.
| |
Collapse
|
106
|
Lian Y, Liu W, Shi R, Zeb A, Wang Q, Li J, Zheng Z, Tang J. Effects of polyethylene and polylactic acid microplastics on plant growth and bacterial community in the soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129057. [PMID: 35650727 DOI: 10.1016/j.jhazmat.2022.129057] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs), especially biodegradable MPs (BMPs) have attracted increasing attention in recent years. However, the effects of MPs with different biodegradability on the soil-plant systems are not well explored. In this study, the effects of polyethylene MPs (PEMPs) and polylactic acid MPs (PLAMPs) on physio-biochemical performance and metabolomic profile of soybean (Glycine max), as well as the bacterial communities in soil were investigated. Our results showed that PEMPs had no noticeable toxicity on the plant growth, while 0.1% PLAMPs significantly decreased the root length by 27.53% when compared with the control. The peroxidase (POD) activity was reduced and catalase (CAT) activity was increased by MPs in plant leaves. The metabolomics study suggested that the significantly affected metabolic pathway is amino acid metabolism. Additionally, Shannon and Simpson indices of rhizosphere soil were changed only under 0.1% PLAMPs. The key bacteria involved in the dinitrogen fixation were also altered. This study provides a novel insight into the potential effects of MPs with different biodegradability on soil-plant systems and highlights that BMPs might have stronger negative effects for terrestrial ecosystem, which needs to be further explored in future research.
Collapse
Affiliation(s)
- Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Zeqi Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
107
|
Huo Y, Dijkstra FA, Possell M, Singh B. Ecotoxicological effects of plastics on plants, soil fauna and microorganisms: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119892. [PMID: 35932895 DOI: 10.1016/j.envpol.2022.119892] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 01/10/2023]
Abstract
The interactions of plastics and soil organisms are complex and inconsistent observations on the effects of plastics have been made in published studies. In this study, we assessed the effects of plastic exposure on plants, fauna and microbial communities, with a meta-analysis. Using a total of 2936 observations from 140 publications, we analysed how responses in plants, soil fauna and microorganisms depended on the plastic concentration, size, type, species and exposure media. We found that overall plastics caused substantial detrimental effects to plants and fauna, but less so to microbial diversity and richness. Plastic concentration was one of the most important factors explaining variations in plant and faunal responses. Larger plastics (>1 μm) caused unfavourable changes to plant growth, germination and oxidative stress, while nanoplastics (NPs; ≤ 1 μm) only increased oxidative stress. On the contrary, there was a clear trend showing that small plastics adversely affected fauna reproduction, survival and locomotion than large plastics. Plant responses were indifferent to plastic type, with most studies conducted using polyethylene (PE) and polystyrene (PS) plastics, but soil fauna were frequently more sensitive to PS than to PE exposure. Plant species played a vital role in some parameters, with the effects of plastics being considerably greater on vegetable plants than on cereal plants.
Collapse
Affiliation(s)
- Yuxin Huo
- Biomedical Building, 3 Central Ave, School of Life and Environmental Sciences, University of Sydney, Eveleigh, Sydney, NSW, 2015, Australia.
| | - Feike A Dijkstra
- Biomedical Building, 3 Central Ave, School of Life and Environmental Sciences, University of Sydney, Eveleigh, Sydney, NSW, 2015, Australia
| | - Malcolm Possell
- Biomedical Building, 3 Central Ave, School of Life and Environmental Sciences, University of Sydney, Eveleigh, Sydney, NSW, 2015, Australia
| | - Balwant Singh
- Biomedical Building, 3 Central Ave, School of Life and Environmental Sciences, University of Sydney, Eveleigh, Sydney, NSW, 2015, Australia
| |
Collapse
|
108
|
Ainali NM, Kalaronis D, Evgenidou E, Kyzas GZ, Bobori DC, Kaloyianni M, Yang X, Bikiaris DN, Lambropoulou DA. Do poly(lactic acid) microplastics instigate a threat? A perception for their dynamic towards environmental pollution and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155014. [PMID: 35381252 DOI: 10.1016/j.scitotenv.2022.155014] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Fears concerning microplastics (MPs) environmental fate and persistence are progressively expanding on a global basis, with the emphasis given to manufacturing bioplastics for substituting petro-derived plastics extensively growing. Among them, poly(lactic acid) (PLA) holds a pioneering role towards the replacement of conventional polymeric materials, owing to its multifunctional properties, enclosing superior mechanical properties, low cost, renewability, great biocompatibility, transparency, and thermoplasticity launching many fields of application. Due to the wide applicability of PLA in several sectors of everyday life, its waste to be released into the environment is expected to follow a growing tendency during the upcoming years. Even though PLA is a biodegradable polyester, it actually degrades under specific composting environments, including a rich oxygen environment with high temperatures (58-80 °C), high humidity (>60% moisture) as well as the presence of micro-organisms (thermophilic bacteria). Additionally, in various studies it has been implied that PLA displays slower degradation performance when found in blends with other conventional polymers, underlining the unspecified effects on PLA degradation profile, keeping thus the information about PLA degradation from a blur standpoint. Therefore, a deepened understanding of the fate and dynamic effects of PLA MPs is of primary importance. Nevertheless, the current examination of the effects of PLA MPs in terms of sorption capacities and toxicity is so far limited and broadly unexplored since the current scientific emphasis has been merely centered on the conventional MPs' behavior. In this light, the present review provides an inclusive overview of the ongoing research of poly(lactic acid) in the framework of microplastics' pollution, while the future trends and missing points in this context are highlighted.
Collapse
Affiliation(s)
- Nina Maria Ainali
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitrios Kalaronis
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Eleni Evgenidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-570 01 Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, GR-654 04 Kavala, Greece
| | - Dimitra C Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-570 01 Thessaloniki, Greece.
| |
Collapse
|
109
|
Li J, Yu S, Yu Y, Xu M. Effects of Microplastics on Higher Plants: A Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:241-265. [PMID: 35752996 DOI: 10.1007/s00128-022-03566-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Microplastics pose great risks to terrestrial systems owing to their large quantity and strong persistence. Higher plants, an irreplaceable part of the terrestrial ecosystem, are inevitably exposed to microplastics. This review highlights the effects of microplastics on higher plant growth and performance. The tested microplastics, plant species, and cultural methods used in existing studies were summarized. We discussed the reasons why these microplastics, plants, and methods were selected. The various responses of higher plants to microplastics in both soils and waters were critically reviewed. We also highlighted the influencing mechanisms of microplastics on higher plants. Conclusively, more than 13 types of common microplastics and more than 30 species of higher plants have been selected and studied by the published literatures. Soil culture tests and hydroponic experiments are almost equally divided. The effects of microplastics on higher plants varied among microplastic properties, plant species, and environmental factors. Microplastics had no or positive effects on higher plants under certain experimental conditions. However, more studies showed that microplastics can inhibit higher plant growth and performance. We reduced the inhibitory mechanisms into direct and indirect mechanisms. The direct mechanisms include blocking pores or light, causing mechanical damage to roots, hindering genes expression, and releasing additives. The indirect mechanisms contain changing soil properties, affecting soil microbes or soil animals, and affecting bioavailability of other pollutants. This review improves the understanding of effects and influencing mechanisms of microplastics on higher plants.
Collapse
Affiliation(s)
- Jia Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Songguo Yu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Yufei Yu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| |
Collapse
|
110
|
Zhang Y, Zhang C, Jiang M, Zhou G. Bio-effects of bio-based and fossil-based microplastics: Case study with lettuce-soil system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119395. [PMID: 35525514 DOI: 10.1016/j.envpol.2022.119395] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Bio-based plastics have been developed as alternative materials to solve the energy crisis brought by plastic production, but their impacts on soil ecosystems (e.g. plant and microorganisms) remain largely unknown. Here, we conducted study on the impacts of polyethylene 2,5-furan-dicarboxylate (PEF), a new bio-based plastic, on the plant-soil ecosystem, with comparison of fossil-based plastic polyethylene terephthalate (PET). Our investigation showed that, after 21 days exposure to microplastics (MPs) at doses of 0.5%, 1% and 2%, both PEF and PET MPs inhibited the growth of lettuce, where chlorophyll was found to be the most sensitive index. According to the comprehensive stress resistance indicators, PET MPs showed more severe phytotoxicity than PEF MPs. Although both PEF and PET MPs could inhibit soil enzyme activities, PET MPs exhibited significantly reduction on the diversity of rhizosphere soil bacterial community and changed the relative abundance of dominant species. Our study gave insights into the effects of PEF and PET MPs on the plant-soil system, where bio-based PEF MPs showed more friendly interaction with plant and soil than fossil-based PET MPs. Our results provided scientific data for risk assessment and useful information for the prospective application of bio-based plastics.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Chunxiang Zhang
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Min Jiang
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guangyuan Zhou
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
111
|
Zhang Z, Zhao S, Chen L, Duan C, Zhang X, Fang L. A review of microplastics in soil: Occurrence, analytical methods, combined contamination and risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119374. [PMID: 35490998 DOI: 10.1016/j.envpol.2022.119374] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) pollution is becoming a serious environmental issue of global concern. Currently, the effects of MPs on aquatic ecosystems have been studied in detail and in depth from species to communities. However, soils, the largest reservoir of MPs, have been less studied, and little is known about the occurrence, environmental fate and ecological impacts of MPs. Therefore, based on the existing knowledge, this paper firstly focused specifically on the main sources of soil MPs pollution and explored the main reasons for their strong heterogeneity in spatial distribution. Secondly, as a primary prerequisite for evaluating MPs contamination, we systematically summarized the analytical methods for soil MPs and critically compared the advantages and disadvantages of the different methods in the various operational steps. Furthermore, this review highlighted the combined contamination of MPs with complex chemical contaminants, the sorption mechanisms and the associated factors in the soil. Finally, the risks posed by MPs to soil, plants, the food chain and even humans were outlined, and future directions for soil MPs research were proposed, while the urgent need for a unified approach to MPs extraction and identification was emphasized. This study provides a theoretical reference for a comprehensive understanding of the separation of soil MPs and their ecological risk as carriers of pollution.
Collapse
Affiliation(s)
- Zhiqin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chengjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xingchang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
112
|
Wang Y, Ding K, Ren L, Peng A, Zhou S. Biodegradable Microplastics: A Review on the Interaction with Pollutants and Influence to Organisms. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:1006-1012. [PMID: 35583557 DOI: 10.1007/s00128-022-03486-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/16/2022] [Indexed: 06/15/2023]
Abstract
Biodegradable plastics attract public attention as promising substitutes for traditional nondegradable plastics which have caused the serious white pollution problem due to their persistence. However, even for biodegradable plastics, natual conditions for the rapid and complete degradation are rare. Even more serious is that biodegradable plastics might be disintegrated into microplastics more rapidly than tranditional plastics, emerging as another threat to the environment. Similar to traditional microplastics, biodegradable microplastics could adsorb many pollutants by various physicochemical effects and release additives. Biodegradable microplastics have been confirmed to be toxic to the organisms as particle matter and the vector as pollutants. Under some conditions, biodegradable microplastics may pose more severe negative impacts on the organisms. With the fierely increasing trend to replace the nondegradable plastic commodities with biodegradable ones, it is necessary to evaluate whether biodegradable plastics and the generated microplastics would alleviate plastic pollution or induce greater ecological impacts.
Collapse
Affiliation(s)
- Yi Wang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Keqiang Ding
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Lingxiao Ren
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Anping Peng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China.
| | - Shaoda Zhou
- Nanjing Kaver Scientific Instruments, Co., Ltd, Nanjing, 210042, Jiangsu, China
| |
Collapse
|
113
|
Fan P, Yu H, Xi B, Tan W. A review on the occurrence and influence of biodegradable microplastics in soil ecosystems: Are biodegradable plastics substitute or threat? ENVIRONMENT INTERNATIONAL 2022; 163:107244. [PMID: 35436719 DOI: 10.1016/j.envint.2022.107244] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/21/2022] [Accepted: 04/10/2022] [Indexed: 05/23/2023]
Abstract
Plastic products are widely used around the world, but waste plastic is not reasonably managed and causes serious plastic pollution. Biodegradable plastics (BPs) provide an alternative to conventional plastics, but not all BPs can be completely degraded under natural conditions. Instead, they may break down into microplastics (MPs) faster than conventional plastics, posing an additional threat to soil environment. In this paper, the definition, applications, and degradation behaviors of BPs, including biodegradable microplastics (BMPs), are reviewed, and we comprehensively summarized the eco-toxicological effects of BMPs in soil ecosystems, in terms of physical and chemical properties of soil, soil nutrient cycling, soil bacterial and fungal communities, soil flora and fauna. The compound effects of BMPs and other pollutants were also addressed. The results revealed that BMPs made different or more severely effects compared to conventional MPs. Overall, this review aims to address gaps in knowledge, shed light on the ecological effects of BPs and BMPs in soil. BPs are not a perfect substitute to solve plastic pollution, and further exploration should focus on their generation, environmental behavior, ecological impact and whether BMPs cause more harm than conventional MPs.
Collapse
Affiliation(s)
- Ping Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Hong Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
114
|
Senavirathna MDHJ, Zhaozhi L, Fujino T. Short-duration exposure of 3-µm polystyrene microplastics affected morphology and physiology of watermilfoil (sp. roraima). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34475-34485. [PMID: 35040069 DOI: 10.1007/s11356-022-18642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Microplastics are one of the most widely discussed environmental issues worldwide. Several studies have shown the effect of microplastic exposure on the marine environment; however, studies on freshwater systems are lacking. This study was conducted to investigate the effect of microplastics on hydroponically growing emergent freshwater macrophytes, watermilfoil (sp. roraima) under controlled environmental conditions. Plants were exposed to 0 mg L-1 (control), 0.05 mg L-1, 0.25 mg L-1, 1.25 mg L-1, and 6 mg L-1 of 3-µm polystyrene microspheres for 7 days. The oxidative stress, antioxidant response, pigmentations, Fv/Fm, and growth parameters in the above-water and below-water parts were analyzed separately. Microscopic observations were performed to confirm the tissue absorbance of the microplastics. Exposure to microplastics altered some parameters; however, growth was not affected. The effect of microplastics was not linear with the exposure concentration for most of the parameters and between 1.25 and 6 mg L-1 concentrations. The response trends mostly followed the second-order polynomial distributions. Under the 1.25 mg L-1 exposure, there were significant changes in root length, H2O2 content, catalase activity, anthocyanin content, and Fv/Fm. There were differences in parameters between the above-water and below-water parts, and the responses of the microplastics followed different trends. Microscopic observations confirmed the attachment of microplastic particles onto newly formed roots, except for older roots or shoot tissues.
Collapse
Affiliation(s)
| | - Liu Zhaozhi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Takeshi Fujino
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
115
|
Jin T, Tang J, Lyu H, Wang L, Gillmore AB, Schaeffer SM. Activities of Microplastics (MPs) in Agricultural Soil: A Review of MPs Pollution from the Perspective of Agricultural Ecosystems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4182-4201. [PMID: 35380817 DOI: 10.1021/acs.jafc.1c07849] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microplastics are emerging persistent pollutants which have attracted increasing attention worldwide. Although microplastics have been widely detected in aquatic environments, their presence in soil ecosystems remains largely unexplored. Plastic debris accumulates in farmland, causing serious environmental problems, which may directly affect food substances or indirectly affect the members in each trophic level of the food chain. This review summarizes the origins, migration, and fate of microplastics in agricultural soils and discusses the interaction between microplastics and the components in farmland from the perspectives of toxicology and accumulation and deduces impacts on ecosystems by linking the organismal response to an ecological role. The effects on farmland ecosystem function are also discussed, emphasizing the supply of agricultural products, food chain pathways, carbon deposition, and nitrogen cycling and soil and water conservation, as microplastic pollution will affect agricultural ecosystems for a long period, posing an ecological risk. Finally, several directions for future research are proposed, which is important for reducing the effect of microplastics in agricultural systems.
Collapse
Affiliation(s)
- Tianyue Jin
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Alexis B Gillmore
- Department of Biosystems Engineering and Soil Science, University of Tennessee - Knoxville, 2506 East J. Chapman Drive, Knoxville, Tennessee 37996, United States
| | - Sean M Schaeffer
- Department of Biosystems Engineering and Soil Science, University of Tennessee - Knoxville, 2506 East J. Chapman Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
116
|
Maity S, Guchhait R, Sarkar MB, Pramanick K. Occurrence and distribution of micro/nanoplastics in soils and their phytotoxic effects: A review. PLANT, CELL & ENVIRONMENT 2022; 45:1011-1028. [PMID: 35060135 DOI: 10.1111/pce.14248] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Some recent studies have reviewed the occurrence and phytotoxicity of micro/nanoplastics, but their distribution in the soil environment, mechanisms of uptake by roots and the mode of action are unclear. Thus, this review comprehensively represents the relative abundance of micro/nanoplastics in different soil types and their toxicities in plants with insights into their partitioning to different soil matrices, uptake mechanisms, and the mode of action. Partitioning of micro/nanoplastics to different soil matrices (like-soil particles, naturally occurring soil organic matters, pore waters and soil fauna) could modify their bioavailability to plants. The small micro/nanoplastic particles can be taken up by roots through the apoplastic and symplastic pathways. In this regard, cellular endocytosis and aquaporin might play a significant role. The shape of the polymers can also regulate their uptake, and the polymers with spherical shapes are more easily absorbed by roots than the polymers with other shapes. Bioaccumulation of micro/nanoplastic induces oxidative stress, which, in turn, causes alterations of gene expressions and different metabolic pathways responsible for plant growth, biomass production and synthesis of secondary metabolites.
Collapse
Affiliation(s)
- Sukhendu Maity
- Integrative Biology Research Unit (IBRU) Lab, Department of Life Sciences, Presidency University, Kolkata, India
| | - Rajkumar Guchhait
- Integrative Biology Research Unit (IBRU) Lab, Department of Life Sciences, Presidency University, Kolkata, India
- Department of Zoology, Mahishadal Raj College, Purba Medinipur, India
| | | | - Kousik Pramanick
- Integrative Biology Research Unit (IBRU) Lab, Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
117
|
Huang D, Wang X, Yin L, Chen S, Tao J, Zhou W, Chen H, Zhang G, Xiao R. Research progress of microplastics in soil-plant system: Ecological effects and potential risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151487. [PMID: 34742990 DOI: 10.1016/j.scitotenv.2021.151487] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The effect of microplastics on soil ecosystem is a hot topic in recent years. It is increasingly recognized that soil is also an important sink for microplastics in addition to the aquatic environment. This review aims to discuss the direct and indirect effects of microplastics on the soil-plant system, focusing on the effects of microplastics on soil aggregates and soil nutrient cycling as well as the combined effects of microplastics and other pollutants on soil-plant systems. Microplastics have been shown to affect the rooting ability of plants by altering soil bulk density and water-holding capacity, as well as reducing photosynthetic rate by directly interfering with the balance of plant chlorophyll a/chlorophyll b ratios. In addition, microplastics affect the stability of aggregates by interfering with abiotic factors (e.g., sesquioxide and exchangeable cations) or biotic factors (e.g., soil organic matter and organism activities in the soil). Moreover, microplastics may affect soil nutrient cycling by altering the dominant bacteria phyla in the soil or genes and enzymes associated with the carbon, nitrogen, and phosphorus cycle. When microplastics and other pollutants have combined effects on plants, microplastics attached onto the root surface physically hamper the contact of the pollutants with the roots but are more likely to exacerbate the damage of pollutants to plants. Different types, sizes and concentrations of microplastics have different effects on the soil-plant system. Microplastics with similar shape and size to soil particles have less significant effects, while microfibers, small-sized microplastics and biodegradable plastic particles have more significant effects. Finally, this review also provides an outlook for future research.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Xinya Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Gaoxia Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
118
|
Meng F, Yang X, Riksen M, Geissen V. Effect of different polymers of microplastics on soil organic carbon and nitrogen - A mesocosm experiment. ENVIRONMENTAL RESEARCH 2022; 204:111938. [PMID: 34478726 DOI: 10.1016/j.envres.2021.111938] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Agricultural microplastic pollution has become a growing concern. Unfortunately, the impacts of microplastics (MPs) on agricultural soil carbon and nitrogen dynamics have not been sufficiently reported. In an attempt to remedy this, we conducted a 105-day out-door mesocosm experiment in a soil-plant system using sandy soils amended with two types of MPs, low-density polyethylene (LDPE-MPs) and biodegradable (Bio-MPs), at concentrations of 0.0% (control), 0.5%, 1.0%, 1.5%, 2.0% and 2.5% (w/w, weight ratio of microplastics to air-dry soil). Soil organic matter (SOM), dissolved organic carbon (DOC), permanganate oxidizable carbon (POXC), available nitrogen (AN) of N-NH4+ and N-NO3-, and dissolved organic nitrogen (DON) were measured on day 46 (D46) and 105 (D105) of the experiment. SOM was also measured after microplastics were mixed into soils (D0). For LDPE-MPs treatments, SOM on D0, D46 and D105 showed no significant differences, while for Bio-MPs treatments, SOM significantly (p < 0.05) decreased from D0 to D46. Compared to the control, soil POXC was significantly (p = 0.001) lowered by 0.5%, 1.0% and 2.5% LDPE-MPs and ≥ 1.0% Bio-MPs on D105. LDPE-MPs showed no significant effects on soil DOC and nitrogen cycling. 2.0% and 2.5% Bio-MPs showed significantly higher (p < 0.001) DOC and DON (on D46 and D105) and ≥1.5% Bio-MPs showed significantly lower (p = 0.02) AN (on D46). Overall, Bio-MPs exerted stronger effects on the dynamics of soil carbon and nitrogen cycling. In conclusion, microplastics might pose serious threats to agroecosystems and further research is needed.
Collapse
Affiliation(s)
- Fanrong Meng
- Soil Physics and Land Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands; National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiaomei Yang
- Soil Physics and Land Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands; Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Michel Riksen
- Soil Physics and Land Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
119
|
Pinto-Poblete A, Retamal-Salgado J, López MD, Zapata N, Sierra-Almeida A, Schoebitz M. Combined Effect of Microplastics and Cd Alters the Enzymatic Activity of Soil and the Productivity of Strawberry Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040536. [PMID: 35214870 PMCID: PMC8878574 DOI: 10.3390/plants11040536] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 05/20/2023]
Abstract
The synergistic effect between heavy metals and microplastics can affect soil properties as well as plant performance and yield. The objective of this study was to evaluate the combined effect of microplastics and cadmium on a soil-plant system. Specifically, we proposed to explore changes in soil microbiological activity, the growth and yield parameters of strawberry plants, and to evaluate the accumulation of these pollutants in the soil and root system. Plants were planted in clay pots under greenhouse conditions. The experiment was set up as a completely randomized design, with four treatments (Control; MPs; Cd; and Cd + MPs) and five replicates. The results showed that MPs and/or Cd affected plant growth, plant biomass, the number of fruits, root characteristics, dehydrogenase activity, acid phosphatase, and microbial biomass, and increased the accumulation of Cd in the roots and soil. The increased bioavailability of Cd, due to the presence of microplastics, could explain the observed negative effects on soil properties and the performance of strawberry plants.
Collapse
Affiliation(s)
- Andrés Pinto-Poblete
- Faculty of Agronomy, Universidad de Concepción, Concepción 4070386, Chile; (A.P.-P.); (M.D.L.); (N.Z.)
- Faculty of Engineering and Business, Universidad Adventista de Chile, Km 12 Camino a Tanilvoro, Chillán 3780000, Chile
| | - Jorge Retamal-Salgado
- Faculty of Engineering and Business, Universidad Adventista de Chile, Km 12 Camino a Tanilvoro, Chillán 3780000, Chile
- Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Avenida Vicente Méndez 515, Chillán 3800062, Chile
- Correspondence: (J.R.-S.); (M.S.); Tel.: +56-9-95179625 (M.S.)
| | - María Dolores López
- Faculty of Agronomy, Universidad de Concepción, Concepción 4070386, Chile; (A.P.-P.); (M.D.L.); (N.Z.)
| | - Nelson Zapata
- Faculty of Agronomy, Universidad de Concepción, Concepción 4070386, Chile; (A.P.-P.); (M.D.L.); (N.Z.)
| | - Angela Sierra-Almeida
- Department of Botany, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Barrio Universitario s/n, Concepción 4070386, Chile;
| | - Mauricio Schoebitz
- Faculty of Agronomy, Universidad de Concepción, Concepción 4070386, Chile; (A.P.-P.); (M.D.L.); (N.Z.)
- Correspondence: (J.R.-S.); (M.S.); Tel.: +56-9-95179625 (M.S.)
| |
Collapse
|
120
|
Zhang Z, Cui Q, Chen L, Zhu X, Zhao S, Duan C, Zhang X, Song D, Fang L. A critical review of microplastics in the soil-plant system: Distribution, uptake, phytotoxicity and prevention. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127750. [PMID: 34838359 DOI: 10.1016/j.jhazmat.2021.127750] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are creating an emerging threat on the soil ecosystems and are of great global concern. However, the distribution in soil-plant system, as well as the phytotoxicity and impact mechanisms of MPs remain largely unexplored so far. This study introduced the diverse sources of MPs and showed the significant spatial variation in the global geographic distribution of MPs contamination based on data collected from 116 studies (1003 sampling sites). We systematically discussed MPs phytotoxicity, such as plant uptake and migration to stems and leaves, delaying seed germination, impeding plant growth, inhibiting photosynthesis, interfering with nutrient metabolism, causing oxidative damage, and producing genotoxicity. We further highlighted the alterations of soil structure and function by MPs, as well as their self and load toxicity, as potential mechanisms that threaten plants. Finally, this paper provided several preventive strategies to mitigate soil MPs pollution and presented research gaps in the biogeochemical behavior of MPs in soil-plant systems. Meanwhile, we recommended that methods for the quantitative detection of MPs accumulated in plant tissues should be explored and established as soon as possible. This review will improve the understanding of the environmental behavior of MPs in soil-plant systems and provide a theoretical reference to better assess the ecological risk of MPs.
Collapse
Affiliation(s)
- Zhiqin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Danxia Song
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
121
|
Colzi I, Renna L, Bianchi E, Castellani MB, Coppi A, Pignattelli S, Loppi S, Gonnelli C. Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127238. [PMID: 34844356 DOI: 10.1016/j.jhazmat.2021.127238] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 05/23/2023]
Abstract
In this study, Cucurbita pepo L., one of the most cultivated, consumed and economically important crop worldwide, was used as model plant to test the toxic effects of the four most abundant microplastics identified in contaminated soils, i.e. polypropylene (PP), polyethylene (PE), polyvinylchloride (PVC), and polyethyleneterephthalate (PET). Cucurbita plants were grown in pots with increasing concentrations of the microplastics, then plant biometry, photosynthetic parameters and ionome of treated vs. untreated samples were compared to evaluate the toxicity of each plastic. All the pollutants impaired root and, especially, shoot growth. Specific and concentration-dependant effects of the different microplastics were found, including reduction in leaf size, chlorophyll content and photosynthetic efficiency, as well as changes in the micro- and macro-elemental profile. Among all the microplastics, PVC was identified as the most toxic and PE as the less toxic material. PVC decreased the dimensions of the leaf lamina, the values of the photosynthetic performance index and the plant iron concentration to a higher extent in respect to the other treatments. Microplastic toxicity exerted on the growth of C. pepo raises concerns about possible yield and economic loss, as well as for risks of a possible transfer into the food chain.
Collapse
Affiliation(s)
- Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Luciana Renna
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy; Department of Agriculture, Università degli Studi di Firenze, Viale delle Idee 30, Sesto Fiorentino, 50019 Florence, Italy.
| | - Elisabetta Bianchi
- Department of Life Sciences, University of Siena, via Mattioli 3, 53100 Siena, Italy
| | | | - Andrea Coppi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Sara Pignattelli
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, SI-5000, Rožna Dolina, Nova Gorica, Slovenia
| | - Stefano Loppi
- Department of Life Sciences, University of Siena, via Mattioli 3, 53100 Siena, Italy
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| |
Collapse
|
122
|
Zhang Y, Yang X, Luo ZX, Lai JL, Li C, Luo XG. Effects of polystyrene nanoplastics (PSNPs) on the physiology and molecular metabolism of corn (Zea mays L.) seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150895. [PMID: 34655622 DOI: 10.1016/j.scitotenv.2021.150895] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The effects of polystyrene nanoplastics (PSNPs) on the physiological and molecular metabolism of corn seedlings were examined by treating corn (Zea mays L.) seedlings with 100, 300, and 500 nm diameter PSNPs and examining plant photosynthetic characteristics, antioxidant enzyme systems, and molecular metabolism. After 15 days of exposure to PSNPs with different particle sizes (50 mg·L-1), the photosynthetic characteristics of the plant remained stable, and the maximum photochemical quantum yield (Fv/Fm) and non-photochemical quenching coefficient (NPQ) had no significant effects. The root microstructure was damaged and the antioxidant enzyme system was activated, and the content of malondialdehyde (MDA) was significantly increased by 2.25-4.50-fold. In addition, 100 nm and 300 nm PSNPs exposure caused root superoxide dismutase (SOD) activity to increase 1.28-fold and 1.53-fold, and glutathione-peroxidase (GSH-PX) activity increased 1.30-fold and 1.58-fold. Non-targeted metabolomics analysis identified a total of 304 metabolites. Exposure to 100, 300, and 500 nm PSNPs led to the production of 85 (upregulated: 85, downregulated: 0), 73 (upregulated: 73, downregulated: 0), and 86 (upregulated: 84, downregulated: 2) differentially expressed metabolites, respectively, in the plant roots. Co-expressed differential metabolites accounted for 38.2% of the metabolites and indicated a metabolic imbalance primarily in organic acids and derivatives in the root system. The most significant enrichment pathways were those of alanine, aspartate, and glutamate metabolism. Overall, exposure to PSNPs of different particle sizes activated the root antioxidant enzyme system and interfered with plant basic metabolism. The alanine, aspartate, and glutamate metabolic pathways appear to be closely related to plant mechanisms for tolerance/detoxification of PSNPs.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhong-Xu Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jin-Long Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Chen Li
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723000, China
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
123
|
Bao Y, Pan C, Li D, Guo A, Dai F. Stress response to oxytetracycline and microplastic-polyethylene in wheat (Triticum aestivum L.) during seed germination and seedling growth stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150553. [PMID: 34600215 DOI: 10.1016/j.scitotenv.2021.150553] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Much efforts have been devoted to clarify the phytotoxicity of individual contaminants in plants, such as individual antibiotic and microplastic; however, little is known about the phytotoxicity of their combined exposure. Here, we investigated the effects of individual and combined exposure of wheat (Triticum aestivum L.) (Xiaoyan 22) to oxytetracycline (OTC) and polyethylene (PE) microplastics using physiological and metabolic profilings. During the seed germination stage, OTC induced phytotoxicity, as observed through the changes of root elongation, sprout length, fresh weight and the vitality index, with significant effect at the 50 and 150 mg·L-1 levels; the effect of PE microplastics depended on the OTC level in the combined exposure groups. During seedling cultivation, catalase (CAT) and ascorbate peroxidase (APX), as antioxidant enzyme indices, were sensitive to OTC exposure stress, although OTC was not determined in leaves. Untargeted metabolomics of wheat leaves revealed OTC concentration-, metabolite class- and PE-dependent metabolic responses. Dominant metabolites included carboxylic acids, alcohols, and amines in the control group and all treatment groups. Compared to only OTC treatment, PE reprogrammed carboxylic acid and alcohol profiles in combined exposure groups with obvious separation in PLS-DA. Combined exposure induced fewer metabolites than OTC exposure alone at the 5 and 50 mg·L-1 levels. The shared metabolite numbers were higher in the OTC groups than in the PE-OTC groups. Pathway enrichment analysis showed a drift in metabolic pathways between individual and combined exposure to OTC and PE, which included glyoxylate and dicarboxylate metabolism, amino acid metabolism and isoquinoline alkaloid biosynthesis. Among metabolites, aromatic acids and amino acids were more sensitive to combined exposure than individual exposure. These results contribute to clarifying the underlying mechanisms of phytotoxicity of individual and combined exposure to OTC and PE.
Collapse
Affiliation(s)
- Yanyu Bao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Chengrong Pan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Dezheng Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Aiyun Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Fengbin Dai
- The Fine Varieties Breeding Center of Zoucheng, Jining 273518, Shandong Province, PR China
| |
Collapse
|
124
|
Wang W, Yuan W, Xu EG, Li L, Zhang H, Yang Y. Uptake, translocation, and biological impacts of micro(nano)plastics in terrestrial plants: Progress and prospects. ENVIRONMENTAL RESEARCH 2022; 203:111867. [PMID: 34389347 DOI: 10.1016/j.envres.2021.111867] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 05/20/2023]
Abstract
Micro(nano)plastics are emerging environmental contaminants of concern. The prevalence of micro(nano)plastics in soils has aroused increasing interest regarding their potential effects on soil biota including terrestrial plants. With the rapid increase in published studies on plant uptake and impacts of micro(nano)plastics, a review summarizing the current research progress and highlighting future needs is warranted. A growing body of evidence indicates that many terrestrial plants can potentially take up micro(nano)plastics via roots and translocate them to aboveground portions via the vascular system, primarily driven by the transpiration stream. Exposure to micro(nano)plastics can cause a variety of effects on the biometrical, biochemical, and physiological parameters of terrestrial plants, but the specific effects vary considerably as a function of plastic properties, plant species, and experimental conditions. The presence of micro(nano)plastics can also affect the bioavailability of other associated toxicants to terrestrial plants. Based on analysis of the available literature, this review identifies current knowledge gaps and suggests prospective lines for further research.
Collapse
Affiliation(s)
- Wenfeng Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA; Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, 5230, Denmark
| | - Lianzhen Li
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Haibo Zhang
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
125
|
Sridhar A, Kannan D, Kapoor A, Prabhakar S. Extraction and detection methods of microplastics in food and marine systems: A critical review. CHEMOSPHERE 2022; 286:131653. [PMID: 34346338 DOI: 10.1016/j.chemosphere.2021.131653] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/27/2021] [Accepted: 07/21/2021] [Indexed: 05/25/2023]
Abstract
The ubiquitous presence of microplastics as contaminants in the ecosystem has become a matter of environmental concern gaining considerable attention in the research community as well as public arena. Lack of efficient collection and improper management of plastic have resulted in the enormous amounts of plastic wastes landing into the marine systems with oceans being the ultimate sink. Due to non-biodegradability, these plastics break down into smaller fragments over a period of time leading to consumption by aquatic species, threatening marine life. In the recent years, a wide range of food products has also been contaminated with microplastics directly affecting human health. This review focuses on the separation and identification technologies for extraction and detection of microplastics in food and marine ecosystems. Efficient technologies like floatation, membrane separation, chemical treatment, enzymatic treatment, and other miscellaneous techniques have been discussed considering their merits and demerits. Additionally, identification technologies like optical detection, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermo-analytical methods, and hyperspectral imaging have been emphasized for the detection of microplastic particles. The emerging techniques like enzymatic digestion combined with hyperspectral imaging could be a possible way for obtaining higher separation efficiency and characterization with minimal harm to food sample. This article narrows the gap for choosing a standard separation technology for microplastic detection in food matrices keeping in mind the composition, particle size, shape, data visualization techniques and cost.
Collapse
Affiliation(s)
- Adithya Sridhar
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Deepa Kannan
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Ashish Kapoor
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Sivaraman Prabhakar
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
126
|
Hartmann GF, Ricachenevsky FK, Silveira NM, Pita-Barbosa A. Phytotoxic effects of plastic pollution in crops: what is the size of the problem? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118420. [PMID: 34743967 DOI: 10.1016/j.envpol.2021.118420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/28/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Plastic pollution is one of the most impactful human interferences in our planet. Fragmentation of plastic leads to nano- and microplastics (NP/MP) formation, which accumulate in agricultural lands, representing an increasing risk for crop production and food safety. It has been shown that MP promote damage in plant tissues by several direct and indirect ways, and that NP can enter the tissues/cells and accumulate in edible organs. Investigation of the phytotoxic effects of NP/MP in plants started only in 2016, with most of the studies performed with crops. Since contradictory results are often observed, it is important to review the literature in order to identify robust effects and their possible mechanisms. In this review, we discuss the potential of NP/MP in damaging crop species, with focus on the physiological changes described in the literature. We also performed scientometrics analyses on research papers in this field during 2016-2021, to reveal the research situation of phytotoxic effects of plastic pollution in crops. Our review is as a starting point to help identify gaps and future directions in this important, emerging field.
Collapse
Affiliation(s)
- Gustavo Führ Hartmann
- Programa de Pós-Graduação Em Botânica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Felipe Klein Ricachenevsky
- Programa de Pós-Graduação Em Biologia Celular e Molecular, Centro de Biotecnologia; Departamento de Botânica, Instituto de Biociências; Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Neidiquele Maria Silveira
- Laboratório de Fisiologia Vegetal 'Coaracy M. Franco', Centro R&D Em Ecofisiologia e Biofísica, Instituto Agronômico de Campinas (IAC), P.O. Box 28, Campinas, SP, 13012-97, Brazil
| | - Alice Pita-Barbosa
- Programa de Pós-Graduação Em Botânica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, 91501-970, Brazil; Centro de Estudos Limnológicos, Costeiros e Marinhos, Campus Litoral Norte, Universidade Federal Do Rio Grande Do Sul, Imbé, RS, 95625-000, Brazil; Departamento Interdisciplinar, Campus Litoral Norte, Universidade Federal Do Rio Grande Do Sul, Tramandaí, RS, 95590-000, Brazil.
| |
Collapse
|
127
|
Li Y, Liu X, Shinde S, Wang J, Zhang P. Impacts of Micro- and Nanoplastics on Photosynthesis Activities of Photoautotrophs: A Mini-Review. Front Microbiol 2021; 12:773226. [PMID: 34899657 PMCID: PMC8660080 DOI: 10.3389/fmicb.2021.773226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/11/2021] [Indexed: 12/01/2022] Open
Abstract
The accumulation of micro- and nanoplastics (MNPs) has attracted immense global attention due to their adverse effects on the environment. Photosynthesis, an interface between non-living matter and living organisms, is very important for both energy flow and material circulation on our planet. Increasing evidence indicates that MNPs can pose direct or indirect stress effects on photoautotrophs, however, our knowledge about them is still limited. The purposes of this mini-review are (1) to review the latest literature of the impacts of MNPs on photosynthesis activities and summarize diverse impacts of MNPs on photosynthesis activities of different photoautotrophs (green plants, microalgae, and cyanobacteria); (2) to discuss the potential action mechanisms in both aquatic and terrestrial environments; and (3) various factors contributing toward these impacts. Additionally, this review provides key future research directions for both researchers and policymakers to better understand and alleviate the environmental impacts of MNPs on our planet.
Collapse
Affiliation(s)
- Yunxue Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Shrameeta Shinde
- Department of Microbiology, Miami University, Oxford, OH, United States
| | - Jiao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
128
|
Yin L, Wen X, Huang D, Du C, Deng R, Zhou Z, Tao J, Li R, Zhou W, Wang Z, Chen H. Interactions between microplastics/nanoplastics and vascular plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117999. [PMID: 34500397 DOI: 10.1016/j.envpol.2021.117999] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 05/06/2023]
Abstract
Microplastics and nanoplastics are distributed in the environments universally. The interrelationship between vascular plants and micro/nanoplastics began to attract attention in recent years. Based on the relevant literatures collected from various databases, this review focuses on two topics: 1) the effect of vascular plants on the fate of micro/nanoplastics; 2) the effects of micro/nanoplastics on vascular plants. The review of the available studies reveals that vascular plants can act as sinks for microplastics and nanoplastics as their surfaces can adsorb these plastics; moreover, nanoplastics can be internalized by plants. Plastics on the surfaces and in the interiors of vascular plants can cause various phytotoxicity effects, including impacts on growth, photosynthesis, and oxidative stress. Furthermore, the results and mechanisms of phytotoxicity effects caused by microplastics or nanoplastics can be very different. However, knowledge gaps still exist in the relationships between micro/nanoplastics and vascular plants based on the analysis of available studies; thus, potential subjects for future studies were proposed, including the fates, analysis methods, influencing factors, mechanisms of phytotoxicity, and further influences of microplastics and nanoplastics in the vascular plant ecosystems. This study presents a review of micro/nanoplastics-vascular plant research and reaches a basis for future research.
Collapse
Affiliation(s)
- Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiaofeng Wen
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Chunyan Du
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Rui Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Zhenyu Zhou
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ruijin Li
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Zeyu Wang
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
129
|
|
130
|
Li S, Wang T, Guo J, Dong Y, Wang Z, Gong L, Li X. Polystyrene microplastics disturb the redox homeostasis, carbohydrate metabolism and phytohormone regulatory network in barley. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125614. [PMID: 33725553 DOI: 10.1016/j.jhazmat.2021.125614] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 05/20/2023]
Abstract
As emerging contaminants, microplastics (mPS, <5 mm) have been reported to adversely affect the plant growth; however, the mechanisms of mPS-induced growth limitation are rarely known. Here, it was found that the plastic particles were absorbed and accumulated in barley plants, which limited the development of rootlets. The mPS-treated plants had significantly higher concentrations of H2O2 and O2- in roots than the control. The mPS significantly increased the activities of dehydroascorbate reductase, glutathione reductase, ADP-Glucose pyrophosphorylase, fructokinase and phosphofructokinase, while decreased the activities of cell wall peroxidase, vacuolar invertase, sucrose synthase, phosphoglucomutase, glucose-6-phosphate dehydrogenase and phosphoglucoisomerase in roots. The changes in activities of carbohydrate and ROS metabolism enzymes in leaves showed a different trend from that in roots. The mPS plants possessed a higher trans-zeatin concentration while lower concentrations of indole-3-acetic acid, indole-3-butyric acid and dihydrozeatin than the control plants in leaves. However, the phytohormone changes in roots were distinct from those in leaves under mPS. In addition, significant correlations between enzyme activities and phytohormone concentrations were found. It was suggested that the phytohormone regulatory network plays key roles in regulating the activities of key enzymes involved in carbohydrate and ROS metabolisms in response to mPS in barley.
Collapse
Affiliation(s)
- Shuxin Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Junhong Guo
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yuefan Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zongshuai Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
131
|
Sridharan S, Kumar M, Bolan NS, Singh L, Kumar S, Kumar R, You S. Are microplastics destabilizing the global network of terrestrial and aquatic ecosystem services? ENVIRONMENTAL RESEARCH 2021; 198:111243. [PMID: 33933493 DOI: 10.1016/j.envres.2021.111243] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/05/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Plastic has created a new man-made ecosystem called plastisphere. The plastic pieces including microplastics (MPs) and nanoplastics (NPs) have emerged as a global concern due to their omnipresence in ecosystems and their ability to interact with the biological systems. Nevertheless, the long-term impacts of MPs on biotic and abiotic resources are not completely understood, and existing evidence suggests that MPs are hazardous to various keystones species of the global biomes. MP-contaminated ecosystems show reduced floral and faunal biomass, productivity, nitrogen cycling, oxygen-generation and carbon sequestration, suggesting that MPs have already started affecting ecological biomes. However, not much is known about the influence of MPs towards the ecosystem services (ESs) cascade and its correlation with the biodiversity loss. MPs are perceived as a menace to the global ecosystems, but their possible impacts on the provisional, regulatory, and socio-economic ESs have not been extensively studied. This review investigates not only the potentiality of MPs to perturb the functioning of terrestrial and aquatic biomes, but also the associated social, ecological and economic repercussions. The possible long-term fluxes in the ES network of terrestrial and aquatic niches are also discussed.
Collapse
Affiliation(s)
- Srinidhi Sridharan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; CSIR National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, Maharashtra, India
| | - Manish Kumar
- CSIR National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, Maharashtra, India
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, 2308, Australia
| | - Lal Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; CSIR National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, Maharashtra, India
| | - Sunil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; CSIR National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, Maharashtra, India
| | - Rakesh Kumar
- CSIR National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, Maharashtra, India
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
132
|
Li B, Huang S, Wang H, Liu M, Xue S, Tang D, Cheng W, Fan T, Yang X. Effects of plastic particles on germination and growth of soybean (Glycine max): A pot experiment under field condition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116418. [PMID: 33433343 DOI: 10.1016/j.envpol.2020.116418] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 05/06/2023]
Abstract
Plastic residues have become a serious environmental problem in areas where agricultural plastic film are used intensively. Although numerous of studies have been done to assess its impacts on soil quality and crop yields, the understanding of meso-plastic particles effects on plant is still limited. In this study, low density polyethylene (PE) and biodegradable plastic (Bio) mulch film were selected to study the effects of meso-plastic debris on soybean germination and plant growth with the accumulation levels of 0%, 0.1%, 0.5% and 1% in soil (w: w, size ranging 0.5-2 cm) by a pot experiment under field condition. Results showed that the germination viability of soybean seeds was reduced to 82.39%, 39.44% and 26.06% in the treatments with 0.1%, 0.5% and 1% added plastic debris compared to the control (CK), respectively, suggesting that plastic residues in soil inhibit the viability of soybean seed germination. The plastic debris had a significant negative effect on plant height and culm diameter during the entire growth stage of soybean. Similarly, the leaf area at harvest was reduced by 1.97%, 6.86% and 11.53% compared to the CK in the treatments with 0.1%, 0.5% and 1% plastic debris addition, respectively. In addition, the total plant biomass under plastic addition was reduced in both the flowering and harvesting stages, compared to the CK. For the different type of plastic residues, plant height, leaf area and root/shoot ratio at group PE were significantly lower than those of groups treated by Bio. In conclusion, PE debris had a greater negative effects on plant height, culm diameter, leaf area and root/shoot ratio while Bio debris mainly showed the adverse effects on germination viability and root biomass especially at the flowering stage. Therefore, further research is required to elaborate plastic particles' effects on different stages of crops and soil quality.
Collapse
Affiliation(s)
- Bintao Li
- State Key Laboratory of Soil Erosion and Dryland Arming on the Loess Plateau, and College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Shan Huang
- State Key Laboratory of Soil Erosion and Dryland Arming on the Loess Plateau, and College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Water Use Efficiency in Dryland Area, Institute of Dryland Farming, Gansu Agriculture Academy of Sciences, Lanzhou, China
| | - Haoming Wang
- College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Mengjuan Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Sha Xue
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China
| | - Darrell Tang
- Soil Physics and Land Management, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Wanli Cheng
- Key Laboratory of Water Use Efficiency in Dryland Area, Institute of Dryland Farming, Gansu Agriculture Academy of Sciences, Lanzhou, China
| | - Tinglu Fan
- Key Laboratory of Water Use Efficiency in Dryland Area, Institute of Dryland Farming, Gansu Agriculture Academy of Sciences, Lanzhou, China
| | - Xiaomei Yang
- State Key Laboratory of Soil Erosion and Dryland Arming on the Loess Plateau, and College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Water Use Efficiency in Dryland Area, Institute of Dryland Farming, Gansu Agriculture Academy of Sciences, Lanzhou, China; Soil Physics and Land Management, Wageningen University & Research, 6700AA, Wageningen, the Netherlands.
| |
Collapse
|