101
|
Gemmel M, Harmeyer D, Bögi E, Fillet M, Hill LA, Hammond GL, Charlier TD, Pawluski JL. Perinatal fluoxetine increases hippocampal neurogenesis and reverses the lasting effects of pre-gestational stress on serum corticosterone, but not on maternal behavior, in the rat dam. Behav Brain Res 2018; 339:222-231. [DOI: 10.1016/j.bbr.2017.11.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/16/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022]
|
102
|
Hojo Y, Kawato S. Neurosteroids in Adult Hippocampus of Male and Female Rodents: Biosynthesis and Actions of Sex Steroids. Front Endocrinol (Lausanne) 2018; 9:183. [PMID: 29740398 PMCID: PMC5925962 DOI: 10.3389/fendo.2018.00183] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
The brain is not only the target of steroid hormones but also is able to locally synthesize steroids de novo. Evidence of the local production of steroids in the brain has been accumulating in various vertebrates, including teleost fish, amphibia, birds, rodents, non-human primates, and humans. In this review, we mainly focus on the local production of sex steroids in the hippocampal neurons of adult rodents (rats and mice), a center for learning and memory. From the data of the hippocampus of adult male rats, hippocampal principal neurons [pyramidal cells in CA1-CA3 and granule cells in dentate gyrus (DG)] have a complete system for biosynthesis of sex steroids. Liquid chromatography with tandem-mass-spectrometry (LC-MS/MS) enabled us to accurately determine the levels of hippocampal sex steroids including 17β-estradiol (17β-E2), testosterone (T), and dihydrotestosterone (DHT), which are much higher than those in blood. Next, we review the steroid synthesis in the hippocampus of female rats, since previous knowledge had been biased toward the data from males. Recently, we clarified that the levels of hippocampal steroids fluctuate in adult female rats across the estrous cycle. Accurate determination of hippocampal steroids at each stage of the estrous cycle is of importance for providing the account for the fluctuation of female hippocampal functions, including spine density, long-term potentiation (LTP) and long-term depression (LTD), and learning and memory. These functional fluctuations in female had been attributed to the level of circulation-derived steroids. LC-MS/MS analysis revealed that the dendritic spine density in CA1 of adult female hippocampus correlates with the levels of hippocampal progesterone and 17β-E2. Finally, we introduce the direct evidence of the role of hippocampus-synthesized steroids in hippocampal function including neurogenesis, LTP, and memory consolidation. Mild exercise (2 week of treadmill running) elevated synthesis of DHT in the hippocampus, but not in the testis, of male rats, resulting in enhancement of neurogenesis in DG. Concerning synaptic plasticity, hippocampus-synthesized E2 is required for LTP induction, whereas hippocampus-synthesized DHT is required for LTD induction. Furthermore, hippocampus-synthesized E2 is involved in memory consolidation tested by object recognition and object placement tasks, both of which are hippocampus-dependent.
Collapse
Affiliation(s)
- Yasushi Hojo
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Saitama, Japan
- *Correspondence: Yasushi Hojo,
| | - Suguru Kawato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Cognitive Neuroscience, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| |
Collapse
|
103
|
Hoeijmakers L, Meerhoff GF, de Vries JW, Ruigrok SR, van Dam AM, van Leuven F, Korosi A, Lucassen PJ. The age-related slow increase in amyloid pathology in APP.V717I mice activates microglia, but does not alter hippocampal neurogenesis. Neurobiol Aging 2018; 61:112-123. [DOI: 10.1016/j.neurobiolaging.2017.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/09/2023]
|
104
|
Lévy F, Batailler M, Meurisse M, Migaud M. Adult Neurogenesis in Sheep: Characterization and Contribution to Reproduction and Behavior. Front Neurosci 2017; 11:570. [PMID: 29109674 PMCID: PMC5660097 DOI: 10.3389/fnins.2017.00570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/28/2017] [Indexed: 01/18/2023] Open
Abstract
Sheep have many advantages to study neurogenesis in comparison to the well-known rodent models. Their development and life expectancy are relatively long and they possess a gyrencephalic brain. Sheep are also seasonal breeders, a characteristic that allows studying the involvement of hypothalamic neurogenesis in the control of seasonal reproduction. Sheep are also able to individually recognize their conspecifics and develop selective and lasting bonds. Adult olfactory neurogenesis could be adapted to social behavior by supporting recognition of conspecifics. The present review reveals the distinctive features of the hippocampal, olfactory, and hypothalamic neurogenesis in sheep. In particular, the organization of the subventricular zone and the dynamic of neuronal maturation differs from that of rodents. In addition, we show that various physiological conditions, such as seasonal reproduction, gestation, and lactation differently modulate these three neurogenic niches. Last, we discuss recent evidence indicating that hypothalamic neurogenesis acts as an important regulator of the seasonal control of reproduction and that olfactory neurogenesis could be involved in odor processing in the context of maternal behavior.
Collapse
Affiliation(s)
- Frederic Lévy
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Martine Batailler
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Maryse Meurisse
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Martine Migaud
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
105
|
Fan J, Li BJ, Wang XF, Zhong LL, Cui RJ. Ghrelin produces antidepressant-like effect in the estrogen deficient mice. Oncotarget 2017; 8:58964-58973. [PMID: 28938610 PMCID: PMC5601706 DOI: 10.18632/oncotarget.19768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/11/2017] [Indexed: 01/23/2023] Open
Abstract
Recent evidence shows that ghrelin plays an important role in depression. However, it was little known whether ghrelin produces antidepressant-like effect in the ovariectomized mice. The present study was aimed to investigate the antidepressant-like effects of the ghrelin in ovariectomized mice. In the forced swim test, ghrelin significantly decreased immobility time, reversing the “depressive-like” effect observed in ovariectomized mice, and this effect was reversed by the tamoxifen. In addition, immunohistochemical study indicated that ghrelin treatment reversed the reductions in c-Fos expression induced by ovariectomy. An estrogen antagonist tamoxifen also antagonized the effect of ghrelin on the c-Fos expression. Furthermore, the western blotting indicated that brain-derived neurotrophic factor (BDNF) in the hippocampus, but not phosphorylated cAMP response element-binding protein (pCREB)/CREB in the frontal cortex, were affected by ghrelin treatment. Ghrelin treatment significantly increased BrdU expression. Therefore, these findings suggest that ghrelin produces antidepressant-like effects in ovariectomized mice, and estrogen receptor may be involved in the antidepressant-like effects of the ghrelin.
Collapse
Affiliation(s)
- Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xue Feng Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Li Li Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
106
|
Watanabe Y, Nakajima K, Mizukami S, Akahori Y, Imatanaka N, Woo GH, Yoshida T, Shibutani M. Differential effects between developmental and postpubertal exposure to N-methyl-N-nitrosourea on progenitor cell proliferation of rat hippocampal neurogenesis in relation to COX2 expression in granule cells. Toxicology 2017; 389:55-66. [DOI: 10.1016/j.tox.2017.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/12/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022]
|
107
|
Pinar C, Fontaine CJ, Triviño-Paredes J, Lottenberg CP, Gil-Mohapel J, Christie BR. Revisiting the flip side: Long-term depression of synaptic efficacy in the hippocampus. Neurosci Biobehav Rev 2017. [PMID: 28624435 DOI: 10.1016/j.neubiorev.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Synaptic plasticity is widely regarded as a putative biological substrate for learning and memory processes. While both decreases and increases in synaptic strength are seen as playing a role in learning and memory, long-term depression (LTD) of synaptic efficacy has received far less attention than its counterpart long-term potentiation (LTP). Never-the-less, LTD at synapses can play an important role in increasing computational flexibility in neural networks. In addition, like learning and memory processes, the magnitude of LTD can be modulated by factors that include stress and sex hormones, neurotrophic support, learning environments, and age. Examining how these factors modulate hippocampal LTD can provide the means to better elucidate the molecular underpinnings of learning and memory processes. This is in turn will enhance our appreciation of how both increases and decreases in synaptic plasticity can play a role in different neurodevelopmental and neurodegenerative conditions.
Collapse
Affiliation(s)
- Cristina Pinar
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Christine J Fontaine
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Juan Triviño-Paredes
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Carina P Lottenberg
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada; Faculty of Medical Sciences of Santa Casa de São Paulo, Sao Paulo, SP, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
108
|
Abbink MR, Naninck EFG, Lucassen PJ, Korosi A. Early-life stress diminishes the increase in neurogenesis after exercise in adult female mice. Hippocampus 2017; 27:839-844. [PMID: 28558121 DOI: 10.1002/hipo.22745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/02/2017] [Accepted: 05/18/2017] [Indexed: 11/07/2022]
Abstract
Exposure to early-life stress (ES) has long-lasting consequences for later cognition and hippocampal plasticity, including adult hippocampal neurogenesis (AHN), i.e., the generation of new neurons from stem/progenitor cells in the adult hippocampal dentate gyrus. We had previously demonstrated a sex-specific vulnerability to ES exposure; female mice exposed to ES from P2-P9 exhibited only very mild cognitive changes and no reductions in AHN as adult, whereas ES-exposed male mice showed impaired cognition closely associated with reductions in AHN. Given the apparent resilience of AHN to ES in females, we here questioned whether ES has also altered the capacity to respond to positive stimuli for neurogenesis. We therefore investigated whether exercise, known for its strong pro-neurogenic effects, can still stimulate AHN in adult female mice that had been earlier exposed to ES. We confirm a strong pro-neurogenic effect of exercise in the dorsal hippocampus of 8-month-old control female mice, but this positive neurogenic response is less apparent in female ES mice. These data provide novel insights in the lasting consequences of ES on hippocampal plasticity in females and also indicate that ES might lastingly reduce the responsiveness of the hippocampal stem cell pool, to exercise, in female mice.
Collapse
Affiliation(s)
- M R Abbink
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain plasticity group, University of Amsterdam, Amsterdam, The Netherlands
| | - E F G Naninck
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain plasticity group, University of Amsterdam, Amsterdam, The Netherlands
| | - P J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain plasticity group, University of Amsterdam, Amsterdam, The Netherlands
| | - A Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain plasticity group, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
109
|
Hueston CM, Cryan JF, Nolan YM. Stress and adolescent hippocampal neurogenesis: diet and exercise as cognitive modulators. Transl Psychiatry 2017; 7:e1081. [PMID: 28375209 PMCID: PMC5416690 DOI: 10.1038/tp.2017.48] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/04/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023] Open
Abstract
Adolescence is a critical period for brain maturation. Deciphering how disturbances to the central nervous system at this time affect structure, function and behavioural outputs is important to better understand any long-lasting effects. Hippocampal neurogenesis occurs during development and continues throughout life. In adulthood, integration of these new cells into the hippocampus is important for emotional behaviour, cognitive function and neural plasticity. During the adolescent period, maturation of the hippocampus and heightened levels of hippocampal neurogenesis are observed, making alterations to neurogenesis at this time particularly consequential. As stress negatively affects hippocampal neurogenesis, and adolescence is a particularly stressful time of life, it is important to investigate the impact of stressor exposure at this time on hippocampal neurogenesis and cognitive function. Adolescence may represent not only a time for which stress can have long-lasting effects, but is also a critical period during which interventions, such as exercise and diet, could ameliorate stress-induced changes to hippocampal function. In addition, intervention at this time may also promote life-long behavioural changes that would aid in fostering increased hippocampal neurogenesis and cognitive function. This review addresses both the acute and long-term stress-induced alterations to hippocampal neurogenesis and cognition during the adolescent period, as well as changes to the stress response and pubertal hormones at this time which may result in differential effects than are observed in adulthood. We hypothesise that adolescence may represent an optimal time for healthy lifestyle changes to have a positive and long-lasting impact on hippocampal neurogenesis, and to protect against stress-induced deficits. We conclude that future research into the mechanisms underlying the susceptibility of the adolescent hippocampus to stress, exercise and diet and the consequent effect on cognition may provide insight into why adolescence may be a vital period for correct conditioning of future hippocampal function.
Collapse
Affiliation(s)
- C M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - J F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Y M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
110
|
Abstract
New mothers undergo dynamic neural changes that support positive adaptation to parenting and the development of mother-infant relationships. In this article, I review important psychological adaptations that mothers experience during pregnancy and the early postpartum period. I then review evidence of structural and functional plasticity in human mothers' brains, and explore how such plasticity supports mothers' psychological adaptation to parenting and sensitive maternal behaviors. Last, I discuss pregnancy and the early postpartum period as a window of vulnerabilities and opportunities when the human maternal brain is influenced by stress and psychopathology, but also receptive to interventions.
Collapse
|
111
|
Noel J, Habib ARR, Thamboo A, Patel ZM. Variables associated with olfactory disorders in adults: A U.S. population-based analysis. World J Otorhinolaryngol Head Neck Surg 2017; 3:9-16. [PMID: 29204574 PMCID: PMC5683598 DOI: 10.1016/j.wjorl.2017.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 01/11/2023] Open
Abstract
Objective Olfactory dysfunction is known to have significant social, psychological, and safety implications. Despite increasingly recognized prevalence, potential risk factors for olfactory loss have been arbitrarily documented and knowledge is limited in scale. The aim of this study is to identify potential demographic and exposure variables correlating with olfactory dysfunction. Methods Cross-sectional analysis of the 2011–2012 and 2013–2014 editions of the National Health Examination and Nutrition Survey was performed. The utilized survey reports from a nationally representative sample of about 5000 persons each year located in counties across the United States. There is an interview and physical examination component which includes demographic, socioeconomic, dietary, and health-related questions as well as medical, dental, physiologic measurements, and laboratory tests. 3594 adult respondents from 2011 to 2012 and 3708 respondents from 2013 to 2014 were identified from the above population-based database. The frequency of self-reported disorders as well as performance on odor identification testing was determined in relation to demographic factors, occupational or environmental exposures, and urinary levels of environmental and industrial compounds. Results In both subjective and objective analysis, smell disorders were significantly more common with increasing age. While the non-Hispanic Black and non-Hispanic Asian populations were less likely to report subjective olfactory loss, they, along with Hispanics, performed more poorly on odor identification than Caucasians. Those with limited education had a decreased prevalence of hyposmia. Women outperformed men on smell testing. Those reporting exposure to vapors were more likely to experience olfactory dysfunction, and urinary levels of manganese, 2-Thioxothiazolidine-4-carboxylic acid, and 2-Aminothiazoline-4-carboxylic acid were lower among respondents with subjective smell disturbance. In odor detection, elevated serum levels of lead and urinary levels of 2,4 dichlorophenol were associated with anosmia and hyposmia, respectively. Conclusions This study provides current, population-based data identifying demographic and exposure elements related to smell disturbances in U.S. adults. Age, race, gender, education, exposure to vapors, urinary levels of manganese, 2-Thioxothiazolidine-4-carboxylic acid, 2-Aminothiazoline-4-carboxylic acid, 2,4 dichlorophenol, and serum lead levels were all implicated in smell disturbance. Care should be taken in interpretation due to lack of consistency between subjective and objective measures of olfaction as well as limitations related to population-based data. Prospective trials are indicated to further elucidate these relationships.
Collapse
Affiliation(s)
- Julia Noel
- Department of Otolaryngology, Head & Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Palo Alto, CA 94305, USA
| | - Al-Rahim R Habib
- Sydney Medical Program, University of Sydney, Edward Ford Building A27, Sydney, New South Wales 2006, Australia
| | - Andrew Thamboo
- Department of Otolaryngology, Head & Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Palo Alto, CA 94305, USA
| | - Zara M Patel
- Department of Otolaryngology, Head & Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Palo Alto, CA 94305, USA
| |
Collapse
|
112
|
Hasegawa-Baba Y, Tanaka T, Watanabe Y, Wang L, Itahashi M, Yoshida T, Shibutani M. Late Effect of Developmental Exposure to 3,3'-Iminodipropionitrile on Neurogenesis in the Hippocampal Dentate Gyrus of Mice. Neurotox Res 2017; 32:27-40. [PMID: 28168441 DOI: 10.1007/s12640-017-9703-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/17/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022]
Abstract
The effects of developmental exposure to 3,3'-iminodipropionitrile (IDPN), a neurotoxicant that causes proximal axonopathy, on mouse hippocampal neurogenesis was examined. Pregnant mice were exposed to IDPN at 0, 600, or 1200 ppm in their drinking water from gestational day 6 to postnatal day (PND) 21. On PND 21, male offspring showed increased postmitotic neuron-specific NeuN-immunoreactive(+) granule cell numbers in the dentate subgranular zone (SGZ) and granule cell layer (GCL) and decreased glutamate receptor gene Grin2d levels in the dentate gyrus at 1200 ppm. On PND 77, decreased numbers were observed for TBR2+ progenitor cells in the SGZ at ≥600 ppm and GFAP+ stem cells, DCX+ progenitor cells and immature granule cells, NeuN+ immature and mature granule cells, PCNA+ proliferating cells in the SGZ and/or GCL, and immunoreactive cells for ARC or FOS, immediate-early gene products related to neuronal and synaptic plasticity, in the GCL at 1200 ppm. Additionally, at 1200 ppm of IDPN, downregulation of Kit, the gene encoding the stem cell factor (SCF) receptor, and upregulation of Kitl, encoding SCF, were observed in the dentate gyrus. Therefore, maternal IDPN exposure in mice affects neurogenesis involving glutamatergic signals at the end of developmental exposure, with late effects suppressing SGZ cell proliferation, reducing the broad range of granule cell lineage population, which may be responsible for SCF receptor downregulation. The upregulated SCF was likely a feedback response to the decreased receptor level. These results suggest that reduced SCF signaling may cause suppressed neuronal and synaptic plasticity.
Collapse
Affiliation(s)
- Yasuko Hasegawa-Baba
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Takeshi Tanaka
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | - Yousuke Watanabe
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | - Liyun Wang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Megu Itahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
113
|
Effects of early-life stress on cognitive function and hippocampal structure in female rodents. Neuroscience 2017; 342:101-119. [DOI: 10.1016/j.neuroscience.2015.08.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 01/30/2023]
|
114
|
Holschbach MA, Lonstein JS. Motherhood and infant contact regulate neuroplasticity in the serotonergic midbrain dorsal raphe. Psychoneuroendocrinology 2017; 76:97-106. [PMID: 27898359 PMCID: PMC5272870 DOI: 10.1016/j.psyneuen.2016.10.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/03/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022]
Abstract
The adult brain shows remarkable neuroplasticity in response to hormones and the socioemotional modifications that they influence. In females with reproductive and maternal experience, this neuroplasticity includes the birth and death of cells in several forebrain regions involved in maternal caregiving and postpartum affective state. Such plasticity in midbrain sites critical for these behavioral and emotional processes has never been examined, though. By visualizing bromodeoxyuridine (BrdU) to label mitotic cells, NeuroD for neuronal precursors, and TUNEL to identify dying cells, we found that the midbrain dorsal raphe nucleus (DR, the source of most ascending serotoninergic projections) exhibited significant neuroplasticity in response to motherhood. Specifically, BrdU analyses revealed that DR newborn cell survival (but not proliferation) was regulated by reproductive state, such that cells born early postpartum were less likely to survive 12 days to reach the late postpartum period compared to cells born during late pregnancy that survived 12 days to reach the early postpartum period. Many of the surviving cells in the DR were NeuN immunoreactive, suggesting a neuronal phenotype. Consistent with these findings, late postpartum rats had fewer NeuroD-immunoreactive DR cells than early postpartum rats. Maternal experience contributed to the late postpartum reduction in DR newborn cell survival because removing the litter at parturition increased cell survival as well as reduced cell death. Unlike cytogenesis in the maternal hippocampus, which is reduced by circulating glucocorticoids, DR newborn cell survival was unaffected by postpartum adrenalectomy. These effects of reproductive state and motherhood on DR plasticity were associated with concurrent changes in DR levels of serotonin's precursor, 5-HTP, and its metabolite, 5-HIAA. Our results demonstrate for the first time that cytogenesis occurs in the midbrain DR of any adult mammal, that DR plasticity is influenced by female reproductive state and maternal experience, and that this plasticity is accompanied by changes in DR serotonergic function. Because serotonin is critical for postpartum caregiving behaviors and maternal affective state, plasticity in the DR may contribute to the neurochemical changes necessary for successful motherhood.
Collapse
Affiliation(s)
- M Allie Holschbach
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA.
| | - Joseph S Lonstein
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
115
|
Tzeng WY, Wu HH, Wang CY, Chen JC, Yu L, Cherng CG. Sex Differences in Stress and Group Housing Effects on the Number of Newly Proliferated Cells and Neuroblasts in Middle-Aged Dentate Gyrus. Front Behav Neurosci 2017; 10:249. [PMID: 28119581 PMCID: PMC5220061 DOI: 10.3389/fnbeh.2016.00249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/19/2016] [Indexed: 11/13/2022] Open
Abstract
Sex differences in stress and coping responses have been frequently documented in aged people, while whether such differences in aged people may appear at the middle age are unknown. This study was undertaken to study the impact of acute stress and social interaction on early neurogenesis in the dentate gyrus (DG) and hippocampus-related memory in two sexes of middle-aged mice. The number of newly proliferated cells, neuroblasts in DG, the object recognition and location memory in 9-month-old male and female C57BL/6N mice were assessed under baseline conditions as well as following an acute stressor regimen and group housing. Three conspecific companions, serving as "the housing group," were used to model the social interaction throughout the stressor regimen. Males had lower numbers of newly proliferated cells and neuroblasts under baseline conditions as compared to females. The stressor regimen caused rapid decreases in the number of newly proliferated cells and neuroblasts in female DG but no obvious changes were observed in male DG. Group housing, regardless of companions' age, prevented the stress-induced decreases in the number of newly proliferated cells and neuroblasts in female DG. In contrast, the presence of young or age-matched companions potentiated the stress effect in males by decreasing the number of newly proliferated cells and neuroblasts. Finally, neither the stressor regimen nor group housing affected mouse performances in the object recognition and location memory in either sex. These findings, taken together, provide evidence to support a notion that middle-aged females appear to demonstrate more stress susceptibility on early neurogenesis in DG as compared to middle-aged males, although the hippocampus-related memory performances are comparable and not affected by stress in these males and females. Experiencing stress, middle-aged females are more prone to benefit from social interaction as compared to middle-aged males in this regard. We suggest, accordingly, that involving social interaction may afford a therapeutic advance in preventing stress-produced decreases in early neurogenesis in middle-aged females' DG.
Collapse
Affiliation(s)
- Wen-Yu Tzeng
- Department of Physiology, National Cheng Kung University College of Medicine Tainan, Taiwan
| | - Hsin-Hua Wu
- Department of Physiology, National Cheng Kung University College of Medicine Tainan, Taiwan
| | - Ching-Yi Wang
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine Tainan, Taiwan
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University Taoyuan, Taiwan
| | - Lung Yu
- Department of Physiology, National Cheng Kung University College of MedicineTainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University College of MedicineTainan, Taiwan
| | - Chianfang G Cherng
- Department of Health Psychology, Chang Jung Christian University Tainan, Taiwan
| |
Collapse
|
116
|
The choroid plexus as a sex hormone target: Functional implications. Front Neuroendocrinol 2017; 44:103-121. [PMID: 27998697 DOI: 10.1016/j.yfrne.2016.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/25/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
Abstract
The choroid plexuses (CPs) are highly vascularized branched structures that protrude into the ventricles of the brain, and form a unique interface between the blood and the cerebrospinal fluid (CSF). In recent years, novel functions have been attributed to this tissue such as in immune and chemical surveillance of the central nervous system, brain development, adult neurogenesis and circadian rhythm regulation. Sex hormones (SH) are widely recognized as modulators in several neurodegenerative diseases, and there is evidence that estrogens and androgens regulate several fundamental biological functions in the CPs. Therefore, SH are likely to affect the composition of the CSF impacting on brain homeostasis. This review will look at implications of the CPs' sex-related specificities.
Collapse
|
117
|
Colangelo LA, Ouyang P, Golden SH, Szklo M, Gapstur SM, Vaidya D, Liu K. Do sex hormones or hormone therapy modify the relation of n-3 fatty acids with incident depressive symptoms in postmenopausal women? The MESA Study. Psychoneuroendocrinology 2017; 75:26-35. [PMID: 27768981 PMCID: PMC5135581 DOI: 10.1016/j.psyneuen.2016.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/04/2016] [Accepted: 10/11/2016] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Considering that estradiol (E2) and n-3 polyunsaturated fatty acids (PUFAs) have roles in neurogenesis and in neurotransmission, we examined whether the association of PUFAs with incident depressive symptoms in postmenopausal women is modified by hormone therapy (HT) use or estrogen status. METHODS Women (N=1616) free of depressive symptoms at baseline (2000-2002) in the Multi-Ethnic Study of Atherosclerosis were classified by HT usage and quartiles of dietary eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and the sum EPA+DHA. Women with serum E2 ≤0.073 nmol/L (sample median), were classified low on E2. Poisson regression was used to model incident depressive symptoms at examination 3 (2004-05), defined by the Center for Epidemiological Studies Depression Scale ≥16 or taking an antidepressant, first as a function of HT use and n-3 PUFA quartiles, and second, as a function of low E2 status and n-3 PUFA quartiles. RESULTS Among HT non- users, positive, graded relationships (p-trends≤0.003) were found between PUFAs and incident depressive symptoms. Compared to the lowest quartile, the adjusted risk ratios (RRs) for the highest were 2.10, 2.39, and 2.04 for EPA, DHA, and EPA+DHA, respectively. For HT users, no associations were seen. When analyses were run for E2 status, the RRs over quartiles of the PUFAs were positive and graded for low E2 women, but were null for High E2 women. CONCLUSIONS Higher intakes of DHA and EPA were associated with higher risk of depressive symptoms in nonusers of HT, contrary to hypothesis.
Collapse
Affiliation(s)
- Laura A Colangelo
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 North Lake Shore Drive, Suite 1400, Chicago, IL 60611, United States.
| | - Pamela Ouyang
- Department of Medicine, Johns Hopkins University, Baltimore,
Maryland
| | | | - Moyses Szklo
- Department of Epidemiology, Johns Hopkins University, Baltimore,
Maryland
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta,
Georgia
| | - Dhananjay Vaidya
- Department of Medicine, Johns Hopkins University, Baltimore,
Maryland
| | - Kiang Liu
- Department of Preventive Medicine, Feinberg School of Medicine,
Northwestern University, 680 North Lake Shore Drive, Suite 1400, Chicago, Illinois
60611
| |
Collapse
|
118
|
Pellman BA, Schuessler BP, Tellakat M, Kim JJ. Sexually Dimorphic Risk Mitigation Strategies in Rats. eNeuro 2017; 4:ENEURO.0288-16.2017. [PMID: 28197550 PMCID: PMC5292597 DOI: 10.1523/eneuro.0288-16.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 01/02/2023] Open
Abstract
The scientific understanding of fear and anxiety-in both normal and pathological forms-is presently limited by a predominance of studies that use male animals and Pavlovian fear conditioning-centered paradigms that restrict and assess specific behaviors (e.g., freezing) over brief sampling periods and overlook the broader contributions of the spatiotemporal context to an animal's behavioral responses to threats. Here, we use a risky "closed economy" system, in which the need to acquire food and water and the need to avoid threats are simultaneously integrated into the lives of rats, to examine sex differences in mitigating threat risk while foraging. Rats lived for an extended period (∼2 months) in enlarged chambers that consisted of a safe, bedded nest and a risky foraging area where footshocks could be delivered unpredictably. We observed that male and female rats used different strategies for responding to the threat of footshock. Whereas male rats increased the size of meals consumed to reduce the overall time spent foraging, female rats sacrificed their metabolic needs in order to avoid shocks. Ovarian hormone fluctuations were shown to exert slight but reliable rhythmic effects on risky decision-making in gonadally intact female rats. However, this did not produce significant differences in approach-avoidance trade-offs between ovariectomized and intact female groups, suggesting that male-female sex differences are not due to the activational effects of gonadal hormones but, rather, are likely to be organized during early development.
Collapse
Affiliation(s)
- Blake A. Pellman
- Department of Psychology, University of Washington, Seattle, Washington 98195-1525
| | - Bryan P. Schuessler
- Department of Psychology, University of Washington, Seattle, Washington 98195-1525
| | - Mohini Tellakat
- Department of Psychology, University of Texas at Austin, Austin, Texas 78712
| | - Jeansok J. Kim
- Department of Psychology, University of Washington, Seattle, Washington 98195-1525
- Program in Neuroscience, University of Washington, Seattle, Washington 98195-1525
| |
Collapse
|
119
|
Macrì S. Neonatal corticosterone administration in rodents as a tool to investigate the maternal programming of emotional and immune domains. Neurobiol Stress 2016; 6:22-30. [PMID: 28229106 PMCID: PMC5314439 DOI: 10.1016/j.ynstr.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 01/26/2023] Open
Abstract
Neonatal experiences exert persistent influences on individual development. These influences encompass numerous domains including emotion, cognition, reactivity to external stressors and immunity. The comprehensive nature of the neonatal programming of individual phenotype is reverberated in the large amount of experimental data collected by many authors in several scientific fields: biomedicine, evolutionary and molecular biology. These data support the view that variations in precocious environmental conditions may calibrate the individual phenotype at many different levels. Environmental influences have been traditionally addressed through experimental paradigms entailing the modification of the neonatal environment and the multifactorial (e.g. behaviour, endocrinology, cellular and molecular biology) analysis of the developing individual's phenotype. These protocols suggested that the role of the mother in mediating the offspring's phenotype is often associated with the short-term effects of environmental manipulations on dam's physiology. Specifically, environmental manipulations may induce fluctuations in maternal corticosteroids (corticosterone in rodents) which, in turn, are translated to the offspring through lactation. Herein, I propose that this mother-offspring transfer mechanism can be leveraged to devise experimental protocols based on the exogenous administration of corticosterone during lactation. To support this proposition, I refer to a series of studies in which these protocols have been adopted to investigate the neonatal programming of individual phenotype at the level of emotional and immune regulations. While these paradigms cannot replace traditional studies, I suggest that they can be considered a valid complement.
Collapse
|
120
|
Koss WA, Frick KM. Sex differences in hippocampal function. J Neurosci Res 2016; 95:539-562. [DOI: 10.1002/jnr.23864] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Wendy A. Koss
- Department of Psychology; University of Wisconsin-Milwaukee; Milwaukee Wisconsin
| | - Karyn M. Frick
- Department of Psychology; University of Wisconsin-Milwaukee; Milwaukee Wisconsin
| |
Collapse
|
121
|
In-vivo Dynamics of the Human Hippocampus across the Menstrual Cycle. Sci Rep 2016; 6:32833. [PMID: 27713470 PMCID: PMC5054394 DOI: 10.1038/srep32833] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/11/2016] [Indexed: 12/31/2022] Open
Abstract
Sex hormones fluctuate during the menstrual cycle. Evidence from animal studies suggests similar subtle fluctuations in hippocampal structure, predominantly linked to estrogen. Hippocampal abnormalities have been observed in several neuropsychiatric pathologies with prominent sexual dimorphism. Yet, the potential impact of subtle sex-hormonal fluctuations on human hippocampal structure in health is unclear. We tested the feasibility of longitudinal neuroimaging in conjunction with rigorous menstrual cycle monitoring to evaluate potential changes in hippocampal microstructure associated with physiological sex-hormonal changes. Thirty longitudinal diffusion weighted imaging scans of a single healthy female subject were acquired across two full menstrual cycles. We calculated hippocampal fractional anisotropy (FA), a measure sensitive to changes in microstructural integrity, and investigated potential correlations with estrogen. We observed a significant positive correlation between FA values and estrogen in the hippocampus bilaterally, revealing a peak in FA closely paralleling ovulation. This exploratory, single-subject study demonstrates the feasibility of a longitudinal DWI scanning protocol across the menstrual cycle and is the first to link subtle endogenous hormonal fluctuations to changes in FA in vivo. In light of recent attempts to neurally phenotype single humans, our findings highlight menstrual cycle monitoring in parallel with highly sampled individual neuroimaging data to address fundamental questions about the dynamics of plasticity in the adult brain.
Collapse
|
122
|
Lisofsky N, Wiener J, de Condappa O, Gallinat J, Lindenberger U, Kühn S. Differences in navigation performance and postpartal striatal volume associated with pregnancy in humans. Neurobiol Learn Mem 2016; 134 Pt B:400-7. [DOI: 10.1016/j.nlm.2016.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/08/2016] [Accepted: 08/28/2016] [Indexed: 12/25/2022]
|
123
|
Adult Neurogenesis in the Female Mouse Hypothalamus: Estradiol and High-Fat Diet Alter the Generation of Newborn Neurons Expressing Estrogen Receptor α. eNeuro 2016; 3:eN-NWR-0027-16. [PMID: 27679811 PMCID: PMC5032890 DOI: 10.1523/eneuro.0027-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 11/21/2022] Open
Abstract
Estrogens and leptins act in the hypothalamus to maintain reproduction and energy homeostasis. Neurogenesis in the adult mammalian hypothalamus has been implicated in the regulation of energy homeostasis. Recently, high-fat diet (HFD) and estradiol (E2) have been shown to alter cell proliferation and the number of newborn leptin-responsive neurons in the hypothalamus of adult female mice. The current study tested the hypothesis that new cells expressing estrogen receptor α (ERα) are generated in the arcuate nucleus (ARC) and the ventromedial nucleus of the hypothalamus (VMH) of the adult female mouse, hypothalamic regions that are critical in energy homeostasis. Adult mice were ovariectomized and implanted with capsules containing E2 or oil. Within each hormone group, mice were fed an HFD or standard chow for 6 weeks and treated with BrdU to label new cells. Newborn cells that respond to estrogens were identified in the ARC and VMH, of which a subpopulation was leptin sensitive, indicating that the subpopulation consists of neurons. Moreover, there was an interaction between diet and hormone with an effect on the number of these newborn ERα-expressing neurons that respond to leptin. Regardless of hormone treatment, HFD increased the number of ERα-expressing cells in the ARC and VMH. E2 decreased hypothalamic fibroblast growth factor 10 (Fgf10) gene expression in HFD mice, suggesting a role for Fgf10 in E2 effects on neurogenesis. These findings of newly created estrogen-responsive neurons in the adult brain provide a novel mechanism by which estrogens can act in the hypothalamus to regulate energy homeostasis in females.
Collapse
|
124
|
Maternal Exposure to Valproic Acid Primarily Targets Interneurons Followed by Late Effects on Neurogenesis in the Hippocampal Dentate Gyrus in Rat Offspring. Neurotox Res 2016; 31:46-62. [DOI: 10.1007/s12640-016-9660-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/21/2016] [Accepted: 08/11/2016] [Indexed: 12/21/2022]
|
125
|
Lieberwirth C, Pan Y, Liu Y, Zhang Z, Wang Z. Hippocampal adult neurogenesis: Its regulation and potential role in spatial learning and memory. Brain Res 2016; 1644:127-40. [PMID: 27174001 PMCID: PMC5064285 DOI: 10.1016/j.brainres.2016.05.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 05/05/2016] [Accepted: 05/08/2016] [Indexed: 12/24/2022]
Abstract
Adult neurogenesis, defined here as progenitor cell division generating functionally integrated neurons in the adult brain, occurs within the hippocampus of numerous mammalian species including humans. The present review details various endogenous (e.g., neurotransmitters) and environmental (e.g., physical exercise) factors that have been shown to influence hippocampal adult neurogenesis. In addition, the potential involvement of adult-generated neurons in naturally-occurring spatial learning behavior is discussed by summarizing the literature focusing on traditional animal models (e.g., rats and mice), non-traditional animal models (e.g., tree shrews), as well as natural populations (e.g., chickadees and Siberian chipmunk).
Collapse
Affiliation(s)
| | - Yongliang Pan
- Program in Molecular and Translational Medicine, School of Medicine, Huzhou University, Huzhou 313000, PR China; State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, PR China.
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, PR China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| |
Collapse
|
126
|
Brus M, Trouillet AC, Hellier V, Bakker J. Estradiol-induced neurogenesis in the female accessory olfactory bulb is required for the learning of the male odor. J Neurochem 2016; 138:457-68. [PMID: 27216894 DOI: 10.1111/jnc.13677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 04/20/2016] [Accepted: 05/12/2016] [Indexed: 01/05/2023]
Abstract
Odors processed by the main and accessory olfactory bulbs (MOB, AOB) are important for sexual behavior. Interestingly, both structures continue to receive new neurons during adulthood. A role for olfactory neurogenesis in sexual behavior in female mice has recently been shown and gonadal hormones such as estradiol can modulate adult neurogenesis. Therefore, we wanted to determine the role of estradiol in learning the odors of sexual partners and in the adult neurogenesis of female aromatase knockout mice (ArKO), unable to produce estradiol. Female wild-type (WT) and ArKO mice were exposed to male odors during 7 days, and olfactory preferences, cell proliferation, cell survival and functional involvement of newborn neurons were analyzed, using BrdU injections, in combination with a marker of cell activation (Zif268) and neuronal fate (doublecortin, NeuN). Behavioral tasks indicated that both WT and ArKO females were able to discriminate between the odors of two different males, but ArKO mice failed to learn the familiar male odor. Proliferation of newborn cells was reduced in ArKO mice only in the dentate gyrus of the hippocampus. Olfactory exposure decreased cell survival in the AOB in WT females, suggesting a role for estradiol in a structure involved in sexual behavior. Finally, newborn neurons do not seem to be functionally involved in the AOB of ArKO mice compared with WT, when females were exposed to the odor of a familiar male, suggesting that estradiol-induced neurogenesis in the AOB is required for the learning of the male odor in female mice. Aromatase knockout mice (ArKO) presented deficits in olfactory preferences without affecting their olfactory discrimination abilities, and showed no functional involvement of newborn neurons in the accessory olfactory bulb (AOB) in response to the odor of a familiar male. These results suggest that estradiol-induced neurogenesis in the female AOB is required for the learning of the male odor.
Collapse
Affiliation(s)
- Maïna Brus
- Laboratory of Neuroendocrinology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Neurosciences, University of Liège, Liège, Belgium
| | - Anne-Charlotte Trouillet
- Laboratory of Neuroendocrinology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Neurosciences, University of Liège, Liège, Belgium
| | - Vincent Hellier
- Laboratory of Neuroendocrinology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Neurosciences, University of Liège, Liège, Belgium
| | - Julie Bakker
- Laboratory of Neuroendocrinology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
127
|
Davoudi M, Zavareh S, Ghorbanian MT, Paylakhi SH, Mohebbi SR. The effect of steroid hormones on the mRNA expression of oct4 and sox2 in uterine tissue of the ovariectomized mice model of menopause. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.7.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
128
|
Gestational stress and fluoxetine treatment differentially affect plasticity, methylation and serotonin levels in the PFC and hippocampus of rat dams. Neuroscience 2016; 327:32-43. [DOI: 10.1016/j.neuroscience.2016.03.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/19/2022]
|
129
|
Abstract
The incidence of many types of cancer arising in organs with non-reproductive functions is significantly higher in male populations than in female populations, with associated differences in survival. Occupational and/or behavioural factors are well-known underlying determinants. However, cellular and molecular differences between the two sexes are also likely to be important. In this Opinion article, we focus on the complex interplay that sex hormones and sex chromosomes can have in intrinsic control of cancer-initiating cell populations, the tumour microenvironment and systemic determinants of cancer development, such as the immune system and metabolism. A better appreciation of these differences between the two sexes could be of substantial value for cancer prevention as well as treatment.
Collapse
Affiliation(s)
- Andrea Clocchiatti
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Elisa Cora
- Department of Biochemistry, University of Lausanne, Epalinges, CH-1066, Switzerland
| | - Yosra Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA; and the Department of Biochemistry, University of Lausanne, Epalinges, CH-1066, Switzerland
| | - G Paolo Dotto
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA; and the Department of Biochemistry, University of Lausanne, Epalinges, CH-1066, Switzerland
| |
Collapse
|
130
|
Abstract
Insights into risk factors for olfactory decline are needed, because knowledge about its origin is limited. This impairment has important implications for human health. Several epidemiologic studies of olfaction provide insight into the prevalence of olfactory disorders. Here, we review the major population studies carried out on this topic to date. Our purpose is to characterize knowledge about olfactory disorders from human studies. We also describe the existing methods for measuring the sense of smell in population studies, present recent insights into the epidemiology of smell disorders, and discuss the risk factors identified to date. Synthesis of these data shows that olfactory dysfunction increases as people age and is worse in men. Further study of olfaction is warranted for gaining better information on the etiologies affecting its impairment, research that will have a large public health impact.
Collapse
Affiliation(s)
- Jingpu Yang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin Province, 130041, China
| | - Jayant M Pinto
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, 5841 South Maryland Avenue, MC1035, Chicago, IL 60637
| |
Collapse
|
131
|
The effects of hormones and physical exercise on hippocampal structural plasticity. Front Neuroendocrinol 2016; 41:23-43. [PMID: 26989000 DOI: 10.1016/j.yfrne.2016.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 01/22/2023]
Abstract
The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.e., intrinsic modulators) and physical exercise (i.e., an extrinsic modulator) can differentially modulate hippocampal plasticity in general and adult hippocampal neurogenesis in particular. Specifically, we provide an overview of the effects of sex hormones, stress hormones, and metabolic hormones on hippocampal structural plasticity and adult hippocampal neurogenesis. In addition, we also discuss how physical exercise modulates these forms of hippocampal plasticity, giving particular emphasis on how this modulation can be affected by variables such as exercise regime, duration, and intensity. Understanding the neurobiological mechanisms underlying the modulation of hippocampal structural plasticity by intrinsic and extrinsic factors will impact the design of new therapeutic approaches aimed at restoring hippocampal plasticity following brain injury or neurodegeneration.
Collapse
|
132
|
Mahmoud R, Wainwright SR, Galea LAM. Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms. Front Neuroendocrinol 2016; 41:129-52. [PMID: 26988999 DOI: 10.1016/j.yfrne.2016.03.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
Abstract
Neurogenesis within the adult hippocampus is modulated by endogenous and exogenous factors. Here, we review the role of sex hormones in the regulation of adult hippocampal neurogenesis in males and females. The review is framed around the potential functional implications of sex hormone regulation of adult hippocampal neurogenesis, with a focus on cognitive function and mood regulation, which may be related to sex differences in incidence and severity of dementia and depression. We present findings from preclinical studies of endogenous fluctuations in sex hormones relating to reproductive function and ageing, and from studies of exogenous hormone manipulations. In addition, we discuss the modulating roles of sex, age, and reproductive history on the relationship between sex hormones and neurogenesis. Because sex hormones have diverse targets in the central nervous system, we overview potential mechanisms through which sex hormones may influence hippocampal neurogenesis. Lastly, we advocate for a more systematic consideration of sex and sex hormones in studying the functional implications of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Rand Mahmoud
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Steven R Wainwright
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Liisa A M Galea
- Department of Psychology, University of British Columbia, Vancouver, Canada; Centre for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
133
|
Social behavior, hormones and adult neurogenesis. Front Neuroendocrinol 2016; 41:71-86. [PMID: 26996817 DOI: 10.1016/j.yfrne.2016.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 01/31/2023]
Abstract
A variety of experiences have been shown to affect the production of neurons in the adult hippocampus. These effects may be mediated by experience-driven hormonal changes, which, in turn, interact with factors such as sex, age and life history to alter brain plasticity. Although the effects of physical experience and stress have been extensively characterized, various types of social experience across the lifespan trigger profound neuroendocrine changes in parallel with changes in adult neurogenesis. This review article focuses on the influence of specific social experiences on adult neurogenesis in the dentate gyrus and the potential role of hormones in these effects.
Collapse
|
134
|
Leuner B, Sabihi S. The birth of new neurons in the maternal brain: Hormonal regulation and functional implications. Front Neuroendocrinol 2016; 41:99-113. [PMID: 26969795 PMCID: PMC4942360 DOI: 10.1016/j.yfrne.2016.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 12/21/2022]
Abstract
The maternal brain is remarkably plastic and exhibits multifaceted neural modifications. Neurogenesis has emerged as one of the mechanisms by which the maternal brain exhibits plasticity. This review highlights what is currently known about peripartum-associated changes in adult neurogenesis and the underlying hormonal mechanisms. We also consider the functional consequences of neurogenesis in the peripartum brain and extent to which this process may play a role in maternal care, cognitive function and postpartum mood. Finally, while most work investigating the effects of parenting on adult neurogenesis has focused on mothers, a few studies have examined fathers and these results are also discussed.
Collapse
Affiliation(s)
- Benedetta Leuner
- The Ohio State University, Department of Psychology, Columbus, OH, USA; The Ohio State University, Department of Neuroscience, Columbus, OH, USA; The Ohio State University, Behavioral Neuroendocrinology Group, Columbus, OH, USA.
| | - Sara Sabihi
- The Ohio State University, Department of Psychology, Columbus, OH, USA
| |
Collapse
|
135
|
Abstract
Longevity differs between sexes, with females being longer-lived in most mammals, including humans. One hallmark of aging is the functional decline of stem cells. Thus, a key question is whether the aging of stem cells differs between males and females and whether this has consequences for disease and lifespan.
Collapse
Affiliation(s)
- Ben Dulken
- Stanford University Medical Scientist Training Program, Stanford University, Stanford, CA 94305, USA; Stem Cell Biology and Regenerative Medicine Ph.D. Program, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
136
|
Conde K, Meza C, Kelly MJ, Sinchak K, Wagner EJ. Estradiol Rapidly Attenuates ORL-1 Receptor-Mediated Inhibition of Proopiomelanocortin Neurons via Gq-Coupled, Membrane-Initiated Signaling. Neuroendocrinology 2016; 103:787-805. [PMID: 26765570 PMCID: PMC4947458 DOI: 10.1159/000443765] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022]
Abstract
Estradiol rapidly regulates the activity of arcuate nucleus (ARH) proopiomelanocortin (POMC) neurons that project to the medial preoptic nucleus (MPN) to regulate lordosis. Orphanin FQ/nociceptin (OFQ/N) acts via opioid receptor-like (ORL)-1 receptors to inhibit these POMC neurons. Therefore, we tested the hypothesis that estradiol excites POMC neurons by rapidly attenuating inhibitory ORL-1 signaling in these cells. Hypothalamic slices through the ARH were prepared from ovariectomized rats injected with Fluorogold into the MPN. Electrophysiological recordings were generated in ARH neurons held at or near -60 mV, and neuronal phenotype was determined post hoc by immunohistofluorescence. OFQ/N application induced robust outward currents and hyperpolarizations via G protein-gated, inwardly rectifying K+ (GIRK) channels that were attenuated by pretreatment with either 17-β estradiol (E2) or E2 conjugated to bovine serum albumin. This was blocked by the estrogen receptor (ER) antagonist ICI 182,780 and mimicked by the Gq-coupled membrane ER (Gq-mER) ligand STX and the ERα agonist PPT. Inhibiting phosphatidylinositol-3-kinase (PI3K) blocked the estrogenic attenuation of ORL-1/GIRK currents. Antagonizing either phospholipase C (PLC), protein kinase C (PKC), protein kinase A (PKA) or neuronal nitric oxide synthase (nNOS) also abrogated E2 inhibition of ORL-1/GIRK currents, whereas activation of PKC, PKA, protein kinase B (Akt) and nNOS substrate L-arginine all attenuated the OFQ/N response. This was observed in 92 MPN-projecting, POMC-positive ARH neurons. Thus, ORL-1 receptor-mediated inhibition of POMC neurons is rapidly and negatively modulated by E2, an effect which is stereoselective and membrane initiated via Gq-mER and ERα activation that signals through PLC, PKC, PKA, PI3K and nNOS.
Collapse
Affiliation(s)
- Kristie Conde
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766
| | - Cecilia Meza
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766
| | - Martin J. Kelly
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840
| | - Edward J. Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766
| |
Collapse
|
137
|
Gender Differences in the Neurobiology of Anxiety: Focus on Adult Hippocampal Neurogenesis. Neural Plast 2016; 2016:5026713. [PMID: 26885403 PMCID: PMC4738969 DOI: 10.1155/2016/5026713] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/30/2015] [Accepted: 12/06/2015] [Indexed: 12/14/2022] Open
Abstract
Although the literature reports a higher incidence of anxiety disorders in women, the majority of basic research has focused on male rodents, thus resulting in a lack of knowledge on the neurobiology of anxiety in females. Bridging this gap is crucial for the design of effective translational interventions in women. One of the key brain mechanisms likely to regulate anxious behavior is adult hippocampal neurogenesis (AHN). This review paper aims to discuss the evidence on the differences between male and female rodents with regard to anxiety-related behavior and physiology, with a special focus on AHN. The differences between male and female physiologies are greatly influenced by hormonal differences. Gonadal hormones and their fluctuations during the estrous cycle have often been identified as agents responsible for sexual dimorphism in behavior and AHN. During sexual maturity, hormone levels fluctuate cyclically in females more than in males, increasing the stress response and the susceptibility to anxiety. It is therefore of great importance that future research investigates anxiety and other neurophysiological aspects in the female model, so that results can be more accurately applicable to the female population.
Collapse
|
138
|
Abe H, Saito F, Tanaka T, Mizukami S, Hasegawa-Baba Y, Imatanaka N, Akahori Y, Yoshida T, Shibutani M. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats. Toxicol Appl Pharmacol 2016; 290:10-20. [DOI: 10.1016/j.taap.2015.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
|
139
|
Brummelte S, Galea LAM. Postpartum depression: Etiology, treatment and consequences for maternal care. Horm Behav 2016; 77:153-66. [PMID: 26319224 DOI: 10.1016/j.yhbeh.2015.08.008] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 01/20/2023]
Abstract
This article is part of a Special Issue "Parental Care". Pregnancy and postpartum are associated with dramatic alterations in steroid and peptide hormones which alter the mothers' hypothalamic pituitary adrenal (HPA) and hypothalamic pituitary gonadal (HPG) axes. Dysregulations in these endocrine axes are related to mood disorders and as such it should not come as a major surprise that pregnancy and the postpartum period can have profound effects on maternal mood. Indeed, pregnancy and postpartum are associated with an increased risk for developing depressive symptoms in women. Postpartum depression affects approximately 10-15% of women and impairs mother-infant interactions that in turn are important for child development. Maternal attachment, sensitivity and parenting style are essential for a healthy maturation of an infant's social, cognitive and behavioral skills and depressed mothers often display less attachment, sensitivity and more harsh or disrupted parenting behaviors, which may contribute to reports of adverse child outcomes in children of depressed mothers. Here we review, in honor of the "father of motherhood", Jay Rosenblatt, the literature on postnatal depression in the mother and its effect on mother-infant interactions. We will cover clinical and pre-clinical findings highlighting putative neurobiological mechanisms underlying postpartum depression and how they relate to maternal behaviors and infant outcome. We also review animal models that investigate the neurobiology of maternal mood and disrupted maternal care. In particular, we discuss the implications of endogenous and exogenous manipulations of glucocorticoids on maternal care and mood. Lastly we discuss interventions during gestation and postpartum that may improve maternal symptoms and behavior and thus may alter developmental outcome of the offspring.
Collapse
Affiliation(s)
| | - Liisa A M Galea
- Dept. of Psychology, Graduate Program in Neuroscience, Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
140
|
Pawluski JL, Lambert KG, Kinsley CH. Neuroplasticity in the maternal hippocampus: Relation to cognition and effects of repeated stress. Horm Behav 2016; 77:86-97. [PMID: 26122302 DOI: 10.1016/j.yhbeh.2015.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/16/2015] [Accepted: 06/04/2015] [Indexed: 12/28/2022]
Abstract
This article is part of a Special Issue "Parental Care". It is becoming clear that the female brain has an inherent plasticity that is expressed during reproduction. The changes that occur benefit the offspring, which in turn secures the survival of the mother's genetic legacy. Thus, the onset of maternal motivation involves basic mechanisms from genetic expression profiles, to hormone release, to hormone-neuron interactions, all of which fundamentally change the neural architecture - and for a period of time that extends, interestingly, beyond the reproductive life of the female. Although multiple brain areas involved in maternal responses are discussed, this review focuses primarily on plasticity in the maternal hippocampus during pregnancy, the postpartum period and well into aging as it pertains to changes in cognition. In addition, the effects of prolonged and repeated stress on these dynamic responses are considered. The maternal brain is a marvel of directed change, extending into behaviors both obvious (infant-directed) and less obvious (predation, cognition). In sum, the far-reaching effects of reproduction on the female nervous system provide an opportunity to investigate neuroplasticity and behavioral flexibility in a natural mammalian model.
Collapse
Affiliation(s)
- Jodi L Pawluski
- University of Rennes 1, IRSET-INSERM U1085, Campus Beaulieu, Rennes Cedex, France.
| | - Kelly G Lambert
- Department of Psychology, Randolph-Macon College, Ashland, VA 23005, USA.
| | - Craig H Kinsley
- Department of Psychology, Center for Neuroscience, University of Richmond, Richmond, VA 23173, USA.
| |
Collapse
|
141
|
Differential role of estrogen receptor modulators in depression-like behavior and memory impairment in rats with postmenopausal diabetes. Menopause 2015; 22:1117-24. [DOI: 10.1097/gme.0000000000000435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
142
|
Frick KM, Kim J, Tuscher JJ, Fortress AM. Sex steroid hormones matter for learning and memory: estrogenic regulation of hippocampal function in male and female rodents. Learn Mem 2015; 22:472-93. [PMID: 26286657 PMCID: PMC4561402 DOI: 10.1101/lm.037267.114] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 01/24/2023]
Abstract
Ample evidence has demonstrated that sex steroid hormones, such as the potent estrogen 17β-estradiol (E2), affect hippocampal morphology, plasticity, and memory in male and female rodents. Yet relatively few investigators who work with male subjects consider the effects of these hormones on learning and memory. This review describes the effects of E2 on hippocampal spinogenesis, neurogenesis, physiology, and memory, with particular attention paid to the effects of E2 in male rodents. The estrogen receptors, cell-signaling pathways, and epigenetic processes necessary for E2 to enhance memory in female rodents are also discussed in detail. Finally, practical considerations for working with female rodents are described for those investigators thinking of adding females to their experimental designs.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jennifer J Tuscher
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
143
|
Pinto JM, Wroblewski KE, Kern DW, Schumm LP, McClintock MK. The Rate of Age-Related Olfactory Decline Among the General Population of Older U.S. Adults. J Gerontol A Biol Sci Med Sci 2015; 70:1435-41. [PMID: 26253908 DOI: 10.1093/gerona/glv072] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/24/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Age-related olfactory loss (presbyosmia) is a prevalent sensory impairment with a large public health impact. In cross-sectional analyses, we found striking health disparities in olfactory function among older U.S. adults. Here, we report a 5-year follow-up to determine the magnitude of within-person olfactory decline. METHODS The National Social Life, Health, and Aging Project (NSHAP) interviewed a probability sample of home-dwelling older U.S. adults (57-85 years) in 2005-2006 (Wave 1) and reinterviewed them in 2010-2011 (Wave 2), assessing demographics, social life, and health, including olfaction. Odor identification was measured with a 5-item version of the Sniffin' Sticks (0-5 correct). Fourteen hundred and thirty-six respondents provided olfaction data in both waves. Multivariate linear and logistic regression were used to model the association between change in olfactory performance and demographic, health, and psychosocial factors. RESULTS Odor identification declined most rapidly among older individuals (0.25 additional errors per 5 years for each decade of age, p < .001) and in men (0.17 additional errors per 5 years compared to women, p = .005). Among those with perfect scores in Wave 1, African Americans declined more rapidly than Whites (p = .04). Neither socioeconomic status, health conditions, cognition, mental health, alcohol use nor smoking was associated with change in olfaction (p > .05, all). CONCLUSIONS The rate of olfactory decline increases with age and is greater among men than women despite adjusting for differences in psychosocial and health conditions, indicating physiologic factors as drivers. African Americans are more likely to experience initial olfactory decline, consistent with an earlier onset of aging among this subgroup.
Collapse
Affiliation(s)
- Jayant M Pinto
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery,
| | | | - David W Kern
- Department of Comparative Human Development and Institute for Mind and Biology, The University of Chicago, Illinois
| | | | - Martha K McClintock
- Department of Comparative Human Development and Institute for Mind and Biology, The University of Chicago, Illinois
| |
Collapse
|
144
|
Duarte-Guterman P, Yagi S, Chow C, Galea LAM. Hippocampal learning, memory, and neurogenesis: Effects of sex and estrogens across the lifespan in adults. Horm Behav 2015; 74:37-52. [PMID: 26122299 DOI: 10.1016/j.yhbeh.2015.05.024] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/29/2015] [Accepted: 05/26/2015] [Indexed: 01/12/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". There are sex differences in hippocampus-dependent cognition and neurogenesis suggesting that sex hormones are involved. Estrogens modulate certain forms of spatial and contextual memory and neurogenesis in the adult female rodent, and to a lesser extent male, hippocampus. This review focuses on the effects of sex and estrogens on hippocampal learning, memory, and neurogenesis in the young and aged adult rodent. We discuss how factors such as the type of estrogen, duration and dose of treatment, timing of treatment, and type of memory influence the effects of estrogens on cognition and neurogenesis. We also address how reproductive experience (pregnancy and mothering) and aging interact with estrogens to modulate hippocampal cognition and neurogenesis in females. Given the evidence that adult hippocampal neurogenesis plays a role in long-term spatial memory and pattern separation, we also discuss the functional implications of regulating neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Department of Psychology, Centre for Brain Health, Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Shunya Yagi
- Department of Psychology, Centre for Brain Health, Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Carmen Chow
- Department of Psychology, Centre for Brain Health, Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Liisa A M Galea
- Department of Psychology, Centre for Brain Health, Program in Neuroscience, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
145
|
Walf AA, Koonce CJ, Frye CA. Progestogens' effects and mechanisms for object recognition memory across the lifespan. Behav Brain Res 2015; 294:50-61. [PMID: 26235328 DOI: 10.1016/j.bbr.2015.07.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/16/2015] [Accepted: 07/28/2015] [Indexed: 12/11/2022]
Abstract
This review explores the effects of female reproductive hormones, estrogens and progestogens, with a focus on progesterone and allopregnanolone, on object memory. Progesterone and its metabolites, in particular allopregnanolone, exert various effects on both cognitive and non-mnemonic functions in females. The well-known object recognition task is a valuable experimental paradigm that can be used to determine the effects and mechanisms of progestogens for mnemonic effects across the lifespan, which will be discussed herein. In this task there is little test-decay when different objects are used as targets and baseline valance for objects is controlled. This allows repeated testing, within-subjects designs, and longitudinal assessments, which aid understanding of changes in hormonal milieu. Objects are not aversive or food-based, which are hormone-sensitive factors. This review focuses on published data from our laboratory, and others, using the object recognition task in rodents to assess the role and mechanisms of progestogens throughout the lifespan. Improvements in object recognition performance of rodents are often associated with higher hormone levels in the hippocampus and prefrontal cortex during natural cycles, with hormone replacement following ovariectomy in young animals, or with aging. The capacity for reversal of age- and reproductive senescence-related decline in cognitive performance, and changes in neural plasticity that may be dissociated from peripheral effects with such decline, are discussed. The focus here will be on the effects of brain-derived factors, such as the neurosteroid, allopregnanolone, and other hormones, for enhancing object recognition across the lifespan.
Collapse
Affiliation(s)
- Alicia A Walf
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA; The Center for Life Sciences Research, The University at Albany-SUNY, Albany, NY 12222, USA; Institute of Arctic Biology, The University of Alaska-Fairbanks, Fairbanks, Alaska 99775, USA; The University of Alaska-Fairbanks, IDeA Network of Biomedical Excellence (INBRE), Fairbanks, Alaska 99775, USA; Cognitive Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Carolyn J Koonce
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA; Institute of Arctic Biology, The University of Alaska-Fairbanks, Fairbanks, Alaska 99775, USA; The University of Alaska-Fairbanks, IDeA Network of Biomedical Excellence (INBRE), Fairbanks, Alaska 99775, USA
| | - Cheryl A Frye
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA; Dept. of Biological Sciences, The University at Albany-SUNY, Albany, NY 12222, USA; The Center for Neuroscience, The University at Albany-SUNY, Albany, NY 12222, USA; The Center for Life Sciences Research, The University at Albany-SUNY, Albany, NY 12222, USA; Department of Chemistry and Biochemistry, The University of Alaska-Fairbanks, Fairbanks, Alaska 99775, USA; Institute of Arctic Biology, The University of Alaska-Fairbanks, Fairbanks, Alaska 99775, USA; The University of Alaska-Fairbanks, IDeA Network of Biomedical Excellence (INBRE), Fairbanks, Alaska 99775, USA.
| |
Collapse
|
146
|
Andescavage N, Yarish A, Donofrio M, Bulas D, Evangelou I, Vezina G, McCarter R, duPlessis A, Limperopoulos C. 3-D volumetric MRI evaluation of the placenta in fetuses with complex congenital heart disease. Placenta 2015; 36:1024-30. [PMID: 26190037 DOI: 10.1016/j.placenta.2015.06.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 06/24/2015] [Accepted: 06/27/2015] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Placental insufficiency remains a common cause of perinatal mortality and neurodevelopmental morbidity. Congenital heart disease (CHD) in the fetus and its relationship to placental function is unknown. This study explores placental health and its relationship to neonatal outcomes by comparing placental volumes in healthy pregnancies and pregnancies complicated by CHD using in vivo three-dimensional MRI studies. METHODS In a prospective observational study, pregnant women greater than 18 weeks gestation with normal pregnancies or pregnancies complicated by CHD were recruited and underwent fetal MR imaging. The placenta was manually outlined and the volume was calculated in cm(3). Brain volume was also calculated and clinical data were also collected. Relationships, including interactive effects, between placental and fetal growth, including brain growth, were evaluated using longitudinal multiple linear regression analysis. RESULTS 135 women underwent fetal MRI between 18 and 39 weeks gestation (mean 31.6 ± 4.4). Placental volume increased exponentially with gestational age (p = 0.041). Placental volume was positively associated with birth weight (p < 0.001) and increased more steeply with birth weight in CHD-affected fetuses (p = 0.046). Total brain and cerebral volumes were smaller in the CHD group (p < 0.001), but brainstem volume (p < 0.001) was larger. Placental volumes were not associated with brain volumes. DISCUSSION Impaired placental growth in CHD is associated with gestational age and birth weight at delivery. Abnormalities in placental development may contribute to the significant morbidity in this high-risk population. Assessment of placental volume by MRI allows for in vivo assessments of placental development.
Collapse
Affiliation(s)
- Nickie Andescavage
- Division of Neonatology, Children's National Health Systems, 111 Michigan Ave. NW, Washington, DC 20010, United States; Department of Pediatrics, George Washington University School of Medicine, 2300 Eye St. NW, Washington, DC 20037, United States
| | - Alexa Yarish
- Division of Diagnostic Imaging & Radiology, Children's National Health Systems, 111 Michigan Ave. NW, Washington, DC 20010, United States
| | - Mary Donofrio
- Division of Cardiology, Children's National Health Systems, 111 Michigan Ave. NW, Washington, DC 20010, United States
| | - Dorothy Bulas
- Division of Diagnostic Imaging & Radiology, Children's National Health Systems, 111 Michigan Ave. NW, Washington, DC 20010, United States
| | - Iordanis Evangelou
- Division of Diagnostic Imaging & Radiology, Children's National Health Systems, 111 Michigan Ave. NW, Washington, DC 20010, United States; Division of Fetal & Transitional Medicine, Children's National Health Systems, 111 Michigan Ave. NW, Washington, DC 20010, United States; Department of Radiology, George Washington University School of Medicine, 2300 Eye St. NW, Washington, DC 20037, United States
| | - Gilbert Vezina
- Division of Diagnostic Imaging & Radiology, Children's National Health Systems, 111 Michigan Ave. NW, Washington, DC 20010, United States; Department of Radiology, George Washington University School of Medicine, 2300 Eye St. NW, Washington, DC 20037, United States
| | - Robert McCarter
- Division of Biostatistics & Informatics, Children's National Health Systems, 111 Michigan Ave. NW, Washington, DC 20010, United States
| | - Adre duPlessis
- Division of Fetal & Transitional Medicine, Children's National Health Systems, 111 Michigan Ave. NW, Washington, DC 20010, United States; Department of Pediatrics, George Washington University School of Medicine, 2300 Eye St. NW, Washington, DC 20037, United States
| | - Catherine Limperopoulos
- Division of Diagnostic Imaging & Radiology, Children's National Health Systems, 111 Michigan Ave. NW, Washington, DC 20010, United States; Division of Fetal & Transitional Medicine, Children's National Health Systems, 111 Michigan Ave. NW, Washington, DC 20010, United States; Department of Radiology, George Washington University School of Medicine, 2300 Eye St. NW, Washington, DC 20037, United States.
| |
Collapse
|
147
|
Workman JL, Raineki C, Weinberg J, Galea LAM. Alcohol and pregnancy: Effects on maternal care, HPA axis function, and hippocampal neurogenesis in adult females. Psychoneuroendocrinology 2015; 57:37-50. [PMID: 25900594 PMCID: PMC4437880 DOI: 10.1016/j.psyneuen.2015.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/28/2015] [Accepted: 03/01/2015] [Indexed: 01/02/2023]
Abstract
Chronic alcohol consumption negatively affects health, and has additional consequences if consumption occurs during pregnancy as prenatal alcohol exposure adversely affects offspring development. While much is known on the effects of prenatal alcohol exposure in offspring less is known about effects of alcohol in dams. Here, we examine whether chronic alcohol consumption during gestation alters maternal behavior, hippocampal neurogenesis and HPA axis activity in late postpartum female rats compared with nulliparous rats. Rats were assigned to alcohol, pair-fed or ad libitum control treatment groups for 21 days (for pregnant rats, this occurred gestation days 1-21). Maternal behavior was assessed throughout the postpartum period. Twenty-one days after alcohol exposure, we assessed doublecortin (DCX) (an endogenous protein expressed in immature neurons) expression in the dorsal and ventral hippocampus and HPA axis activity. Alcohol consumption during pregnancy reduced nursing and increased self-directed and negative behaviors, but spared licking and grooming behavior. Alcohol consumption increased corticosterone and adrenal mass only in nulliparous females. Surprisingly, alcohol consumption did not alter DCX-expressing cell density. However, postpartum females had fewer DCX-expressing cells (and of these cells more immature proliferating cells but fewer postmitotic cells) than nulliparous females. Collectively, these data suggest that alcohol consumption during pregnancy disrupts maternal care without affecting HPA function or neurogenesis in dams. Conversely, alcohol altered HPA function in nulliparous females only, suggesting that reproductive experience buffers the long-term effects of alcohol on the HPA axis.
Collapse
Affiliation(s)
- Joanna L. Workman
- Department of Psychology University of British Columbia 2136 West Mall Vancouver, BC, Canada V6T 1Z4
| | - Charlis Raineki
- Department of Cellular & Physiological Sciences University of British Columbia 2350 Health Sciences Mall Vancouver, BC, Canada V6T 1Z3
| | - Joanne Weinberg
- Department of Psychology University of British Columbia 2136 West Mall Vancouver, BC, Canada V6T 1Z4
- Department of Cellular & Physiological Sciences University of British Columbia 2350 Health Sciences Mall Vancouver, BC, Canada V6T 1Z3
- Djavad Mowafaghian Centre for Brain Health 2215 Wesbrook Mall Vancouver, BC Canada V6T 1Z3
| | - Liisa A. M. Galea
- Department of Psychology University of British Columbia 2136 West Mall Vancouver, BC, Canada V6T 1Z4
- Djavad Mowafaghian Centre for Brain Health 2215 Wesbrook Mall Vancouver, BC Canada V6T 1Z3
| |
Collapse
|
148
|
Hippocampal volume and functional connectivity changes during the female menstrual cycle. Neuroimage 2015; 118:154-62. [PMID: 26057590 DOI: 10.1016/j.neuroimage.2015.06.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/30/2015] [Accepted: 06/03/2015] [Indexed: 12/27/2022] Open
Abstract
Hippocampal volume has been shown to be sensitive to variations in estrogen and progesterone levels across rodents' estrous cycle. However, little is known about the covariation of hormone levels and brain structure in the course of the human menstrual cycle. Here, we examine this covariation with a multi-method approach that includes several brain imaging methods and hormonal assessments. We acquired structural and functional scans from 21 naturally cycling women on four time points during their cycles (early follicular phase, late follicular phase, ovulation and luteal phase). Hormone blood concentrations and cognitive performance in different domains were assessed on each of the measurement occasions. Structural MRI images were processed by means of whole-brain voxel-based morphometry and FreeSurfer. With either method, bilateral increases in hippocampal volume were found in the late follicular phase relative to the early follicular phase. The gray matter probability in regions of hippocampal volume increase was associated with lower mean diffusivity in the same region. In addition, we observed higher functional connectivity between the hippocampi and the bilateral superior parietal lobe in the late follicular phase. We did not find any reliable cycle-related performance variations on the cognitive tasks. The present results show that hormonal fluctuations covary with hippocampal structure and function in the course of the human menstrual cycle.
Collapse
|
149
|
Kato M, Abe H, Itahashi M, Kikuchihara Y, Kimura M, Mizukami S, Yoshida T, Shibutani M. Maternal exposure to hexachlorophene targets intermediate-stage progenitor cells in the hippocampal neurogenesis involving myelin vacuolation of cholinergic and glutamatergic inputs in mice. J Appl Toxicol 2015; 36:211-22. [PMID: 25943520 DOI: 10.1002/jat.3162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 11/11/2022]
Abstract
Hexachlorophene (HCP) has been shown to induce myelin vacuolation due to intramyelinic edema of the nerve fibers in animal neural tissue. We investigated the maternal exposure effect of HCP on hippocampal neurogenesis in the offspring of pregnant mice supplemented with 0 (control), 33 or 100 ppm HCP in diet from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, offspring as examined in males exhibited decreased granule cell lineage populations expressing paired box 6, sex-determining region Y-box 2 and eomesodermin in the hippocampal subgranular zone (SGZ) accompanied by myelin vacuolation involving white matter tracts of the hippocampal fimbria at ≥ 33 ppm. However, SGZ cellular populations expressing brain lipid binding protein and doublecortin were unchanged at any dose. Transcript expression of cholinergic receptor genes, Chrna4 and Chrnb2, and glutamate receptor genes, Grm1 and Grin2d, examined at 100 ppm, decreased in the dentate gyrus. HCP exposure did not alter the number of proliferating or apoptotic cells in the SGZ, or reelin- or calcium-binding protein-expressing γ-aminobutyric acid (GABA)ergic interneurons in the dentate hilus, on PND 21 and PND 77. All neurogenesis-related changes observed in HCP-exposed offspring on PND 21 disappeared on PND 77, suggesting that maternal HCP exposure at ≥ 33 ppm reversibly decreased type 2 intermediate-stage progenitor cells in the hippocampal neurogenesis. Myelin vacuolation might be responsible for changes in neurogenesis possibly by reducing nerve conduction velocity of cholinergic inputs from the septal-hippocampal pathway to granule cell lineages and/or GABAergic interneurons, and of glutamatergic inputs to granule cell lineages.
Collapse
Affiliation(s)
- Mizuho Kato
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Hajime Abe
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Megu Itahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Yoh Kikuchihara
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Masayuki Kimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Sayaka Mizukami
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| |
Collapse
|
150
|
Barha CK, Lieblich SE, Chow C, Galea LAM. Multiparity-induced enhancement of hippocampal neurogenesis and spatial memory depends on ovarian hormone status in middle age. Neurobiol Aging 2015; 36:2391-405. [PMID: 25998101 DOI: 10.1016/j.neurobiolaging.2015.04.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 12/13/2022]
Abstract
Menopause is associated with cognitive decline, and previous parity can increase or delay the trajectory of cognitive aging. Furthermore, parity enables the hippocampus to respond to estrogens in middle age. The present study investigated how previous parity and estrogens influence cognition, neurogenesis, and neuronal activation in response to memory retrieval in the hippocampus of middle-aged females. Multiparous and nulliparous rats were ovariectomized (OVX) or received sham surgery and were treated with vehicle, 17β-estradiol, 17α-estradiol, or estrone. Rats were trained on the spatial working and reference memory versions of the Morris water maze. Multiparous rats had a significantly greater density of immature neurons in the hippocampus, enhanced acquisition of working memory, but poorer reference memory compared with nulliparous rats. Furthermore, OVX increased, while treatment with estrogens reduced, the density of immature neurons, regardless of parity. OVX improved reference memory only in nulliparous rats. Thus, motherhood has long-lasting effects on the neuroplasticity and function of the hippocampus. These findings have wide-ranging implications for the treatment of age-associated decline in women.
Collapse
Affiliation(s)
- Cindy K Barha
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie E Lieblich
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carmen Chow
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liisa A M Galea
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada; Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|