101
|
Na Y, Calvo-Jiménez E, Kon E, Cao H, Jossin Y, Cooper JA. Fbxo45 Binds SPRY Motifs in the Extracellular Domain of N-Cadherin and Regulates Neuron Migration during Brain Development. Mol Cell Biol 2020; 40:e00539-19. [PMID: 32341084 PMCID: PMC7324847 DOI: 10.1128/mcb.00539-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 04/16/2020] [Indexed: 11/20/2022] Open
Abstract
Several events during the normal development of the mammalian neocortex depend on N-cadherin, including the radial migration of immature projection neurons into the cortical plate. Remarkably, radial migration requires the N-cadherin extracellular domain but not N-cadherin-dependent homophilic cell-cell adhesion, suggesting that other N-cadherin-binding proteins may be involved. We used proximity ligation and affinity purification proteomics to identify N-cadherin-binding proteins. Both screens detected MycBP2 and SPRY domain protein Fbxo45, two components of an intracellular E3 ubiquitin ligase. Fbxo45 appears to be secreted by a nonclassical mechanism, not involving a signal peptide and not requiring transport from the endoplasmic reticulum to the Golgi apparatus. Fbxo45 binding requires N-cadherin SPRY motifs that are not involved in cell-cell adhesion. SPRY mutant N-cadherin does not support radial migration in vivo Radial migration was similarly inhibited when Fbxo45 expression was suppressed. The results suggest that projection neuron migration requires both Fbxo45 and the binding of Fbxo45 or another protein to SPRY motifs in the extracellular domain of N-cadherin.
Collapse
Affiliation(s)
- Youn Na
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elisa Calvo-Jiménez
- Laboratory of Mammalian Development and Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Elif Kon
- Laboratory of Mammalian Development and Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Hong Cao
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yves Jossin
- Laboratory of Mammalian Development and Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Jonathan A Cooper
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
102
|
Rozbesky D, Monistrol J, Jain V, Hillier J, Padilla-Parra S, Jones EY. Drosophila OTK Is a Glycosaminoglycan-Binding Protein with High Conformational Flexibility. Structure 2020; 28:507-515.e5. [PMID: 32187531 PMCID: PMC7203548 DOI: 10.1016/j.str.2020.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/29/2020] [Accepted: 02/27/2020] [Indexed: 11/25/2022]
Abstract
The transmembrane protein OTK plays an essential role in plexin and Wnt signaling during Drosophila development. We have determined a crystal structure of the last three domains of the OTK ectodomain and found that OTK shows high conformational flexibility resulting from mobility at the interdomain interfaces. We failed to detect direct binding between Drosophila Plexin A (PlexA) and OTK, which was suggested previously. We found that, instead of PlexA, OTK directly binds semaphorin 1a. Our binding analyses further revealed that glycosaminoglycans, heparin and heparan sulfate, are ligands for OTK and thus may play a role in the Sema1a-PlexA axon guidance system.
Collapse
Affiliation(s)
- Daniel Rozbesky
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| | - Jim Monistrol
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Vitul Jain
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - James Hillier
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Sergi Padilla-Parra
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Cellular imaging, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK; Randall Centre for Cell and Molecular Biology, King's College London, London SE1 1UL, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
103
|
Dukes MP, Rowe RK, Harvey T, Rangel W, Pedigo S. Nickel reduces calcium dependent dimerization in neural cadherin. Metallomics 2020; 11:475-482. [PMID: 30624456 DOI: 10.1039/c8mt00349a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cadherins are the transmembrane component in adherens junctions, structures that link the actin cytoskeletons in adjacent cells within solid tissues including neurological synapses, epithelium and endothelium. Cell-cell adhesion by cadherins requires the binding of calcium ions to specific sites in the extracellular region. Given the complexity of the cell adhesion microenvironment, we are investigating whether other divalent cations might affect calcium-dependent dimerization of neural (N) cadherin. The studies reported herein characterize the impact of binding physiological magnesium(ii) or neurotoxic nickel(ii) on calcium-dependent N-cadherin function. Physiological levels of magnesium have only a small effect on the calcium-binding affinity and calcium-induced dimerization of N-cadherin. However, a tenfold lower concentration of nickel decreases the apparent calcium-binding affinity and calcium-induced dimerization of N-cadherin. Competitive binding studies indicate that the apparent dissociation constants for nickel and magnesium are 0.2 mM and 2.5 mM, respectively. These Kd values are consistent with concentrations observed for a range of divalent cations in the extracellular space. Results from these studies indicate that calcium-induced dimerization by N-cadherin is attenuated by natural and non-physiological divalent cations in the extracellular microenvironment.
Collapse
Affiliation(s)
- M P Dukes
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.
| | | | | | | | | |
Collapse
|
104
|
CDH1 Mutation Distribution and Type Suggests Genetic Differences between the Etiology of Orofacial Clefting and Gastric Cancer. Genes (Basel) 2020; 11:genes11040391. [PMID: 32260281 PMCID: PMC7231129 DOI: 10.3390/genes11040391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 01/16/2023] Open
Abstract
Pathogenic variants in CDH1, encoding epithelial cadherin (E-cadherin), have been implicated in hereditary diffuse gastric cancer (HDGC), lobular breast cancer, and both syndromic and non-syndromic cleft lip/palate (CL/P). Despite the large number of CDH1 mutations described, the nature of the phenotypic consequence of such mutations is currently not able to be predicted, creating significant challenges for genetic counselling. This study collates the phenotype and molecular data for available CDH1 variants that have been classified, using the American College of Medical Genetics and Genomics criteria, as at least ‘likely pathogenic’, and correlates their molecular and structural characteristics to phenotype. We demonstrate that CDH1 variant type and location differ between HDGC and CL/P, and that there is clustering of CL/P variants within linker regions between the extracellular domains of the cadherin protein. While these differences do not provide for exact prediction of the phenotype for a given mutation, they may contribute to more accurate assessments of risk for HDGC or CL/P for individuals with specific CDH1 variants.
Collapse
|
105
|
Cryo-EM structure of rhinovirus C15a bound to its cadherin-related protein 3 receptor. Proc Natl Acad Sci U S A 2020; 117:6784-6791. [PMID: 32152109 DOI: 10.1073/pnas.1921640117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Infection by Rhinovirus-C (RV-C), a species of Picornaviridae Enterovirus, is strongly associated with childhood asthma exacerbations. Cellular binding and entry by all RV-C, which trigger these episodes, is mediated by the first extracellular domain (EC1) of cadherin-related protein 3 (CDHR3), a surface cadherin-like protein expressed primarily on the apical surfaces of ciliated airway epithelial cells. Although recombinant EC1 is a potent inhibitor of viral infection, there is no molecular description of this protein or its binding site on RV-C. Here we present cryo-electron microscopy (EM) data resolving the EC1 and EC1+2 domains of human CDHR3 complexed with viral isolate C15a. Structure-suggested residues contributing to required interfaces on both EC1 and C15a were probed and identified by mutagenesis studies with four different RV-C genotypes. In contrast to most other rhinoviruses, which bind intercellular adhesion molecule 1 receptors via a capsid protein VP1-specific fivefold canyon feature, the CDHR3 EC1 contacts C15a, and presumably all RV-Cs, in a unique cohesive footprint near the threefold vertex, encompassing residues primarily from viral protein VP3, but also from VP1 and VP2. The EC1+2 footprint on C15a is similar to that of EC1 alone but shows that steric hindrance imposed by EC2 would likely prevent multiprotein binding by the native receptor at any singular threefold vertex. Definition of the molecular interface between the RV-Cs and their receptors provides new avenues that can be explored for potential antiviral therapies.
Collapse
|
106
|
Togo S, Sato K, Kawamura R, Kobayashi N, Noiri M, Nakabayashi S, Teramura Y, Yoshikawa HY. Quantitative evaluation of the impact of artificial cell adhesion via DNA hybridization on E-cadherin-mediated cell adhesion. APL Bioeng 2020; 4:016103. [PMID: 32002498 PMCID: PMC6984976 DOI: 10.1063/1.5123749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/12/2019] [Indexed: 01/10/2023] Open
Abstract
Programmable cell adhesion with DNA hybridization is a promising approach for fabricating various tissue architectures without sophisticated instrumentation. However, little is known about how this artificial interaction influences the binding of cell adhesion proteins, E-cadherin. In this work, we designed a planar and fluid lipid membrane displaying E-cadherin and/or single-strand DNA with well-defined densities. Visualization of cells on membranes by fluorescence and interference microscopy revealed cell adhesion to be a two-step process: artificial adhesion by DNA hybridization within a few minutes followed by biological adhesion via cadherin-cadherin binding within hours. Furthermore, we discovered that DNA hybridization can substantially facilitate E-cadherin-mediated cell adhesion. The promotive effect is probably due to the enforced binding between E-cadherin molecules in geometrical confinement between two membranes. Our in vitro model of cell adhesion can potentially be used to design functional synthetic molecules that can regulate cell adhesion via cell adhesion proteins for tissue engineering.
Collapse
Affiliation(s)
- Shodai Togo
- Department of Chemistry, Saitama University, 338-8570 Saitama, Japan
| | - Ken Sato
- Department of Chemistry, Saitama University, 338-8570 Saitama, Japan
| | | | - Naritaka Kobayashi
- Division of Strategic Research and Development, Saitama University, 338-8570 Saitama, Japan
| | - Makoto Noiri
- Department of Bioengineering, The University of Tokyo, 113-8656 Tokyo, Japan
| | | | | | | |
Collapse
|
107
|
Family-wide Structural and Biophysical Analysis of Binding Interactions among Non-clustered δ-Protocadherins. Cell Rep 2020; 30:2655-2671.e7. [PMID: 32101743 PMCID: PMC7082078 DOI: 10.1016/j.celrep.2020.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/02/2019] [Accepted: 01/31/2020] [Indexed: 01/21/2023] Open
Abstract
Non-clustered δ1- and δ2-protocadherins, close relatives of clustered protocadherins, function in cell adhesion and motility and play essential roles in neural patterning. To understand the molecular interactions underlying these functions, we used solution biophysics to characterize binding of δ1- and δ2-protocadherins, determined crystal structures of ectodomain complexes from each family, and assessed ectodomain assembly in reconstituted intermembrane junctions by cryoelectron tomography (cryo-ET). Homophilic trans (cell-cell) interactions were preferred for all δ-protocadherins, with additional weaker heterophilic interactions observed exclusively within each subfamily. As expected, δ1- and δ2-protocadherin trans dimers formed through antiparallel EC1-EC4 interfaces, like clustered protocadherins. However, no ectodomain-mediated cis (same-cell) interactions were detectable in solution; consistent with this, cryo-ET of reconstituted junctions revealed dense assemblies lacking the characteristic order observed for clustered protocadherins. Our results define non-clustered protocadherin binding properties and their structural basis, providing a foundation for interpreting their functional roles in neural patterning.
Collapse
|
108
|
Abstract
Epithelial cells form highly organized polarized sheets with characteristic cell morphologies and tissue architecture. Cell–cell adhesion and intercellular communication are prerequisites of such cohesive sheets of cells, and cell connectivity is mediated through several junctional assemblies, namely desmosomes, adherens, tight and gap junctions. These cell–cell junctions form signalling hubs that not only mediate cell–cell adhesion but impact on multiple aspects of cell behaviour, helping to coordinate epithelial cell shape, polarity and function. This review will focus on the tight and adherens junctions, constituents of the apical junctional complex, and aims to provide a comprehensive overview of the complex signalling that underlies junction assembly, integrity and plasticity.
Collapse
Affiliation(s)
- Alexandra D Rusu
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marios Georgiou
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
109
|
Ailiken G, Kitamura K, Hoshino T, Satoh M, Tanaka N, Minamoto T, Rahmutulla B, Kobayashi S, Kano M, Tanaka T, Kaneda A, Nomura F, Matsubara H, Matsushita K. Post-transcriptional regulation of BRG1 by FIRΔexon2 in gastric cancer. Oncogenesis 2020; 9:26. [PMID: 32071290 PMCID: PMC7028737 DOI: 10.1038/s41389-020-0205-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Brahma-related gene 1 (BRG1), an ATPase subunit of the SWItch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex controls multipotent neural crest formation by regulating epithelial-mesenchymal transition (EMT)-related genes with adenosine triphosphate-dependent chromodomain-helicase DNA-binding protein 7 (CHD7). The expression of BRG1 engages in pre-mRNA splicing through interacting RNPs in cancers; however, the detailed molecular pathology of how BRG1and CHD7 relate to cancer development remains largely unveiled. This study demonstrated novel post-transcriptional regulation of BRG1 in EMT and relationship with FIRΔexon2, which is a splicing variant of the far-upstream element-binding protein (FUBP) 1-interacting repressor (FIR) lacking exon 2, which fails to repress c-myc transcription in cancers. Previously, we have reported that FIR complete knockout mice (FIR-/-) was embryonic lethal before E9.5, suggesting FIR is crucial for development. FIRΔexon2 acetylated H3K27 on promoter of BRG1 by CHIP-sequence and suppressed BRG1 expression post-transcriptionally; herein BRG1 suppressed Snai1 that is a transcriptional suppressor of E-cadherin that prevents cancer invasion and metastasis. Ribosomal proteins, hnRNPs, splicing-related factors, poly (A) binding proteins, mRNA-binding proteins, tRNA, DEAD box, and WD-repeat proteins were identified as co-immunoprecipitated proteins with FIR and FIRΔexon2 by redoing exhaustive mass spectrometry analysis. Furthermore, the effect of FIRΔexon2 on FGF8 mRNA splicing was examined as an indicator of neural development due to impaired CHD7 revealed in CHARGE syndrome. Expectedly, siRNA of FIRΔexon2 altered FGF8 pre-mRNA splicing, indicated close molecular interaction among FIRΔexon2, BRG1 and CHD7. FIRΔexon2 mRNA was elevated in human gastric cancers but not in non-invasive gastric tumors in FIR+/ mice (K19-Wnt1/C2mE x FIR+/-). The levels of FIR family (FIR, FIRΔexon2 and PUF60), BRG1, Snai1, FBW7, E-cadherin, c-Myc, cyclin-E, and SAP155 increased in the gastric tumors in FIR+/- mice compared to those expressed in wild-type mice. FIR family, Snai1, cyclin-E, BRG1, and c-Myc showed trends toward higher expression in larger tumors than in smaller tumors in Gan-mice (K19-Wnt1/C2mE). The expressions of BRG1 and Snai1 were positively correlated in the gastric tumors of the Gan-mice. Finally, BRG1 is a candidate substrate of F-box and WD-repeat domain-containing 7 (FBW7) revealed by three-dimensional crystal structure analysis that the U2AF-homology motif (UHM) of FIRΔexon2 interacted with tryptophan-425 and asparate-399 (WD)-like motif in the degron pocket of FBW7 as a UHM-ligand motif. Together, FIRΔexon2 engages in multi-step post-transcriptional regulation of BRG1, affecting EMT through the BRG1/Snai1/E-cadherin pathway and promoting tumor proliferation and invasion of gastric cancers.
Collapse
Affiliation(s)
- Guzhanuer Ailiken
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kouichi Kitamura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Mamoru Satoh
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Nobuko Tanaka
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sohei Kobayashi
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumio Nomura
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
110
|
Ji YR, Homaeigohar S, Wang YH, Lin C, Su TY, Cheng CC, Yang SH, Young TH. Selective Regulation of Neurons, Glial Cells, and Neural Stem/Precursor Cells by Poly(allylguanidine)-Coated Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48381-48392. [PMID: 31845571 DOI: 10.1021/acsami.9b17143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly(allylguanidine) (PAG) was synthesized and characterized as a polycationic coating material for culturing neurons, glial cells, and neural stem/precursor cells (NSPCs) to apply PAG for neural tissue engineering. For comparison, poly-d-lysine (PDL), the golden benchmark of the neuron cell culture system, was also used in this study. When PAG was subjected to a mixed culture of neurons and glial cells, cell adhesion and neurite extension of neuronal cells were clearly observed but only few glial cells could be found alongside the neurons. Compared to PDL, the significantly lower density of the glial fibrillary acidic protein-positive cells implied that PAG suppressed the glial cell development. Likewise, PAG was demonstrated to dominate the differentiation of NSPCs principally into neurons. To investigate whether the different effects of PAG and PDL on neuron and glial cell behaviors resulted from the difference of guanidinium cations and ammonium cations, poly-l-arginine (PLA) was included and compared in this study. Similar to PDL, PLA supported high neuron and glial cell viability simultaneously. Consequently, glial cell growth and viability restrained on PAG was not only affected by the side-chain guanidino groups but also by the backbone structure property. The absence of the peptide structure in the backbone of PAG and the conformation of coated PAG on tissue culture polystyrene possibly determined the polycationic biomaterial to limit the growth of glial cells.
Collapse
Affiliation(s)
- You-Ren Ji
- Department of Biomedical Engineering , National Taiwan University , Taipei 100 , Taiwan
| | - Shahin Homaeigohar
- Nanochemistry and Nanoengineering, School of Chemical Engineering, Department of Chemistry and Materials Science , Aalto University , Kemistintie 1 , 00076 Aalto , Finland
| | - Yu-Hsin Wang
- Department of Biomedical Engineering , National Taiwan University , Taipei 100 , Taiwan
| | - Chen Lin
- Department of Biomedical Engineering , National Taiwan University , Taipei 100 , Taiwan
| | - Tai-Yuan Su
- Department of Electrical Engineering , Yuan-Ze University , Taoyuan 320 , Taiwan
| | - Ching-Chia Cheng
- Department of Biomedical Engineering , National Taiwan University , Taipei 100 , Taiwan
| | | | - Tai-Horng Young
- Department of Biomedical Engineering , National Taiwan University , Taipei 100 , Taiwan
| |
Collapse
|
111
|
Biswas KH. Molecular Mobility-Mediated Regulation of E-Cadherin Adhesion. Trends Biochem Sci 2019; 45:163-173. [PMID: 31810601 DOI: 10.1016/j.tibs.2019.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Cells in epithelial tissues utilize homotypic E-cadherin interaction-mediated adhesions to both physically adhere to each other and sense the physical properties of their microenvironment, such as the presence of other cells in close vicinity or an alteration in the mechanical tension of the tissue. These position E-cadherin centrally in organogenesis and other processes, and its function is therefore tightly regulated through a variety of means including endocytosis and gene expression. How does membrane molecular mobility of E-cadherin, and thus membrane physical properties and associated actin cytoskeleton, impinges on the assembly of adhesive clusters and signaling is discussed.
Collapse
Affiliation(s)
- Kabir H Biswas
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar.
| |
Collapse
|
112
|
Priest AV, Koirala R, Sivasankar S. Single-molecule studies of classical and desmosomal cadherin adhesion. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019; 12:43-50. [PMID: 31742239 DOI: 10.1016/j.cobme.2019.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Classical cadherin and desmosomal cadherin cell-cell adhesion proteins play essential roles in tissue morphogenesis and in maintaining tissue integrity. Deficiencies in cadherin adhesion are hallmarks of diseases like cancers, skin diseases and cardiomyopathies. Structural studies and single molecule biophysical measurements have revealed critical similarities and surprising differences between these key adhesion proteins. This review summarizes our current understanding of the biophysics of classical and desmosomal cadherin adhesion and the molecular basis for their cross-talk. We focus on recent single molecule measurements, highlight key insights into the adhesion of cadherin extracellular regions and their relation to associated diseases, and identify major open questions in this exciting area of research.
Collapse
Affiliation(s)
- Andrew Vae Priest
- Department of Biomedical Engineering, University of California, Davis, CA 95616.,Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Ramesh Koirala
- Department of Biomedical Engineering, University of California, Davis, CA 95616.,Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| |
Collapse
|
113
|
Karade SS, Mariuzza RA. How Natural Killer Cell Receptors Stick to Cell-Cell Adhesion Proteins. Structure 2019; 27:209-210. [PMID: 30726753 DOI: 10.1016/j.str.2019.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cytolytic activity of NK cells is regulated by activating and inhibitory receptors, including ones that recognize cell-cell adhesion molecules. In this issue of Structure, Deuss et al. (2019) report the structure of nectin-like protein-5 bound to the NK inhibitory receptor CD96, a promising new target for cancer immunotherapy.
Collapse
Affiliation(s)
- Sharanbasappa S Karade
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Roy A Mariuzza
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA.
| |
Collapse
|
114
|
Modak D, Sotomayor M. Identification of an adhesive interface for the non-clustered δ1 protocadherin-1 involved in respiratory diseases. Commun Biol 2019; 2:354. [PMID: 31583286 PMCID: PMC6769022 DOI: 10.1038/s42003-019-0586-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/21/2019] [Indexed: 12/29/2022] Open
Abstract
Cadherins form a large family of calcium-dependent adhesive proteins involved in morphogenesis, cell differentiation, and neuronal connectivity. Non-clustered δ1 protocadherins form a cadherin subgroup of proteins with seven extracellular cadherin (EC) repeats and cytoplasmic domains distinct from those of classical cadherins. Non-clustered δ1 protocadherins mediate homophilic adhesion and have been implicated in various diseases including asthma, autism, and cancer. Here we present X-ray crystal structures of human Protocadherin-1 (PCDH1), a δ1-protocadherin member essential for New World Hantavirus infection that is typically expressed in the brain, airway epithelium, skin keratinocytes, and lungs. The structures suggest a binding mode that involves antiparallel overlap of repeats EC1 to EC4. Mutagenesis combined with binding assays and biochemical experiments validated this mode of adhesion. Overall, these results reveal the molecular mechanism underlying adhesiveness of PCDH1 and δ1-protocadherins, also shedding light on PCDH1's role in maintaining airway epithelial integrity, the loss of which causes respiratory diseases.
Collapse
Affiliation(s)
- Debadrita Modak
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W 12th Avenue, Columbus, OH 43210 USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W 12th Avenue, Columbus, OH 43210 USA
| |
Collapse
|
115
|
Alfieri R, Vassalli M, Viti F. Flow-induced mechanotransduction in skeletal cells. Biophys Rev 2019; 11:729-743. [PMID: 31529361 DOI: 10.1007/s12551-019-00596-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Human body is subject to many and variegated mechanical stimuli, actuated in different ranges of force, frequency, and duration. The process through which cells "feel" forces and convert them into biochemical cascades is called mechanotransduction. In this review, the effects of fluid shear stress on bone cells will be presented. After an introduction to present the major players in bone system, we describe the mechanoreceptors in bone tissue that can feel and process fluid flow. In the second part of the review, we present an overview of the biological processes and biochemical cascades initiated by fluid shear stress in bone cells.
Collapse
Affiliation(s)
- Roberta Alfieri
- Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - National Research Council (IGM-CNR), Via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Massimo Vassalli
- Institute of Biophysics - National Research Council (IBF-CNR), Via De Marini, 6, 16149, Genoa, Italy
| | - Federica Viti
- Institute of Biophysics - National Research Council (IBF-CNR), Via De Marini, 6, 16149, Genoa, Italy.
| |
Collapse
|
116
|
Merkel CD, Li Y, Raza Q, Stolz DB, Kwiatkowski AV. Vinculin anchors contractile actin to the cardiomyocyte adherens junction. Mol Biol Cell 2019; 30:2639-2650. [PMID: 31483697 PMCID: PMC6761764 DOI: 10.1091/mbc.e19-04-0216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The adherens junction (AJ) couples the actin cytoskeletons of neighboring cells to allow mechanical integration and tissue organization. The physiological demands of intercellular adhesion require that the AJ be responsive to dynamic changes in force while maintaining mechanical load. These demands are tested in the heart, where cardiomyocyte AJs must withstand repeated cycles of actomyosin-mediated contractile force. Here we show that force-responsive cardiomyocyte AJs recruit actin-binding ligands to selectively couple actin networks. We employed a panel of N-cadherin-αE-catenin fusion proteins to rebuild AJs with specific actin linkages in N-cadherin-null cardiomyocytes. In this system, vinculin recruitment was required to rescue myofibril integration at nascent contacts. In contrast, loss of vinculin from the AJ disrupted junction morphology and blocked myofibril integration at cell–cell contacts. Our results identify vinculin as a critical link to contractile actomyosin and offer insight to how actin integration at the AJ is regulated to provide stability under mechanical load.
Collapse
Affiliation(s)
- Chelsea D Merkel
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yang Li
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Qanber Raza
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Donna B Stolz
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Adam V Kwiatkowski
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
117
|
Thompson CJ, Vu VH, Leckband DE, Schwartz DK. Cadherin Extracellular Domain Clustering in the Absence of Trans-Interactions. J Phys Chem Lett 2019; 10:4528-4534. [PMID: 31335147 PMCID: PMC6815682 DOI: 10.1021/acs.jpclett.9b01500] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While both cis and trans (adhesive)-interactions cooperate in the assembly of intercellular adhesions, computational simulations have predicted that two-dimensional confinement may promote cis-oligomerization, in the absence of trans-interactions. Here, single-molecule tracking of cadherin extracellular domains on supported lipid bilayers revealed the density-dependent formation of oligomers and cis-clusters in the absence of trans-interactions. Lateral oligomers were virtually eliminated by mutating a putative cis (lateral) binding interface. At low cadherin surface coverage, wild-type and mutant cadherin diffused rapidly, consistent with the motion of a lipid molecule within a cadherin-free supported bilayer and with cadherins diffusing as monomers. Although the diffusion of mutant cadherin did not change appreciably with increasing surface coverage, the average short-time diffusion coefficient of wild-type cadherin slowed significantly above a fractional surface coverage of ∼0.01 (∼1100 molecules/μm2). A detailed analysis of molecular trajectories suggested the presence of a broad size distribution of cis-cadherin oligomers. These findings verify predictions that two-dimensional confinement promotes cis-oligomerization, in the absence of trans-interactions.
Collapse
Affiliation(s)
- Connor J. Thompson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder 80309, Colorado, United States
| | - Vinh H. Vu
- Department of Biochemistry, University of Illinois, Urbana–Champaign, Urbana 61801, Illinois, United States
| | - Deborah E. Leckband
- Department of Biochemistry, University of Illinois, Urbana–Champaign, Urbana 61801, Illinois, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana–Champaign, Urbana 61801, Illinois, United States
| | - Daniel K. Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder 80309, Colorado, United States
| |
Collapse
|
118
|
Hayward AN, Aird EJ, Gordon WR. A toolkit for studying cell surface shedding of diverse transmembrane receptors. eLife 2019; 8:e46983. [PMID: 31172946 PMCID: PMC6586460 DOI: 10.7554/elife.46983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/07/2019] [Indexed: 12/15/2022] Open
Abstract
Proteolysis of transmembrane receptors is a critical cellular communication mechanism dysregulated in disease, yet decoding proteolytic regulation mechanisms of hundreds of shed receptors is hindered by difficulties controlling stimuli and unknown fates of cleavage products. Notch proteolytic regulation is a notable exception, where intercellular forces drive exposure of a cryptic protease site within a juxtamembrane proteolytic switch domain to activate transcriptional programs. We created a Synthetic Notch Assay for Proteolytic Switches (SNAPS) that exploits the modularity and unequivocal input/response of Notch proteolysis to screen surface receptors for other putative proteolytic switches. We identify several new proteolytic switches among receptors with structural homology to Notch. We demonstrate SNAPS can detect shedding in chimeras of diverse cell surface receptors, leading to new, testable hypotheses. Finally, we establish the assay can be used to measure modulation of proteolysis by potential therapeutics and offer new mechanistic insights into how DECMA-1 disrupts cell adhesion.
Collapse
Affiliation(s)
- Amanda N Hayward
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisUnited States
| | - Eric J Aird
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisUnited States
| | - Wendy R Gordon
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisUnited States
| |
Collapse
|
119
|
Civera M, Vasile F, Potenza D, Colombo C, Parente S, Vettraino C, Prosdocimi T, Parisini E, Belvisi L. Exploring E-cadherin-peptidomimetics interaction using NMR and computational studies. PLoS Comput Biol 2019; 15:e1007041. [PMID: 31158220 PMCID: PMC6564044 DOI: 10.1371/journal.pcbi.1007041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/13/2019] [Accepted: 04/22/2019] [Indexed: 02/02/2023] Open
Abstract
Cadherins are homophilic cell-cell adhesion molecules whose aberrant expression has often been shown to correlate with different stages of tumor progression. In this work, we investigate the interaction of two peptidomimetic ligands with the extracellular portion of human E-cadherin using a combination of NMR and computational techniques. Both ligands have been previously developed as mimics of the tetrapeptide sequence Asp1-Trp2-Val3-Ile4 of the cadherin adhesion arm, and have been shown to inhibit E-cadherin-mediated adhesion in epithelial ovarian cancer cells with millimolar potency. To sample a set of possible interactions of these ligands with the E-cadherin extracellular portion, STD-NMR experiments in the presence of two slightly different constructs, the wild type E-cadherin-EC1-EC2 fragment and the truncated E-cadherin-(Val3)-EC1-EC2 fragment, were carried out at three temperatures. Depending on the protein construct, a different binding epitope of the ligand and also a different temperature effect on STD signals were observed, both suggesting an involvement of the Asp1-Trp2 protein sequence among all the possible binding events. To interpret the experimental results at the atomic level and to probe the role of the cadherin adhesion arm in the dynamic interaction with the peptidomimetic ligand, a computational protocol based on docking calculations and molecular dynamics simulations was applied. In agreement with NMR data, the simulations at different temperatures unveil high variability/dynamism in ligand-cadherin binding, thus explaining the differences in ligand binding epitopes. In particular, the modulation of the signals seems to be dependent on the protein flexibility, especially at the level of the adhesive arm, which appears to participate in the interaction with the ligand. Overall, these results will help the design of novel cadherin inhibitors that might prevent the swap dimer formation by targeting both the Trp2 binding pocket and the adhesive arm residues. Classical cadherins are the main adhesive proteins at the intercellular junctions and play an essential role in tissue morphogenesis and homeostasis. A large number of studies have shown that cadherin aberrant expression and/or dysregulation often correlate with pathological processes, such as tumor development and progression. Notwithstanding the emerging role played by cadherins in a number of solid tumors, the rational design of small inhibitors targeting these proteins is still in its infancy, likely due to the challenges posed by the development of small drug-like molecules that modulate protein-protein interactions and to the structural complexity of the various cadherin dimerization interfaces that constantly form and disappear as the protein moves along its highly dynamic and reversible homo-dimerization trajectory. In this work, we study the interaction of two small molecules with the extracellular portion of human E-cadherin using a combination of spectroscopic and computational techniques. The availability of molecules interfering in the cadherin homophilic interactions could provide a useful tool for the investigation of cadherin function in tumors, and potentially pave the way to the development of novel alternative diagnostic and therapeutic interventions in cadherin-expressing solid tumors.
Collapse
Affiliation(s)
- Monica Civera
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
- Istituto di Scienze e Tecnologie Molecolari (ISTM), Consiglio Nazionale delle Ricerche, Milan, Italy
- * E-mail: (MC); (FV)
| | - Francesca Vasile
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
- Istituto di Scienze e Tecnologie Molecolari (ISTM), Consiglio Nazionale delle Ricerche, Milan, Italy
- * E-mail: (MC); (FV)
| | - Donatella Potenza
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Cinzia Colombo
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Sara Parente
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Como, Italy
| | - Chiara Vettraino
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Tommaso Prosdocimi
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Emilio Parisini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
- Istituto di Scienze e Tecnologie Molecolari (ISTM), Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
120
|
West CM, Kim HW. Nucleocytoplasmic O-glycosylation in protists. Curr Opin Struct Biol 2019; 56:204-212. [PMID: 31128470 DOI: 10.1016/j.sbi.2019.03.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/19/2019] [Accepted: 03/31/2019] [Indexed: 12/17/2022]
Abstract
O-Glycosylation is an increasingly recognized modification of intracellular proteins in all kingdoms of life, and its occurrence in protists has been investigated to understand its evolution and its roles in the virulence of unicellular pathogens. We focus here on two kinds of glycoregulation found in unicellular eukaryotes: one is a simple O-fucose modification of dozens if not hundreds of Ser/Thr-rich proteins, and the other a complex pentasaccharide devoted to a single protein associated with oxygen sensing and the assembly of polyubiquitin chains. These modifications are not required for life but contingently modulate biological processes in the social amoeba Dictyostelium and the human pathogen Toxoplasma gondii, and likely occur in diverse unicellular protists. O-Glycosylation that is co-localized in the cytoplasm allows for glycoregulation over the entire life of the protein, contrary to the secretory pathway where glycosylation usually occurs before its delivery to its site of function. Here, we interpret cellular roles of nucleocytoplasmic glycans in terms of current evidence for their effects on the conformation and dynamics of protist proteins, to serve as a guide for future studies to examine their broader significance.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602 USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602 USA; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA.
| | - Hyun W Kim
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
121
|
Montano E, Vivo M, Guarino AM, di Martino O, Di Luccia B, Calabrò V, Caserta S, Pollice A. Colloidal Silver Induces Cytoskeleton Reorganization and E-Cadherin Recruitment at Cell-Cell Contacts in HaCaT Cells. Pharmaceuticals (Basel) 2019; 12:E72. [PMID: 31096606 PMCID: PMC6631624 DOI: 10.3390/ph12020072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Up until the first half of the 20th century, silver found significant employment in medical applications, particularly in the healing of open wounds, thanks to its antibacterial and antifungal properties. Wound repair is a complex and dynamic biological process regulated by several pathways that cooperate to restore tissue integrity and homeostasis. To facilitate healing, injuries need to be promptly treated. Recently, the interest in alternatives to antibiotics has been raised given the widespread phenomenon of antibiotic resistance. Among these alternatives, the use of silver appears to be a valid option, so a resurgence in its use has been recently observed. In particular, in contrast to ionic silver, colloidal silver, a suspension of metallic silver particles, shows antibacterial activity displaying less or no toxicity. However, the human health risks associated with exposure to silver nanoparticles (NP) appear to be conflicted, and some studies have suggested that it could be toxic in different cellular contexts. These potentially harmful effects of silver NP depend on various parameters including NP size, which commonly range from 1 to 100 nm. In this study, we analyzed the effect of a colloidal silver preparation composed of very small and homogeneous nanoparticles of 0.62 nm size, smaller than those previously tested. We found no adverse effect on the cell proliferation of HaCaT cells, even at high NP concentration. Time-lapse microscopy and indirect immunofluorescence experiments demonstrated that this preparation of colloidal silver strongly increased cell migration, re-modeled the cytoskeleton, and caused recruitment of E-cadherin at cell-cell junctions of human cultured keratinocytes.
Collapse
Affiliation(s)
- Elena Montano
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.
| | - Maria Vivo
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.
| | - Andrea Maria Guarino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.
| | - Orsola di Martino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.
| | - Blanda Di Luccia
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.
| | - Viola Calabrò
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.
| | - Sergio Caserta
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale (DICMAPI) Università degli Studi Napoli Federico II, P.le Tecchio, 80, 80125 Napoli, Italy.
| | - Alessandra Pollice
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.
| |
Collapse
|
122
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
123
|
Abstract
A wide range of cell–microenvironmental interactions are mediated by membrane-localized receptors that bind ligands present on another cell or the extracellular matrix. This situation introduces a number of physical effects including spatial organization of receptor–ligand complexes and development of mechanical forces in cells. Unlike traditional experimental approaches, hybrid live cell–supported lipid bilayer (SLB) systems, wherein a live cell interacts with a synthetic substrate supported membrane, allow interrogation of these aspects of receptor signaling. The SLB system directly offers facile control over the identity, density, and mobility of ligands used for engaging cellular receptors. Further, application of various nano- and micropatterning techniques allows for spatial patterning of ligands. In this review, we describe the hybrid live cell–SLB system and its application in uncovering a range of spatial and mechanical aspects of receptor signaling. We highlight the T cell immunological synapse, junctions formed between EphA2- and ephrinA1-expressing cells, and adhesions formed by cadherin and integrin receptors.
Collapse
Affiliation(s)
- Kabir H. Biswas
- NTU Institute for Health Technologies, Nanyang Technological University, Singapore 637553
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
124
|
Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis 2019; 36:171-198. [PMID: 30972526 DOI: 10.1007/s10585-019-09966-1] [Citation(s) in RCA: 379] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) constitutes the scaffold of tissues and organs. It is a complex network of extracellular proteins, proteoglycans and glycoproteins, which form supramolecular aggregates, such as fibrils and sheet-like networks. In addition to its biochemical composition, including the covalent intermolecular cross-linkages, the ECM is also characterized by its biophysical parameters, such as topography, molecular density, stiffness/rigidity and tension. Taking these biochemical and biophysical parameters into consideration, the ECM is very versatile and undergoes constant remodeling. This review focusses on this remodeling of the ECM under the influence of a primary solid tumor mass. Within this tumor stroma, not only the cancer cells but also the resident fibroblasts, which differentiate into cancer-associated fibroblasts (CAFs), modify the ECM. Growth factors and chemokines, which are tethered to and released from the ECM, as well as metabolic changes of the cells within the tumor bulk, add to the tumor-supporting tumor microenvironment. Metastasizing cancer cells from a primary tumor mass infiltrate into the ECM, which variably may facilitate cancer cell migration or act as barrier, which has to be proteolytically breached by the infiltrating tumor cell. The biochemical and biophysical properties therefore determine the rates and routes of metastatic dissemination. Moreover, primed by soluble factors of the primary tumor, the ECM of distant organs may be remodeled in a way to facilitate the engraftment of metastasizing cancer cells. Such premetastatic niches are responsible for the organotropic preference of certain cancer entities to colonize at certain sites in distant organs and to establish a metastasis. Translational application of our knowledge about the cancer-primed ECM is sparse with respect to therapeutic approaches, whereas tumor-induced ECM alterations such as increased tissue stiffness and desmoplasia, as well as breaching the basement membrane are hallmark of malignancy and diagnostically and histologically harnessed.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| |
Collapse
|
125
|
Brasch J, Goodman KM, Noble AJ, Rapp M, Mannepalli S, Bahna F, Dandey VP, Bepler T, Berger B, Maniatis T, Potter CS, Carragher B, Honig B, Shapiro L. Visualization of clustered protocadherin neuronal self-recognition complexes. Nature 2019; 569:280-283. [PMID: 30971825 DOI: 10.1038/s41586-019-1089-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/07/2019] [Indexed: 11/09/2022]
Abstract
Neurite self-recognition and avoidance are fundamental properties of all nervous systems1. These processes facilitate dendritic arborization2,3, prevent formation of autapses4 and allow free interaction among non-self neurons1,2,4,5. Avoidance among self neurites is mediated by stochastic cell-surface expression of combinations of about 60 isoforms of α-, β- and γ-clustered protocadherin that provide mammalian neurons with single-cell identities1,2,4-13. Avoidance is observed between neurons that express identical protocadherin repertoires2,5, and single-isoform differences are sufficient to prevent self-recognition10. Protocadherins form isoform-promiscuous cis dimers and isoform-specific homophilic trans dimers10,14-20. Although these interactions have previously been characterized in isolation15,17-20, structures of full-length protocadherin ectodomains have not been determined, and how these two interfaces engage in self-recognition between neuronal surfaces remains unknown. Here we determine the molecular arrangement of full-length clustered protocadherin ectodomains in single-isoform self-recognition complexes, using X-ray crystallography and cryo-electron tomography. We determine the crystal structure of the clustered protocadherin γB4 ectodomain, which reveals a zipper-like lattice that is formed by alternating cis and trans interactions. Using cryo-electron tomography, we show that clustered protocadherin γB6 ectodomains tethered to liposomes spontaneously assemble into linear arrays at membrane contact sites, in a configuration that is consistent with the assembly observed in the crystal structure. These linear assemblies pack against each other as parallel arrays to form larger two-dimensional structures between membranes. Our results suggest that the formation of ordered linear assemblies by clustered protocadherins represents the initial self-recognition step in neuronal avoidance, and thus provide support for the isoform-mismatch chain-termination model of protocadherin-mediated self-recognition, which depends on these linear chains11.
Collapse
Affiliation(s)
- Julia Brasch
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA.,Simons Electron Microscopy Center, New York Structural Biology Center, The National Resource for Automated Molecular Microscopy, New York, NY, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Kerry M Goodman
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Alex J Noble
- Simons Electron Microscopy Center, New York Structural Biology Center, The National Resource for Automated Molecular Microscopy, New York, NY, USA
| | - Micah Rapp
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA.,Simons Electron Microscopy Center, New York Structural Biology Center, The National Resource for Automated Molecular Microscopy, New York, NY, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Seetha Mannepalli
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Fabiana Bahna
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA.,Howard Hughes Medical Institute, Columbia University, New York, NY, USA.,Department of Systems Biology, Columbia University, New York, NY, USA
| | - Venkata P Dandey
- Simons Electron Microscopy Center, New York Structural Biology Center, The National Resource for Automated Molecular Microscopy, New York, NY, USA
| | - Tristan Bepler
- Computational and Systems Biology, MIT, Cambridge, MA, USA.,Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.,Department of Mathematics, MIT, Cambridge, MA, USA
| | - Tom Maniatis
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Clinton S Potter
- Simons Electron Microscopy Center, New York Structural Biology Center, The National Resource for Automated Molecular Microscopy, New York, NY, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, New York Structural Biology Center, The National Resource for Automated Molecular Microscopy, New York, NY, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Barry Honig
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA. .,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. .,Howard Hughes Medical Institute, Columbia University, New York, NY, USA. .,Department of Systems Biology, Columbia University, New York, NY, USA. .,Department of Medicine, Columbia University, New York, NY, USA.
| | - Lawrence Shapiro
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA. .,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. .,Department of Systems Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
126
|
Huang H, Wright S, Zhang J, Brekken RA. Getting a grip on adhesion: Cadherin switching and collagen signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118472. [PMID: 30954569 DOI: 10.1016/j.bbamcr.2019.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a developmental biological process that is hijacked during tumor progression. Cadherin switching, which disrupts adherens junctions and alters cadherin-associated signaling pathways, is common during EMT. In many tumors, substantial extracellular matrix (ECM) is deposited. Collagen is the most abundant ECM constituent and it mediates specific signaling pathways by binding to integrins and discoidin domain receptors (DDRs). The interaction of the collagen receptors results in activation of signaling pathways that promote tumor progression including an induction of the cadherin switching. DDR inhibitors have demonstrated anticancer therapeutic efficacy preclinically by inhibiting the collagen signaling. Understanding how collagen signaling impacts cellular processes including EMT and cadherin switching is of great interest especially given the strong interest in stromal targeted therapies for desmoplastic cancers.
Collapse
Affiliation(s)
- Huocong Huang
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven Wright
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Junqiu Zhang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
127
|
Won SY, Lee P, Kim HM. Synaptic organizer: Slitrks and type IIa receptor protein tyrosine phosphatases. Curr Opin Struct Biol 2019; 54:95-103. [PMID: 30822649 DOI: 10.1016/j.sbi.2019.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
Slit-like and Trk-like (Slitrk) family members are leucine-rich repeat (LRR)-containing neuronal transmembrane proteins. Slitrks have been highlighted as key synapse organizers at neuronal synapses through interactions with specific members of the presynaptic type IIa receptor protein tyrosine phosphatase (RPTP) family. Recent structural studies on type IIa RPTP/Slitrk1 complexes have unveiled molecular insights into their binding selectivity and have established the role of higher-order receptor clustering in their synaptogenic activity. Here, we will discuss key structural aspects of Slitrk interactions with type IIa RPTP family members, the biological roles of Slitrks in neurons, and our current knowledge of SLITRK mutations in human diseases.
Collapse
Affiliation(s)
- Seoung Youn Won
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Pedro Lee
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ho Min Kim
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
| |
Collapse
|
128
|
Tiwari P, Mrigwani A, Kaur H, Kaila P, Kumar R, Guptasarma P. Structural-Mechanical and Biochemical Functions of Classical Cadherins at Cellular Junctions: A Review and Some Hypotheses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1112:107-138. [DOI: 10.1007/978-981-13-3065-0_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
129
|
Brayshaw LL, Smith RCG, Badaoui M, Irving JA, Price SR. Lanthanides compete with calcium for binding to cadherins and inhibit cadherin-mediated cell adhesion. Metallomics 2019; 11:914-924. [DOI: 10.1039/c8mt00317c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Substitutions with lanthanides reveal a high sensitivity of cadherin structure, dynamics and function to metal ion chemistry.
Collapse
Affiliation(s)
| | - Rosanna C. G. Smith
- Research Department of Cell and Developmental Biology
- UCL
- London
- UK
- Centre for Human Development, Stem Cells, and Regeneration
| | - Magd Badaoui
- Research Department of Respiratory Medicine
- UCL
- London
- UK
| | | | - Stephen R. Price
- Research Department of Cell and Developmental Biology
- UCL
- London
- UK
| |
Collapse
|
130
|
Abstract
In various physiological processes, the cell collective is organized in a monolayer, such as seen in a simple epithelium. The advances in the understanding of mechanical behavior of the monolayer and its underlying cellular and molecular mechanisms will help to elucidate the properties of cell collectives. In this Review, we discuss recent in vitro studies on monolayer mechanics and their implications on collective dynamics, regulation of monolayer mechanics by physical confinement and geometrical cues and the effect of tissue mechanics on biological processes, such as cell division and extrusion. In particular, we focus on the active nematic property of cell monolayers and the emerging approach to view biological systems in the light of liquid crystal theory. We also highlight the mechanosensing and mechanotransduction mechanisms at the sub-cellular and molecular level that are mediated by the contractile actomyosin cytoskeleton and cell-cell adhesion proteins, such as E-cadherin and α-catenin. To conclude, we argue that, in order to have a holistic understanding of the cellular response to biophysical environments, interdisciplinary approaches and multiple techniques - from large-scale traction force measurements to molecular force protein sensors - must be employed.
Collapse
Affiliation(s)
- Tianchi Chen
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Thuan Beng Saw
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,National University of Singapore, Department of Biomedical Engineering, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583
| | - René-Marc Mège
- Institut Jacques Monod (IJM), CNRS UMR 7592 & Université Paris Diderot, 75205 Paris CEDEX 13, France
| | - Benoit Ladoux
- Institut Jacques Monod (IJM), CNRS UMR 7592 & Université Paris Diderot, 75205 Paris CEDEX 13, France
| |
Collapse
|
131
|
De-la-Torre P, Choudhary D, Araya-Secchi R, Narui Y, Sotomayor M. A Mechanically Weak Extracellular Membrane-Adjacent Domain Induces Dimerization of Protocadherin-15. Biophys J 2018; 115:2368-2385. [PMID: 30527337 PMCID: PMC6302040 DOI: 10.1016/j.bpj.2018.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022] Open
Abstract
The cadherin superfamily of proteins is defined by the presence of extracellular cadherin (EC) "repeats" that engage in protein-protein interactions to mediate cell-cell adhesion, cell signaling, and mechanotransduction. The extracellular domains of nonclassical cadherins often have a large number of EC repeats along with other subdomains of various folds. Protocadherin-15 (PCDH15), a protein component of the inner-ear tip link filament essential for mechanotransduction, has 11 EC repeats and a membrane adjacent domain (MAD12) of atypical fold. Here we report the crystal structure of a pig PCDH15 fragment including EC10, EC11, and MAD12 in a parallel dimeric arrangement. MAD12 has a unique molecular architecture and folds as a ferredoxin-like domain similar to that found in the nucleoporin protein Nup54. Analytical ultracentrifugation experiments along with size-exclusion chromatography coupled to multiangle laser light scattering and small-angle x-ray scattering corroborate the crystallographic dimer and show that MAD12 induces parallel dimerization of PCDH15 near its membrane insertion point. In addition, steered molecular dynamics simulations suggest that MAD12 is mechanically weak and may unfold before tip-link rupture. Sequence analyses and structural modeling predict the existence of similar domains in cadherin-23, protocadherin-24, and the "giant" FAT and CELSR cadherins, indicating that some of them may also exhibit MAD-induced parallel dimerization.
Collapse
Affiliation(s)
- Pedro De-la-Torre
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Deepanshu Choudhary
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Raul Araya-Secchi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Structural Biophysics, Section for Neutron and X-ray Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yoshie Narui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
132
|
Warga RM, Kane DA. Probing Cadherin Interactions in Zebrafish with E- and N-Cadherin Missense Mutants. Genetics 2018; 210:1391-1409. [PMID: 30361324 PMCID: PMC6283153 DOI: 10.1534/genetics.118.301692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/16/2018] [Indexed: 11/18/2022] Open
Abstract
Cadherins are cell adhesion molecules that regulate numerous adhesive interactions during embryonic development and adult life. Consistent with these functions, when their expression goes astray cells lose their normal adhesive properties resulting in defective morphogenesis, disease, and even metastatic cancer. In general, classical cadherins exert their effect by homophilic interactions via their five characteristic extracellular (EC) repeats. The EC1 repeat provides the mechanism for cadherins to dimerize with each other whereas the EC2 repeat may facilitate dimerization. Less is known about the other EC repeats. Here, we show that a zebrafish missense mutation in the EC5 repeat of N-cadherin is a dominant gain-of-function mutation and demonstrate that this mutation alters cell adhesion almost to the same degree as a zebrafish missense mutation in the EC1 repeat of N-cadherin. We also show that zebrafish E- and N-cadherin dominant gain-of-function missense mutations genetically interact. Perturbation of cell adhesion in embryos that are heterozygous mutant at both loci is similar to that observed in single homozygous mutants. Introducing an E-cadherin EC5 missense allele into the homozygous N-cadherin EC1 missense mutant more radically affects morphogenesis, causing synergistic phenotypes consistent with interdependent functions being disrupted. Our studies indicate that a functional EC5 repeat is critical for cadherin-mediated cell affinity, suggesting that its role may be more important than previously thought. These results also suggest the possibility that E- and N-cadherin have heterophilic interactions during early morphogenesis of the embryo; interactions that might help balance the variety of cell affinities needed during embryonic development.
Collapse
Affiliation(s)
- Rachel M Warga
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008
| | - Donald A Kane
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008
| |
Collapse
|
133
|
Watters K, Palmenberg AC. CDHR3 extracellular domains EC1-3 mediate rhinovirus C interaction with cells and as recombinant derivatives, are inhibitory to virus infection. PLoS Pathog 2018; 14:e1007477. [PMID: 30532249 PMCID: PMC6301718 DOI: 10.1371/journal.ppat.1007477] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/20/2018] [Accepted: 11/20/2018] [Indexed: 01/04/2023] Open
Abstract
Viruses in the rhinovirus C species (RV-C) are more likely to cause severe wheezing illnesses and asthma exacerbations in children than related isolates of the RV-A or RV-B. The RV-C capsid is structurally distinct from other rhinoviruses and does not bind ICAM-1 or LDL receptors. The RV-C receptor is instead, human cadherin-related family member 3 (CDHR3), a protein unique to the airway epithelium. A single nucleotide polymorphism (rs6967330, encoding C529Y) in CDHR3 regulates the display density of CDHR3 on cell surfaces and is among the strongest known genetic correlates for childhood virus-induced asthma susceptibility. CDHR3 immunoprecipitations from transfected or transduced cell lysates were used to characterize the RV-C interaction requirements. The C529 and Y529 variations in extracellular repeat domain 5 (EC5), bound equivalently to virus. Glycosylase treatment followed by mass spectrometry mapped 3 extracellular N-linked modification sites, and further detected surface-dependent, α2-6 sialyation unique to the Y529 format. None of these modifications were required for RV-C recognition, but removal or even dilution of structurally stabilizing calcium ions from the EC junctions irreversibly abrogated virus binding. CDHR3 deletions expressed in HeLa cells or as bacterial recombinant proteins, mapped the amino-terminal EC1 unit as the required virus contact. Derivatives containing the EC1 domain, could not only recapitulate virus:receptor interactions in vitro, but also directly inhibit RV-C infection of susceptible cells for several virus genotypes (C02, C15, C41, and C45). We propose that all RV-C use the same EC1 landing pad, interacting with putative EC3-mediated multimerization formats of CDHR3.
Collapse
Affiliation(s)
- Kelly Watters
- Institute for Molecular Virology, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ann C. Palmenberg
- Institute for Molecular Virology, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
134
|
Yadav BK, Shin BS. Single-nucleotide polymorphisms of the adherent junction component cadherin gene are associated with leukoaraiosis. Gene 2018; 676:65-72. [PMID: 30017735 DOI: 10.1016/j.gene.2018.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Leukoaraiosis (LA) is one of the manifestations of cerebral small vessel disease. Blood-brain barrier (BBB) disruption plays a key role in LA. Cadherin is a component of adherent junctions (AJ), which play a crucial role in cell-cell adhesion, cell-cell recognition and homeostasis in BBB development. We hypothesized that alterations in cadherin genes might be a potential cause of BBB abnormalities that result in LA. METHODS A total of 339 LA individuals (LA-PVWM, 183; LA-DWM 156) were enrolled, who underwent brain magnetic resonance imaging with obtainable vascular risk factors. Genotyping of cadherin single-nucleotide polymorphisms (SNPs) (rs5030625, rs1801026, and rs16260) was performed by real-time polymerase chain reaction with LightSNiP reagents (coupled primer and probe) and FastStart DNAMaster HybProbe (Roche Diagnostic, GmBH, Mannheim, Germany) on a LightCycler 2.0 instrument. RESULTS Two SNPs, rs1801026 and rs16260, were significantly different between the control and LA groups. The combinatorial effects of the three SNPs were also significant. The haplotypes G-T-C and GA-T-A increased the development of LA-PVWM (OR = 1.76 and OR = 40.7, respectively). The haplotypes G-T-A and GA-T-A increased the development of LA-DWM (OR = 2.56 and OR = 10.48, respectively), but G-C-C decreased the development of LA-DWM (OR = 17.57). CONCLUSION This study provides evidence for genetic polymorphisms of the AJ component cadherin gene and the association of its haplotypes with LA.
Collapse
Affiliation(s)
- Binod Kumar Yadav
- Department of Biochemistry, Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Byoung-Soo Shin
- Department of Neurology, Chonbuk National University Medical School, Jeonju, Chonbuk, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Chonbuk, Republic of Korea.
| |
Collapse
|
135
|
Belardi B, Son S, Vahey MD, Wang J, Hou J, Fletcher DA. Claudin-4 reconstituted in unilamellar vesicles is sufficient to form tight interfaces that partition membrane proteins. J Cell Sci 2018; 132:jcs.221556. [PMID: 30209136 DOI: 10.1242/jcs.221556] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/01/2018] [Indexed: 01/05/2023] Open
Abstract
Tight junctions have been hypothesized to act as molecular fences in the plasma membrane of epithelial cells, helping to form differentiated apical and basolateral domains. While this fence function is believed to arise from the interaction of four-pass transmembrane claudins, the complexity of tight junctions has made direct evidence of their role as a putative diffusion barrier difficult to obtain. Here, we address this challenge by reconstituting claudin-4 into giant unilamellar vesicles using microfluidic jetting. We find that reconstituted claudin-4 alone can form adhesive membrane interfaces without the accessory proteins that are present in vivo By controlling the molecular composition of the inner and outer leaflets of jetted vesicle membranes, we show that claudin-4-mediated interfaces can drive partitioning of extracellular membrane proteins with ectodomains as small as 5 nm but not of inner or outer leaflet lipids. Our findings indicate that homotypic interactions of claudins and their small size can contribute to the polarization of epithelial cells.
Collapse
Affiliation(s)
- Brian Belardi
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720, USA
| | - Sungmin Son
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720, USA
| | - Michael D Vahey
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720, USA
| | - Jinzhi Wang
- Department of Internal Medicine & Center for Investigation of Membrane Excitability Disease, Washington University Medical School, St. Louis, MO 63110, USA
| | - Jianghui Hou
- Department of Internal Medicine & Center for Investigation of Membrane Excitability Disease, Washington University Medical School, St. Louis, MO 63110, USA
| | - Daniel A Fletcher
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720, USA .,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
136
|
Mrozik KM, Blaschuk OW, Cheong CM, Zannettino ACW, Vandyke K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 2018; 18:939. [PMID: 30285678 PMCID: PMC6167798 DOI: 10.1186/s12885-018-4845-0] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
In many types of solid tumours, the aberrant expression of the cell adhesion molecule N-cadherin is a hallmark of epithelial-to-mesenchymal transition, resulting in the acquisition of an aggressive tumour phenotype. This transition endows tumour cells with the capacity to escape from the confines of the primary tumour and metastasise to secondary sites. In this review, we will discuss how N-cadherin actively promotes the metastatic behaviour of tumour cells, including its involvement in critical signalling pathways which mediate these events. In addition, we will explore the emerging role of N-cadherin in haematological malignancies, including bone marrow homing and microenvironmental protection to anti-cancer agents. Finally, we will discuss the evidence that N-cadherin may be a viable therapeutic target to inhibit cancer metastasis and increase tumour cell sensitivity to existing anti-cancer therapies.
Collapse
Affiliation(s)
- Krzysztof Marek Mrozik
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | | | - Chee Man Cheong
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew Christopher William Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia. .,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
137
|
Russo G, Theisen U, Fahr W, Helmsing S, Hust M, Köster RW, Dübel S. Sequence defined antibodies improve the detection of cadherin 2 (N-cadherin) during zebrafish development. N Biotechnol 2018; 45:98-112. [DOI: 10.1016/j.nbt.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 12/18/2022]
|
138
|
Lampugnani MG, Dejana E, Giampietro C. Vascular Endothelial (VE)-Cadherin, Endothelial Adherens Junctions, and Vascular Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029322. [PMID: 28851747 DOI: 10.1101/cshperspect.a029322] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endothelial cell-cell adherens junctions (AJs) supervise fundamental vascular functions, such as the control of permeability and transmigration of circulating leukocytes, and the maintenance of existing vessels and formation of new ones. These processes are often dysregulated in pathologies. However, the evidence that links dysfunction of endothelial AJs to human pathologies is mostly correlative. In this review, we present an update of the molecular organization of AJ complexes in endothelial cells (ECs) that is mainly based on observations from experimental models. Furthermore, we report in detail on a human pathology, cerebral cavernous malformation (CCM), which is initiated by loss-of-function mutations in the genes that encode the three cytoplasmic components of AJs (CCM1, CCM2, and CCM3). At present, these represent a unique example of mutations in components of endothelial AJs that cause human disease. We describe also how studies into the defects of AJs in CCM are shedding light on the crucial regulatory mechanisms and signaling activities of these endothelial structures. Although these observations are specific for CCM, they support the concept that dysfunction of endothelial AJs can directly contribute to human pathologies.
Collapse
Affiliation(s)
- Maria Grazia Lampugnani
- Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, 20139 Milan, Italy.,Mario Negri Institute for Pharmacological Research, 20156 Milan, Italy
| | - Elisabetta Dejana
- Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, 20139 Milan, Italy.,Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Costanza Giampietro
- Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, 20139 Milan, Italy
| |
Collapse
|
139
|
Duraivelan K, Basak AJ, Ghosh A, Samanta D. Molecular and structural bases of interaction between extracellular domains of nectin-2 and N
-cadherin. Proteins 2018; 86:1157-1164. [PMID: 30183103 DOI: 10.1002/prot.25596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/23/2018] [Accepted: 08/31/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur; Kharagpur West Bengal India
| | - Aditya J. Basak
- School of Bioscience, Indian Institute of Technology Kharagpur; Kharagpur West Bengal India
| | - Amit Ghosh
- School of Energy Science and Engineering; Indian Institute of Technology Kharagpur; Kharagpur West Bengal India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur; Kharagpur West Bengal India
| |
Collapse
|
140
|
Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V. Nat Commun 2018; 9:3380. [PMID: 30140003 PMCID: PMC6107550 DOI: 10.1038/s41467-018-05931-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
N-acetylglucosaminyltransferase-V (GnT-V) alters the structure of specific N-glycans by modifying α1-6-linked mannose with a β1-6-linked N-acetylglucosamine branch. β1-6 branch formation on cell surface receptors accelerates cancer metastasis, making GnT-V a promising target for drug development. However, the molecular basis of GnT-V's catalytic mechanism and substrate specificity are not fully understood. Here, we report crystal structures of human GnT-V luminal domain with a substrate analog. GnT-V luminal domain is composed of a GT-B fold and two accessary domains. Interestingly, two aromatic rings sandwich the α1-6 branch of the acceptor N-glycan and restrain the global conformation, partly explaining the fine branch specificity of GnT-V. In addition, interaction of the substrate N-glycoprotein with GnT-V likely contributes to protein-selective and site-specific glycan modification. In summary, the acceptor-GnT-V complex structure suggests a catalytic mechanism, explains the previously observed inhibition of GnT-V by branching enzyme GnT-III, and provides a basis for the rational design of drugs targeting N-glycan branching.
Collapse
|
141
|
Cyr DG, Dufresne J, Gregory M. Cellular junctions in the epididymis, a critical parameter for understanding male reproductive toxicology. Reprod Toxicol 2018; 81:207-219. [PMID: 30130578 DOI: 10.1016/j.reprotox.2018.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/28/2022]
Abstract
Epididymal sperm maturation is a critical aspect of male reproduction in which sperm acquire motility and the ability to fertilize an ovum. Sperm maturation is dependent on the creation of a specific environment that changes along the epididymis and which enables the maturation process. The blood-epididymis barrier creates a unique luminal micro-environment, different from blood, by limiting paracellular transport and forcing receptor-mediated transport of macromolecules across the epididymal epithelium. Direct cellular communication between cells allows coordinated function of the epithelium. A limited number of studies have directly examined the effects of toxicants on junctional proteins and barrier function in the epididymis. Effects on the integrity of the blood-epididymis barrier have resulted in decreased fertility and, in some cases, the development of sperm granulomas. Studies have shown that in addition to tight junctions, proteins implicated in the maintenance of adherens junctions and gap junctions alter epididymal functions. This review will provide an overview of the types and roles of cellular junctions in the epididymis, and how these are targeted by different toxicants.
Collapse
Affiliation(s)
- Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
142
|
Dionne G, Qiu X, Rapp M, Liang X, Zhao B, Peng G, Katsamba PS, Ahlsen G, Rubinstein R, Potter CS, Carragher B, Honig B, Müller U, Shapiro L. Mechanotransduction by PCDH15 Relies on a Novel cis-Dimeric Architecture. Neuron 2018; 99:480-492.e5. [PMID: 30057206 PMCID: PMC6168201 DOI: 10.1016/j.neuron.2018.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/06/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
The tip link, a filament formed by protocadherin 15 (PCDH15) and cadherin 23, conveys mechanical force from sound waves and head movement to open hair-cell mechanotransduction channels. Tip-link cadherins are thought to have acquired structural features critical for their role in mechanotransduction. Here, we biophysically and structurally characterize the unusual cis-homodimeric architecture of PCDH15. We show that PCDH15 molecules form double-helical assemblies through cis-dimerization interfaces in the extracellular cadherin EC2-EC3 domain region and in a unique membrane-proximal domain. Electron microscopy studies visualize the cis-dimeric PCDH15 assembly and reveal the PCDH15 extracellular domain as a parallel double helix with cis cross-bridges at the two locations we defined. The helical configuration suggests the potential for elasticity through helix winding and unwinding. Functional studies in hair cells show that mutations that perturb PCDH15 dimerization contacts affect mechanotransduction. Together, these data reveal the cis-dimeric architecture of PCDH15 and show that dimerization is critical for sensing mechanical stimuli.
Collapse
Affiliation(s)
- Gilman Dionne
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Micah Rapp
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Xiaoping Liang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bo Zhao
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guihong Peng
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Phinikoula S Katsamba
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Goran Ahlsen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Rotem Rubinstein
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Clinton S Potter
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Bridget Carragher
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
143
|
Won SY, Kim HM. Structural Basis for LAR-RPTP-Mediated Synaptogenesis. Mol Cells 2018; 41:622-630. [PMID: 30008201 PMCID: PMC6078854 DOI: 10.14348/molcells.2018.0202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/10/2018] [Accepted: 06/25/2018] [Indexed: 12/28/2022] Open
Abstract
Leukocyte common antigen-related protein tyrosine phosphatases (LAR-RPTPs) are cellular receptors of heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans that regulate neurite outgrowth and neuronal regeneration. LAR-RPTPs have also received particular attention as the major presynaptic hubs for synapse organization through selective binding to numerous postsynaptic adhesion partners. Recent structural studies on LAR-RPTP-mediated trans-synaptic adhesion complexes have provided significant insight into the molecular basis of their specific interactions, the key codes for their selective binding, as well as the higher-order clustering of LAR-RPTPs necessary for synaptogenic activity. In this review, we summarize the structures of LAR-RPTPs in complex with various postsynaptic adhesion partners and discuss the molecular mechanisms underlying LAR-RPTP-mediated synaptogenesis.
Collapse
Affiliation(s)
- Seoung Youn Won
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Ho Min Kim
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141,
Korea
| |
Collapse
|
144
|
Shafraz O, Rübsam M, Stahley SN, Caldara AL, Kowalczyk AP, Niessen CM, Sivasankar S. E-cadherin binds to desmoglein to facilitate desmosome assembly. eLife 2018; 7:37629. [PMID: 29999492 PMCID: PMC6066328 DOI: 10.7554/elife.37629] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/10/2018] [Indexed: 02/04/2023] Open
Abstract
Desmosomes are adhesive junctions composed of two desmosomal cadherins: desmocollin (Dsc) and desmoglein (Dsg). Previous studies demonstrate that E-cadherin (Ecad), an adhesive protein that interacts in both trans (between opposing cells) and cis (on the same cell surface) conformations, facilitates desmosome assembly via an unknown mechanism. Here we use structure-function analysis to resolve the mechanistic roles of Ecad in desmosome formation. Using AFM force measurements, we demonstrate that Ecad interacts with isoform 2 of Dsg via a conserved Leu-175 on the Ecad cis binding interface. Super-resolution imaging reveals that Ecad is enriched in nascent desmosomes, supporting a role for Ecad in early desmosome assembly. Finally, confocal imaging demonstrates that desmosome assembly is initiated at sites of Ecad mediated adhesion, and that Ecad-L175 is required for efficient Dsg2 and desmoplakin recruitment to intercellular contacts. We propose that Ecad trans interactions at nascent cell-cell contacts initiate the recruitment of Dsg through direct cis interactions with Ecad which facilitates desmosome assembly.
Collapse
Affiliation(s)
- Omer Shafraz
- Department of Physics and Astronomy, Iowa State University, Ames, United States
| | - Matthias Rübsam
- Department of Dermatology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sara N Stahley
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Amber L Caldara
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Carien M Niessen
- Department of Dermatology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sanjeevi Sivasankar
- Department of Physics and Astronomy, Iowa State University, Ames, United States
| |
Collapse
|
145
|
Evangelista F, Roth AJ, Prisayanh P, Temple BR, Li N, Qian Y, Culton DA, Liu Z, Harrison OJ, Brasch J, Honig B, Shapiro L, Diaz LA. Pathogenic IgG4 autoantibodies from endemic pemphigus foliaceus recognize a desmoglein-1 conformational epitope. J Autoimmun 2018; 89:171-185. [PMID: 29307589 PMCID: PMC5902409 DOI: 10.1016/j.jaut.2017.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 10/18/2022]
Abstract
Fogo Selvagem (FS), the endemic form of pemphigus foliaceus, is mediated by pathogenic IgG4 autoantibodies against the amino-terminal extracellular cadherin domain of the desmosomal cadherin desmoglein 1 (Dsg1). Here we define the detailed epitopes of these pathogenic antibodies. Proteolytic footprinting showed that IgG4 from 95% of FS donor sera (19/20) recognized a 16-residue peptide (A129LNSMGQDLERPLELR144) from the EC1 domain of Dsg1 that overlaps the binding site for an adhesive-partner desmosomal cadherin molecule. Mutation of Dsg1 residues M133 and Q135 reduced the binding of FS IgG4 autoantibodies to Dsg1 by ∼50%. Molecular modeling identified two nearby EC1 domain residues (Q82 and V83) likely to contribute to the epitope. Mutation of these residues completely abolished the binding of FS IgG4 to Dsg1. Bead aggregation assays showed that native binding interactions between Dsg1 and desmocollin 1 (Dsc1), which underlie desmosome structure, were abolished by Fab fragments of FS IgG4. These results further define the molecular mechanism by which FS IgG4 autoantibodies interfere with desmosome structure and lead to cell-cell detachment, the hallmark of this disease.
Collapse
Affiliation(s)
- Flor Evangelista
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Laboratorio de Investigación Multidisciplinaria, Universidad Antenor Orrego, Trujillo, Peru
| | - Aleeza J Roth
- Pathology Diagnostic Liaison-Northeast Region, Bristol-Myers Squibb, Princeton NJ, USA
| | - Phillip Prisayanh
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brenda R Temple
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; R.L. Juliano Structural Bioinformatics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ye Qian
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Donna A Culton
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Oliver J Harrison
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Julia Brasch
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA; Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Luis A Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
146
|
Frismantiene A, Philippova M, Erne P, Resink TJ. Cadherins in vascular smooth muscle cell (patho)biology: Quid nos scimus? Cell Signal 2018; 45:23-42. [DOI: 10.1016/j.cellsig.2018.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 12/16/2022]
|
147
|
Spatial and temporal organization of cadherin in punctate adherens junctions. Proc Natl Acad Sci U S A 2018; 115:E4406-E4415. [PMID: 29691319 DOI: 10.1073/pnas.1720826115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adherens junctions (AJs) play a fundamental role in tissue integrity; however, the organization and dynamics of the key AJ transmembrane protein, E-cadherin, both inside and outside of AJs, remain controversial. Here we have studied the distribution and motility of E-cadherin in punctate AJs (pAJs) of A431 cells. Using single-molecule localization microscopy, we show that pAJs in these cells reach more than 1 μm in length and consist of several cadherin clusters with crystal-like density interspersed within sparser cadherin regions. Notably, extrajunctional cadherin appears to be monomeric, and its density is almost four orders of magnitude less than observed in the pAJ regions. Two alternative strategies of tracking cadherin motion within individual junctions show that pAJs undergo actin-dependent rapid-on the order of seconds-internal reorganizations, during which dense clusters disassemble and their cadherins are immediately reused for new clusters. Our results thus modify the classical view of AJs by depicting them as mosaics of cadherin clusters, the short lifetimes of which enable stable overall morphology combined with rapid internal rearrangements.
Collapse
|
148
|
Steinbacher T, Kummer D, Ebnet K. Junctional adhesion molecule-A: functional diversity through molecular promiscuity. Cell Mol Life Sci 2018; 75:1393-1409. [PMID: 29238845 PMCID: PMC11105642 DOI: 10.1007/s00018-017-2729-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 12/27/2022]
Abstract
Cell adhesion molecules (CAMs) of the immunoglobulin superfamily (IgSF) regulate important processes such as cell proliferation, differentiation and morphogenesis. This activity is primarily due to their ability to initiate intracellular signaling cascades at cell-cell contact sites. Junctional adhesion molecule-A (JAM-A) is an IgSF-CAM with a short cytoplasmic tail that has no catalytic activity. Nevertheless, JAM-A is involved in a variety of biological processes. The functional diversity of JAM-A resides to a large part in a C-terminal PDZ domain binding motif which directly interacts with nine different PDZ domain-containing proteins. The molecular promiscuity of its PDZ domain motif allows JAM-A to recruit protein scaffolds to specific sites of cell-cell adhesion and to assemble signaling complexes at those sites. Here, we review the molecular characteristics of JAM-A, including its dimerization, its interaction with scaffolding proteins, and the phosphorylation of its cytoplasmic domain, and we describe how these characteristics translate into diverse biological activities.
Collapse
Affiliation(s)
- Tim Steinbacher
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Daniel Kummer
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany.
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany.
| |
Collapse
|
149
|
Eslami M, Nezafat N, Khajeh S, Mostafavi-Pour Z, Bagheri Novir S, Negahdaripour M, Ghasemi Y, Razban V. Deep analysis of N-cadherin/ADH-1 interaction: a computational survey. J Biomol Struct Dyn 2018; 37:210-228. [PMID: 29301458 DOI: 10.1080/07391102.2018.1424035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Due to the considerable role of N-cadherin in cancer metastasis, tumor growth, and progression, inhibition of this protein has been highly regarded in recent years. Although ADH-1 has been known as an appropriate inhibitor of N-cadherin in clinical trials, its chemical nature and binding mode with N-cadherin have not been precisely specified yet. Accordingly, in this study, quantum mechanics calculations were used to investigate the chemical nature of ADH-1. These calculations clarify the molecular properties of ADH-1 and determine its reactive sites. Based on the results, the oxygen atoms are suitable for electrophilic reactivity, while the hydrogen atoms that are connected to nitrogen atoms are the favorite sites for nucleophilic reactivity. The higher electronegativity of the oxygen atoms makes them the most reactive portions in this molecule. Molecular docking and molecular dynamics (MD) simulation have also been applied to specify the binding mode of ADH-1 with N-cadherin and determine the important residues of N-cadherin involving in the interaction with ADH-1. Moreover, the verified model by MD simulation has been studied to extract the free energy value and find driving forces. These calculations and molecular electrostatic potential map of ADH-1 indicated that hydrophobic and electrostatic interactions are almost equally involved in the implantation of ADH-1 in the N-cadherin binding site. The presented results not only enable a closer examination of N-cadherin in complex with ADH-1 molecule, but also are very beneficial in designing new inhibitors for N-cadherin and can help to save time and cost in this field.
Collapse
Affiliation(s)
- Mahboobeh Eslami
- a Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Navid Nezafat
- a Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Sahar Khajeh
- b Biochemistry Department, Medical School , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Zohreh Mostafavi-Pour
- b Biochemistry Department, Medical School , Shiraz University of Medical Sciences , Shiraz , Iran.,c Recombinant Protein Lab, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Samaneh Bagheri Novir
- d Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch , Islamic Azad University , Tehran , Iran
| | - Manica Negahdaripour
- a Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran.,e Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Younes Ghasemi
- a Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran.,e Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Vahid Razban
- f Molecular Medicine Department , School of Advanced Medical Sciences and Technology, Shiraz University of Medical Sciences , Shiraz , Iran.,g Stem Cell Technology Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
150
|
Wong SHM, Fang CM, Chuah LH, Leong CO, Ngai SC. E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol 2018; 121:11-22. [PMID: 29279096 DOI: 10.1016/j.critrevonc.2017.11.010] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/15/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023] Open
Abstract
E-cadherin is a transmembrane glycoprotein which connects epithelial cells together at adherens junctions. In normal cells, E-cadherin exerts its tumour suppressing role mainly by sequestering β-catenin from its binding to LEF (Lymphoid enhancer factor)/TCF (T cell factor) which serves the function of transcribing genes of the proliferative Wnt signaling pathway. Despite the ongoing debate on whether the loss of E-cadherin is the cause or effect of epithelial-mesenchymal transition (EMT), E-cadherin functional loss has frequently been associated with poor prognosis and survival in patients of various cancers. The dysregulation of E-cadherin expression that leads to carcinogenesis happens mostly at the epigenetic level but there are cases of genetic alterations as well. E-cadherin expression has been linked to the cellular functions of invasiveness reduction, growth inhibition, apoptosis, cell cycle arrest and differentiation. Studies on various cancers have shown that these different cellular functions are also interdependent. Recent studies have reported a rapid expansion of E-cadherin clinical relevance in various cancers. This review article summarises the multifaceted effect E-cadherin expression has on cellular functions in the context of carcinogenesis as well as its clinical implications in diagnosis, prognosis and therapeutics.
Collapse
Affiliation(s)
- Sonia How Ming Wong
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, 43500, Semenyih, Selangor, Malaysia.
| | - Chee Mun Fang
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, 43500, Semenyih, Selangor, Malaysia.
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| | - Chee Onn Leong
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|