101
|
X chromosome regulation of autosomal gene expression in bovine blastocysts. Chromosoma 2014; 123:481-9. [PMID: 24817096 DOI: 10.1007/s00412-014-0461-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
Abstract
Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here, we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions between X chromosome and autosomal genes. Whereas male-to-female ratios of expression of autosomal genes were distributed around a mean of 1, X chromosome genes were clearly shifted towards higher expression in females. We generated gene coexpression networks and identified a major module of genes with correlated gene expression that includes female-biased X genes and sexually dimorphic autosomal genes for which the sexual dimorphism is likely driven by the X genes. In this module, expression of X chromosome genes correlates with autosome genes, more than the expression of autosomal genes with each other. Our study identifies correlated patterns of autosomal and X-linked genes that are likely influenced by the sexual imbalance of X gene expression when X inactivation is inefficient.
Collapse
|
102
|
Abstract
Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations.
Collapse
|
103
|
Deng X, Berletch JB, Nguyen DK, Disteche CM. X chromosome regulation: diverse patterns in development, tissues and disease. Nat Rev Genet 2014. [PMID: 24733023 DOI: 10.1038/nrg3687,+10.1038/nrn3745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations.
Collapse
Affiliation(s)
- Xinxian Deng
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Joel B Berletch
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Di K Nguyen
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Christine M Disteche
- 1] Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA. [2] Department of Medicine, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| |
Collapse
|
104
|
Li J, Chen X, McClusky R, Ruiz-Sundstrom M, Itoh Y, Umar S, Arnold AP, Eghbali M. The number of X chromosomes influences protection from cardiac ischaemia/reperfusion injury in mice: one X is better than two. Cardiovasc Res 2014; 102:375-84. [PMID: 24654234 DOI: 10.1093/cvr/cvu064] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIM Sex differences in coronary heart disease have been attributed to sex hormones, whereas the potential role of the sex chromosomes has been ignored so far. Here, we investigated the role of the sex chromosomes in causing sex differences in myocardial ischaemia/reperfusion (I/R) injury. METHODS AND RESULTS We used two unique mouse models, the 'four core genotypes' [XX mice with ovaries (XXF) or testes (XXM) and XY mice with ovaries (XYF) or testes (XYM)] and XY* (gonadal male or female mice with one or two X chromosomes). All mice were gonadectomized (GDX). In vivo or isolated Langendorff-perfused hearts were subjected to I/R injury. The in vivo infarct size in XY mice was significantly smaller than XX mice regardless of their gonadal type (24.5 ± 4.1% in XYF and 21.8 ± 3.3% in XYM vs. 37.0 ± 3.2% in XXF and 35.5 ± 2.1% in XXM, P < 0.01). Consistent with the results in vivo, the infarct size was markedly smaller and cardiac functional recovery was significantly better in XY mice compared with XX ex vivo. The mitochondrial calcium retention capacity was significantly higher in XY compared with XX mice (nmol/mg protein: XXF = 126 ± 9 and XXM = 192 ± 45 vs. XYF = 250 ± 56 and XYM = 286 ± 51, P < 0.05). In XY* mice, mice with 2X chromosomes had larger infarct size (2X females = 41.4 ± 8.9% and 2X males = 46.3 ± 9.5% vs. 1X females = 23.7 ± 3.9% and 1X males = 26.6 ± 6.9%, P < 0.05) and lower heart functional recovery, compared with those with 1X chromosome. Several X genes that escape X inactivation (Eif2s3x, Kdm6a, and Kdm5c) showed higher expression in XX than in XY hearts. CONCLUSION XX mice have higher vulnerability to I/R injury compared with XY mice, which is due to the number of X chromosomes rather than the absence of the Y chromosome.
Collapse
Affiliation(s)
- Jingyuan Li
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, BH-160CHS, Los Angeles, CA 90095-7115, USA
| | - Xuqi Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rebecca McClusky
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Maureen Ruiz-Sundstrom
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuichiro Itoh
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Soban Umar
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, BH-160CHS, Los Angeles, CA 90095-7115, USA
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, BH-160CHS, Los Angeles, CA 90095-7115, USA Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
105
|
Renfree MB, Chew KY, Shaw G. Hormone-independent pathways of sexual differentiation. Sex Dev 2014; 8:327-36. [PMID: 24577198 DOI: 10.1159/000358447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
New observations over the last 25 years of hormone-independent sexual dimorphisms have gradually and unequivocally overturned the dogma, arising from Jost's elegant experiments in the mid-1900s, that all somatic sex dimorphisms in vertebrates arise from the action of gonadal hormones. Although we know that Sry, a Y-linked gene, is the primary gonadal sex determinant in mammals, more recent analysis in marsupials, mice, and finches has highlighted numerous sexual dimorphisms that are evident well before the differentiation of the testis and which cannot be explained by a sexually dimorphic hormonal environment. In marsupials, scrotal bulges and mammary primordia are visible before the testis has differentiated due to the expression of a gene(s) on the X chromosome. ZZ and ZW gynandromorph finches have brains that develop in a sexually dimorphic way dependent on their sex chromosome content. In genetically manipulated mice, it is the X chromosomes, not the gonads, that determine many characters including rate of early development, adiposity, and neural circuits. Even spotted hyenas have sexual dimorphisms that cannot be simply explained by hormonal exposure. This review discusses the recent findings that confirm that there are hormone-independent sexual dimorphisms well before the gonads begin to produce their hormones.
Collapse
Affiliation(s)
- Marilyn B Renfree
- Department of Zoology, The University of Melbourne, Melbourne, Vic., Australia
| | | | | |
Collapse
|
106
|
Sex-biased chromatin and regulatory cross-talk between sex chromosomes, autosomes, and mitochondria. Biol Sex Differ 2014; 5:2. [PMID: 24422881 PMCID: PMC3907150 DOI: 10.1186/2042-6410-5-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/29/2013] [Indexed: 02/07/2023] Open
Abstract
Several autoimmune and neurological diseases exhibit a sex bias, but discerning the causes and mechanisms of these biases has been challenging. Sex differences begin to manifest themselves in early embryonic development, and gonadal differentiation further bifurcates the male and female phenotypes. Even at this early stage, however, there is evidence that males and females respond to environmental stimuli differently, and the divergent phenotypic responses may have consequences later in life. The effect of prenatal nutrient restriction illustrates this point, as adult women exposed to prenatal restrictions exhibited increased risk factors of cardiovascular disease, while men exposed to the same condition did not. Recent research has examined the roles of sex-specific genes, hormones, chromosomes, and the interactions among them in mediating sex-biased phenotypes. Such research has identified testosterone, for example, as a possible protective agent against autoimmune disorders and an XX chromosome complement as a susceptibility factor in murine models of lupus and multiple sclerosis. Sex-biased chromatin is an additional and likely important component. Research suggesting a role for X and Y chromosome heterochromatin in regulating epigenetic states of autosomes has highlighted unorthodox mechanisms of gene regulation. The crosstalk between the Y chromosomes and autosomes may be further mediated by the mitochondria. The organelles have solely maternal transmission and exert differential effects on males and females. Altogether, research supports the notion that the interaction between sex-biased elements might exert novel regulatory functions in the genome and contribute to sex-specific susceptibilities to autoimmune and neurological diseases.
Collapse
|
107
|
Goldstein JM, Handa RJ, Tobet SA. Disruption of fetal hormonal programming (prenatal stress) implicates shared risk for sex differences in depression and cardiovascular disease. Front Neuroendocrinol 2014; 35:140-58. [PMID: 24355523 PMCID: PMC3917309 DOI: 10.1016/j.yfrne.2013.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 10/31/2013] [Accepted: 12/04/2013] [Indexed: 12/19/2022]
Abstract
Comorbidity of major depressive disorder (MDD) and cardiovascular disease (CVD) represents the fourth leading cause of morbidity and mortality worldwide, and women have a two times greater risk than men. Thus understanding the pathophysiology has widespread implications for attenuation and prevention of disease burden. We suggest that sex-dependent MDD-CVD comorbidity may result from alterations in fetal programming consequent to the prenatal maternal environments that produce excess glucocorticoids, which then drive sex-dependent developmental alterations of the fetal hypothalamic-pituitary-adrenal (HPA) axis circuitry impacting mood, stress regulation, autonomic nervous system (ANS), and the vasculature in adulthood. Evidence is consistent with the hypothesis that disruptions of pathways associated with gamma aminobutyric acid (GABA) in neuronal and vascular development and growth factors have critical roles in key developmental periods and adult responses to injury in heart and brain. Understanding the potential fetal origins of these sex differences will contribute to development of novel sex-dependent therapeutics.
Collapse
Affiliation(s)
- J M Goldstein
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA; Brigham and Women's Hospital (BWH), Connors Center for Women's Health & Gender Biology, 1620 Tremont St. BC-3-34, Boston, MA 02120, USA; BWH, Departments of Psychiatry and Medicine, 1620 Tremont St. BC-3-34, Boston, MA 02120, USA.
| | - R J Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N. Fifth Street, Phoenix, AZ 85004, USA
| | - S A Tobet
- Department of Biomedical Sciences and School of Biomedical Engineering, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
108
|
Bailey M, Silver R. Sex differences in circadian timing systems: implications for disease. Front Neuroendocrinol 2014; 35:111-39. [PMID: 24287074 PMCID: PMC4041593 DOI: 10.1016/j.yfrne.2013.11.003] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/13/2013] [Accepted: 11/17/2013] [Indexed: 12/22/2022]
Abstract
Virtually every eukaryotic cell has an endogenous circadian clock and a biological sex. These cell-based clocks have been conceptualized as oscillators whose phase can be reset by internal signals such as hormones, and external cues such as light. The present review highlights the inter-relationship between circadian clocks and sex differences. In mammals, the suprachiasmatic nucleus (SCN) serves as a master clock synchronizing the phase of clocks throughout the body. Gonadal steroid receptors are expressed in almost every site that receives direct SCN input. Here we review sex differences in the circadian timing system in the hypothalamic-pituitary-gonadal axis (HPG), the hypothalamic-adrenal-pituitary (HPA) axis, and sleep-arousal systems. We also point to ways in which disruption of circadian rhythms within these systems differs in the sexes and is associated with dysfunction and disease. Understanding sex differentiated circadian timing systems can lead to improved treatment strategies for these conditions.
Collapse
Affiliation(s)
- Matthew Bailey
- Department of Psychology, Columbia University, United States.
| | - Rae Silver
- Department of Psychology, Columbia University, United States; Department of Psychology, Barnard College, United States; Department of Pathology and Cell Biology, Columbia University Medical Center, United States.
| |
Collapse
|
109
|
The variety of vertebrate mechanisms of sex determination. BIOMED RESEARCH INTERNATIONAL 2013; 2013:587460. [PMID: 24369014 PMCID: PMC3867867 DOI: 10.1155/2013/587460] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 09/26/2013] [Accepted: 10/28/2013] [Indexed: 12/23/2022]
Abstract
The review deals with features of sex determination in vertebrates. The mechanisms of sex determination are compared between fishes, amphibians, reptilians, birds, and mammals. We focus on structural and functional differences in the role of sex-determining genes in different vertebrates. Special attention is paid to the role of estrogens in sex determination in nonmammalian vertebrates.
Collapse
|
110
|
Johnson RT, Breedlove SM, Jordan CL. Androgen receptors mediate masculinization of astrocytes in the rat posterodorsal medial amygdala during puberty. J Comp Neurol 2013; 521:2298-309. [PMID: 23239016 DOI: 10.1002/cne.23286] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 12/03/2012] [Accepted: 12/11/2012] [Indexed: 11/07/2022]
Abstract
Astrocytes in the posterodorsal portion of the medial amygdala (MePD) are sexually dimorphic in adult rats: males have more astrocytes in the right MePD and more elaborate processes in the left MePD than do females. Functional androgen receptors (ARs) are required for masculinization of MePD astrocytes, as these measures are demasculinized in adult males carrying the testicular feminization mutation (Tfm) of the AR gene, which renders AR dysfunctional. We now report that the number of astrocytes is already sexually dimorphic in the right MePD of juvenile 25-day-old (P25) rats. Because Tfm males have as many astrocytes as wild-type males at this age, this prepubertal sexual dimorphism is independent of ARs. After P25, astrocyte number increases in the MePD of all groups, but activation of ARs augments this increase in the right MePD, where more astrocytes are added in males than in Tfm males. Consequently, by adulthood, females and Tfm males have equivalent numbers of astrocytes in the right MePD. Sexual dimorphism in astrocyte arbor complexity in the left MePD arises after P25, and is entirely AR-dependent. Thus, masculinization of MePD astrocytes is a result of both AR-independent processes before the juvenile period and AR-dependent processes afterward.
Collapse
Affiliation(s)
- Ryan T Johnson
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824-1101, USA.
| | | | | |
Collapse
|
111
|
Abstract
As for many human diseases, the incidence of obesity and its associated health risks are sexually dimorphic: worldwide the rate of obesity is higher in women. Sex differences in metabolism, appetite, body composition, and fat deposition are contributing biological factors. Gonadal hormones regulate the development of many sexually dimorphic traits in humans and animals, and, in addition, studies in mice indicate a role for direct genetic effects of sex chromosome dosage on body weight, deposition of fat, and circadian timing of feeding behavior. Specifically, mice of either sex with 2 X chromosomes, typical of normal females, have heavier body weights, gain more weight, and eat more food during the light portion of the day than mice of either sex with a single X chromosome. Here we test the effects of X chromosome dosage on body weight and report that gonadal females with 2 X chromosomes express higher levels of GH gene (Gh) mRNA in the preoptic area (POA) of the hypothalamus than females with 1 X chromosome and males. Furthermore, Gh expression in the POA of the hypothalamus of mice with 2 X chromosomes correlated with body weight; GH is known to have orexigenic properties. Acute infusion of GH into the POA increased immediate food intake in normal (XY) males. We propose that X inactivation-escaping genes modulate Gh expression and food intake, and this is part of the mechanism by which individuals with 2 X chromosomes are heavier than individuals with a single X chromosome.
Collapse
Affiliation(s)
- Paul J Bonthuis
- PO Box 800733, University of Virginia School of Medicine, Charlottesville, Virginia 22908.
| | | |
Collapse
|
112
|
Case LK, Wall EH, Dragon JA, Saligrama N, Krementsov DN, Moussawi M, Zachary JF, Huber SA, Blankenhorn EP, Teuscher C. The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease. Genome Res 2013; 23:1474-85. [PMID: 23800453 PMCID: PMC3759723 DOI: 10.1101/gr.156703.113] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/19/2013] [Indexed: 11/25/2022]
Abstract
Understanding the DNA elements that constitute and control the regulatory genome is critical for the appropriate therapeutic management of complex diseases. Here, using chromosome Y (ChrY) consomic mouse strains on the C57BL/6J (B6) background, we show that susceptibility to two diverse animal models of autoimmune disease, experimental allergic encephalomyelitis (EAE) and experimental myocarditis, correlates with the natural variation in copy number of Sly and Rbmy multicopy ChrY genes. On the B6 background, ChrY possesses gene regulatory properties that impact genome-wide gene expression in pathogenic CD4(+) T cells. Using a ChrY consomic strain on the SJL background, we discovered a preference for ChrY-mediated gene regulation in macrophages, the immune cell subset underlying the EAE sexual dimorphism in SJL mice, rather than CD4(+) T cells. Importantly, in both genetic backgrounds, an inverse correlation exists between the number of Sly and Rbmy ChrY gene copies and the number of significantly up-regulated genes in immune cells, thereby supporting a link between copy number variation of Sly and Rbmy with the ChrY genetic element exerting regulatory properties. Additionally, we show that ChrY polymorphism can determine the sexual dimorphism in EAE and myocarditis. In humans, an analysis of the CD4(+) T cell transcriptome from male multiple sclerosis patients versus healthy controls provides further evidence for an evolutionarily conserved mechanism of gene regulation by ChrY. Thus, as in Drosophila, these data establish the mammalian ChrY as a member of the regulatory genome due to its ability to epigenetically regulate genome-wide gene expression in immune cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Mohamad Moussawi
- Department of Pathology, University of Vermont, Burlington, Vermont 05405, USA
| | - James F. Zachary
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Sally A. Huber
- Department of Pathology, University of Vermont, Burlington, Vermont 05405, USA
| | - Elizabeth P. Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | - Cory Teuscher
- Department of Medicine
- Department of Pathology, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
113
|
Perry AN, Westenbroek C, Becker JB. Impact of pubertal and adult estradiol treatments on cocaine self-administration. Horm Behav 2013; 64:573-8. [PMID: 24013034 PMCID: PMC3818085 DOI: 10.1016/j.yhbeh.2013.08.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/16/2013] [Accepted: 08/20/2013] [Indexed: 01/04/2023]
Abstract
Estradiol is thought to play a critical role in the increased vulnerability to psychostimulant abuse in women. Sex differences in the ability of estradiol to influence cocaine self-administration in adult rats have been hypothesized to depend upon pubertal estradiol exposure. The current study investigated whether the presence of gonadal hormones during puberty affected cocaine self-administration behavior and its sensitivity to adult estradiol treatment in male and female Sprague-Dawley rats. Subjects were gonadectomized or SHAM-operated at postnatal day (PD) 22, and received either OIL or estradiol benzoate (EB) during the approximate time of puberty (PD27 to PD37). Adult rats were subsequently treated with either EB or OIL 30 min before cocaine self-administration (0.3 mg/kg/inf) in order to examine the effects of pubertal manipulations on the estradiol sensitivity of acquisition on a fixed ratio (FR) 1 schedule, total intake on a FR5 schedule and motivation on a progressive ratio schedule. Adult EB treatment only affected cocaine self-administration in females, which is consistent with previous research. Adult EB treatment enhanced acquisition in all females irrespective of puberty manipulations. All females, except those treated with EB during puberty, displayed increased cocaine intake following adult EB treatment. Adult EB treatment only enhanced motivation in females that were intact during puberty, whereas those treated with EB during puberty showed reduced motivation. Therefore, the sensitivities of different self-administration behaviors to adult estradiol treatment are organized independently in females, with pubertal estradiol exerting a greater influence over motivational processes, and negligible effects on learning/acquisition.
Collapse
Affiliation(s)
- Adam N. Perry
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Christel Westenbroek
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jill B. Becker
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48109
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109
- Corresponding author: Jill B. Becker, PhD, University of Michigan, 1050 MBNI, 205 Zina Pitcher Place, Ann Arbor, MI 48109,
| |
Collapse
|
114
|
Rice WR, Friberg U, Gavrilets S. Homosexuality via canalized sexual development: a testing protocol for a new epigenetic model. Bioessays 2013; 35:764-70. [PMID: 23868698 PMCID: PMC3840696 DOI: 10.1002/bies.201300033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We recently synthesized and reinterpreted published studies to advance an epigenetic model for the development of homosexuality (HS). The model is based on epigenetic marks laid down in response to the XX vs. XY karyotype in embryonic stem cells. These marks boost sensitivity to testosterone in XY fetuses and lower it in XX fetuses, thereby canalizing sexual development. Our model predicts that a subset of these canalizing epigenetic marks stochastically carry over across generations and lead to mosaicism for sexual development in opposite-sex offspring--the homosexual phenotype being one such outcome. Here, we begin by outlining why HS has been under-appreciated as a commonplace phenomenon in nature, and how this trend is currently being reversed in the field of neurobiology. We next briefly describe our epigenetic model of HS, develop a set of predictions, and describe how epigenetic profiles of human stem cells can provide for a strong test of the model.
Collapse
Affiliation(s)
- William R Rice
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, USA.
| | | | | |
Collapse
|
115
|
Chen X, Williams-Burris SM, McClusky R, Ngun TC, Ghahramani N, Barseghyan H, Reue K, Vilain E, Arnold AP. The Sex Chromosome Trisomy mouse model of XXY and XYY: metabolism and motor performance. Biol Sex Differ 2013; 4:15. [PMID: 23926958 PMCID: PMC3751353 DOI: 10.1186/2042-6410-4-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/27/2013] [Indexed: 11/29/2022] Open
Abstract
Background Klinefelter syndrome (KS), caused by XXY karyotype, is characterized by low testosterone, infertility, cognitive deficits, and increased prevalence of health problems including obesity and diabetes. It has been difficult to separate direct genetic effects from hormonal effects in human studies or in mouse models of KS because low testosterone levels are confounded with sex chromosome complement. Methods In this study, we present the Sex Chromosome Trisomy (SCT) mouse model that produces XXY, XYY, XY, and XX mice in the same litters, each genotype with either testes or ovaries. The independence of sex chromosome complement and gonadal type allows for improved recognition of sex chromosome effects that are not dependent on levels of gonadal hormones. All mice were gonadectomized and treated with testosterone for 3 weeks. Body weight, body composition, and motor function were measured. Results Before hormonal manipulation, XXY mice of both sexes had significantly greater body weight and relative fat mass compared to XY mice. After gonadectomy and testosterone replacement, XXY mice (both sexes) still had significantly greater body weight and relative fat mass, but less relative lean mass compared to XY mice. Liver, gonadal fat pad, and inguinal fat pad weights were also higher in XXY mice, independent of gonadal sex. In several of these measures, XX mice also differed from XY mice, and gonadal males and females differed significantly on almost every metabolic measure. The sex chromosome effects (except for testis size) were also seen in gonadally female mice before and after ovariectomy and testosterone treatment, indicating that they do not reflect group differences in levels of testicular secretions. XYY mice were similar to XY mice on body weight and metabolic variables but performed worse on motor tasks compared to other groups. Conclusions We find that the new SCT mouse model for XXY and XYY recapitulates features found in humans with these aneuploidies. We illustrate that this model has significant promise for unveiling the role of genetic effects compared to hormonal effects in these syndromes, because many phenotypes are different in XXY vs. XY gonadal female mice which have never been exposed to testicular secretions.
Collapse
Affiliation(s)
- Xuqi Chen
- Department of Integrative Biology & Physiology, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Shayna M Williams-Burris
- Department of Integrative Biology & Physiology, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Rebecca McClusky
- Department of Integrative Biology & Physiology, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Tuck C Ngun
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Negar Ghahramani
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Hayk Barseghyan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Eric Vilain
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Departments of Pediatrics and Urology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| |
Collapse
|
116
|
Bear A, Monteiro A. Both cell-autonomous mechanisms and hormones contribute to sexual development in vertebrates and insects. Bioessays 2013; 35:725-32. [PMID: 23804281 DOI: 10.1002/bies.201300009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The differentiation of male and female characteristics in vertebrates and insects has long been thought to proceed via different mechanisms. Traditionally, vertebrate sexual development was thought to occur in two phases: a primary and a secondary phase, the primary phase involving the differentiation of the gonads, and the secondary phase involving the differentiation of other sexual traits via the influence of sex hormones secreted by the gonads. In contrast, insect sexual development was thought to depend exclusively on cell-autonomous expression of sex-specific genes. Recently, however, new evidence indicates that both vertebrates and insects rely on sex hormones as well as cell-autonomous mechanisms to develop sexual traits. Collectively, these new data challenge the traditional vertebrate definitions of primary and secondary sexual development, call for a redefinition of these terms, and indicate the need for research aimed at explaining the relative dependence on cell-autonomous versus hormonally guided sexual development in animals.
Collapse
Affiliation(s)
- Ashley Bear
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| | | |
Collapse
|
117
|
Abstract
Sexual development in humans is only partly understood at the molecular level. It is dependent on genetic control primarily induced by the sex chromosomal differences between males and females. This leads to the development of the gonads, whereby afterwards the differentiation of the apparent phenotype is controlled by hormone action. Sex steroids may exert permanent and temporary effects. Their organizational features of inducing permanent changes in phenotype occur through genetic control of downstream genes. In this, androgens are the key elements for the differentiation of male internal and external genitalia as well as other sexual organs and general body composition, acting through a single androgen receptor. The androgen receptor is a nuclear transcription factor modulating DNA transcription of respective target genes and thereby driving development and growth in a stringent manner. The specificity of androgen action seems to be a strictly time-controlled process with the androgen receptor acting in concert with different metabolites and an array of cofactors modulating the cellular response and thereby permanently altering the phenotype of any given individual. For every cell programmed by androgens, a specific 'androgen response index' must be proposed.
Collapse
Affiliation(s)
- Olaf Hiort
- Division of Experimental Paediatric Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
118
|
Link JC, Chen X, Arnold AP, Reue K. Metabolic impact of sex chromosomes. Adipocyte 2013; 2:74-9. [PMID: 23805402 PMCID: PMC3661109 DOI: 10.4161/adip.23320] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 02/08/2023] Open
Abstract
Obesity and associated metabolic diseases are sexually dimorphic. To provide better diagnosis and treatment for both sexes, it is of interest to identify the factors that underlie male/female differences in obesity. Traditionally, sexual dimorphism has been attributed to effects of gonadal hormones, which influence numerous metabolic processes. However, the XX/XY sex chromosome complement is an additional factor that may play a role. Recent data using the four core genotypes mouse model have revealed that sex chromosome complement—independently from gonadal sex—plays a role in adiposity, feeding behavior, fatty liver and glucose homeostasis. Potential mechanisms for the effects of sex chromosome complement include differential gene dosage from X chromosome genes that escape inactivation, and distinct genomic imprints on X chromosomes inherited from maternal or paternal parents. Here we review recent data in mice and humans concerning the potential impact of sex chromosome complement on obesity and metabolic disease.
Collapse
|
119
|
Arnold AP, Chen X, Link JC, Itoh Y, Reue K. Cell-autonomous sex determination outside of the gonad. Dev Dyn 2013; 242:371-9. [PMID: 23361913 PMCID: PMC3672066 DOI: 10.1002/dvdy.23936] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/07/2013] [Accepted: 01/16/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The classic model of sex determination in mammals states that the sex of the individual is determined by the type of gonad that develops, which in turn determines the gonadal hormonal milieu that creates sex differences outside of the gonads. However, XX and XY cells are intrinsically different because of the cell-autonomous sex-biasing action of X and Y genes. RESULTS Recent studies of mice, in which sex chromosome complement is independent of gonadal sex, reveal that sex chromosome complement has strong effects contributing to sex differences in phenotypes such as metabolism. Adult mice with two X chromosomes (relative to mice with one X chromosome) show dramatically greater increases in body weight and adiposity after gonadectomy, irrespective of their gonadal sex. When fed a high-fat diet, XX mice develop striking hyperinsulinemia and fatty liver, relative to XY mice. The sex chromosome effects are modulated by the presence of gonadal hormones, indicating an interaction of the sex-biasing effects of gonadal hormones and sex chromosome genes. CONCLUSIONS Other cell-autonomous sex chromosome effects are detected in mice in many phenotypes. Birds (relative to eutherian mammals) are expected to show more widespread cell-autonomous sex determination in non-gonadal tissues, because of ineffective sex chromosome dosage compensation mechanisms.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology and Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
120
|
RNA sequencing reveals sexually dimorphic gene expression before gonadal differentiation in chicken and allows comprehensive annotation of the W-chromosome. Genome Biol 2013; 14:R26. [PMID: 23531366 PMCID: PMC4053838 DOI: 10.1186/gb-2013-14-3-r26] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/25/2013] [Indexed: 12/29/2022] Open
Abstract
Background Birds have a ZZ male: ZW female sex chromosome system and while the Z-linked DMRT1 gene is necessary for testis development, the exact mechanism of sex determination in birds remains unsolved. This is partly due to the poor annotation of the W chromosome, which is speculated to carry a female determinant. Few genes have been mapped to the W and little is known of their expression. Results We used RNA-seq to produce a comprehensive profile of gene expression in chicken blastoderms and embryonic gonads prior to sexual differentiation. We found robust sexually dimorphic gene expression in both tissues pre-dating gonadogenesis, including sex-linked and autosomal genes. This supports the hypothesis that sexual differentiation at the molecular level is at least partly cell autonomous in birds. Different sets of genes were sexually dimorphic in the two tissues, indicating that molecular sexual differentiation is tissue specific. Further analyses allowed the assembly of full-length transcripts for 26 W chromosome genes, providing a view of the W transcriptome in embryonic tissues. This is the first extensive analysis of W-linked genes and their expression profiles in early avian embryos. Conclusion Sexual differentiation at the molecular level is established in chicken early in embryogenesis, before gonadal sex differentiation. We find that the W chromosome is more transcriptionally active than previously thought, expand the number of known genes to 26 and present complete coding sequences for these W genes. This includes two novel W-linked sequences and three small RNAs reassigned to the W from the Un_Random chromosome.
Collapse
|
121
|
Cutting A, Chue J, Smith CA. Just how conserved is vertebrate sex determination? Dev Dyn 2013; 242:380-7. [PMID: 23390004 DOI: 10.1002/dvdy.23944] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Sex determination in vertebrate embryos has long been equated with gonadal differentiation into testes or ovaries. This view has been challenged over the years by reports of somatic sexual dimorphisms pre-dating gonadal sex differentiation. The recent finding that sex determination in birds is likely to be partly cell autonomous has again called for a broader definition of sex determination. Inherent sexual differentiation in each and every cell may apply widely among vertebrates, and may involve more than one "master sex gene" on a sex chromosome. At the gonadal level, key genes required for proper sexual differentiation are conserved among vertebrates, but their relative positions in the ovarian and testicular cascades differ. RESULTS We illustrate these differences by comparing key sex genes in fishes versus birds and mammals, with emphasis on DM domain genes and the SOX9-AMH pathway in the testis and the FOXL2-Aromatase pathway in the ovary. Such comparisons facilitate the identification of ancient versus derived genes involved in gonadal sex determination. CONCLUSIONS The data indicate that vertebrate sex-determining cascades are not as conserved as once thought.
Collapse
Affiliation(s)
- Andrew Cutting
- Murdoch Childrens Research Institute, Royal Childrens Hospital, Parkville, Australia
| | | | | |
Collapse
|
122
|
Laguna-Barraza R, Bermejo-Álvarez P, Ramos-Ibeas P, de Frutos C, López-Cardona AP, Calle A, Fernandez-Gonzalez R, Pericuesta E, Ramírez MA, Gutierrez-Adan A. Sex-specific embryonic origin of postnatal phenotypic variability. Reprod Fertil Dev 2013; 25:38-47. [DOI: 10.1071/rd12262] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Preimplantation developmental plasticity has evolved in order to offer the best chances of survival under changing environments. Conversely, environmental conditions experienced in early life can dramatically influence neonatal and adult biology, which may result in detrimental long-term effects. Several studies have shown that small size at birth, which is associated with a greater risk of metabolic syndrome, is largely determined before the formation of the blastocysts because 70%–80% of variation in bodyweight at birth has neither a genetic nor environmental component. In addition, it has been reported that adult bodyweight is programmed by energy-dependent process during the pronuclear stage in the mouse. Although the early embryo has a high developmental plasticity and adapts and survives to adverse environmental conditions, this adaptation may have adverse consequences and there is strong evidence that in vitro culture can be a risk factor for abnormal fetal outcomes in animals systems, with growing data suggesting that a similar link may be apparent for humans. In this context, male and female preimplantation embryos display sex-specific transcriptional and epigenetic regulation, which, in the case of bovine blastocysts, expands to one-third of the transcripts detected through microarray analysis. This sex-specific bias may convert the otherwise buffered stochastic variability in developmental networks in a sex-determined response to the environmental hazard. It has been widely reported that environment can affect preimplantation development in a sex-specific manner, resulting in either a short-term sex ratio adjustment or in long-term sex-specific effects on adult health. The present article reviews current knowledge about the natural phenotypic variation caused by epigenetic mechanisms and the mechanisms modulating sex-specific changes in phenotype during early embryo development resulting in sex ratio adjustments or detrimental sex-specific consequences for adult health. Understanding the natural embryo sexual dimorphism for programming trajectories will help understand the early mechanisms of response to environmental insults.
Collapse
|
123
|
Steroid signaling within Drosophila ovarian epithelial cells sex-specifically modulates early germ cell development and meiotic entry. PLoS One 2012; 7:e46109. [PMID: 23056242 PMCID: PMC3462805 DOI: 10.1371/journal.pone.0046109] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/28/2012] [Indexed: 11/28/2022] Open
Abstract
Drosophila adult females but not males contain high levels of the steroid hormone ecdysone, however, the roles played by steroid signaling during Drosophila gametogenesis remain poorly understood. Drosophila germ cells in both sexes initially follow a similar pathway. After germline stem cells are established, their daughters form interconnected cysts surrounded by somatic escort (female) or cyst (male) cells and enter meiosis. Subsequently, female cysts acquire a new covering of somatic cells to form follicles. Knocking down expression of the heterodimeric ecdysteroid receptor (EcR/Usp) or the E75 early response gene in escort cells disrupts 16-cell cyst production, meiotic entry and follicle formation. Escort cells lose their squamous morphology and unsheath germ cells. By contrast, disrupting ecdysone signaling in males does not perturb cyst development or ensheathment. Thus, sex-specific steroid signaling is essential for female germ cell development at the time male and female pathways diverge. Our results suggest that steroid signaling plays an important sex-specific role in early germ cell development in Drosophila, a strategy that may be conserved in mammals.
Collapse
|
124
|
Abstract
Differentiated sex chromosomes evolved because of suppressed recombination once sex became genetically controlled. In XX/XY and ZZ/ZW systems, the heterogametic sex became partially aneuploid after degeneration of the Y or W. Often, aneuploidy causes abnormal levels of gene expression throughout the entire genome. Dosage compensation mechanisms evolved to restore balanced expression of the genome. These mechanisms include upregulation of the heterogametic chromosome as well as repression in the homogametic sex. Remarkably, strategies for dosage compensation differ between species. In organisms where more is known about molecular mechanisms of dosage compensation, specific protein complexes containing noncoding RNAs are targeted to the X chromosome. In addition, the dosage-regulated chromosome often occupies a specific nuclear compartment. Some genes escape dosage compensation, potentially resulting in sex-specific differences in gene expression. This review focuses on dosage compensation in mammals, with comparisons to fruit flies, nematodes, and birds.
Collapse
Affiliation(s)
- Christine M Disteche
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
125
|
Abstract
The current male bias in biomedical research should be eliminated. The large sex differences in incidence and progression of diseases mean that sex-biased factors are an untapped source of factors that protect from disease. Greater understanding will come from intensified study of the "sexome," which is the sum of sex-biased effects on gene networks and cell systems. The global search for sites and mechanisms of sex-specific regulation in diverse tissues will provide unanticipated insights into physiological regulation and targets for novel therapies.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095-7239, USA.
| | | |
Collapse
|
126
|
Silversides DW, Raiwet DL, Souchkova O, Viger RS, Pilon N. Transgenic mouse analysis of Sry expression during the pre- and peri-implantation stage. Dev Dyn 2012; 241:1192-204. [PMID: 22539273 DOI: 10.1002/dvdy.23798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The SRY/Sry gene is expressed in pre-Sertoli cells of the male genital ridge and functions as the mammalian testis determining factor (TDF). In addition, expression of SRY/Sry outside the genital ridge has been reported, including preimplantation embryos, although the functional significance of this is not well understood. RESULTS Using Cre-mediated lineage studies and transgenic reporter mouse models, we now show that promoter sequences of human, pig and mouse SRY drive robust reporter gene expression in epiblast cells of peri-implantation embryos between embryonic day (E) 4.5 and E6.5. Analysis of endogenous Sry expression revealed that linear transcripts are produced by means of multiple polyadenylation sites in E4.5 embryos. Within the epiblast, SRY reporter expression mimics the expression seen using a Gata4 reporter model, but is dissimilar to that seen using an Oct4 reporter model. In addition, we report that overexpression of mouse Sry in embryonic stem cells leads to down-regulation of the core pluripotency markers Sox2 and Nanog. CONCLUSION We propose that SRY/Sry may function as a male-specific maturation factor in the peri-implantation mammalian embryo, providing a genetic mechanism to help explain the observation that male embryos are developmentally more advanced compared with female embryos, and suggesting a role for SRY beyond that of TDF.
Collapse
Affiliation(s)
- David W Silversides
- Department of Veterinary Biomedicine, Centre de Recherche en Reproduction Animale, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, Canada.
| | | | | | | | | |
Collapse
|
127
|
Chen X, McClusky R, Chen J, Beaven SW, Tontonoz P, Arnold AP, Reue K. The number of x chromosomes causes sex differences in adiposity in mice. PLoS Genet 2012; 8:e1002709. [PMID: 22589744 PMCID: PMC3349739 DOI: 10.1371/journal.pgen.1002709] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 03/28/2012] [Indexed: 12/12/2022] Open
Abstract
Sexual dimorphism in body weight, fat distribution, and metabolic disease has been attributed largely to differential effects of male and female gonadal hormones. Here, we report that the number of X chromosomes within cells also contributes to these sex differences. We employed a unique mouse model, known as the “four core genotypes,” to distinguish between effects of gonadal sex (testes or ovaries) and sex chromosomes (XX or XY). With this model, we produced gonadal male and female mice carrying XX or XY sex chromosome complements. Mice were gonadectomized to remove the acute effects of gonadal hormones and to uncover effects of sex chromosome complement on obesity. Mice with XX sex chromosomes (relative to XY), regardless of their type of gonad, had up to 2-fold increased adiposity and greater food intake during daylight hours, when mice are normally inactive. Mice with two X chromosomes also had accelerated weight gain on a high fat diet and developed fatty liver and elevated lipid and insulin levels. Further genetic studies with mice carrying XO and XXY chromosome complements revealed that the differences between XX and XY mice are attributable to dosage of the X chromosome, rather than effects of the Y chromosome. A subset of genes that escape X chromosome inactivation exhibited higher expression levels in adipose tissue and liver of XX compared to XY mice, and may contribute to the sex differences in obesity. Overall, our study is the first to identify sex chromosome complement, a factor distinguishing all male and female cells, as a cause of sex differences in obesity and metabolism. Differences exist between men and women in the development of obesity and related metabolic diseases such as type 2 diabetes and cardiovascular disease. Previous studies have focused on the sex-biasing role of hormones produced by male and female gonads, but these cannot account fully for the sex differences in metabolism. We discovered that removal of the gonads uncovers an important genetic determinant of sex differences in obesity—the presence of XX or XY sex chromosomes. We used a novel mouse model to tease apart the effects of male and female gonads from the effects of XX or XY chromosomes. Mice with XX sex chromosomes (relative to XY), regardless of their type of gonad, had increased body fat and ate more food during the sleep period. Mice with two X chromosomes also had accelerated weight gain, fatty liver, and hyperinsulinemia on a high fat diet. The higher expression levels of a subset of genes on the X chromosome that escape inactivation may influence adiposity and metabolic disease. The effect of X chromosome genes is present throughout life, but may become particularly significant with increases in longevity and extension of the period spent with reduced gonadal hormone levels.
Collapse
Affiliation(s)
- Xuqi Chen
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology or the Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Rebecca McClusky
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology or the Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jenny Chen
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Simon W. Beaven
- Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Peter Tontonoz
- Howard Hughes Medical Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Arthur P. Arnold
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology or the Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
128
|
Molecular basis and genetic improvement of economically important traits in aquaculture animals. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5213-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
129
|
Liew WC, Bartfai R, Lim Z, Sreenivasan R, Siegfried KR, Orban L. Polygenic sex determination system in zebrafish. PLoS One 2012; 7:e34397. [PMID: 22506019 PMCID: PMC3323597 DOI: 10.1371/journal.pone.0034397] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/27/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Despite the popularity of zebrafish as a research model, its sex determination (SD) mechanism is still unknown. Most cytogenetic studies failed to find dimorphic sex chromosomes and no primary sex determining switch has been identified even though the assembly of zebrafish genome sequence is near to completion and a high resolution genetic map is available. Recent publications suggest that environmental factors within the natural range have minimal impact on sex ratios of zebrafish populations. The primary aim of this study is to find out more about how sex is determined in zebrafish. METHODOLOGY/PRINCIPAL FINDINGS Using classical breeding experiments, we found that sex ratios across families were wide ranging (4.8% to 97.3% males). On the other hand, repeated single pair crossings produced broods of very similar sex ratios, indicating that parental genotypes have a role in the sex ratio of the offspring. Variation among family sex ratios was reduced after selection for breeding pairs with predominantly male or female offspring, another indication that zebrafish sex is regulated genetically. Further examinations by a PCR-based "blind assay" and array comparative genomic hybridization both failed to find universal sex-linked differences between the male and female genomes. Together with the ability to increase the sex bias of lines by selective breeding, these data suggest that zebrafish is unlikely to utilize a chromosomal sex determination (CSD) system. CONCLUSIONS/SIGNIFICANCE Taken together, our study suggests that zebrafish sex is genetically determined with limited, secondary influences from the environment. As we have not found any sign for CSD in the species, we propose that the zebrafish has a polygenic sex determination system.
Collapse
Affiliation(s)
- Woei Chang Liew
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Richard Bartfai
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zijie Lim
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Rajini Sreenivasan
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Kellee R. Siegfried
- Department of Genetics, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Laszlo Orban
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Animal Sciences and Animal Husbandry, University of Pannonia, Keszthely, Hungary
| |
Collapse
|
130
|
Kopp A. Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet 2012; 28:175-84. [PMID: 22425532 DOI: 10.1016/j.tig.2012.02.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 12/20/2022]
Abstract
Most animals are sexually dimorphic, but different taxa have different sex-specific traits. Despite major differences in the genetic control of sexual development among animal lineages, the doublesex/mab-3 related (Dmrt) family of transcription factors has been shown to be involved in sex-specific differentiation in all animals that have been studied. In recent years the functions of Dmrt genes have been characterized in many animal groups, opening the way to a broad comparative perspective. This review focuses on the similarities and differences in the functions of Dmrt genes across the animal kingdom. I highlight a number of common themes in the sexual development of different taxa, discuss how Dmrt genes have acquired new roles during animal evolution, and show how they have contributed to the origin of novel sex-specific traits.
Collapse
Affiliation(s)
- Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616 USA.
| |
Collapse
|
131
|
Arnold AP, Chen X, Itoh Y. What a difference an X or Y makes: sex chromosomes, gene dose, and epigenetics in sexual differentiation. Handb Exp Pharmacol 2012:67-88. [PMID: 23027446 PMCID: PMC4150872 DOI: 10.1007/978-3-642-30726-3_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A modern general theory of sex determination and sexual differentiation identifies the factors that cause sexual bias in gene networks, leading to sex differences in physiology and disease. The primary sex-biasing factors are those encoded on the sex chromosomes that are inherently different in the male and female zygotes. These factors, and downstream factors such as gonadal hormones, act directly on tissues to produce sex differences and antagonize each other to reduce sex differences. Recent studies of mouse models such as the four core genotypes have begun to distinguish between the direct effects of sex chromosome complement (XX vs. XY) and hormonal effects. Several lines of evidence implicate epigenetic processes in the control of sex differences, although a great deal of information is needed about sex differences in the epigenome.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|