101
|
Wegner SA, Barocio-Galindo RM, Avalos JL. The bright frontiers of microbial metabolic optogenetics. Curr Opin Chem Biol 2022; 71:102207. [PMID: 36103753 DOI: 10.1016/j.cbpa.2022.102207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 01/27/2023]
Abstract
In recent years, light-responsive systems from the field of optogenetics have been applied to several areas of metabolic engineering with remarkable success. By taking advantage of light's high tunability, reversibility, and orthogonality to host endogenous processes, optogenetic systems have enabled unprecedented dynamical controls of microbial fermentations for chemical production, metabolic flux analysis, and population compositions in co-cultures. In this article, we share our opinions on the current state of this new field of metabolic optogenetics.We make the case that it will continue to impact metabolic engineering in increasingly new directions, with the potential to challenge existing paradigms for metabolic pathway and strain optimization as well as bioreactor operation.
Collapse
Affiliation(s)
| | | | - José L Avalos
- Department of Molecular Biology, USA; Department of Chemical and Biological Engineering, USA; The Andlinger Center for Energy and the Environment, USA; High Meadows Environmental Institute, Princeton University, Princeton NJ 08544, USA.
| |
Collapse
|
102
|
Kang CW, Lim HG, Won J, Cha S, Shin G, Yang JS, Sung J, Jung GY. Circuit-guided population acclimation of a synthetic microbial consortium for improved biochemical production. Nat Commun 2022; 13:6506. [PMID: 36344561 PMCID: PMC9640620 DOI: 10.1038/s41467-022-34190-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Microbial consortia have been considered potential platforms for bioprocessing applications. However, the complexity in process control owing to the use of multiple strains necessitates the use of an efficient population control strategy. Herein, we report circuit-guided synthetic acclimation as a strategy to improve biochemical production by a microbial consortium. We designed a consortium comprising alginate-utilizing Vibrio sp. dhg and 3-hydroxypropionic acid (3-HP)-producing Escherichia coli strains for the direct conversion of alginate to 3-HP. We introduced a genetic circuit, named "Population guider", in the E. coli strain, which degrades ampicillin only when 3-HP is produced. In the presence of ampicillin as a selection pressure, the consortium was successfully acclimated for increased 3-HP production by 4.3-fold compared to that by a simple co-culturing consortium during a 48-h fermentation. We believe this concept is a useful strategy for the development of robust consortium-based bioprocesses.
Collapse
Affiliation(s)
- Chae Won Kang
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| | - Hyun Gyu Lim
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| | - Jaehyuk Won
- grid.254224.70000 0001 0789 9563Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974 Republic of Korea ,grid.254224.70000 0001 0789 9563Department of Chemistry, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974 Republic of Korea
| | - Sanghak Cha
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| | - Giyoung Shin
- grid.49100.3c0000 0001 0742 4007School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| | - Jae-Seong Yang
- grid.423637.70000 0004 1763 5862Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193 Spain
| | - Jaeyoung Sung
- grid.254224.70000 0001 0789 9563Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974 Republic of Korea ,grid.254224.70000 0001 0789 9563Department of Chemistry, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974 Republic of Korea
| | - Gyoo Yeol Jung
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea ,grid.49100.3c0000 0001 0742 4007School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| |
Collapse
|
103
|
Park WS, Shin KS, Jung HW, Lee Y, Sathesh-Prabu C, Lee SK. Combinatorial Metabolic Engineering Strategies for the Enhanced Production of Free Fatty Acids in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13913-13921. [PMID: 36200488 DOI: 10.1021/acs.jafc.2c04621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, we evaluated the effects of several metabolic engineering strategies in a systematic and combinatorial manner to enhance the free fatty acid (FFA) production in Escherichia coli. The strategies included (i) overexpression of mutant thioesterase I ('TesAR64C) to efficiently release the FFAs from fatty acyl-ACP; (ii) coexpression of global regulatory protein FadR; (iii) heterologous expression of methylmalonyl-CoA carboxyltransferase and phosphoenolpyruvate carboxylase to synthesize fatty acid precursor molecule malonyl-CoA; and (iv) disruption of genes associated with membrane proteins (GusC, MdlA, and EnvR) to improve the cellular state and export the FFAs outside the cell. The synergistic effects of these genetic modifications in strain SBF50 yielded 7.2 ± 0.11 g/L FFAs at the shake flask level. In fed-batch cultivation under nitrogen-limiting conditions, strain SBF50 produced 33.6 ± 0.02 g/L FFAs with a productivity of 0.7 g/L/h from glucose, which is the maximum titer reported in E. coli to date. Combinatorial metabolic engineering approaches can prove to be highly useful for the large-scale production of FA-derived chemicals and fuels.
Collapse
Affiliation(s)
- Woo Sang Park
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kwang Soo Shin
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun Wook Jung
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yongjoo Lee
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chandran Sathesh-Prabu
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung Kuk Lee
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
104
|
Li X, Lan C, Li X, Hu Z, Jia B. A review on design-build-test-learn cycle to potentiate progress in isoprenoid engineering of photosynthetic microalgae. BIORESOURCE TECHNOLOGY 2022; 363:127981. [PMID: 36130687 DOI: 10.1016/j.biortech.2022.127981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Currently, the generation of isoprenoid factories in microalgae relies on two strategies: 1) enhanced production of endogenous isoprenoids; or 2) production of heterologous terpenes by metabolic engineering. Nevertheless, low titers and productivity are still a feature of isoprenoid biotechnology and need to be addressed. In this context, the mechanisms underlying isoprenoid biosynthesis in microalgae and its relationship with central carbon metabolism are reviewed. Developments in microalgal biotechnology are discussed, and a new approach of integrated "design-build-test-learn" cycle is advocated to the trends, challenges and prospects involved in isoprenoid engineering. The emerging and promising strategies and tools are discussed for microalgal engineering in the future. This review encourages a systematic engineering perspective aimed at potentiating progress in isoprenoid engineering of photosynthetic microalgae.
Collapse
Affiliation(s)
- Xiangyu Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chengxiang Lan
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xinyi Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Bin Jia
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
105
|
Pandey N, Davison SA, Krishnamurthy M, Trettel DS, Lo CC, Starkenburg S, Wozniak KL, Kern TL, Reardon SD, Unkefer CJ, Hennelly SP, Dale T. Precise Genomic Riboregulator Control of Metabolic Flux in Microbial Systems. ACS Synth Biol 2022; 11:3216-3227. [PMID: 36130255 PMCID: PMC9594778 DOI: 10.1021/acssynbio.1c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Engineered microbes can be used for producing value-added chemicals from renewable feedstocks, relieving the dependency on nonrenewable resources such as petroleum. These microbes often are composed of synthetic metabolic pathways; however, one major problem in establishing a synthetic pathway is the challenge of precisely controlling competing metabolic routes, some of which could be crucial for fitness and survival. While traditional gene deletion and/or coarse overexpression approaches do not provide precise regulation, cis-repressors (CRs) are RNA-based regulatory elements that can control the production levels of a particular protein in a tunable manner. Here, we describe a protocol for a generally applicable fluorescence-activated cell sorting technique used to isolate eight subpopulations of CRs from a semidegenerate library in Escherichia coli, followed by deep sequencing that permitted the identification of 15 individual CRs with a broad range of protein production profiles. Using these new CRs, we demonstrated a change in production levels of a fluorescent reporter by over two orders of magnitude and further showed that these CRs are easily ported from E. coli to Pseudomonas putida. We next used four CRs to tune the production of the enzyme PpsA, involved in pyruvate to phosphoenolpyruvate (PEP) conversion, to alter the pool of PEP that feeds into the shikimate pathway. In an engineered P. putida strain, where carbon flux in the shikimate pathway is diverted to the synthesis of the commodity chemical cis,cis-muconate, we found that tuning PpsA translation levels increased the overall titer of muconate. Therefore, CRs provide an approach to precisely tune protein levels in metabolic pathways and will be an important tool for other metabolic engineering efforts.
Collapse
Affiliation(s)
- Naresh Pandey
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Steffi A. Davison
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Malathy Krishnamurthy
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Daniel S. Trettel
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Chien-Chi Lo
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Shawn Starkenburg
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Katherine L. Wozniak
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Theresa L. Kern
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sean D. Reardon
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Clifford J. Unkefer
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Scott P. Hennelly
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Taraka Dale
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States,
| |
Collapse
|
106
|
Gispert I, Hindley JW, Pilkington CP, Shree H, Barter LMC, Ces O, Elani Y. Stimuli-responsive vesicles as distributed artificial organelles for bacterial activation. Proc Natl Acad Sci U S A 2022; 119:e2206563119. [PMID: 36223394 PMCID: PMC9586261 DOI: 10.1073/pnas.2206563119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Intercellular communication is a hallmark of living systems. As such, engineering artificial cells that possess this behavior has been at the heart of activities in bottom-up synthetic biology. Communication between artificial and living cells has potential to confer novel capabilities to living organisms that could be exploited in biomedicine and biotechnology. However, most current approaches rely on the exchange of chemical signals that cannot be externally controlled. Here, we report two types of remote-controlled vesicle-based artificial organelles that translate physical inputs into chemical messages that lead to bacterial activation. Upon light or temperature stimulation, artificial cell membranes are activated, releasing signaling molecules that induce protein expression in Escherichia coli. This distributed approach differs from established methods for engineering stimuli-responsive bacteria. Here, artificial cells (as opposed to bacterial cells themselves) are the design unit. Having stimuli-responsive elements compartmentalized in artificial cells has potential applications in therapeutics, tissue engineering, and bioremediation. It will underpin the design of hybrid living/nonliving systems where temporal control over population interactions can be exerted.
Collapse
Affiliation(s)
- Ignacio Gispert
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - James W. Hindley
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Colin P. Pilkington
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Hansa Shree
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Laura M. C. Barter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Oscar Ces
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| |
Collapse
|
107
|
Xu D, Liu B, Wang J, Zhang Z. Bibliometric analysis of artificial intelligence for biotechnology and applied microbiology: Exploring research hotspots and frontiers. Front Bioeng Biotechnol 2022; 10:998298. [PMID: 36277390 PMCID: PMC9585160 DOI: 10.3389/fbioe.2022.998298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: In the biotechnology and applied microbiology sectors, artificial intelligence (AI) has been extensively used in disease diagnostics, drug research and development, functional genomics, biomarker recognition, and medical imaging diagnostics. In our study, from 2000 to 2021, science publications focusing on AI in biotechnology were reviewed, and quantitative, qualitative, and modeling analyses were performed. Methods: On 6 May 2022, the Web of Science Core Collection (WoSCC) was screened for AI applications in biotechnology and applied microbiology; 3,529 studies were identified between 2000 and 2022, and analyzed. The following information was collected: publication, country or region, references, knowledgebase, institution, keywords, journal name, and research hotspots, and examined using VOSviewer and CiteSpace V bibliometric platforms. Results: We showed that 128 countries published articles related to AI in biotechnology and applied microbiology; the United States had the most publications. In addition, 584 global institutions contributed to publications, with the Chinese Academy of Science publishing the most. Reference clusters from studies were categorized into ten headings: deep learning, prediction, support vector machines (SVM), object detection, feature representation, synthetic biology, amyloid, human microRNA precursors, systems biology, and single cell RNA-Sequencing. Research frontier keywords were represented by microRNA (2012–2020) and protein-protein interactions (PPIs) (2012–2020). Conclusion: We systematically, objectively, and comprehensively analyzed AI-related biotechnology and applied microbiology literature, and additionally, identified current hot spots and future trends in this area. Our review provides researchers with a comprehensive overview of the dynamic evolution of AI in biotechnology and applied microbiology and identifies future key research areas.
Collapse
Affiliation(s)
- Dongyu Xu
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Bing Liu
- Department of Bone Oncology, The People’s Hospital of Liaoning Province, Shenyang, Liaoning, China
| | - Jian Wang
- Department of Pathogenic Biology, School of Basic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Zhichang Zhang
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
- *Correspondence: Zhichang Zhang,
| |
Collapse
|
108
|
Combing with redox regulation via quorum-sensing system and fermentation strategies for improving D-pantothenic acid production. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
109
|
Hirschi S, Ward TR, Meier WP, Müller DJ, Fotiadis D. Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chem Rev 2022; 122:16294-16328. [PMID: 36179355 DOI: 10.1021/acs.chemrev.2c00339] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bottom-up assembly of biological and chemical components opens exciting opportunities to engineer artificial vesicular systems for applications with previously unmet requirements. The modular combination of scaffolds and functional building blocks enables the engineering of complex systems with biomimetic or new-to-nature functionalities. Inspired by the compartmentalized organization of cells and organelles, lipid or polymer vesicles are widely used as model membrane systems to investigate the translocation of solutes and the transduction of signals by membrane proteins. The bottom-up assembly and functionalization of such artificial compartments enables full control over their composition and can thus provide specifically optimized environments for synthetic biological processes. This review aims to inspire future endeavors by providing a diverse toolbox of molecular modules, engineering methodologies, and different approaches to assemble artificial vesicular systems. Important technical and practical aspects are addressed and selected applications are presented, highlighting particular achievements and limitations of the bottom-up approach. Complementing the cutting-edge technological achievements, fundamental aspects are also discussed to cater to the inherently diverse background of the target audience, which results from the interdisciplinary nature of synthetic biology. The engineering of proteins as functional modules and the use of lipids and block copolymers as scaffold modules for the assembly of functionalized vesicular systems are explored in detail. Particular emphasis is placed on ensuring the controlled assembly of these components into increasingly complex vesicular systems. Finally, all descriptions are presented in the greater context of engineering valuable synthetic biological systems for applications in biocatalysis, biosensing, bioremediation, or targeted drug delivery.
Collapse
Affiliation(s)
- Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Wolfgang P Meier
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| |
Collapse
|
110
|
Hacıoğlu Doğru N, Gül Çİ, Çördük N, Tosunoğlu M. Determination of the effects of environmental pollution on the Balkan terrapin, Mauremys rivulata (Valenciennes, 1833). Acta Vet Hung 2022; 70:245-253. [PMID: 36178766 DOI: 10.1556/004.2022.00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
The effects of environmental pollution on three populations of the Balkan terrapin [Mauremys rivulata (Valenciennes, 1833)] from the Bozcaada, Gökçeada and Dardanos regions were evaluated. The morphological parameters of Balkan terrapins collected on each site were measured and blood samples were taken for haematological analysis and micronucleus detection. The physicochemical, microbiological and microelement analyses of the water samples from each region were conducted by standard methods. The highest red blood cell, white blood cell and mean corpuscular haemoglobin concentration values were seen in the samples from Gökçeada. The highest haemoglobin value was found in the samples originating from Bozcaada, whereas the highest haematocrit and mean corpuscular volume values were found in the animals from Dardanos. Based on the microbiological analysis of the water samples, the most polluted site was Gökçeada. The microelement contents of the water and blood samples were different at the three sites, the lowest being in the Gökçeada area. It was revealed that the percentage of red blood cell micronuclei and other nucleus abnormalities in the M. rivulata blood samples was the lowest also in the animals living in the region of Gökçeada.
Collapse
Affiliation(s)
- Nurcİhan Hacıoğlu Doğru
- Department of Biology, Faculty of Sciences, Çanakkale Onsekiz Mart University, Terzioğlu Campus, 17100, Çanakkale, Turkey
| | - Çİğdem Gül
- Department of Biology, Faculty of Sciences, Çanakkale Onsekiz Mart University, Terzioğlu Campus, 17100, Çanakkale, Turkey
| | - Nurşen Çördük
- Department of Biology, Faculty of Sciences, Çanakkale Onsekiz Mart University, Terzioğlu Campus, 17100, Çanakkale, Turkey
| | - Murat Tosunoğlu
- Department of Biology, Faculty of Sciences, Çanakkale Onsekiz Mart University, Terzioğlu Campus, 17100, Çanakkale, Turkey
| |
Collapse
|
111
|
N.H. Sarjuni M, A.M. Dolit S, K. Khamis A, Abd-Aziz N, R. Azman N, A. Asli U. Regenerating Soil Microbiome: Balancing Microbial CO 2 Sequestration and Emission. CARBON SEQUESTRATION 2022. [DOI: 10.5772/intechopen.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Soil microbiome plays a significant role in soil’s ecosystem for soils to be physically and biologically healthy. Soil health is fundamental for plant growth and crops productivity. In the introduction part, the roles and dynamics of the microbial community in soils, primarily in the cycle of soil organic carbon and CO2 release and absorption, are deliberated. Next, the impact of crop management practices and climate change on the soil carbon balance are described, as well as other issues related to soil degradation, such as unbalanced nutrient recycling and mineral weathering. In response to these issues, various approaches to soil regeneration have been developed in order to foster an efficient and active soil microbiome, thereby balancing the CO2 cycle and carbon sequestration in the soil ecosystem.
Collapse
|
112
|
He Y, Zhang Y, Li T, Peng X, Jia X. High-concentration COD wastewater treatment with simultaneous removal of nitrogen and phosphorus by a novel Candida tropicalis strain: Removal capability and mechanism. ENVIRONMENTAL RESEARCH 2022; 212:113471. [PMID: 35613633 DOI: 10.1016/j.envres.2022.113471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Aerobic and anaerobic continuous stirred-tank reactor (CSTR), up-flow anaerobic sludge blanket (UASB) were set up and inoculated with newly isolated Candida tropicalis. Reactors were operated at high concentrations of chemical oxygen demand (COD) (8000 mg/L), the modified UASB expressed better COD removal rate simultaneously removal of nitrogen and phosphate than other two reactors. Notably, under both aerobic or anaerobic conditions, large amounts of organic acids and alcohol were generated. Transcriptomic analysis showed that carbon metabolism under anaerobic conditions shared the same pathway with aerobic conditions by regulating and inhibiting some functional genes. Experiments utilizing different carbon sources proved that our strain has excellent performances in utilizing organic materials, which were verified by transcriptomic analysis. Finally, the strain was applied to treat four types of sugar-containing wastewaters. Among them, our strain exerts the best removal capability of COD (90%), nitrogen (89%), and phosphate (82%) for brewery wastewater.
Collapse
Affiliation(s)
- Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yaqi Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Tianyu Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
113
|
Li X, Jiang W, Qi Q, Liang Q. A Gene Circuit Combining the Endogenous I-E Type CRISPR-Cas System and a Light Sensor to Produce Poly-β-Hydroxybutyric Acid Efficiently. BIOSENSORS 2022; 12:bios12080642. [PMID: 36005038 PMCID: PMC9405541 DOI: 10.3390/bios12080642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022]
Abstract
‘Metabolic burden,’ which arises when introducing exogenic synthesizing pathways into a host strain, remains a challenging issue in metabolic engineering. Redirecting metabolic flux from cell growth to product synthesis at an appropriate culture timepoint is ideal for resolving this issue. In this report, we introduce optogenetics—which is capable of precise temporal and spatial control—as a genetic switch, accompanied by the endogenous type I-E CRISPRi system in Escherichia coli (E. coli) to generate a metabolic platform that redirects metabolic flux. Poly-β-hydroxybutyric acid (PHB) production was taken as an example to demonstrate the performance of this platform. A two-to-three-fold increase in PHB content was observed under green light when compared with the production of PHB under red light, confirming the regulatory activity of this platform and its potential to redirect metabolic flux to synthesize target products.
Collapse
Affiliation(s)
- Xiaomeng Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao 266237, China
- The Second Laboratory of Lanzhou Institute of Biological Products Co., Ltd., No. 888, Yanchang Road, Lanzhou 730046, China
| | - Wei Jiang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan 250013, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao 266237, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao 266237, China
- Correspondence: ; Tel.: +86-13573163779
| |
Collapse
|
114
|
Luo Z, Pan F, Zhu Y, Du S, Yan Y, Wang R, Li S, Xu H. Synergistic Improvement of 5-Aminolevulinic Acid Production with Synthetic Scaffolds and System Pathway Engineering. ACS Synth Biol 2022; 11:2766-2778. [PMID: 35939037 DOI: 10.1021/acssynbio.2c00157] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Engineered synthetic scaffolds to organize metabolic pathway enzymes and system pathway engineering to fine-tune metabolic fluxes play essential roles in microbial production. Here, we first obtained the most favorable combination of key enzymes for 5-aminolevulinic acid (5-ALA) synthesis through the C5 pathway by screening enzymes from different sources and optimizing their combination in different pathways. Second, we successfully constructed a multienzyme complex assembly system with PduA*, which spatially recruits the above three key enzymes for 5-ALA synthesis in a designable manner. By further optimizing the ratio of these key enzymes in synthetic scaffolds, the efficiency of 5-ALA synthesis through the C5 pathway was significantly improved. Then, the competitive metabolism pathway was fine-tuned by rationally designing different antisense RNAs, further significantly increasing 5-ALA titers. Furthermore, for efficient 5-ALA synthesis, obstacles of NADH and NADPH imbalances and feedback inhibition of the synthesis pathway were also overcome through engineering the NADPH regeneration pathway and transport pathway, respectively. Finally, combining these strategies with further fermentation optimization, we achieved a final 5-ALA titer of 11.4 g/L. These results highlight the importance of synthetic scaffolds and system pathway engineering to improve the microbial cell factory production performance.
Collapse
Affiliation(s)
- Zhengshan Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Fei Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shanshan Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yifan Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
115
|
Akdemir H, Liu Y, Zhuang L, Zhang H, Koffas MAG. Utilization of microbial cocultures for converting mixed substrates to valuable bioproducts. Curr Opin Microbiol 2022; 68:102157. [DOI: 10.1016/j.mib.2022.102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022]
|
116
|
Li Y, Zhang A, Hu S, Chen K, Ouyang P. Efficient and scalable synthesis of 1,5-diamino-2-hydroxy-pentane from L-lysine via cascade catalysis using engineered Escherichia coli. Microb Cell Fact 2022; 21:142. [PMID: 35842631 PMCID: PMC9288024 DOI: 10.1186/s12934-022-01864-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 1,5-Diamino-2-hydroxy-pentane (2-OH-PDA), as a new type of aliphatic amino alcohol, has potential applications in the pharmaceutical, chemical, and materials industries. Currently, 2-OH-PDA production has only been realized via pure enzyme catalysis from lysine hydroxylation and decarboxylation, which faces great challenges for scale-up production. However, the use of a cell factory is very promising for the production of 2-OH-PDA for industrial applications, but the substrate transport rate, appropriate catalytic environment (pH, temperature, ions) and separation method restrict its efficient synthesis. Here, a strategy was developed to produce 2-OH-PDA via an efficient, green and sustainable biosynthetic method on an industrial scale. RESULTS In this study, an approach was created for efficient 2-OH-PDA production from L-lysine using engineered E. coli BL21 (DE3) cell catalysis by a two-stage hydroxylation and decarboxylation process. In the hydroxylation stage, strain B14 coexpressing L-lysine 3-hydroxylase K3H and the lysine transporter CadB-argT enhanced the biosynthesis of (2S,3S)-3-hydroxylysine (hydroxylysine) compared with strain B1 overexpressing K3H. The titre of hydroxylysine synthesized by B14 was 2.1 times higher than that synthesized by B1. Then, in the decarboxylation stage, CadA showed the highest hydroxylysine activity among the four decarboxylases investigated. Based on the results from three feeding strategies, L-lysine was employed to produce 110.5 g/L hydroxylysine, which was subsequently decarboxylated to generate a 2-OH-PDA titre of 80.5 g/L with 62.6% molar yield in a 5-L fermenter. In addition, 2-OH-PDA with 95.6% purity was obtained by solid-phase extraction. Thus, the proposed two-stage whole-cell biocatalysis approach is a green and effective method for producing 2-OH-PDA on an industrial scale. CONCLUSIONS The whole-cell catalytic system showed a sufficiently high capability to convert lysine into 2-OH-PDA. Furthermore, the high titre of 2-OH-PDA is conducive to separation and possesses the prospect of industrial scale production by whole-cell catalysis.
Collapse
Affiliation(s)
- Yangyang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Alei Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Shewei Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
117
|
Moškon M, Mraz M. Programmable evolution of computing circuits in cellular populations. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
118
|
Wollborn D, Munkler LP, Horstmann R, Germer A, Blank LM, Büchs J. Predicting high recombinant protein producer strains of Pichia pastoris Mut S using the oxygen transfer rate as an indicator of metabolic burden. Sci Rep 2022; 12:11225. [PMID: 35780248 PMCID: PMC9250517 DOI: 10.1038/s41598-022-15086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is a widely used host for recombinant protein production. In this study, a clonal library of P. pastoris MutS strains (S indicates slow methanol utilization) was screened for high green fluorescent protein (GFP) production. The expression cassette was under the control of the methanol inducible AOX promoter. The growth behavior was online-monitored in 48-well and 96-well microtiter plates by measuring the oxygen transfer rate (OTR). By comparing the different GFP producing strains, a correlation was established between the slope of the cumulative oxygen transfer during the methanol metabolization phase and the strain’s production performance. The correlation corresponds to metabolic burden during methanol induction. The findings were validated using a pre-selected strain library (7 strains) of high, medium, and low GFP producers. For those strains, the gene copy number was determined via Whole Genome Sequencing. The results were consistent with the described OTR correlation. Additionally, a larger clone library (45 strains) was tested to validate the applicability of the proposed method. The results from this study suggest that the cumulative oxygen transfer can be used as a screening criterion for protein production performance that allows for a simple primary screening process, facilitating the pre-selection of high producing strains.
Collapse
Affiliation(s)
- David Wollborn
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Lara Pauline Munkler
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Rebekka Horstmann
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Andrea Germer
- iAMB - Institute of Applied Microbiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
119
|
|
120
|
Huang Z, Sun L, Lu G, Liu H, Zhai Z, Feng S, Gao J, Chen C, Qing C, Fang M, Chen B, Fu J, Wang X, Chen G. Rapid regulations of metabolic reactions in
Escherichia coli
via light‐responsive enzyme redistribution. Biotechnol J 2022; 17:e2200129. [DOI: 10.1002/biot.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/14/2022] [Accepted: 05/25/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zikang Huang
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Lize Sun
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Genzhe Lu
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Hongrui Liu
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
- Johns Hopkins University School of Medicine Baltimore MD 21205 USA
| | - Zihan Zhai
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Site Feng
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Ji Gao
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Chunyu Chen
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Chuheng Qing
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Meng Fang
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Bowen Chen
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Jiale Fu
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Xuan Wang
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
- Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
- Tsinghua‐Peking Center for Life Sciences Beijing 100084 China
| | - Guo‐Qiang Chen
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
- Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
- Tsinghua‐Peking Center for Life Sciences Beijing 100084 China
- MOE Key Lab of Industrial Biocatalysts Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
121
|
Liao X, Ma H, Tang YJ. Artificial intelligence: a solution to involution of design–build–test–learn cycle. Curr Opin Biotechnol 2022; 75:102712. [DOI: 10.1016/j.copbio.2022.102712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/05/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023]
|
122
|
Li B, Zhang B, Wang P, Cai X, Chen YY, Yang YF, Liu ZQ, Zheng YG. Rerouting Fluxes of the Central Carbon Metabolism and Relieving Mechanism-Based Inactivation of l-Aspartate-α-decarboxylase for Fermentative Production of β-Alanine in Escherichia coli. ACS Synth Biol 2022; 11:1908-1918. [PMID: 35476404 DOI: 10.1021/acssynbio.2c00055] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
β-Alanine, with the amino group at the β-position, is an important platform chemical that has been widely applied in pharmaceuticals and feed and food additives. However, the current modest titer and productivity, increased fermentation cost, and complicated operation are the challenges for producing β-alanine by microbial fermentation. In this study, a high-yield β-alanine-producing strain was constructed by combining metabolic engineering, protein engineering, and fed-batch bioprocess optimization strategies. First, an aspartate-α-decarboxylase from Bacillus subtilis was introduced in Escherichia coli W3110 to construct an initial β-alanine-producing strain. Production of β-alanine was obviously increased to 4.36 g/L via improving the metabolic flux and reducing carbon loss by rerouting fluxes of the central carbon metabolism. To further increase β-alanine production, mechanism-based inactivation of aspartate-α-decarboxylase was relieved by rational design to maintain the productivity at a high level in β-alanine fed-batch fermentation. Finally, fed-batch bioprocess optimization strategies were used to improve β-alanine production to 85.18 g/L with 0.24 g/g glucose yield and 1.05 g/L/h productivity in fed-batch fermentation. These strategies can be effectively used in the construction of engineered strains for β-alanine and production of its derivatives, and the final engineered strain was a valuable microbial cell factory that can be used for the industrial production of β-alanine.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Pei Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Xue Cai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Yuan-Yuan Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Yu-Feng Yang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| |
Collapse
|
123
|
Seo H, Giannone RJ, Yang YH, Trinh CT. Proteome reallocation enables the selective de novo biosynthesis of non-linear, branched-chain acetate esters. Metab Eng 2022; 73:38-49. [PMID: 35561848 DOI: 10.1016/j.ymben.2022.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 10/25/2022]
Abstract
The one-carbon recursive ketoacid elongation pathway is responsible for making various branched-chain amino acids, aldehydes, alcohols, and acetate esters in living cells. Controlling selective microbial biosynthesis of these target molecules at high efficiency is challenging due to enzyme promiscuity, regulation, and metabolic burden. In this study, we present a systematic modular design approach to control proteome reallocation for selective microbial biosynthesis of branched-chain acetate esters. Through pathway modularization, we partitioned the branched-chain ester pathways into four submodules including keto-isovalerate submodule for converting pyruvate to keto-isovalerate, ketoacid elongation submodule for producing longer carbon-chain keto-acids, ketoacid decarboxylase submodule for converting ketoacids to alcohols, and alcohol acyltransferase submodule for producing branched-chain acetate esters by condensing alcohols and acetyl-CoA. By systematic manipulation of pathway gene replication and transcription, enzyme specificity of the first committed steps of these submodules, and downstream competing pathways, we demonstrated selective microbial production of isoamyl acetate over isobutyl acetate. We found that the optimized isoamyl acetate pathway globally redistributed the amino acid fractions in the proteomes and required up to 23-31% proteome reallocation at the expense of other cellular resources, such as those required to generate precursor metabolites and energy for growth and amino acid biosynthesis. From glucose fed-batch fermentation, the engineered strains produced isoamyl acetate up to a titer of 8.8 g/L (>0.25 g/L toxicity limit), a yield of 0.22 g/g (61% of maximal theoretical value), and 86% selectivity, achieving the highest titers, yields and selectivity of isoamyl acetate reported to date.
Collapse
Affiliation(s)
- Hyeongmin Seo
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA; Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Richard J Giannone
- Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul, South Korea
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA; Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
124
|
Thuan NH, Tatipamula VB, Canh NX, Van Giang N. Recent advances in microbial co-culture for production of value-added compounds. 3 Biotech 2022; 12:115. [PMID: 35547018 PMCID: PMC9018925 DOI: 10.1007/s13205-022-03177-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Micro-organisms have often been used to produce bioactive compounds as antibiotics, antifungals, and anti-tumors, etc. due to their easy and applicable culture, genetic manipulation, and extraction, etc. Mainly, microbial mono-cultures have been applied to produce value-added compounds and gotten numerous valuable results. However, mono-culture also has several complicated problems, such as metabolic burdens affecting the growth and development of the host, leading to a decrease in titer of the target compound. To circumvent those limitations, microbial co-culture has been technically developed and gained much interest compared to mono-culture. For example, co-culture simplifies the design of artificial biosynthetic pathways and restricts the recombinant host's metabolic burden, causing increased titer of desired compounds. This paper summarizes the recent advanced progress in applying microbial platform co-culture to produce natural products, such as flavonoid, terpenoid, alkaloid, etc. Furthermore, importantly different strategies for enhancing production, overcoming the metabolic burdens, building autonomous modulation of cell growth rate and culture composition in response to a quorum-sensing signal, etc., were also described in detail.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Center for Molecular Biology, Duy Tan University, Da Nang, 550000 Vietnam
| | | | - Nguyen Xuan Canh
- Faculty of Biotechnology, Vietnam National University of Agriculture, Gialam, Hanoi Vietnam
| | - Nguyen Van Giang
- Faculty of Biotechnology, Vietnam National University of Agriculture, Gialam, Hanoi Vietnam
| |
Collapse
|
125
|
Zhang M, Gong Z, Tang J, Lu F, Li Q, Zhang X. Improving astaxanthin production in Escherichia coli by co-utilizing CrtZ enzymes with different substrate preference. Microb Cell Fact 2022; 21:71. [PMID: 35468798 PMCID: PMC9036794 DOI: 10.1186/s12934-022-01798-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background The bifunctional enzyme β-carotene hydroxylase (CrtZ) catalyzes the hydroxylation of carotenoid β-ionone rings at the 3, 3’ position regardless of the presence of keto group at 4, 4’ position, which is an important step in the synthesis of astaxanthin. The level and substrate preference of CrtZ may have great effect on the amount of astaxanthin and the accumulation of intermediates. Results In this study, the substrate preference of PCcrtZ from Paracoccus sp. PC1 and PAcrtZ from Pantoea Agglomerans were certified and were combined utilization for increase astaxanthin production. Firstly, PCcrtZ from Paracoccus sp. PC1 and PAcrtZ from P. Agglomerans were expressed in platform strains CAR032 (β-carotene producing strain) and Can004 (canthaxanthin producing strain) separately to identify their substrate preference for carotenoids with keto groups at 4,4’ position or not. The results showed that PCcrtZ led to a lower zeaxanthin yield in CAR032 compared to that of PAcrtZ. On the contrary, higher astaxanthin production was obtained in Can004 by PCcrtZ than that of PAcrtZ. This demonstrated that PCCrtZ has higher canthaxanthin to astaxanthin conversion ability than PACrtZ, while PACrtZ prefer using β-carotene as substrate. Finally, Ast010, which has two copies of PAcrtZ and one copy of PCcrtZ produced 1.82 g/L of astaxanthin after 70 h of fed-batch fermentation. Conclusions Combined utilization of crtZ genes, which have β-carotene and canthaxanthin substrate preference respectively, can greatly enhance the production of astaxanthin and increase the ratio of astaxanthin among total carotenoids. Supplementary information The online version contains supplementary material available at 10.1186/s12934-022-01798-1.
Collapse
|
126
|
Liu H, Zhou P, Qi M, Guo L, Gao C, Hu G, Song W, Wu J, Chen X, Chen J, Chen W, Liu L. Enhancing biofuels production by engineering the actin cytoskeleton in Saccharomyces cerevisiae. Nat Commun 2022; 13:1886. [PMID: 35393407 PMCID: PMC8991263 DOI: 10.1038/s41467-022-29560-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/23/2022] [Indexed: 01/03/2023] Open
Abstract
Saccharomyces cerevisiae is widely employed as a cell factory for the production of biofuels. However, product toxicity has hindered improvements in biofuel production. Here, we engineer the actin cytoskeleton in S. cerevisiae to increase both the cell growth and production of n-butanol and medium-chain fatty acids. Actin cable tortuosity is regulated using an n-butanol responsive promoter-based autonomous bidirectional signal conditioner in S. cerevisiae. The budding index is increased by 14.0%, resulting in the highest n-butanol titer of 1674.3 mg L-1. Moreover, actin patch density is fine-tuned using a medium-chain fatty acid responsive promoter-based autonomous bidirectional signal conditioner. The intracellular pH is stabilized at 6.4, yielding the highest medium-chain fatty acids titer of 692.3 mg L-1 in yeast extract peptone dextrose medium. Engineering the actin cytoskeleton in S. cerevisiae can efficiently alleviate biofuels toxicity and enhance biofuels production.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Pei Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Mengya Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Wei Song
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jing Wu
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
127
|
Zheng H, Shu W, Fu X, Wang J, Yang Y, Xu J, Song H, Ma Y. A pyruvate-centered metabolic regulation mechanism for the enhanced expression of exogenous genes in Escherichia coli. Int J Biol Macromol 2022; 203:58-66. [DOI: 10.1016/j.ijbiomac.2022.01.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/22/2022] [Indexed: 11/29/2022]
|
128
|
Zhu D, Qaria MA, Zhu B, Sun J, Yang B. Extremophiles and extremozymes in lignin bioprocessing. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2022; 157:112069. [DOI: 10.1016/j.rser.2021.112069] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
129
|
Van Brempt M, Peeters AI, Duchi D, De Wannemaeker L, Maertens J, De Paepe B, De Mey M. Biosensor-driven, model-based optimization of the orthogonally expressed naringenin biosynthesis pathway. Microb Cell Fact 2022; 21:49. [PMID: 35346204 PMCID: PMC8962593 DOI: 10.1186/s12934-022-01775-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/15/2022] [Indexed: 12/30/2022] Open
Abstract
Background The rapidly expanding synthetic biology toolbox allows engineers to develop smarter strategies to tackle the optimization of complex biosynthetic pathways. In such a strategy, multi-gene pathways are subdivided in several modules which are each dynamically controlled to fine-tune their expression in response to a changing cellular environment. To fine-tune separate modules without interference between modules or from the host regulatory machinery, a sigma factor (σ) toolbox was developed in previous work for tunable orthogonal gene expression. Here, this toolbox is implemented in E. coli to orthogonally express and fine-tune a pathway for the heterologous biosynthesis of the industrially relevant plant metabolite, naringenin. To optimize the production of this pathway, a practical workflow is still imperative to balance all steps of the pathway. This is tackled here by the biosensor-driven screening, subsequent genotyping of combinatorially engineered libraries and finally the training of three different computer models to predict the optimal pathway configuration. Results The efficiency and knowledge gained through this workflow is demonstrated here by improving the naringenin production titer by 32% with respect to a random pathway library screen. Our best strain was cultured in a batch bioreactor experiment and was able to produce 286 mg/L naringenin from glycerol in approximately 26 h. This is the highest reported naringenin production titer in E. coli without the supplementation of pathway precursors to the medium or any precursor pathway engineering. In addition, valuable pathway configuration preferences were identified in the statistical learning process, such as specific enzyme variant preferences and significant correlations between promoter strength at specific steps in the pathway and titer. Conclusions An efficient strategy, powered by orthogonal expression, was applied to successfully optimize a biosynthetic pathway for microbial production of flavonoids in E. coli up to high, competitive levels. Within this strategy, statistical learning techniques were combined with combinatorial pathway optimization techniques and an in vivo high-throughput screening method to efficiently determine the optimal operon configuration of the pathway. This “pathway architecture designer” workflow can be applied for the fast and efficient development of new microbial cell factories for different types of molecules of interest while also providing additional insights into the underlying pathway characteristics. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01775-8.
Collapse
Affiliation(s)
- Maarten Van Brempt
- Centre For Synthetic Biology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Andries Ivo Peeters
- Centre For Synthetic Biology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Dries Duchi
- Centre For Synthetic Biology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Lien De Wannemaeker
- Centre For Synthetic Biology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Jo Maertens
- Centre For Synthetic Biology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Brecht De Paepe
- Centre For Synthetic Biology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Marjan De Mey
- Centre For Synthetic Biology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
130
|
Ganguly J, Martin-Pascual M, Montiel González D, Bulut A, Vermeulen B, Tjalma I, Vidaki A, van Kranenburg R. Breaking the Restriction Barriers and Applying CRISPRi as a Gene Silencing Tool in Pseudoclostridium thermosuccinogenes. Microorganisms 2022; 10:698. [PMID: 35456750 PMCID: PMC9044749 DOI: 10.3390/microorganisms10040698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Pseudoclostridium thermosuccinogenes is a thermophilic bacterium capable of producing succinate from lignocellulosic-derived sugars and has the potential to be exploited as a platform organism. However, exploitation of P. thermosuccinogenes has been limited partly due to the genetic inaccessibility and lack of genome engineering tools. In this study, we established the genetic accessibility for P. thermosuccinogenes DSM 5809. By overcoming restriction barriers, transformation efficiencies of 102 CFU/µg plasmid DNA were achieved. To this end, the plasmid DNA was methylated in vivo when transformed into an engineered E. coli HST04 strain expressing three native methylation systems of the thermophile. This protocol was used to introduce a ThermodCas9-based CRISPRi tool targeting the gene encoding malic enzyme in P. thermosuccinogenes, demonstrating the principle of gene silencing. This resulted in 75% downregulation of its expression and had an impact on the strain's fermentation profile. Although the details of the functioning of the restriction modification systems require further study, in vivo methylation can already be applied to improve transformation efficiency of P. thermosuccinogenes. Making use of the ThermodCas9-based CRISPRi, this is the first example demonstrating that genetic engineering in P. thermosuccinogenes is feasible and establishing the way for metabolic engineering of this bacterium.
Collapse
Affiliation(s)
| | - Maria Martin-Pascual
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (M.M.-P.); (B.V.); (I.T.)
| | - Diego Montiel González
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.M.G.); (A.V.)
| | - Alkan Bulut
- Fontys University of Applied Sciences, 5612 AR Eindhoven, The Netherlands;
| | - Bram Vermeulen
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (M.M.-P.); (B.V.); (I.T.)
| | - Ivo Tjalma
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (M.M.-P.); (B.V.); (I.T.)
| | - Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.M.G.); (A.V.)
| | - Richard van Kranenburg
- Corbion, 4206 AC Gorinchem, The Netherlands;
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (M.M.-P.); (B.V.); (I.T.)
| |
Collapse
|
131
|
Minden S, Aniolek M, Sarkizi Shams Hajian C, Teleki A, Zerrer T, Delvigne F, van Gulik W, Deshmukh A, Noorman H, Takors R. Monitoring Intracellular Metabolite Dynamics in Saccharomyces cerevisiae during Industrially Relevant Famine Stimuli. Metabolites 2022; 12:metabo12030263. [PMID: 35323706 PMCID: PMC8953226 DOI: 10.3390/metabo12030263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon limitation is a common feeding strategy in bioprocesses to enable an efficient microbiological conversion of a substrate to a product. However, industrial settings inherently promote mixing insufficiencies, creating zones of famine conditions. Cells frequently traveling through such regions repeatedly experience substrate shortages and respond individually but often with a deteriorated production performance. A priori knowledge of the expected strain performance would enable targeted strain, process, and bioreactor engineering for minimizing performance loss. Today, computational fluid dynamics (CFD) coupled to data-driven kinetic models are a promising route for the in silico investigation of the impact of the dynamic environment in the large-scale bioreactor on microbial performance. However, profound wet-lab datasets are needed to cover relevant perturbations on realistic time scales. As a pioneering study, we quantified intracellular metabolome dynamics of Saccharomyces cerevisiae following an industrially relevant famine perturbation. Stimulus-response experiments were operated as chemostats with an intermittent feed and high-frequency sampling. Our results reveal that even mild glucose gradients in the range of 100 µmol·L−1 impose significant perturbations in adapted and non-adapted yeast cells, altering energy and redox homeostasis. Apparently, yeast sacrifices catabolic reduction charges for the sake of anabolic persistence under acute carbon starvation conditions. After repeated exposure to famine conditions, adapted cells show 2.7% increased maintenance demands.
Collapse
Affiliation(s)
- Steven Minden
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Maria Aniolek
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Christopher Sarkizi Shams Hajian
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Tobias Zerrer
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Frank Delvigne
- Microbial Processes and Interactions (MiPI), TERRA Research and Teaching Centre, Gembloux Agro Bio Tech, University of Liege, 5030 Gembloux, Belgium;
| | - Walter van Gulik
- Department of Biotechnology, Delft University of Technology, van der Maasweg 6, 2629 HZ Delft, The Netherlands;
| | - Amit Deshmukh
- Royal DSM, 2613 AX Delft, The Netherlands; (A.D.); (H.N.)
| | - Henk Noorman
- Royal DSM, 2613 AX Delft, The Netherlands; (A.D.); (H.N.)
- Department of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
- Correspondence:
| |
Collapse
|
132
|
Qiu Z, Liu X, Li J, Qiao B, Zhao GR. Metabolic Division in an Escherichia coli Coculture System for Efficient Production of Kaempferide. ACS Synth Biol 2022; 11:1213-1227. [PMID: 35167258 DOI: 10.1021/acssynbio.1c00510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kaempferide, a plant-derived natural flavonoid, exhibits excellent pharmacological activities with nutraceutical and medicinal applications in human healthcare. Efficient microbial production of complex flavonoids suffers from metabolic crosstalk and burden, which is a big challenge for synthetic biology. Herein, we identified 4'-O-methyltransferases and divided the artificial biosynthetic pathway of kaempferide into upstream, midstream, and downstream modules. By combining heterologous genes from different sources and fine-tuning the expression, we optimized each module for the production of kaempferide. Furthermore, we designed and evaluated four division patterns of synthetic labor in coculture systems by plug-and-play modularity. The linear division of three modules in a three-strain coculture showed higher productivity of kaempferide than that in two-strain cocultures. The U-shaped division by co-distributing the upstream and downstream modules in one strain led to the best performance of the coculture system, which produced 116.0 ± 3.9 mg/L kaempferide, which was 510, 140, and 50% higher than that produced by the monoculture, two-strain coculture, and three-strain coculture with the linear division, respectively. This is the first report of efficient de novo production of kaempferide in a robust Escherichia coli coculture. The strategy of U-shaped pathway division in the coculture provides a promising way for improving the productivity of valuable and complex natural products.
Collapse
Affiliation(s)
- Zetian Qiu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan
District, Shenzhen 518055, China
| | - Xue Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan
District, Shenzhen 518055, China
| | - Jia Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan
District, Shenzhen 518055, China
| | - Bin Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan
District, Shenzhen 518055, China
| |
Collapse
|
133
|
Rasor BJ, Vögeli B, Jewett MC, Karim AS. Cell-Free Protein Synthesis for High-Throughput Biosynthetic Pathway Prototyping. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2433:199-215. [PMID: 34985746 DOI: 10.1007/978-1-0716-1998-8_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biological systems provide a sustainable and complimentary approach to synthesizing useful chemical products. Metabolic engineers seeking to establish economically viable biosynthesis platforms strive to increase product titers, rates, and yields. Despite continued advances in genetic tools and metabolic engineering techniques, cellular workflows remain limited in throughput. It may take months to test dozens of unique pathway designs even in a robust model organism, such as Escherichia coli. In contrast, cell-free protein synthesis enables the rapid generation of enzyme libraries that can be combined to reconstitute metabolic pathways in vitro for biochemical synthesis in days rather than weeks. Cell-free reactions thereby enable comparison of hundreds to thousands of unique combinations of enzyme homologs and concentrations, which can quickly identify the most productive pathway variants to test in vivo or further characterize in vitro. This cell-free pathway prototyping strategy provides a complementary approach to accelerate cellular metabolic engineering efforts toward highly productive strains for metabolite production.
Collapse
Affiliation(s)
- Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Bastian Vögeli
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, Center for Synthetic Biology, Robert H. Lurie Comprehensive Cancer Center, and Simpson Querrey Institute, Northwestern University, Evanston, IL, USA.
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
134
|
Ye Z, Huang Y, Shi B, Xiang Z, Tian Z, Huang M, Wu L, Deng Z, Shen K, Liu T. Coupling cell growth and biochemical pathway induction in Saccharomyces cerevisiae for production of (+)-valencene and its chemical conversion to (+)-nootkatone. Metab Eng 2022; 72:107-115. [DOI: 10.1016/j.ymben.2022.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022]
|
135
|
Sun ML, Shi TQ, Lin L, Ledesma-Amaro R, Ji XJ. Advancing Yarrowia lipolytica as a superior biomanufacturing platform by tuning gene expression using promoter engineering. BIORESOURCE TECHNOLOGY 2022; 347:126717. [PMID: 35031438 DOI: 10.1016/j.biortech.2022.126717] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Yarrowia lipolytica is recognized as an excellent non-conventional yeast in the field of biomanufacturing, where it is used as a host to produce oleochemicals, terpenes, organic acids, polyols and recombinant proteins. Consequently, metabolic engineering of this yeast is becoming increasingly popular to advance it as a superior biomanufacturing platform, of which promoters are the most basic elements for tuning gene expression. Endogenous promoters of Yarrowia lipolytica were reviewed, which are the basis for promoter engineering. The engineering strategies, such as hybrid promoter engineering, intron enhancement promoter engineering, and transcription factor-based inducible promoter engineering are described. Additionally, the applications of Yarrowia lipolytica promoter engineering to rationally reconstruct biosynthetic gene clusters and improve the genome-editing efficiency of the CRISPR-Cas systems were reviewed. Finally, research needs and future directions for promoter engineering are also discussed in this review.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
136
|
Hussain MH, Mohsin MZ, Zaman WQ, Yu J, Zhao X, Wei Y, Zhuang Y, Mohsin A, Guo M. Multiscale engineering of microbial cell factories: A step forward towards sustainable natural products industry. Synth Syst Biotechnol 2022; 7:586-601. [PMID: 35155840 PMCID: PMC8816652 DOI: 10.1016/j.synbio.2021.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
Microbial cell factories (bacteria and fungi) are the leading producers of beneficial natural products such as lycopene, carotene, herbal medicine, and biodiesel etc. These microorganisms are considered efficient due to their effective bioprocessing strategy (monoculture- and consortial-based approach) under distinct processing conditions. Meanwhile, the advancement in genetic and process optimization techniques leads to enhanced biosynthesis of natural products that are known functional ingredients with numerous applications in the food, cosmetic and medical industries. Natural consortia and monoculture thrive in nature in a small proportion, such as wastewater, food products, and soils. In similitude to natural consortia, it is possible to engineer artificial microbial consortia and program their behaviours via synthetic biology tools. Therefore, this review summarizes the optimization of genetic and physicochemical parameters of the microbial system for improved production of natural products. Also, this review presents a brief history of natural consortium and describes the functional properties of monocultures. This review focuses on synthetic biology tools that enable new approaches to design synthetic consortia; and highlights the syntropic interactions that determine the performance and stability of synthetic consortia. In particular, the effect of processing conditions and advanced genetic techniques to improve the productibility of both monoculture and consortial based systems have been greatly emphasized. In this context, possible strategies are also discussed to give an insight into microbial engineering for improved production of natural products in the future. In summary, it is concluded that the coupling of genomic modifications with optimum physicochemical factors would be promising for producing a robust microbial cell factory that shall contribute to the increased production of natural products.
Collapse
Affiliation(s)
- Muhammad Hammad Hussain
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Waqas Qamar Zaman
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Junxiong Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xueli Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yanlong Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Corresponding author. East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, PR China.
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Corresponding author. P.O. box 329#, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, PR China.
| |
Collapse
|
137
|
Japanese encephalitis genotype I virus-like particles stably expressed in BHK-21 cells serves as potential antigen in JE IgM ELISA. Appl Microbiol Biotechnol 2022; 106:1945-1955. [PMID: 35175398 PMCID: PMC8979883 DOI: 10.1007/s00253-022-11825-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 11/23/2022]
Abstract
Abstract
Japanese encephalitis virus (JEV) is one of the leading causes of epidemic encephalitis in South Asian countries. Due to the short-term viremia, detecting IgM antibodies by ELISA is treated as the front-line diagnostic assay. Co-circulation and multiple exposures to antigenically cross-reactive flaviviruses in India pose a challenge in serodiagnosis. Replacing the whole virus antigen currently used in the JE IgM detection kits (ELISA) may improve the specificity and sensitivity of the existing JE MAC ELISA kits. For this purpose, we developed a stably transfected cell clone, BHK-IE6, which expresses a high amount of VLPs up to 37 µg/ml and is consistent in expression up to 40 passages. For the expression of VLPs in the secretory form, we cloned the JEV G-I prM-E coding gene along with the C-terminal signal sequence of capsid protein in the BHK-21 cells using the pcDNA3.1 + mammalian expression vector. The immune assays performed demonstrated its immune reactivity equivalent to the parental JEV strain. Simultaneously performed ELISAs using the whole virus antigen and newly developed antigen gave comparable results for JE positive and negative samples, which established the utility of developed JEV E-VLP as an antigen. Reduced cross-reactivity and increased specificity were observed when tested with dual positive sera for anti-JEV and DENV antibodies. These findings confirm the efficiency and reliability of newly developed recombinant E-VLP antigen expressed by the BHK-IE6 cell clone as an antigen in serodiagnostic assays. The implementation and progress in developing cross-reactivity-reduced antigens would improve serodiagnosis and disease burden estimates of flavivirus infection. Key points • pcDNA3.1/JE-Sig-prM-E plasmid transfected BHK-21 cells stably express VLPs. • Sodium butyrate induction enhanced the extracellular expression of VLPs. • Application of JEV-E VLPs increases the specificity of JE IgM ELISA. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11825-1.
Collapse
|
138
|
Engineering eukaryote-like regulatory circuits to expand artificial control mechanisms for metabolic engineering in Saccharomyces cerevisiae. Commun Biol 2022; 5:135. [PMID: 35173283 PMCID: PMC8850539 DOI: 10.1038/s42003-022-03070-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
Temporal control of heterologous pathway expression is critical to achieve optimal efficiency in microbial metabolic engineering. The broadly-used GAL promoter system for engineered yeast (Saccharomyces cerevisiae) suffers from several drawbacks; specifically, unintended induction during laboratory development, and unintended repression in industrial production applications, which decreases overall production capacity. Eukaryotic synthetic circuits have not been well examined to address these problems. Here, we explore a modularised engineering method to deploy new genetic circuits applicable for expanding the control of GAL promoter-driven heterologous pathways in S. cerevisiae. Trans- and cis- modules, including eukaryotic trans-activating-and-repressing mechanisms, were characterised to provide new and better tools for circuit design. A eukaryote-like tetracycline-mediated circuit that delivers stringent repression was engineered to minimise metabolic burden during strain development and maintenance. This was combined with a novel 37 °C induction circuit to relief glucose-mediated repression on the GAL promoter during the bioprocess. This delivered a 44% increase in production of the terpenoid nerolidol, to 2.54 g L-1 in flask cultivation. These negative/positive transcriptional regulatory circuits expand global strategies of metabolic control to facilitate laboratory maintenance and for industry applications.
Collapse
|
139
|
Xu J, Wang B, Wang MQ, Gao JJ, Li ZJ, Tian YS, Peng RH, Yao QH. Metabolic Engineering of Escherichia coli for Methyl Parathion Degradation. Front Microbiol 2022; 13:679126. [PMID: 35222319 PMCID: PMC8874220 DOI: 10.3389/fmicb.2022.679126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Organophosphate compounds are widely used in pesticides to control weeds, crop diseases, and insect pests. Unfortunately, these synthetic compounds are hazardous and toxic to all types of living organisms. In the present work, Escherichia coli was bioengineered to achieve methyl parathion (MP) degradation via the introduction of six synthetic genes, namely, opdS, pnpAS, pnpBS, pnpCS, pnpDS, and pnpES, to obtain a new transformant, BL-MP. MP and its subsequent decomposition intermediates were completely degraded by this transformant to enter the metabolites of multiple anabolic pathways. The MP-degraded strain created in this study may be a promising candidate for the bioremediation of MP and potential toxic intermediates.
Collapse
|
140
|
Komera I, Gao C, Guo L, Hu G, Chen X, Liu L. Bifunctional optogenetic switch for improving shikimic acid production in E. coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:13. [PMID: 35418155 PMCID: PMC8822657 DOI: 10.1186/s13068-022-02111-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Biomass formation and product synthesis decoupling have been proven to be promising to increase the titer of desired value add products. Optogenetics provides a potential strategy to develop light-induced circuits that conditionally control metabolic flux redistribution for enhanced microbial production. However, the limited number of light-sensitive proteins available to date hinders the progress of light-controlled tools. RESULTS To address these issues, two optogenetic systems (TPRS and TPAS) were constructed by reprogramming the widely used repressor TetR and protease TEVp to expand the current optogenetic toolkit. By merging the two systems, a bifunctional optogenetic switch was constructed to enable orthogonally regulated gene transcription and protein accumulation. Application of this bifunctional switch to decouple biomass formation and shikimic acid biosynthesis allowed 35 g/L of shikimic acid production in a minimal medium from glucose, representing the highest titer reported to date by E. coli without the addition of any chemical inducers and expensive aromatic amino acids. This titer was further boosted to 76 g/L when using rich medium fermentation. CONCLUSION The cost effective and light-controlled switch reported here provides important insights into environmentally friendly tools for metabolic pathway regulation and should be applicable to the production of other value-add chemicals.
Collapse
Affiliation(s)
- Irene Komera
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. .,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
141
|
Correa-Aragunde N, Nejamkin A, Del Castello F, Foresi N, Lamattina L. Nitric oxide synthases from photosynthetic organisms improve growth and confer nitrosative stress tolerance in E. coli. Insights on the pterin cofactor. Nitric Oxide 2022; 119:41-49. [PMID: 34942379 DOI: 10.1016/j.niox.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
Nitric oxide synthase (NOS) catalyzes NO formation from the substrate l-arginine (Arg). Previously, NOS with distinct biochemical properties were characterized from two photosynthetic microorganisms, the unicellular algae Ostreococcus tauri (OtNOS) and the cyanobacteria Synechococcus PCC 7335 (SyNOS). In this work we studied the effect of recombinant OtNOS and SyNOS expressed under IPTG-induced promoter in E. coli, a bacterium that lacks NOS. Results show that OtNOS and SyNOS expression promote E. coli growth in a nutrient replete medium and allow to better metabolize Arg as N source. In LB medium, OtNOS induces the expression of the NO dioxygenase hmp in E. coli, in accordance with high NO levels visualized with the probe DAF-FM DA. In contrast, SyNOS expression does not induce hmp and show a slight increase of NO production compared to OtNOS. NOS expression reduces ROS production and increases viability of E. coli cultures growing in LB. A strong nitrosative stress provoked by the addition of 1 mM of the NO donors sodium nitroprusside (SNP) and nitrosoglutathione (GSNO) inhibits bacterial growth rate. Under these conditions, the expression of OtNOS or SyNOS counteracts NO donor toxicity restoring bacterial growth. Finally, using bioinformatic tools and ligand docking analyses, we postulate that tetrahydromonapterin (MH4), an endogenous pterin found in E. coli, could act as cofactor required for NOS catalytic activity. Our findings could be useful for the development of biotechnological applications using NOS expression to improve growth in NOS-lacking bacteria.
Collapse
Affiliation(s)
- Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, CC1245, Mar del Plata, Argentina.
| | - Andrés Nejamkin
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, CC1245, Mar del Plata, Argentina
| | - Fiorella Del Castello
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, CC1245, Mar del Plata, Argentina
| | - Noelia Foresi
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, CC1245, Mar del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, CC1245, Mar del Plata, Argentina.
| |
Collapse
|
142
|
Ma Y, Liu N, Greisen P, Li J, Qiao K, Huang S, Stephanopoulos G. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica. Nat Commun 2022; 13:572. [PMID: 35102143 PMCID: PMC8803881 DOI: 10.1038/s41467-022-28277-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/11/2022] [Indexed: 01/28/2023] Open
Abstract
Substrate inhibition of enzymes can be a major obstacle to the production of valuable chemicals in engineered microorganisms. Here, we show substrate inhibition of lycopene cyclase as the main limitation in carotenoid biosynthesis in Yarrowia lipolytica. To overcome this bottleneck, we exploit two independent approaches. Structure-guided protein engineering yields a variant, Y27R, characterized by complete loss of substrate inhibition without reduction of enzymatic activity. Alternatively, establishing a geranylgeranyl pyrophosphate synthase-mediated flux flow restrictor also prevents the onset of substrate inhibition by diverting metabolic flux away from the inhibitory metabolite while maintaining sufficient flux towards product formation. Both approaches result in high levels of near-exclusive β-carotene production. Ultimately, we construct strains capable of producing 39.5 g/L β-carotene at a productivity of 0.165 g/L/h in bioreactor fermentations (a 1441-fold improvement over the initial strain). Our findings provide effective approaches for removing substrate inhibition in engineering pathways for efficient synthesis of natural products. Substrate inhibition has not been widely studied in the context of synthetic biology and metabolic engineering. Here, the authors report removal of lycopene substrate inhibition by two different strategies and enable high carotenoid productivity in Yarrowia lipolytica.
Collapse
|
143
|
Bin-Jumah MN, Nadeem MS, Gilani SJ, Al-Abbasi FA, Ullah I, Alzarea SI, Ghoneim MM, Alshehri S, Uddin A, Murtaza BN, Kazmi I. Genes and Longevity of Lifespan. Int J Mol Sci 2022; 23:1499. [PMID: 35163422 PMCID: PMC8836117 DOI: 10.3390/ijms23031499] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex process indicated by low energy levels, declined physiological activity, stress induced loss of homeostasis leading to the risk of diseases and mortality. Recent developments in medical sciences and an increased availability of nutritional requirements has significantly increased the average human lifespan worldwide. Several environmental and physiological factors contribute to the aging process. However, about 40% human life expectancy is inherited among generations, many lifespan associated genes, genetic mechanisms and pathways have been demonstrated during last decades. In the present review, we have evaluated many human genes and their non-human orthologs established for their role in the regulation of lifespan. The study has included more than fifty genes reported in the literature for their contributions to the longevity of life. Intact genomic DNA is essential for the life activities at the level of cell, tissue, and organ. Nucleic acids are vulnerable to oxidative stress, chemotherapies, and exposure to radiations. Efficient DNA repair mechanisms are essential for the maintenance of genomic integrity, damaged DNA is not replicated and transferred to next generations rather the presence of deleterious DNA initiates signaling cascades leading to the cell cycle arrest or apoptosis. DNA modifications, DNA methylation, histone methylation, histone acetylation and DNA damage can eventually lead towards apoptosis. The importance of calorie restriction therapy in the extension of lifespan has also been discussed. The role of pathways involved in the regulation of lifespan such as DAF-16/FOXO (forkhead box protein O1), TOR and JNK pathways has also been particularized. The study provides an updated account of genetic factors associated with the extended lifespan and their interactive contributory role with cellular pathways.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Aziz Uddin
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan;
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
144
|
Fordjour E, Mensah EO, Hao Y, Yang Y, Liu X, Li Y, Liu CL, Bai Z. Toward improved terpenoids biosynthesis: strategies to enhance the capabilities of cell factories. BIORESOUR BIOPROCESS 2022; 9:6. [PMID: 38647812 PMCID: PMC10992668 DOI: 10.1186/s40643-022-00493-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/04/2022] [Indexed: 02/22/2023] Open
Abstract
Terpenoids form the most diversified class of natural products, which have gained application in the pharmaceutical, food, transportation, and fine and bulk chemical industries. Extraction from naturally occurring sources does not meet industrial demands, whereas chemical synthesis is often associated with poor enantio-selectivity, harsh working conditions, and environmental pollutions. Microbial cell factories come as a suitable replacement. However, designing efficient microbial platforms for isoprenoid synthesis is often a challenging task. This has to do with the cytotoxic effects of pathway intermediates and some end products, instability of expressed pathways, as well as high enzyme promiscuity. Also, the low enzymatic activity of some terpene synthases and prenyltransferases, and the lack of an efficient throughput system to screen improved high-performing strains are bottlenecks in strain development. Metabolic engineering and synthetic biology seek to overcome these issues through the provision of effective synthetic tools. This review sought to provide an in-depth description of novel strategies for improving cell factory performance. We focused on improving transcriptional and translational efficiencies through static and dynamic regulatory elements, enzyme engineering and high-throughput screening strategies, cellular function enhancement through chromosomal integration, metabolite tolerance, and modularization of pathways.
Collapse
Affiliation(s)
- Eric Fordjour
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Emmanuel Osei Mensah
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yunpeng Hao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Ye Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Chun-Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
145
|
Iron metabolism protein transferrin receptor 1 involves in cervical cancer progression by affecting gene expression and alternative splicing in HeLa cells. Genes Genomics 2022; 44:637-650. [DOI: 10.1007/s13258-021-01205-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023]
|
146
|
Sasaki Y, Yoshikuni Y. Metabolic engineering for valorization of macroalgae biomass. Metab Eng 2022; 71:42-61. [PMID: 35077903 DOI: 10.1016/j.ymben.2022.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/18/2022]
Abstract
Marine macroalgae have huge potential as feedstocks for production of a wide spectrum of chemicals used in biofuels, biomaterials, and bioactive compounds. Harnessing macroalgae in these ways could promote wellbeing for people while mitigating climate change and environmental destruction linked to use of fossil fuels. Microorganisms play pivotal roles in converting macroalgae into valuable products, and metabolic engineering technologies have been developed to extend their native capabilities. This review showcases current achievements in engineering the metabolisms of various microbial chassis to convert red, green, and brown macroalgae into bioproducts. Unique features of macroalgae, such as seasonal variation in carbohydrate content and salinity, provide the next challenges to advancing macroalgae-based biorefineries. Three emerging engineering strategies are discussed here: (1) designing dynamic control of metabolic pathways, (2) engineering strains of halophilic (salt-tolerant) microbes, and (3) developing microbial consortia for conversion. This review illuminates opportunities for future research communities by elucidating current approaches to engineering microbes so they can become cell factories for the utilization of macroalgae feedstocks.
Collapse
Affiliation(s)
- Yusuke Sasaki
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido, 060-8589, Japan.
| |
Collapse
|
147
|
Gronchi N, De Bernardini N, Cripwell RA, Treu L, Campanaro S, Basaglia M, Foulquié-Moreno MR, Thevelein JM, Van Zyl WH, Favaro L, Casella S. Natural Saccharomyces cerevisiae Strain Reveals Peculiar Genomic Traits for Starch-to-Bioethanol Production: the Design of an Amylolytic Consolidated Bioprocessing Yeast. Front Microbiol 2022; 12:768562. [PMID: 35126325 PMCID: PMC8815085 DOI: 10.3389/fmicb.2021.768562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Natural yeast with superior fermentative traits can serve as a platform for the development of recombinant strains that can be used to improve the sustainability of bioethanol production from starch. This process will benefit from a consolidated bioprocessing (CBP) approach where an engineered strain producing amylases directly converts starch into ethanol. The yeast Saccharomyces cerevisiae L20, previously selected as outperforming the benchmark yeast Ethanol Red, was here subjected to a comparative genomic investigation using a dataset of industrial S. cerevisiae strains. Along with Ethanol Red, strain L20 was then engineered for the expression of α-amylase amyA and glucoamylase glaA genes from Aspergillus tubingensis by employing two different approaches (delta integration and CRISPR/Cas9). A correlation between the number of integrated copies and the hydrolytic abilities of the recombinants was investigated. L20 demonstrated important traits for the construction of a proficient CBP yeast. Despite showing a close relatedness to commercial wine yeast and the benchmark Ethanol Red, a unique profile of gene copy number variations (CNVs) was found in L20, mainly encoding membrane transporters and secretion pathway proteins but also the fermentative metabolism. Moreover, the genome annotation disclosed seven open reading frames (ORFs) in L20 that are absent in the reference S288C genome. Genome engineering was successfully implemented for amylase production. However, with equal amylase gene copies, L20 proved its proficiency as a good enzyme secretor by exhibiting a markedly higher amylolytic activity than Ethanol Red, in compliance to the findings of the genomic exploration. The recombinant L20 dT8 exhibited the highest amylolytic activity and produced more than 4 g/L of ethanol from 2% starch in a CBP setting without the addition of supplementary enzymes. Based on the performance of this strain, an amylase/glucoamylase ratio of 1:2.5 was suggested as baseline for further improvement of the CBP ability. Overall, L20 showed important traits for the future construction of a proficient CBP yeast. As such, this work shows that natural S. cerevisiae strains can be used for the expression of foreign secreted enzymes, paving the way to strain improvement for the starch-to-bioethanol route.
Collapse
Affiliation(s)
- Nicoletta Gronchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, Italy
| | | | - Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Laura Treu
- Department of Biology, University of Padua, Padua, Italy
| | | | - Marina Basaglia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, Italy
| | | | - Johan M Thevelein
- Department of Molecular Microbiology, VIB, KU Leuven, Leuven, Belgium
- NovelYeast Bv, Open Bio-Incubator, Erasmus High School, Jette, Belgium
| | - Willem H Van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Lorenzo Favaro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, Italy
| | - Sergio Casella
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, Italy
| |
Collapse
|
148
|
Liu J, Liu J, Guo L, Liu J, Chen X, Liu L, Gao C. Advances in microbial synthesis of bioplastic monomers. ADVANCES IN APPLIED MICROBIOLOGY 2022; 119:35-81. [DOI: 10.1016/bs.aambs.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
149
|
Li C, Jiang T, Li M, Zou Y, Yan Y. Fine-tuning gene expression for improved biosynthesis of natural products: From transcriptional to post-translational regulation. Biotechnol Adv 2022; 54:107853. [PMID: 34637919 PMCID: PMC8724446 DOI: 10.1016/j.biotechadv.2021.107853] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/08/2023]
Abstract
Microbial production of natural compounds has attracted extensive attention due to their high value in pharmaceutical, cosmetic, and food industries. Constructing efficient microbial cell factories for biosynthesis of natural products requires the fine-tuning of gene expressions to minimize the accumulation of toxic metabolites, reduce the competition between cell growth and product generation, as well as achieve the balance of redox or co-factors. In this review, we focus on recent advances in fine-tuning gene expression at the DNA, RNA, and protein levels to improve the microbial biosynthesis of natural products. Commonly used regulatory toolsets in each level are discussed, and perspectives for future direction in this area are provided.
Collapse
Affiliation(s)
- Chenyi Li
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Michelle Li
- North Oconee High School, Bogart, GA 30622, USA
| | - Yusong Zou
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
150
|
Kawai R, Toya Y, Miyoshi K, Murakami M, Niide T, Horinouchi T, Maeda T, Shibai A, Furusawa C, Shimizu H. Acceleration of target production in co-culture by enhancing intermediate consumption through adaptive laboratory evolution. Biotechnol Bioeng 2021; 119:936-945. [PMID: 34914093 DOI: 10.1002/bit.28007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022]
Abstract
Co-culture is a promising way to alleviate metabolic burden by dividing the metabolic pathways into several modules and sharing the conversion processes with multiple strains. Since an intermediate is passed from the donor to the recipient via the extracellular environment, it is inevitably diluted. Therefore, enhancing the intermediate consumption rate is important for increasing target productivity. In the present study, we demonstrated the enhancement of mevalonate consumption in Escherichia coli by adaptive laboratory evolution and applied the evolved strain to isoprenol production in an E. coli (upstream: glucose to mevalonate)-E. coli (downstream: mevalonate to isoprenol) co-culture. An engineered mevalonate auxotroph strain was repeatedly sub-cultured in a synthetic medium supplemented with mevalonate, where the mevalonate concentration was decreased stepwise from 100 to 20 µM. In five parallel evolution experiments, all growth rates gradually increased, resulting in five evolved strains. Whole-genome re-sequencing and reverse engineering identified three mutations involved in enhancing mevalonate consumption. After introducing nudF gene for producing isoprenol, the isoprenol-producing parental and evolved strains were respectively co-cultured with a mevalonate-producing strain. At an inoculation ratio of 1:3 (upstream:downstream), isoprenol production using the evolved strain was 3.3 times higher than that using the parental strain.
Collapse
Affiliation(s)
- Ryutaro Kawai
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Kenta Miyoshi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Manami Murakami
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Teppei Niide
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | | | - Tomoya Maeda
- RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Atsushi Shibai
- RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Chikara Furusawa
- RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan.,Department of Physics, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| |
Collapse
|