101
|
Roberts AL, Liu J, Lawn RB, Jha SC, Sumner JA, Kang JH, Rimm EB, Grodstein F, Kubzansky LD, Chibnik LB, Koenen KC. Association of Posttraumatic Stress Disorder With Accelerated Cognitive Decline in Middle-aged Women. JAMA Netw Open 2022; 5:e2217698. [PMID: 35771577 PMCID: PMC9247738 DOI: 10.1001/jamanetworkopen.2022.17698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Posttraumatic stress disorder (PTSD) has been hypothesized to lead to impaired cognitive function. However, no large-scale studies have assessed whether PTSD is prospectively associated with cognitive decline in middle-aged adults. OBJECTIVE To assess the association between PTSD and decline in cognitive function over time. DESIGN, SETTING, AND PARTICIPANTS This cohort study included participants from the Nurses' Health Study II, an ongoing longitudinal cohort study involving community-dwelling middle-aged female nurses residing in the US who had at least a 2-year nursing degree at the time of enrollment in 1989. The present study included 12 270 trauma-exposed women who were enrolled in the PTSD substudy of the Nurses' Health Study II and completed 1 to 5 cognitive assessments. Data were collected from March 1, 2008, to July 30, 2019. EXPOSURES Lifetime PTSD symptoms, assessed using a validated questionnaire between March 1, 2008, and February 28, 2010. MAIN OUTCOMES AND MEASURES The main outcome was evaluated using the Cogstate Brief Battery, a self-administered online cognitive battery. Cognitive function was measured by a psychomotor speed and attention composite score and a learning and working memory composite score. Women completed the Cogstate Brief Battery every 6 or 12 months (up to 24 months) from October 3, 2014, to July 30, 2019. Linear mixed-effects models were used to evaluate the association of PTSD symptoms with the rate of change in cognition over follow-up, considering a broad range of relevant covariates, including the presence of depression symptoms and history of clinician-diagnosed depression. The rate of cognitive change was adjusted for potential practice effects (ie, potential changes in test results that occur when a test is taken more than once) by including indicators for the number of previous tests taken. RESULTS Among 12 270 women, the mean (SD) age at the baseline cognitive assessment was 61.1 (4.6) years; 125 women (1.0%) were Asian, 75 (0.6%) were Black, 156 (1.3%) were Hispanic, 11 767 (95.9%) were non-Hispanic White, and 147 (1.2%) were of other race and/or ethnicity. A higher number of PTSD symptoms was associated with worse cognitive trajectories. Compared with women with no PTSD symptoms, women with the highest symptom level (6-7 symptoms) had a significantly worse rate of change in both learning and working memory (β = -0.08 SD/y; 95% CI, -0.11 to -0.04 SD/y; P < .001) and psychomotor speed and attention (β = -0.05 SD/y; 95% CI, -0.09 to -0.01 SD/y; P = .02), adjusted for demographic characteristics. Associations were unchanged when additionally adjusted for behavioral factors (eg, 6-7 symptoms in the analysis of learning and working memory: β = -0.08 SD/y; 95% CI, -0.11 to -0.04 SD/y; P < .001) and health conditions (eg, 6-7 symptoms in the analysis of learning and working memory: β = -0.08 SD/y; 95% CI, -0.11 to -0.04 SD/y; P < .001) and were partially attenuated but still evident when further adjusted for practice effects (eg, 6-7 symptoms in the analysis of learning and working memory: β = -0.07 SD/y; 95% CI, -0.10 to -0.03 SD/y; P < .001) and comorbid depression (eg, 6-7 symptoms in the analysis of learning and working memory: β = -0.07 SD/y; 95% CI, -0.11 to -0.03 SD/y; P < .001). CONCLUSIONS AND RELEVANCE In this large-scale prospective cohort study, PTSD was associated with accelerated cognitive decline in middle-aged women, suggesting that earlier cognitive screening among women with PTSD may be warranted. Given that cognitive decline is strongly associated with subsequent Alzheimer disease and related dementias, better understanding of this association may be important to promote healthy aging.
Collapse
Affiliation(s)
- Andrea L. Roberts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jiaxuan Liu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Rebecca B. Lawn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Shaili C. Jha
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Jae H. Kang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eric B. Rimm
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Francine Grodstein
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Laura D. Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Lori B. Chibnik
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Karestan C. Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston
| |
Collapse
|
102
|
Teleanu DM, Niculescu AG, Lungu II, Radu CI, Vladâcenco O, Roza E, Costăchescu B, Grumezescu AM, Teleanu RI. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23115938. [PMID: 35682615 PMCID: PMC9180653 DOI: 10.3390/ijms23115938] [Citation(s) in RCA: 306] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress has been linked with a variety of diseases, being involved in the debut and/or progress of several neurodegenerative disorders. This review intends to summarize some of the findings that correlate the overproduction of reactive oxygen species with the pathophysiology of Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Oxidative stress was also noted to modify the inflammatory response. Even though oxidative stress and neuroinflammation are two totally different pathological events, they are linked and affect one another. Nonetheless, there are still several mechanisms that need to be understood regarding the onset and the progress of neurodegenerative diseases in order to develop efficient therapies. As antioxidants are a means to alter oxidative stress and slow down the symptoms of these neurodegenerative diseases, the most common antioxidants, enzymatic as well as non-enzymatic, have been mentioned in this paper as therapeutic options for the discussed disorders.
Collapse
Affiliation(s)
- Daniel Mihai Teleanu
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.M.T.); (O.V.); (E.R.); (R.I.T.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (I.I.L.)
| | - Iulia Ioana Lungu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (I.I.L.)
- National Institute of Laser, Plasma and Radiation Physics (NILPRP), 077125 Magurele, Romania
| | - Crina Ioana Radu
- Department of Neurosurgery (I), Bucharest University Emergency Hospital, 050098 Bucharest, Romania;
| | - Oana Vladâcenco
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.M.T.); (O.V.); (E.R.); (R.I.T.)
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania
| | - Eugenia Roza
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.M.T.); (O.V.); (E.R.); (R.I.T.)
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania
| | - Bogdan Costăchescu
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (I.I.L.)
- ICUB—Research Institute of University of Bucharest, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Correspondence:
| | - Raluca Ioana Teleanu
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.M.T.); (O.V.); (E.R.); (R.I.T.)
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania
| |
Collapse
|
103
|
Chung TD, Linville RM, Guo Z, Ye R, Jha R, Grifno GN, Searson PC. Effects of acute and chronic oxidative stress on the blood-brain barrier in 2D and 3D in vitro models. Fluids Barriers CNS 2022; 19:33. [PMID: 35551622 PMCID: PMC9097350 DOI: 10.1186/s12987-022-00327-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is a shared pathology of neurodegenerative disease and brain injuries, and is derived from perturbations to normal cell processes by aging or environmental factors such as UV exposure and air pollution. As oxidative cues are often present in systemic circulation, the blood-brain barrier (BBB) plays a key role in mediating the effect of these cues on brain dysfunction. Therefore, oxidative damage and disruption of the BBB is an emergent focus of neurodegenerative disease etiology and progression. We assessed barrier dysfunction in response to chronic and acute oxidative stress in 2D and 3D in vitro models of the BBB with human iPSC-derived brain microvascular endothelial-like cells (iBMECs). We first established doses of hydrogen peroxide to induce chronic damage (modeling aging and neurodegenerative disease) and acute damage (modeling the response to traumatic brain injury) by assessing barrier function via transendothelial electrical resistance in 2D iBMEC monolayers and permeability and monolayer integrity in 3D tissue-engineered iBMEC microvessels. Following application of these chronic and acute doses in our in vitro models, we found local, discrete structural changes were the most prevalent responses (rather than global barrier loss). Additionally, we validated unique functional changes in response to oxidative stress, including dysfunctional cell turnover dynamics and immune cell adhesion that were consistent with changes in gene expression.
Collapse
Affiliation(s)
- Tracy D Chung
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, USA
| | - Robert Ye
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Ria Jha
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Gabrielle N Grifno
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
104
|
Marquine MJ, Gallo LC, Tarraf W, Wu B, Moore AA, Vásquez PM, Talavera G, Allison M, Muñoz E, Isasi CR, Perreira KM, Bigornia SJ, Daviglus M, Estrella ML, Zeng D, González HM. The Association of Stress, Metabolic Syndrome, and Systemic Inflammation With Neurocognitive Function in the Hispanic Community Health Study/Study of Latinos and Its Sociocultural Ancillary Study. J Gerontol B Psychol Sci Soc Sci 2022; 77:860-871. [PMID: 34378777 PMCID: PMC9071500 DOI: 10.1093/geronb/gbab150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Identifying sociocultural correlates of neurocognitive dysfunction among Hispanics/Latinos, and their underlying biological pathways, is crucial for understanding disparities in Alzheimer's disease and related dementias. We examined cross-sectional associations between stress and neurocognition, and the role that metabolic syndrome (MetS) and systemic inflammation might play in these associations. METHOD Participants included 3,045 adults aged 45-75 (56% female, education 0-20+ years, 86% Spanish-speaking, 23% U.S.-born), enrolled in the Hispanic Community Health Study/Study of Latinos and its Sociocultural Ancillary Study. Global neurocognition was the primary outcome and operationalized as the average of the z scores of measures of learning and memory, word fluency, and processing speed. Stress measures included self-report assessments of stress appraisal (perceived and acculturative stress) and exposure to chronic and traumatic stressors. MetS was defined via established criteria including waist circumference, high blood pressure, elevated triglycerides, fasting plasma glucose, and high levels of high-density lipoprotein cholesterol. Systemic inflammation was represented by high-sensitivity C-reactive protein (hs-CRP). RESULTS Separate survey multivariable linear regression models adjusting for covariates showed that higher perceived (b = -0.004, SE = 0.002, p < .05) and acculturative stress (b = -0.004, SE = 0.001, p < .0001) were significantly associated with worse global neurocognition, while lifetime exposure to traumatic stressors was associated with better global neurocognition (b = 0.034, SE = 0.009, p < .001). Neither MetS nor hs-CRP were notable pathways in the association between stress and neurocognition; rather, they were both independently associated with worse neurocognition in models including stress measures (ps < .05). DISCUSSION These cross-sectional analyses suggest that stress appraisal, MetS, and systemic inflammation may be targets to reduce neurocognitive dysfunction among Hispanics/Latinos.
Collapse
Affiliation(s)
- María J Marquine
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Linda C Gallo
- Department of Psychology, San Diego State University, San Diego, California, USA
| | - Wassim Tarraf
- Department of Healthcare Sciences, Institute of Gerontology, Wayne State University, Detroit, Michigan, USA
| | - Benson Wu
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Alison A Moore
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Priscilla M Vásquez
- Department of Urban Public Health, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| | - Gregory Talavera
- Department of Psychology, San Diego State University, San Diego, California, USA
| | - Matthew Allison
- Department of Family Medicine, University of California San Diego, La Jolla, California, USA
| | - Elizabeth Muñoz
- Department of Human Development and Family Sciences, University of Texas at Austin, Austin, Texas, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Krista M Perreira
- Department of Social Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sherman J Bigornia
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, New Hampshire, USA
| | - Martha Daviglus
- Institute of Minority Health Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mayra L Estrella
- Institute of Minority Health Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Donglin Zeng
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hector M González
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
105
|
THE INTEGRATED STRESS RESPONSE AS A KEY PATHWAY DOWNSTREAM OF MITOCHONDRIAL DYSFUNCTION. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
106
|
Induction of Accelerated Aging in a Mouse Model. Cells 2022; 11:cells11091418. [PMID: 35563724 PMCID: PMC9102583 DOI: 10.3390/cells11091418] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
With the global increase of the elderly population, the improvement of the treatment for various aging-related diseases and the extension of a healthy lifespan have become some of the most important current medical issues. In order to understand the developmental mechanisms of aging and aging-related disorders, animal models are essential to conduct relevant studies. Among them, mice have become one of the most prevalently used model animals for aging-related studies due to their high similarity to humans in terms of genetic background and physiological structure, as well as their short lifespan and ease of reproduction. This review will discuss some of the common and emerging mouse models of accelerated aging and related chronic diseases in recent years, with the aim of serving as a reference for future application in fundamental and translational research.
Collapse
|
107
|
Chansawhang A, Phochantachinda S, Temviriyanukul P, Chantong B. Corticosterone potentiates ochratoxin A-induced microglial activation. Biomol Concepts 2022; 13:230-241. [DOI: 10.1515/bmc-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Microglial activation in the central nervous system (CNS) has been associated with brain damage and neurodegenerative disorders. Ochratoxin A (OTA) is a mycotoxin that occurs naturally in food and feed and has been associated with neurotoxicity, while corticosteroids are CNS’ physiological function modulators. This study examined how OTA affected microglia activation and how corticosteroids influenced microglial neuroinflammation. Murine microglial cells (BV-2) were stimulated by OTA, and the potentiation effects on OTA-induced inflammation were determined by corticosterone pre-treatment. Expressions of pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) were determined. Phosphorylation of mitogen-activated protein kinases (MAPKs) was analyzed by western blotting. OTA significantly increased the mRNA expression of IL-6, TNF-α, IL-1β, and iNOS and also elevated IL-6 and NO levels. Corticosterone pre-treatment enhanced the neuroinflammatory response to OTA in a mineralocorticoid receptor (MR)-dependent mechanism, which is associated with increases in extracellular signal-regulated kinase (ERK) and p38 MAPK activation. In response to OTA, microglial cells produced pro-inflammatory cytokines and NO, while corticosterone increased OTA-induced ERK and p38 MAPK phosphorylation via MR. Findings indicated the direct role of OTA in microglia activation and neuroinflammatory response and suggested that low corticosterone concentrations in the brain exacerbated neurodegeneration.
Collapse
Affiliation(s)
- Anchana Chansawhang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University , Salaya , Phutthamonthon, Nakhon Pathom 73170 , Thailand
| | - Sataporn Phochantachinda
- Prasu-Arthorn Animal Hospital, Faculty of Veterinary Science, Mahidol University , Salaya , Phutthamonthon, Nakhon Pathom 73170 , Thailand
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University , Salaya , Phutthamonthon, Nakhon Pathom 73170 , Thailand
| | - Boonrat Chantong
- Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University , Salaya , Phutthamonthon, Nakhon Pathom 73170 , Thailand
| |
Collapse
|
108
|
Palotai M, Schregel K, Nazari N, Merchant JP, Taylor WM, Guttmann CRG, Sinkus R, Young-Pearse TL, Patz S. Magnetic resonance elastography to study the effect of amyloid plaque accumulation in a mouse model. J Neuroimaging 2022; 32:617-628. [PMID: 35384128 DOI: 10.1111/jon.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Biomechanical changes in the brain have not been fully elucidated in Alzheimer's disease (AD). We aimed to investigate the effect of β-amyloid accumulation on mouse brain viscoelasticity. METHODS Magnetic resonance elastography was used to calculate magnitude of the viscoelastic modulus (|G*|), elasticity (Gd ), and viscosity (Gl ) in the whole brain parenchyma (WB) and bilateral hippocampi of 9 transgenic J20 (AD) mice (5 males/4 females) and 10 wild-type (WT) C57BL/6 mice (5 males/5 females) at 11 and 14 months of age. RESULTS Cross-sectional analyses showed no significant difference between AD and WT mice at either timepoints. No sex-specific differences were observed at 11 months of age, but AD females showed significantly higher hippocampal |G*| and Gl and WB |G*|, Gd , and Gl compared to both AD and WT males at 14 months of age. Similar trending differences were found between female AD and female WT animals but did not reach significance. Longitudinal analyses showed significant increases in hippocampal |G*|, Gd , and Gl , and significant decreases in WB |G*|, Gd , and Gl between 11 and 14 months in both AD and WT mice. Each subgroup showed significant increases in all hippocampal and significant decreases in all WB measures, with the exception of AD females, which showed no significant changes in WB |G*|, Gd , or Gl . CONCLUSION Aging had region-specific effects on cerebral viscoelasticity, namely, WB softening and hippocampal stiffening. Amyloid plaque deposition may have sex-specific effects, which require further scrutiny.
Collapse
Affiliation(s)
- Miklos Palotai
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Katharina Schregel
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Institute of Neuroradiology, University Medical Center Göttingen, Göttingen, Germany.,Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Navid Nazari
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Julie P Merchant
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Walter M Taylor
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Charles R G Guttmann
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph Sinkus
- School of Biomedical Imaging and Imaging Sciences, King's College London, London, UK.,INSERM U1148, Laboratory for Vascular Translational Science, University Paris Diderot, University Paris 13, Paris, France
| | - Tracy L Young-Pearse
- Harvard Medical School, Boston, Massachusetts, USA.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Samuel Patz
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
109
|
Zika virus infection accelerates Alzheimer’s disease phenotypes in brain organoids. Cell Death Dis 2022; 8:153. [PMID: 35368019 PMCID: PMC8976422 DOI: 10.1038/s41420-022-00958-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/23/2022] [Accepted: 03/16/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer’s disease (AD) is one of the progressive neurodegenerative diseases characterized by β-amyloid (Aβ) production and Phosphorylated-Tau (p-Tau) protein in the cerebral cortex. The precise mechanisms of the cause, responsible for disease pathology and progression, are not well understood because there are multiple risk factors associated with the disease. Viral infection is one of the risk factors for AD, and we demonstrated that Zika virus (ZIKV) infection in brain organoids could trigger AD pathological features, including Aβ and p-Tau expression. AD-related phenotypes in brain organoids were upregulated via endoplasmic reticulum (ER) stress and unfolded protein response (UPR) after ZIKV infection in brain organoids. Under persistent ER stress, activated-double stranded RNA-dependent protein kinase-like ER-resident (PERK) triggered the phosphorylation of Eukaryotic initiation factor 2 (eIF2α) and then BACE, and GSK3α/β related to AD. Furthermore, we demonstrated that pharmacological inhibitors of PERK attenuated Aβ and p-Tau in brain organoids after ZIKV infection.
Collapse
|
110
|
Li B, Zhang D, Verkhratsky A. Astrocytes in Post-traumatic Stress Disorder. Neurosci Bull 2022; 38:953-965. [PMID: 35349095 PMCID: PMC8960712 DOI: 10.1007/s12264-022-00845-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 01/15/2023] Open
Abstract
Although posttraumatic stress disorder (PTSD) is on the rise, traumatic events and their consequences are often hidden or minimized by patients for reasons linked to PTSD itself. Traumatic experiences can be broadly classified into mental stress (MS) and traumatic brain injury (TBI), but the cellular mechanisms of MS- or TBI-induced PTSD remain unknown. Recent evidence has shown that the morphological remodeling of astrocytes accompanies and arguably contributes to fearful memories and stress-related disorders. In this review, we summarize the roles of astrocytes in the pathogenesis of MS-PTSD and TBI-PTSD. Astrocytes synthesize and secrete neurotrophic, pro- and anti-inflammatory factors and regulate the microenvironment of the nervous tissue through metabolic pathways, ionostatic control, and homeostatic clearance of neurotransmitters. Stress or trauma-associated impairment of these vital astrocytic functions contribute to the pathophysiological evolution of PTSD and may present therapeutic targets.
Collapse
Affiliation(s)
- Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania.
| |
Collapse
|
111
|
Clement A, Madsen MJ, Kastaniegaard K, Wiborg O, Asuni AA, Stensballe A. Chronic Stress Induces Hippocampal Mitochondrial Damage in APPPS1 Model Mice and Wildtype Littermates. J Alzheimers Dis 2022; 87:259-272. [PMID: 35275551 DOI: 10.3233/jad-220064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia worldwide. Despite decades of investigation, the etiology of AD is not fully understood, although emerging evidence suggest that chronic environmental and psychological stress plays a role in the mechanisms and contributes to the risk of developing AD. Thus, dissecting the impact of stress on the brain could improve our understanding of the pathological mechanisms. OBJECTIVE We aimed to study the effect of chronic stress on the hippocampal proteome in male APPPS1 transgenic mice and wildtype (WT) littermates. METHODS APPPS1 and WT mice were subjected to 4 weeks of chronic stress followed by 3 weeks of continued diurnal disruption. Hippocampal tissue was used for proteomics analysis using label-free quantitative DIA based LC-MS/MS analysis. RESULTS We identified significantly up- and downregulated proteins in both APPPS1 and WT mice exposed to chronic stress compared to the control groups. Via interaction network mapping, significant proteins could be annotated to specific pathways of mitochondrial function (oxidative phosphorylation and TCA cycle), metabolic pathways, AD pathway and synaptic functions (long term potentiation). In WT mice, chronic stress showed the highest impact on complex I of the oxidative phosphorylation pathway, while in APPPS1 mice this pathway was compromised broadly by chronic stress. CONCLUSION Our data shows that chronic stress and amyloidosis additively contribute to mitochondrial damage in hippocampus. Although these results do not explain all effects of chronic stress in AD, they add to the scientific knowledge on the topic.
Collapse
Affiliation(s)
- Amalie Clement
- Department of Health Science and Technology, Aalborg University, Denmark.,Department of Pathology and Fluid Biomarkers, H. Lundbeck A/S, Copenhagen, Denmark
| | | | | | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, Denmark
| | - Ayodeji A Asuni
- Department of Pathology and Fluid Biomarkers, H. Lundbeck A/S, Copenhagen, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Denmark
| |
Collapse
|
112
|
Stress induced microglial activation contributes to depression. Pharmacol Res 2022; 179:106145. [DOI: 10.1016/j.phrs.2022.106145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
|
113
|
Bai C, Wei T, Zou L, Liu N, Huang X, Tang M. The apoptosis induced by CdTe quantum dots through the mitochondrial pathway in dorsal root ganglion cell line ND7/23. J Appl Toxicol 2022; 42:1218-1229. [DOI: 10.1002/jat.4291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/28/2021] [Accepted: 01/20/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| |
Collapse
|
114
|
Activation of GPR55 attenuates cognitive impairment, oxidative stress, neuroinflammation, and synaptic dysfunction in a streptozotocin-induced Alzheimer's mouse model. Pharmacol Biochem Behav 2022; 214:173340. [DOI: 10.1016/j.pbb.2022.173340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
|
115
|
Queiroz SAL, Ton AMM, Pereira TMC, Campagnaro BP, Martinelli L, Picos A, Campos-Toimil M, Vasquez EC. The Gut Microbiota-Brain Axis: A New Frontier on Neuropsychiatric Disorders. Front Psychiatry 2022; 13:872594. [PMID: 35722583 PMCID: PMC9198224 DOI: 10.3389/fpsyt.2022.872594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disorder of integrative areas of the brain, characterized by cognitive decline and disability resulting in negative impacts on the family of the patients and the health care services worldwide. AD involves oxidative stress, neuroinflammation and accelerated apoptosis, accompanied by deposition of amyloid-β peptide plaques and tau protein-based neurofibrillary tangles in the central nervous system. Among the multiple factors that contribute to the onset and evolution of this disease, aging stands out. That is why the prevalence of this disease has increased due to the constant increase in life expectancy. In the hope of finding new, more effective methods to slow the progression of this disease, over the last two decades, researchers have promoted "omics"-based approaches that include the gut microbiota and their reciprocal interactions with different targets in the body. This scientific advance has also led to a better understanding of brain compartments and the mechanisms that affect the integrity of the blood-brain barrier. This review aims to discuss recent advances related to the gut-brain-microbiota axis in AD. Furthermore, considering that AD involves psychiatric symptoms, this review also focuses on the psychiatric factors that interact with this axis (an issue that has not yet been sufficiently addressed in the literature).
Collapse
Affiliation(s)
- Sarha A L Queiroz
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil
| | - Alyne M M Ton
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil
| | - Thiago M C Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil.,Federal Institute of Education, Science and Technology (IFES), Vila Velha, Brazil
| | - Bianca P Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil
| | - Larissa Martinelli
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil
| | - Aitor Picos
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Elisardo C Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil
| |
Collapse
|
116
|
Wang S, Ren D, Arkoun B, Kaushik AL, Matherat G, Lécluse Y, Filipp D, Vainchenker W, Raslova H, Plo I, Godin I. Lyl-1 regulates primitive macrophages and microglia development. Commun Biol 2021; 4:1382. [PMID: 34887504 PMCID: PMC8660792 DOI: 10.1038/s42003-021-02886-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022] Open
Abstract
During ontogeny, macrophage populations emerge in the Yolk Sac (YS) via two distinct progenitor waves, prior to hematopoietic stem cell development. Macrophage progenitors from the primitive/"early EMP" and transient-definitive/"late EMP" waves both contribute to various resident primitive macrophage populations in the developing embryonic organs. Identifying factors that modulates early stages of macrophage progenitor development may lead to a better understanding of defective function of specific resident macrophage subsets. Here we show that YS primitive macrophage progenitors express Lyl-1, a bHLH transcription factor related to SCL/Tal-1. Transcriptomic analysis of YS macrophage progenitors indicate that primitive macrophage progenitors present at embryonic day 9 are clearly distinct from those present at later stages. Disruption of Lyl-1 basic helix-loop-helix domain leads initially to an increased emergence of primitive macrophage progenitors, and later to their defective differentiation. These defects are associated with a disrupted expression of gene sets related to embryonic patterning and neurodevelopment. Lyl-1-deficiency also induce a reduced production of mature macrophages/microglia in the early brain, as well as a transient reduction of the microglia pool at midgestation and in the newborn. We thus identify Lyl-1 as a critical regulator of primitive macrophages and microglia development, which disruption may impair resident-macrophage function during organogenesis.
Collapse
Affiliation(s)
- Shoutang Wang
- grid.14925.3b0000 0001 2284 9388Gustave Roussy, INSERM UMR1287, Université Paris-Saclay, Villejuif, France ,grid.4367.60000 0001 2355 7002Present Address: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Deshan Ren
- grid.14925.3b0000 0001 2284 9388Gustave Roussy, INSERM UMR1287, Université Paris-Saclay, Villejuif, France ,grid.41156.370000 0001 2314 964XPresent Address: Ministry of Education Key Laboratory of Model Animal for Disease study; Model Animal Research Center, Medical school of Nanjing University, Chemistry and Biomedicine Innovation center, Nanjing University, Nanjing, 210093 China
| | - Brahim Arkoun
- grid.14925.3b0000 0001 2284 9388Gustave Roussy, INSERM UMR1287, Université Paris-Saclay, Villejuif, France
| | - Anna-Lila Kaushik
- grid.14925.3b0000 0001 2284 9388Gustave Roussy, INSERM UMR1287, Université Paris-Saclay, Villejuif, France ,Present Address: Plasseraud IP, 33064 Bordeaux, France
| | - Gabriel Matherat
- grid.14925.3b0000 0001 2284 9388Gustave Roussy, INSERM UMR1287, Université Paris-Saclay, Villejuif, France ,grid.22058.3d0000 0001 2104 254XPresent Address: Agence Nationale pour la Recherche, Paris, France
| | - Yann Lécluse
- grid.14925.3b0000 0001 2284 9388PFIC, lUMS AMMICa (US 23 INSERM/UMS 3655 CNRS; Gustave Roussy, Villejuif, France
| | - Dominik Filipp
- grid.418827.00000 0004 0620 870XLaboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - William Vainchenker
- grid.14925.3b0000 0001 2284 9388Gustave Roussy, INSERM UMR1287, Université Paris-Saclay, Villejuif, France
| | - Hana Raslova
- grid.14925.3b0000 0001 2284 9388Gustave Roussy, INSERM UMR1287, Université Paris-Saclay, Villejuif, France
| | - Isabelle Plo
- grid.14925.3b0000 0001 2284 9388Gustave Roussy, INSERM UMR1287, Université Paris-Saclay, Villejuif, France
| | - Isabelle Godin
- Gustave Roussy, INSERM UMR1287, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
117
|
The potential roles of excitatory-inhibitory imbalances and the repressor element-1 silencing transcription factor in aging and aging-associated diseases. Mol Cell Neurosci 2021; 117:103683. [PMID: 34775008 DOI: 10.1016/j.mcn.2021.103683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/28/2022] Open
Abstract
Disruptions to the central excitatory-inhibitory (E/I) balance are thought to be related to aging and underlie a host of neural pathologies, including Alzheimer's disease. Aging may induce an increase in excitatory signaling, causing an E/I imbalance, which has been linked to shorter lifespans in mice, flies, and worms. In humans, extended longevity correlates to greater repression of genes involved in excitatory neurotransmission. The repressor element-1 silencing transcription factor (REST) is a master regulator in neural cells and is believed to be upregulated with senescent stimuli, whereupon it counters hyperexcitability, insulin/insulin-like signaling pathway activity, oxidative stress, and neurodegeneration. This review examines the putative mechanisms that distort the E/I balance with aging and neurodegeneration, and the putative roles of REST in maintaining neuronal homeostasis.
Collapse
|
118
|
Ma Y, Wang J, Xu D, Chen Y, Han X. Chronic MC-LR exposure promoted Aβ and p-tau accumulation via regulating Akt/GSK-3β signal pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148732. [PMID: 34323745 DOI: 10.1016/j.scitotenv.2021.148732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
It has been reported that microcystin-leucine-arginine (MC-LR) can enter into the brain and demonstrate neurotoxicity resulting in learning and memory deficits. While, there is still a lack of clear understanding of the related molecular mechanisms. In this study, we observed β-amyloid (Aβ) accumulation and tau hyperphosphorylation (p-tau) at sites of Ser396 and Thr205 in mouse hippocampus and cortex, Alzheimer's disease (AD) like changes, after chronic exposure to MC-LR at different concentrations (1, 7.5, 15 and 30 μg/L) for 180 days. The hallmarks of AD are characterized by senile plaques and neurofibrillary tangles (NFT), with associated loss of neurons, resulting in cognitive impairment and dementia. Similarly, the production of Aβ and tau hyperphosphorylation was also detected in HT-22 cells treated with MC-LR. In addition, MC-LR promoted increased expressions of BACE1 and PS1, but reduced mRNA expressions of ADAM family members both in vivo and in vitro, promoting the Aβ production. Moreover, we identified Akt/GSK-3β signal pathway mediated the Aβ and p-tau accumulation, bringing about Alzheimer's disease-like changes. Furthermore, microglial cells were activated in those mice exposed to MC-LR. Inflammatory cytokines were also found being activated to release in vitro. In conclusion, this study could provide a clue for MC-LR-induced neurotoxicity, which gave insights into the environmental risks of Alzheimer's disease.
Collapse
Affiliation(s)
- Yuhan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Jing Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Dihui Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
119
|
|
120
|
Puigoriol-Illamola D, Companys-Alemany J, McGuire K, Homer NZM, Leiva R, Vázquez S, Mole DJ, Griñán-Ferré C, Pallàs M. Inhibition of 11β-HSD1 Ameliorates Cognition and Molecular Detrimental Changes after Chronic Mild Stress in SAMP8 Mice. Pharmaceuticals (Basel) 2021; 14:ph14101040. [PMID: 34681264 PMCID: PMC8540242 DOI: 10.3390/ph14101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Impaired glucocorticoid (GC) signaling is a significant factor in aging, stress, and neurodegenerative diseases such as Alzheimer's disease. Therefore, the study of GC-mediated stress responses to chronic moderately stressful situations, which occur in daily life, is of huge interest for the design of pharmacological strategies toward the prevention of neurodegeneration. To address this issue, SAMP8 mice were exposed to the chronic mild stress (CMS) paradigm for 4 weeks and treated with RL-118, an 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitor. The inhibition of this enzyme is linked with a reduction in GC levels and cognitive improvement, while CMS exposure has been associated with reduced cognitive performance. The aim of this project was to assess whether RL-118 treatment could reverse the deleterious effects of CMS on cognition and behavioral abilities and to evaluate the molecular mechanisms that compromise healthy aging in SAMP8 mice. First, we confirmed the target engagement between RL-118 and 11β-HSD1. Additionally, we showed that DNA methylation, hydroxymethylation, and histone phosphorylation were decreased by CMS induction, and increased by RL-118 treatment. In addition, CMS exposure caused the accumulation of reactive oxygen species (ROS)-induced damage and increased pro-oxidant enzymes-as well as pro-inflammatory mediators-through the NF-κB pathway and astrogliosis markers, such as GFAP. Of note, these modifications were reversed by 11β-HSD1 inhibition. Remarkably, although CMS altered mTORC1 signaling, autophagy was increased in the SAMP8 RL-118-treated mice. We also showed an increase in amyloidogenic processes and a decrease in synaptic plasticity and neuronal remodeling markers in mice under CMS, which were consequently modified by RL-118 treatment. In conclusion, 11β-HSD1 inhibition through RL-118 ameliorated the detrimental effects induced by CMS, including epigenetic and cognitive disturbances, indicating that GC-excess attenuation shows potential as a therapeutic strategy for age-related cognitive decline and AD.
Collapse
Affiliation(s)
- Dolors Puigoriol-Illamola
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (D.P.-I.); (J.C.-A.); (C.G.-F.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Passeig Vall d’Hebron 171, 08028 Barcelona, Spain
| | - Júlia Companys-Alemany
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (D.P.-I.); (J.C.-A.); (C.G.-F.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Passeig Vall d’Hebron 171, 08028 Barcelona, Spain
| | - Kris McGuire
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (K.M.); (D.J.M.)
| | - Natalie Z. M. Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK;
| | - Rosana Leiva
- Medicinal Chemistry Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.L.); (S.V.)
| | - Santiago Vázquez
- Medicinal Chemistry Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.L.); (S.V.)
| | - Damian J. Mole
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (K.M.); (D.J.M.)
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (D.P.-I.); (J.C.-A.); (C.G.-F.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Passeig Vall d’Hebron 171, 08028 Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (D.P.-I.); (J.C.-A.); (C.G.-F.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Passeig Vall d’Hebron 171, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-4024531
| |
Collapse
|
121
|
Tremblay MÈ. Microglial functional alteration and increased diversity in the challenged brain: Insights into novel targets for intervention. Brain Behav Immun Health 2021; 16:100301. [PMID: 34589793 PMCID: PMC8474548 DOI: 10.1016/j.bbih.2021.100301] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) parenchyma, which perform beneficial physiological roles across life. These immune cells actively maintain CNS health by clearing toxic debris and removing dysfunctional or degenerating cells. They also modify the wiring of neuronal circuits, by acting on the formation, modification, and elimination of synapses-the connections between neurons. Microglia furthermore recently emerged as highly diverse cells comprising several structural and functional states, indicating a far more critical involvement in orchestrating brain development, plasticity, behaviour, and cognition. Various environmental factors, together with the individual genetic predispositions, confer an increased risk for neurodevelopmental and neuropsychiatric disorders, as well as neurodegenerative diseases that include autism spectrum disorders, schizophrenia, major depressive disorder, and Alzheimer's disease, across life. Microglia are highly sensitive to chronic psychological stress, inadequate diet, viral/bacterial infection, pollution, and insufficient or altered sleep, especially during critical developmental periods, but also throughout life. These environmental challenges can compromise microglial physiological functions, resulting notably in defective neuronal circuit wiring, altered brain functional connectivity, and the onset of behavioral deficits into adolescence, adulthood, and aging. This short review provides a historical and technical perspective, notably focused on my contribution to the field, on how environmental challenges affect microglia, particularly their physiological functions, and increase their diversity, which provides novel targets for intervention.
Collapse
Affiliation(s)
- Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Molecular Medicine Department, Université Laval, Québec City, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- The Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
122
|
Prowse N, Hayley S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci Biobehav Rev 2021; 131:135-163. [PMID: 34537262 DOI: 10.1016/j.neubiorev.2021.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.
Collapse
Affiliation(s)
- Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
123
|
Gao Y, Qin H, Wu D, Liu C, Fang L, Wang J, Liu X, Min W. Walnut peptide WEKPPVSH in alleviating oxidative stress and inflammation in lipopolysaccharide-activated BV-2 microglia via the Nrf2/HO-1 and NF-κB/p38 MAPK pathways. J Biosci Bioeng 2021; 132:496-504. [PMID: 34509368 DOI: 10.1016/j.jbiosc.2021.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023]
Abstract
The peptide WEKPPVSH from walnut protein hydrolyzate was used to evaluate the antioxidant and anti-inflammatory protective effect on lipopolysaccharide (LPS)-activated BV-2 microglia and its possible mechanism. The results indicated that WEKPPVSH significantly decreased nitric oxide (NO) and reactive oxygen species (ROS) generation in a dose-dependent manner, and significantly up-regulated superoxide dismutase and catalase activities (P < 0.01). Results of enzyme-linked immunosorbent assay (ELISA) showed that WEKPPVSH significantly mitigated the secretion of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) (P < 0.01). Immunofluorescence analysis exhibited that WEKPPVSH down-regulated p65 translocation to the cell nucleus. Western blotting showed that WEKPPVSH up-regulated the expression of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1), and down-regulated the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), p-IκB/IκB, p-p65/p65 and p-p38/p38. In summary, WEKPPVSH might protect against oxidative stress and inflammation in LPS-stimulated BV-2 microglia by enhancing the Nrf2/HO-1 signaling pathway and blocking the nuclear factor-κB/p38 mitogen - activated protein kinase (NF-κB/p38 MAPK) signaling pathway. The results provided an experimental basis for the research and development of walnut peptide products.
Collapse
Affiliation(s)
- Yawen Gao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Hanxiong Qin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
124
|
Fu P, Yung KKL. Air Pollution and Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2021; 77:701-714. [PMID: 32741830 DOI: 10.3233/jad-200483] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Ambient air pollution has been associated with Alzheimer's disease (AD) in the elderly. However, its effects on AD have not been meta-analyzed comprehensively. OBJECTIVE We conducted a systematic review and meta-analysis to assess the associations between air pollution and AD incidence. METHODS We searched PubMed and Web of Science for indexed publications up to March 2020. Odds risk (OR) and confidence intervals (CI) were estimated for particulate matter (PM)10 (PM10), PM2.5, ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO). The subgroup analysis was conducted based on the pollution levels. RESULTS Nine studies were included in the meta-analysis and review. The OR per 10μg/m3 increase of PM2.5 was 1.95 (95% CI: 0.88-4.30). The corresponding values per 10μg/m3 increment of other pollutants were 1.03 (95% CI: 0.68-1.57) for O3, 1.00 (95% CI: 0.89-1.13) for NO2, and 0.95 (95% CI: 0.91-0.99) for PM10 (only one study), respectively. Overall OR of the five air pollutants above with AD was 1.32 (95% CI: 1.09-1.61), suggesting a positive association between ambient air pollution and AD incidence. The sub-analysis indicated that the OR (2.20) in heavily polluted regions was notably higher than that in lightly polluted regions (1.06). Although AD risk rate data related to SO2 or CO exposure are still limited, the epidemiologic and toxicological evidence indicated that higher concentration of SO2 or CO exposure increased risks of dementia, implying that SO2 or CO might have a potential impact on AD. CONCLUSION Air pollution exposure may exacerbate AD development.
Collapse
Affiliation(s)
- Pengfei Fu
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.,Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.,Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
125
|
Yang X, Wu Z, Yang Y, Zhang C, Lin X, Zhou L, Wang F, Dong L, Zhu Z. Sevoflurane inhalation has a cognitive impairing effect of aging rats involving the regulation of AChE and ChAT. IBRAIN 2021; 7:192-199. [PMID: 37786796 PMCID: PMC10529151 DOI: 10.1002/j.2769-2795.2021.tb00083.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 10/04/2023]
Abstract
Background Acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) are closely related to the regulation of learning and memory. Nevertheless, whether sevoflurane has influence on cognition through regulating the expression of AChE and ChAT remains unclear. Methods Aging rat model was established by subcutaneously injection of D-galactose for 6 consecutive weeks. To determine the role of AChE and ChAT in sevoflurane-induced cognitive impairment, the Morris water maze (MWM) was used to assess the cognitive and memory function after sevoflurane exposure. Then, the variations of AChE and ChAT was detected by western blotting analysis and quantitative real-time polymerase chain reaction (qRT-PCR) respectively. Results Our result indicated that aging model rats had showed cognition decline at 2 hours and 1week after exposure to sevoflurane. Moreover, the expression of AChE and ChAT enhanced in rats that had inhaled sevoflurane. Interestingly, our study also found that the increase of oxygen concentration had a positive impact on the gene expression of ChAT. Conclusion We have identified that the overexpression of AChE and ChAT improved significantly cognitive function after sevoflurane exposure.
Collapse
Affiliation(s)
- Xin‐Xin Yang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhen‐Yu Wu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yang Yang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Chao Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xia‐Fei Lin
- Department of AnesthesiologyHainan General HospitalHaikouHainanChina
| | - Lin Zhou
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Feng‐Lin Wang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | | | - Zhao‐Qiong Zhu
- Liuzhou People's Hospital Affliated to Guangxi Medical UniversityLiuzhouGuangxiChina
| |
Collapse
|
126
|
Taghadosi Z, Zarifkar A, Razban V, Owjfard M, Aligholi H. Effect of chronically electric foot shock stress on spatial memory and hippocampal blood brain barrier permeability. Behav Brain Res 2021; 410:113364. [PMID: 33992668 DOI: 10.1016/j.bbr.2021.113364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Maintaining blood-brain barrier (BBB) contributes critically to preserving normal brain functions. According to the available evidence, intense or chronic exposure to stress would potentially affect different brain structures, such as the hippocampus, negatively. The purpose of this study was to define the relationship between the BBB permeability of the hippocampus and the performance of spatial learning and memory under chronically electric foot shock stress. Sixteen rats were divided into the control and stress groups equally. Animals in the stress group were exposed to foot shock (1 mA, 1 Hz) for 10-s duration every 60 s (1 h/day) for 10 consecutive days. The anxiety-related behavior, spatial learning, and memory were assessed by an Open Field (OF) and the Morris Water Maze (MWM) respectively. The hippocampal BBB permeability was determined by Evans blue penetration assay. Our results demonstrated that the stress model not only increased locomotor activities in the OF test but reduced spatial learning and memory in MWM. Moreover, these effects coincided with a significant increase in hippocampal BBB permeability. In sum, the stress model can be used in future studies focusing on the relationship between stress and BBB permeability of the hippocampus.
Collapse
Affiliation(s)
- Zohreh Taghadosi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
127
|
Bramorska A, Zarzycka W, Podolecka W, Kuc K, Brzezicka A. Age-Related Cognitive Decline May Be Moderated by Frequency of Specific Food Products Consumption. Nutrients 2021; 13:2504. [PMID: 34444664 PMCID: PMC8399560 DOI: 10.3390/nu13082504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 02/06/2023] Open
Abstract
Our study aimed to evaluate whether the type of food products and the frequency of their consumption are associated with cognitive functioning in younger and older adults. The impact of diets that are high in added sugars and saturated fat on cognitive functioning, especially on memory, was at the center of our interest. Participants in the study were 204 healthy adults (aged 20-55) who performed a multitasking cognitive test and completed dietary and psychological questionnaires. Stepwise regression analysis with age and food consumption patterns as predictors, and the cognitive task performance as a dependent variable, revealed that cognitive task performance worsened with age. However, we found that the frequency of consuming different types of foods (healthy versus unhealthy dietary patterns) moderates the effects of age on cognitive functioning. Red meat and animal fat consumption were negatively correlated with cognitive performance, and this relation was dependent on the age of our participants. Conversely, white meat and fish consumption were positively related to memory. Different indices of dietary patterns (both positive and negative) were stronger predictors of cognitive performance in the older adult group. We interpret our results as evidence that diet may be a protective (or worsening) factor in age-related cognitive decline.
Collapse
Affiliation(s)
- Aleksandra Bramorska
- SWPS Institute of Psychology, University of Social Sciences and Humanities, 03-815 Warsaw, Poland; (W.Z.); (W.P.); (K.K.); (A.B.)
- Faculty of Information Technology, Polish-Japanese Academy of Information Technology, 02-008 Warsaw, Poland
| | - Wanda Zarzycka
- SWPS Institute of Psychology, University of Social Sciences and Humanities, 03-815 Warsaw, Poland; (W.Z.); (W.P.); (K.K.); (A.B.)
| | - Wiktoria Podolecka
- SWPS Institute of Psychology, University of Social Sciences and Humanities, 03-815 Warsaw, Poland; (W.Z.); (W.P.); (K.K.); (A.B.)
| | - Katarzyna Kuc
- SWPS Institute of Psychology, University of Social Sciences and Humanities, 03-815 Warsaw, Poland; (W.Z.); (W.P.); (K.K.); (A.B.)
| | - Aneta Brzezicka
- SWPS Institute of Psychology, University of Social Sciences and Humanities, 03-815 Warsaw, Poland; (W.Z.); (W.P.); (K.K.); (A.B.)
| |
Collapse
|
128
|
Tomar A, Polygalov D, McHugh TJ. Differential Impact of Acute and Chronic Stress on CA1 Spatial Coding and Gamma Oscillations. Front Behav Neurosci 2021; 15:710725. [PMID: 34354574 PMCID: PMC8329706 DOI: 10.3389/fnbeh.2021.710725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic and acute stress differentially affect behavior as well as the structural integrity of the hippocampus, a key brain region involved in cognition and memory. However, it remains unclear if and how the facilitatory effects of acute stress on hippocampal information coding are disrupted as the stress becomes chronic. To examine this, we compared the impact of acute and chronic stress on neural activity in the CA1 subregion of male mice subjected to a chronic immobilization stress (CIS) paradigm. We observed that following first exposure to stress (acute stress), the spatial information encoded in the hippocampus sharpened, and the neurons became increasingly tuned to the underlying theta oscillations in the local field potential (LFP). However, following repeated exposure to the same stress (chronic stress), spatial tuning was poorer and the power of both the slow-gamma (30–50 Hz) and fast-gamma (55–90 Hz) oscillations, which correlate with excitatory inputs into the region, decreased. These results support the idea that acute and chronic stress differentially affect neural computations carried out by hippocampal circuits and suggest that acute stress may improve cognitive processing.
Collapse
Affiliation(s)
- Anupratap Tomar
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Denis Polygalov
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
129
|
Zeng Y, Li Y, Shen H, Lin N, Zhang J. Tripchlorolide attenuates β-amyloid generation by inducing NEP activity in N2a/APP695 cells. Transl Neurosci 2021; 12:301-308. [PMID: 34316383 PMCID: PMC8294110 DOI: 10.1515/tnsci-2020-0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 11/15/2022] Open
Abstract
Background and purpose Alzheimer’s disease (AD) is a neurodegeneration disease. The previous work from our research group demonstrated the neuroprotective effects of tripchlorolide (T4) in AD animal models. Materials and methods Neprilysin (NEP) is known as an important physiological amyloid-β protein (Aβ) peptide-degrading enzyme in the brain due to its apparent rate-limiting function. In this study, we explored the effect of NEP on AD model N2a/APP695 cells. Western blots and enzyme-linked immunosorbent assays were performed to assess the expression of proteins, while quantitative real-time polymerase chain reaction assays were used to evaluate RNA levels. Cell vitality was detected by the MTT assay, and reactive oxygen species (ROS) levels were assessed using a ROS activity assay kit. Results We discovered that T4 was able to enhance the enzyme activity of NEP. T4 administration decreased the protein levels of the soluble amyloid precursor protein. In further experiments, we found that by using thiorphan the secretion of Aβ, oxidative stress, nitrosative stress, and inflammatory factors, which were suppressed by T4, were reversed. Due to its ability to attenuate Aβ generation and to protect neurons against the neurotoxicity of Aβ, T4 may be a potential therapy in the regulation of Aβ-related pathology in AD by affecting NEP activity. Conclusion Tripchlorolide attenuates Aβ generation by inducing NEP activity in N2a/APP695 cells.
Collapse
Affiliation(s)
- Yuqi Zeng
- Department of Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China.,Key Laboratory of Brain Aging and Neurodegenerative Disease, Institute of Clinical Neurology, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350001, China
| | - Yongkun Li
- Department of Neurology, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361002, China.,The School of Clinical Medicine, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350001, China
| | - Hui Shen
- Department of Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Nan Lin
- Department of Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Jian Zhang
- Department of Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China.,Key Laboratory of Brain Aging and Neurodegenerative Disease, Institute of Clinical Neurology, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350001, China
| |
Collapse
|
130
|
Agrawal M, Saraf S, Pradhan M, Patel RJ, Singhvi G, Ajazuddin, Alexander A. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design. Biomed Pharmacother 2021; 141:111919. [PMID: 34328108 DOI: 10.1016/j.biopha.2021.111919] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Herbal antioxidant like curcumin holds great potential to treat neurodegenerative disease like Alzheimer's disease. However, its therapeutic potency is obstructed due to rapid metabolism, poor solubility, GI susceptibility, enzymatic degradation and lower bioavailability. Thus, the present work aimed to design and optimize curcumin-loaded NLC (CNL) with higher drug entrapment, prolonged release and better stability. CNL was prepared by modified melt emulsification method followed by ultrasonication. The formulation was optimized by 3 factor 3 level Box-Behnken design using solid: liquid lipid, surfactant concentration and ultrasonication time as independent variable while particle size, entrapment efficiency and % drug release as dependant variable. The design suggested 3.092 solid:liquid lipid, 2.131% surfactant and 4.757 min ultrasonication fit best to get the optimized formulation. The size of the optimized CNL was noted 124.37 ± 55.81 nm, which is in the acceptable range for brain delivery. SEM results also comply with this size range (near 150 nm) and demonstrated almost spherical and uniform particles with porous and uneven surface structures. PDI, zeta potential, entrapment efficiency and % drug release were observed as 0.201 ± 0.00, - 17.2 ± 2.35 mV, 93.62 ± 0.68% and 92.73 ± 0.06%, respectively. The NLC demonstrated initial burst release with subsequent prolonged release of drug for 48 h. Weibull kinetic equation with 0.9958 R2, minimum AIC and maximum MSC value was found best fit to explain the release behavior. The β exponent and diffusional coefficient (n) indicated combined release mechanism with Fickian diffusion as drug release mechanism. Formulation was also found stable at different storage condition.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, 490 024 Bhilai, Chhattisgarh, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, Chhattisgarh, India
| | - Madhulika Pradhan
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, 490 024 Bhilai, Chhattisgarh, India
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388 421 Anand, Gujarat, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Ajazuddin
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur 425 405, Maharashtra, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, 781 101 Guwahati, Assam, India.
| |
Collapse
|
131
|
Babusikova E, Dobrota D, Turner AJ, Nalivaeva NN. Effect of Global Brain Ischemia on Amyloid Precursor Protein Metabolism and Expression of Amyloid-Degrading Enzymes in Rat Cortex: Role in Pathogenesis of Alzheimer's Disease. BIOCHEMISTRY (MOSCOW) 2021; 86:680-692. [PMID: 34225591 DOI: 10.1134/s0006297921060067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of Alzheimer's disease (AD) increases significantly following chronic stress and brain ischemia which, over the years, cause accumulation of toxic amyloid species and brain damage. The effects of global 15-min ischemia and 120-min reperfusion on the levels of expression of the amyloid precursor protein (APP) and its processing were investigated in the brain cortex (Cx) of male Wistar rats. Additionally, the levels of expression of the amyloid-degrading enzymes neprilysin (NEP), endothelin-converting enzyme-1 (ECE-1), and insulin-degrading enzyme (IDE), as well as of some markers of oxidative damage were assessed. It was shown that the APP mRNA and protein levels in the rat Cx were significantly increased after the ischemic insult. Protein levels of the soluble APP fragments, especially of sAPPβ produced by β-secretase, (BACE-1) and the levels of BACE-1 mRNA and protein expression itself were also increased after ischemia. The protein levels of APP and BACE-1 in the Cx returned to the control values after 120-min reperfusion. The levels of NEP and ECE-1 mRNA also decreased after ischemia, which correlated with the decreased protein levels of these enzymes. However, we have not observed any changes in the protein levels of insulin-degrading enzyme. Contents of the markers of oxidative damage (di-tyrosine and lysine conjugates with lipid peroxidation products) were also increased after ischemia. The obtained data suggest that ischemia shifts APP processing towards the amyloidogenic β-secretase pathway and accumulation of the neurotoxic Aβ peptide as well as triggers oxidative stress in the cells. These results are discussed in the context of the role of stress and ischemia in initiation and progression of AD.
Collapse
Affiliation(s)
- Eva Babusikova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Medical Biochemistry, Martin, 036 01, Slovakia.
| | - Dusan Dobrota
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Medical Biochemistry, Martin, 036 01, Slovakia.
| | - Anthony J Turner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Natalia N Nalivaeva
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom. .,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| |
Collapse
|
132
|
Experimental evidence and mechanism of action of some popular neuro-nutraceutical herbs. Neurochem Int 2021; 149:105124. [PMID: 34245808 DOI: 10.1016/j.neuint.2021.105124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Brain and neuronal circuits constitute the most complex organ networks in human body. They not only control and coordinate functions of all other organs, but also represent one of the most-affected systems with stress, lifestyle and age. With global increase in aging populations, these neuropathologies have emerged as major concern for maintaining quality of life. Recent era has witnessed a surge in nutritional remediation of brain dysfunctions primarily by "nutraceuticals" that refer to functional foods and supplements with pharmacological potential. Specific dietary patterns with a balanced intake of carbohydrates, fatty acids, vitamins and micronutrients have also been ascertained to promote brain health. Dietary herbs and their phytochemicals with wide range of biological and pharmacological activities and minimal adverse effects have gained remarkable attention as neuro-nutraceuticals. Neuro-nutraceutical potentials of herbs are often expressed as effects on cognitive response, circadian rhythm, neuromodulatory, antioxidant and anti-inflammatory activities that are mediated by effects on gene expression, epigenetics, protein synthesis along with their turnover and metabolic pathways. Epidemiological and experimental evidence have implicated enormous applications of herbal supplementation in neurodegenerative and psychiatric disorders. The present review highlights the identification, experimental evidence and applications of some herbs including Bacopa monniera, Withania somnifera, Curcuma longa, Helicteres angustifolia, Undaria pinnatifida, Haematococcus pluvialis, and Vitis vinifera, as neuro-nutraceuticals.
Collapse
|
133
|
Stott RT, Kritsky O, Tsai LH. Profiling DNA break sites and transcriptional changes in response to contextual fear learning. PLoS One 2021; 16:e0249691. [PMID: 34197463 PMCID: PMC8248687 DOI: 10.1371/journal.pone.0249691] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Neuronal activity generates DNA double-strand breaks (DSBs) at specific loci in vitro and this facilitates the rapid transcriptional induction of early response genes (ERGs). Physiological neuronal activity, including exposure of mice to learning behaviors, also cause the formation of DSBs, yet the distribution of these breaks and their relation to brain function remains unclear. Here, following contextual fear conditioning (CFC) in mice, we profiled the locations of DSBs genome-wide in the medial prefrontal cortex and hippocampus using γH2AX ChIP-Seq. Remarkably, we found that DSB formation is widespread in the brain compared to cultured primary neurons and they are predominately involved in synaptic processes. We observed increased DNA breaks at genes induced by CFC in neuronal and non-neuronal nuclei. Activity-regulated and proteostasis-related transcription factors appear to govern some of these gene expression changes across cell types. Finally, we find that glia but not neurons have a robust transcriptional response to glucocorticoids, and many of these genes are sites of DSBs. Our results indicate that learning behaviors cause widespread DSB formation in the brain that are associated with experience-driven transcriptional changes across both neuronal and glial cells.
Collapse
Affiliation(s)
- Ryan T. Stott
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Oleg Kritsky
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
134
|
Yang X, Zhi J, Leng H, Chen Y, Gao H, Ma J, Ji J, Hu Q. The piperine derivative HJ105 inhibits Aβ 1-42-induced neuroinflammation and oxidative damage via the Keap1-Nrf2-TXNIP axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153571. [PMID: 33994056 DOI: 10.1016/j.phymed.2021.153571] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Piperine is a great lead compound, as a phytopharmaceutical with reported neuroprotective effects in neurodegenerative diseases. HJ105, a piperine derivative with high affinity to Keap1 receptor, attracts increasing attention in Alzheimer's disease (AD) treatment. PURPOSE This work mainly aimed to study HJ105's therapeutic effects on Aβ1-42-associated AD and the underpinning mechanisms. METHODS In the in vivo part, a rat model of AD was established by bilateral intra-hippocampal administration of aggregated Aβ1-42, followed by a month of intragastric HJ105 or donepezil administration. Spatial and learning memories were detected by the Morris water maze assay, passive avoidance learning as well as Y-maze test. The morphology of hippocampal neurons was assessed by hematoxylin-eosin (H&E) staining. In addition, the amounts of the IL-1β and TNF-α were obtained with specific ELISA kits. More importantly, apoptosis-related proteins and factors involved in Nrf2/TXNIP/NLPR3 pathways were detected by Western blot, while the interaction between Keap1 and Nrf2 was assessed by co-immunoprecipitation. In the in vitro part, human neuroblastoma (SH-SY5Y) cells were applied to evaluate the role of HJ105 on Aβ1-42-induced neuronal damage. RESULTS Treatment of HJ105 not only reversed memory impairment, but also protected neurons in the hippocampus by inhibiting Bax/Bcl2 ratio increase. HJ105 decreased TXNIP expression, suppressing NLRP3 inflammasome activation in the hippocampus, which in turn counteracted the upregulation of IL-1β and TNF-α. Notably, HJ105 exerted an inhibitory effect on Keap1-Nrf2 interaction and upregulated nuclear Nrf2, which conversely increased the expression levels of superoxide dismutase, catalase and glutathione peroxidase and downregulated malondialdehyde. Additionally, neurotoxicity induced by Aβ1-42 in SH-SY5Y cells was alleviated by HJ105. CONCLUSION Overall, HJ105 exerts neuroprotective effects in SH-SY5Y cells induced by Aβ1-42 as well as in experimental rats with AD by decreasing apoptosis, oxidative stress and neuroinflammation, partly via suppression of Keap1-Nrf2 complex generation. HJ105 might represent a promising compound for AD treatment.
Collapse
Affiliation(s)
- Xiping Yang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jingke Zhi
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Haifeng Leng
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Haoran Gao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jinming Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, PR China.
| | - Qinghua Hu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
135
|
High-throughput rat immunoglobulin G N-glycosylation profiling revealed subclass-specific changes associated with chronic stress. J Proteomics 2021; 245:104293. [PMID: 34118474 DOI: 10.1016/j.jprot.2021.104293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
Immunoglobulin G (IgG) glycosylation corresponds well with immune system changes, so it can potentially be used as a biomarker for the consequences of chronic stress such as low-grade inflammation and enhanced immunosenescence in older animals. Here we present a high-throughput glycoproteomic workflow, including IgG enrichment, HILIC glycopeptide purification, and nano-LC-MS analysis of tryptic glycopeptides applied for the analysis of rat IgG. A cohort of 80 animals was exposed to seven stressors in a customized chronic stress protocol with blood and tissue sampling in three timepoints. Young female rats experienced an increase in agalactosylated glycoforms on IgG2a and IgG2c accompanied by a decrease in monogalactosylation. Among old females, increased galactosylation was observed in the IgG2b subclass, pointing to an anti-inflammatory activity of IgG. Additionally, IgG Fc N-glycosylation patterns in Sprague Dawley rats were analyzed, quantified, and reported for the first time. Our findings emphasize age-, sex- and subclass-dependent differences in IgG glycosylation related to chronic stress exposure, confirming the relevance of newly developed methods for further research in glycobiology of rodent immune response. SIGNIFICANCE: In this study, we showed that a high-throughput streamlined methodology based on protein L 96-well monolithic plates for efficient rat IgG immunoaffinity enrichment from blood plasma, paired with appropriate tryptic glycopeptide preparation, HILIC-SPE enrichment, and nano-LC-MS methods was suitable for quick processing of large sample sets. We report a subclass-specific profiling and changes in rat IgG Fc galactosylation and adrenal gland immunohistochemistry of male and female animals exposed to a customized chronic stress protocol.
Collapse
|
136
|
Samanchi R, Prakash Muthukrishnan S, Dada T, Sihota R, Kaur S, Sharma R. Altered spontaneous cortical activity in mild glaucoma: A quantitative EEG study. Neurosci Lett 2021; 759:136036. [PMID: 34116196 DOI: 10.1016/j.neulet.2021.136036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 05/15/2021] [Accepted: 06/06/2021] [Indexed: 11/19/2022]
Abstract
Functional neuroimaging studies have reported alterations in cortical activity indicating glaucoma as a progressive neurodegenerative disease. Hence the current study aimed to assess the cortical activity using high-density EEG in patients with mild glaucoma during resting state. Treatment-naive 37 patients with primary open angle glaucoma (POAG), 34 patients with primary angle closure glaucoma (PACG), and 32 healthy controls were included in the study. Resting state EEG i.e., eyes closed (EC) and eyes open conditions (EO) were acquired using 128-channel for 3 min. After preprocessing, the current density of 6239 voxels of the data was estimated using sLORETA. In comparison to healthy controls, PACG had higher activity at cingulate gyri, medial and superior frontal gyri during EO only. POAG had significantly higher activity at precentral gyrus and middle frontal gyrus during EC, whereas at cingulate gyri, frontal gyri, precentral gyri, paracentral lobule, sub-gyral region, postcentral gyrus, and precuneus during EO. POAG had significantly higher activity at precuneus and cuneus compared to PACG during EO. Intraocular pressure and mean-deviation of visual fields had a positive correlation with cortical activity. Results of the study indicate physiological alterations not only at the level of retina but also at brain even in the early stages of the disease. These alterations in the cortical activity were more in POAG than PACG. Controlling the IOP alone might be insufficient in glaucoma because of widespread alterations in cortical activity. These findings might enhance the current understanding of cortical involvement in glaucoma.
Collapse
Affiliation(s)
- Rupesh Samanchi
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Suriya Prakash Muthukrishnan
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Tanuj Dada
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Ramanjit Sihota
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Simran Kaur
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ratna Sharma
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
137
|
Ashayeri Ahmadabad R, Mirzaasgari Z, Gorji A, Khaleghi Ghadiri M. Toll-Like Receptor Signaling Pathways: Novel Therapeutic Targets for Cerebrovascular Disorders. Int J Mol Sci 2021; 22:ijms22116153. [PMID: 34200356 PMCID: PMC8201279 DOI: 10.3390/ijms22116153] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs), a class of pattern recognition proteins, play an integral role in the modulation of systemic inflammatory responses. Cerebrovascular diseases (CVDs) are a group of pathological conditions that temporarily or permanently affect the brain tissue mostly via the decrease of oxygen and glucose supply. TLRs have a critical role in the activation of inflammatory cascades following hypoxic-ischemic events and subsequently contribute to neuroprotective or detrimental effects of CVD-induced neuroinflammation. The TLR signaling pathway and downstream cascades trigger immune responses via the production and release of various inflammatory mediators. The present review describes the modulatory role of the TLR signaling pathway in the inflammatory responses developed following various CVDs and discusses the potential benefits of the modulation of different TLRs in the improvement of functional outcomes after brain ischemia.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
| | - Zahra Mirzaasgari
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Department of Neurology, Iran University of Medical Sciences, Tehran 1593747811, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität, 48149 Münster, Germany;
- Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-8355564; Fax: +49-251-8347479
| | | |
Collapse
|
138
|
Zhang H, Jiao W, Cui H, Sun Q, Fan H. Combined exposure of alumina nanoparticles and chronic stress exacerbates hippocampal neuronal ferroptosis via activating IFN-γ/ASK1/JNK signaling pathway in rats. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125179. [PMID: 33858114 DOI: 10.1016/j.jhazmat.2021.125179] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/23/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Alumina nanoparticles (AlNPs) exposure causes hippocampal-dependent cognitive dysfunction. However, whether chronic stress exacerbates AlNPs-induced hippocampal lesion and its mechanism remains unclear. This study was aimed to investigate the combined effects and mechanisms of AlNPs and chronic stress on the hippocampal lesion. The behavioral tests demonstrated that combined exposure to AlNPs and chronic restraint stress (CRS) worsened both cognition and depression-like behavior than exposed to AlNPs and CRS alone. Microstructural and ultrastructural observations showed that combined exposure to AlNPs and CRS exacerbated hippocampal damage. Both AlNPs and CRS induced hippocampal neuronal ferroptosis, presenting as iron and glutamate metabolism disorder, GPX4 fluorescence of neurons decrease, LPO and ROS levels increase, and FJB-positive neurons increase. Meanwhile, combined exposure to AlNPs and CRS exacerbated hippocampal neuronal ferroptosis. Mechanism investigation revealed that combined exposure to AlNPs and CRS activated IFN-γ/ASK1/JNK signaling pathway. Furthermore, IFN-γ neutralizing antibody R4-6A2 effectively inhibited the activation of IFN-γ/ASK1/JNK signaling pathway, alleviated hippocampal neuronal ferroptosis and improved cognition ability. ASK1 inhibitor GS-4997 also improved hippocampal neuronal ferroptosis and cognitive dysfunction by inhibiting ASK1/JNK signaling pathway. Together, these results demonstrate that combined exposure to AlNPs and CRS exacerbates hippocampal neuronal ferroptosis via activating IFN-γ/ASK1/JNK signaling pathway.
Collapse
Affiliation(s)
- Haiyang Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenjing Jiao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hailin Cui
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qinghong Sun
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
139
|
Yashin AI, Wu D, Arbeev K, Bagley O, Akushevich I, Duan M, Yashkin A, Ukraintseva S. Interplay between stress-related genes may influence Alzheimer's disease development: The results of genetic interaction analyses of human data. Mech Ageing Dev 2021; 196:111477. [PMID: 33798591 PMCID: PMC8173104 DOI: 10.1016/j.mad.2021.111477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/05/2023]
Abstract
Emerging evidence from experimental and clinical research suggests that stress-related genes may play key roles in AD development. The fact that genome-wide association studies were not able to detect a contribution of such genes to AD indicates the possibility that these genes may influence AD non-linearly, through interactions of their products. In this paper, we selected two stress-related genes (GCN2/EIF2AK4 and APP) based on recent findings from experimental studies which suggest that the interplay between these genes might influence AD in humans. To test this hypothesis, we evaluated the effects of interactions between SNPs in these two genes on AD occurrence, using the Health and Retirement Study data on white indidividuals. We found several interacting SNP-pairs whose associations with AD remained statistically significant after correction for multiple testing. These findings emphasize the importance of nonlinear mechanisms of polygenic AD regulation that cannot be detected in traditional association studies. To estimate collective effects of multiple interacting SNP-pairs on AD, we constructed a new composite index, called Interaction Polygenic Risk Score, and showed that its association with AD is highly statistically significant. These results open a new avenue in the analyses of mechanisms of complex multigenic AD regulation.
Collapse
Affiliation(s)
| | - Deqing Wu
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | | | - Olivia Bagley
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Matt Duan
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Arseniy Yashkin
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | | |
Collapse
|
140
|
Szegeczki V, Perényi H, Horváth G, Hinnah B, Tamás A, Radák Z, Ábrahám D, Zákány R, Reglodi D, Juhász T. Physical Training Inhibits the Fibrosis Formation in Alzheimer's Disease Kidney Influencing the TGFβ Signaling Pathways. J Alzheimers Dis 2021; 81:1195-1209. [PMID: 33896841 PMCID: PMC8293655 DOI: 10.3233/jad-201206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Alzheimer’s disease (AD) is a neurodegenerative illness, with several peripheral pathological signs such as accumulation of amyloid-β (Aβ) plaques in the kidney. Alterations of transforming growth factor β (TGFβ) signaling in the kidney can induce fibrosis, thus disturbing the elimination of Aβ. Objective: A protective role of increased physical activity has been proven in AD and in kidney fibrosis, but it is not clear whether TGFβ signalization is involved in this effect. Methods: The effects of long-term training on fibrosis were investigated in the kidneys of mice representing a model of AD (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) by comparing wild type and AD organs. Alterations of canonical and non-canonical TGFβ signaling pathways were followed with PCR, western blot, and immunohistochemistry. Results: Accumulation of collagen type I and interstitial fibrosis were reduced in kidneys of AD mice after long-term training. AD induced the activation of canonical and non-canonical TGFβ pathways in non-trained mice, while expression levels of signal molecules of both TGFβ pathways became normalized in trained AD mice. Decreased amounts of phosphoproteins with molecular weight corresponding to that of tau and the cleaved C-terminal of AβPP were detected upon exercising, along with a significant increase of PP2A catalytic subunit expression. Conclusion: Our data suggest that physical training has beneficial effects on fibrosis formation in kidneys of AD mice and TGFβ signaling plays a role in this phenomenon.
Collapse
Affiliation(s)
- Vince Szegeczki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Helga Perényi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Horváth
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Barbara Hinnah
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Tamás
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Zsolt Radák
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Dóra Ábrahám
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dóra Reglodi
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
141
|
Kim J, Park JH, Park SK, Hoe HS. Sorafenib Modulates the LPS- and Aβ-Induced Neuroinflammatory Response in Cells, Wild-Type Mice, and 5xFAD Mice. Front Immunol 2021; 12:684344. [PMID: 34122447 PMCID: PMC8190398 DOI: 10.3389/fimmu.2021.684344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 01/19/2023] Open
Abstract
Sorafenib is FDA-approved for the treatment of primary kidney or liver cancer, but its ability to inhibit many types of kinases suggests it may have potential for treating other diseases. Here, the effects of sorafenib on neuroinflammatory responses in vitro and in vivo and the underlying mechanisms were assessed. Sorafenib reduced the induction of mRNA levels of the proinflammatory cytokines COX-2 and IL-1β by LPS in BV2 microglial cells, but in primary astrocytes, only COX-2 mRNA levels were altered by sorafenib. Interestingly, sorafenib altered the LPS-mediated neuroinflammatory response in BV2 microglial cells by modulating AKT/P38-linked STAT3/NF-kB signaling pathways. In LPS-stimulated wild-type mice, sorafenib administration suppressed microglial/astroglial kinetics and morphological changes and COX-2 mRNA levels by decreasing AKT phosphorylation in the brain. In 5xFAD mice (an Alzheimer’s disease model), sorafenib treatment daily for 3 days significantly reduced astrogliosis but not microgliosis. Thus, sorafenib may have therapeutic potential for suppressing neuroinflammatory responses in the brain.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Seon Kyeong Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| |
Collapse
|
142
|
Suwanjang W, Ruankham W, Chetsawang B, Mukda S, Ngampramuan S, Srisung S, Prachayasittikul V, Prachayasittikul S. Spilanthes acmella Murr. ameliorates chronic stress through improving mitochondrial function in chronic restraint stress rats. Neurochem Int 2021; 148:105083. [PMID: 34052298 DOI: 10.1016/j.neuint.2021.105083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Chronic stress is a risk factor for the development of psychiatric illnesses through impairment of the ability to appropriately regulate physiological and behavioral responses, but the molecular events that lead to damage of hippocampal neurons remain unclear. The medicinal herb Spilanthes acmella Murr. has been used as a traditional medicine for various diseases and its extracts exhibit antioxidant activity. The present study explored the molecular signals of mitochondrial dynamics and investigated the beneficial effects of S. acmella Murr. An ethyl acetate extract of this plant was used to assess mitochondrial dynamics in response to chronic restraint stress (CRS) in male Sprague-Dawley rats. The results demonstrated that the S. acmella Murr. extract reduced the expression of mitochondrial fission protein but induced HSP60, MnSOD and ATPsynthase in the hippocampus of the CRS rats. In addition, S. acmella Murr. extract reversed depressive symptoms in the forced swim test. Our findings suggested that S. acmella Murr. extract provides a potential treatment of chronic stress, and that the mechanism is associated with the alleviation of neuronal injury and maintenance of mitochondrial function.
Collapse
Affiliation(s)
- Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| | - Waralee Ruankham
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, 73170, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, 73170, Thailand
| | - Sukhonthar Ngampramuan
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, 73170, Thailand
| | - Sujitra Srisung
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
143
|
Alves SS, Silva-Junior RMPD, Servilha-Menezes G, Homolak J, Šalković-Petrišić M, Garcia-Cairasco N. Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. J Alzheimers Dis 2021; 82:71-105. [PMID: 34024838 DOI: 10.3233/jad-210234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Almost 115 years ago, Alois Alzheimer described Alzheimer's disease (AD) for the first time. Since then, many hypotheses have been proposed. However, AD remains a severe health public problem. The current medical approaches for AD are limited to symptomatic interventions and the complexity of this disease has led to a failure rate of approximately 99.6%in AD clinical trials. In fact, no new drug has been approved for AD treatment since 2003. These failures indicate that we are failing in mimicking this disease in experimental models. Although most studies have focused on the amyloid cascade hypothesis of AD, the literature has made clear that AD is rather a multifactorial disorder. Therefore, the persistence in a single theory has resulted in lost opportunities. In this review, we aim to present the striking points of the long scientific path followed since the description of the first AD case and the main AD hypotheses discussed over the last decades. We also propose insulin resistance as a common link between many other hypotheses.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Rui Milton Patrício da Silva-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School -University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Šalković-Petrišić
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
144
|
Chewing Behavior Attenuates the Tumor Progression-Enhancing Effects of Psychological Stress in a Breast Cancer Model Mouse. Brain Sci 2021; 11:brainsci11040479. [PMID: 33918787 PMCID: PMC8069186 DOI: 10.3390/brainsci11040479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
We examined whether chewing behavior affects the tumor progression-enhancing impact of psychological stress. Human breast cancer cell line (MDA-MB-231) cells were inoculated into the mammary fat pads of athymic nude mice. The mice were assigned randomly to control, stress, and stress+chewing groups. Psychological stress was created by keeping mice in a transparent restraint cylinder for 45 min, three times a day, for 35 days after cell inoculation. Animals in the stress+chewing group were provided with a wooden stick for chewing on during the psychological stress period. Chewing behavior remarkably inhibited the tumor growth accelerated by the psychological stress. Immunohistochemical and Western blot findings revealed that chewing behavior during psychological stress markedly suppressed tumor angiogenesis and cell proliferation. In addition, chewing behavior decreased serum glucocorticoid levels and expressions of glucocorticoid and β2-adrenergic receptors in tumors. Chewing behavior decreased expressions of inducible nitric oxide synthase and 4-hydroxynonenal, and increased expression of superoxide dismutase 2 in tumors. Our findings suggest that chewing behavior could ameliorate the enhancing effects of psychological stress on the progression of breast cancer, at least partially, through modulating stress hormones and their receptors, and the subsequent signaling pathways involving reactive oxygen and nitrogen species.
Collapse
|
145
|
Chen Y, Hong T, Chen F, Sun Y, Wang Y, Cui L. Interplay Between Microglia and Alzheimer's Disease-Focus on the Most Relevant Risks: APOE Genotype, Sex and Age. Front Aging Neurosci 2021; 13:631827. [PMID: 33897406 PMCID: PMC8060487 DOI: 10.3389/fnagi.2021.631827] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/18/2021] [Indexed: 12/20/2022] Open
Abstract
As the main immune cells of the central nervous system (CNS), microglia regulates normal development, homeostasis and general brain physiology. These functions put microglia at the forefront of CNS repair and recovery. Uncontrolled activation of microglia is related to the course of neurodegenerative diseases such as Alzheimer’s disease. It is clear that the classic pathologies of amyloid β (Aβ) and Tau are usually accompanied by the activation of microglia, and the activation of microglia also serves as an early event in the pathogenesis of AD. Therefore, during the occurrence and development of AD, the key susceptibility factors for AD—apolipoprotein E (APOE) genotype, sex and age—may further interact with microglia to exacerbate neurodegeneration. In this review, we discuss the role of microglia in the progression of AD related to the three risk factors for AD: APOE genotype, sex and aging. APOE-expressing microglia accumulates around Aβ plaques, and the presence of APOE4 may disrupt the phagocytosis of Aβ aggregates and aggravate neurodegeneration in Tau disease models. In addition, females have a high incidence of AD, and normal female microglia and estrogen have protective effects under normal conditions. However, under the influence of AD, female microglia seem to lose their protective effect and instead accelerate the course of AD. Aging, another major risk factor, may increase the sensitivity of microglia, leading to the exacerbation of microglial dysfunction in elderly AD. Obviously, in the role of microglia in AD, the three main risk factors of APOE, sex, and aging are not independent and have synergistic effects that contribute to the risk of AD. Moreover, new microglia can replace dysfunctional microglia after microglial depletion, which is a new promising strategy for AD treatment.
Collapse
Affiliation(s)
- Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
146
|
Stressed mitochondria: A target to intrude alzheimer's disease. Mitochondrion 2021; 59:48-57. [PMID: 33839319 DOI: 10.1016/j.mito.2021.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the inoperable, incapacitating, neuropsychiatric, and degenerative manifestation that drastically affects human life quality. The current medications target extra-neuronal senile plaques, oxidative stress, neuroinflammation, intraneuronal neurofibrillary tangles, cholinergic deficits, and excitotoxicity. Among novel pathways and targets, bioenergetic and resultant mitochondrial dysfunction has been recognized as essential factors that decide the neuronal fate and consequent neurodegeneration in AD. The crucial attributes of mitochondria, including bioenergesis, signaling, sensing, integrating, and transmitting biological signals contribute to optimum networking of neuronal dynamics and make them indispensable for cell survival. In AD, mitochondrial dysfunction and mitophagy are a preliminary and critical event that aggravates the pathological cascade. Stress is known to promote and exaggerate the neuropathological alteration during neurodegeneration and metabolic impairments, especially in the cortico-limbic system, besides adversely affecting the normal physiology and mitochondrial dynamics. Stress involves the allocation of energy resources for neuronal survival. Chronic and aggravated stress response leads to excessive release of glucocorticoids by activation of the hypothalamic-pituitaryadrenal (HPA) axis. By acting through their receptors, glucocorticoids influence adverse mitochondrial changes and alter mtDNA transcription, mtRNA expression, hippocampal mitochondrial network, and ultimately mitochondrial physiology. Chronic stress also affects mitochondrial dynamics by changing metabolic and neuro-endocrinal signalling, aggravating oxidative stress, provoking inflammatory mediators, altering tropic factors, influencing gene expression, and modifying epigenetic pathways. Thus, exploring chronic stress-induced glucocorticoid dysregulation and resultant bio-behavioral and psychosomatic mitochondrial alterations may be a feasible narrative to investigate and unravel the mysterious pathobiology of AD.
Collapse
|
147
|
Hendrickx JO, Martinet W, Van Dam D, De Meyer GRY. Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Front Mol Biosci 2021; 8:651215. [PMID: 33855048 PMCID: PMC8039307 DOI: 10.3389/fmolb.2021.651215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The average age of the world's elderly population is steadily increasing. This unprecedented rise in the aged world population will increase the prevalence of age-related disorders such as cardiovascular disease (CVD) and neurodegeneration. In recent years, there has been an increased interest in the potential interplay between CVDs and neurodegenerative syndromes, as several vascular risk factors have been associated with Alzheimer's disease (AD). Along these lines, arterial stiffness is an independent risk factor for both CVD and AD. In this review, we discuss several inflammaging-related disease mechanisms including acute tissue-specific inflammation, nitro-oxidative stress, impaired autophagy, and insulin resistance which may contribute to the proposed synergism between arterial stiffness and AD.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Guido R. Y. De Meyer
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
148
|
Rat dorsal horn neurons primed by stress develop a long-lasting manifest sensitization after a short-lasting nociceptive low back input. Pain Rep 2021; 6:e904. [PMID: 33688602 PMCID: PMC7935483 DOI: 10.1097/pr9.0000000000000904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 11/26/2022] Open
Abstract
Background A single injection of nerve growth factor (NGF) into a low back muscle induces a latent sensitization of rat dorsal horn neurons (DHNs) that primes for a manifest sensitization by a subsequent second NGF injection. Repeated restraint stress also causes a latent DHN sensitization. Objective In this study, we investigated whether repeated restraint stress followed by a single NGF injection causes a manifest sensitization of DHNs. Methods Rats were stressed repeatedly in a narrow plastic restrainer (1 hour on 12 consecutive days). Control animals were handled but not restrained. Two days after stress paradigm, behavioral tests and electrophysiological in vivo recordings from single DHNs were performed. Mild nociceptive low back input was induced by a single NGF injection into the lumbar multifidus muscle just before the recording started. Results Restraint stress slightly lowered the low back pressure pain threshold (Cohen d = 0.83). Subsequent NGF injection increased the proportion of neurons responsive to deep low back input (control + NGF: 14%, stress + NGF: 39%; P = 0.041), mostly for neurons with input from outside the low back (7% vs 26%; P = 0.081). There was an increased proportion of neurons with resting activity (28% vs 55%; P = 0.039), especially in neurons having deep input (0% vs 26%; P = 0.004). Conclusions The results indicate that stress followed by a short-lasting nociceptive input causes manifest sensitization of DHNs to deep input, mainly from tissue outside the low back associated with an increased resting activity. These findings on neuronal mechanisms in our rodent model suggest how stress might predispose to radiating pain in patients.
Collapse
|
149
|
Ahani-Nahayati M, Shariati A, Mahmoodi M, Olegovna Zekiy A, Javidi K, Shamlou S, Mousakhani A, Zamani M, Hassanzadeh A. Stem cell in neurodegenerative disorders; an emerging strategy. Int J Dev Neurosci 2021; 81:291-311. [PMID: 33650716 DOI: 10.1002/jdn.10101] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/13/2021] [Accepted: 02/24/2021] [Indexed: 01/28/2023] Open
Abstract
Neurodegenerative disorders are a diversity of disorders, surrounding Alzheimer's (AD), Parkinson's (PD), Huntington's diseases (HD), and amyotrophic lateral sclerosis (ALS) accompanied by some other less common diseases generally characterized by either developed deterioration of central or peripheral nervous system structurally or functionally. Today, with the viewpoint of an increasingly aging society, the number of patients with neurodegenerative diseases and sociomedical burdens will spread intensely. During the last decade, stem cell technology has attracted great attention for treating neurodegenerative diseases worldwide because of its unique attributes. As acknowledged, there are several categories of stem cells being able to proliferate and differentiate into various cellular lineages, highlighting their significance in the context of regenerative medicine. In preclinical models, stem cell therapy using mesenchymal stem/stromal cells (MSCs), hematopoietic stem cells (HSCs), and neural progenitor or stem cells (NPCs or NSCs) along with pluripotent stem cells (PSCs)-derived neuronal cells could elicit desired therapeutic effects, enabling functional deficit rescue partially. Regardless of the noteworthy progress in our scientific awareness and understanding of stem cell biology, there still exist various challenges to defeat. In the present review, we provide a summary of the therapeutic potential of stem cells and discuss the current status and prospect of stem cell strategy in neurodegenerative diseases, in particular, AD, PD, ALS, and HD.
Collapse
Affiliation(s)
- Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ali Shariati
- Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Mahnaz Mahmoodi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kamran Javidi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Shamlou
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Mousakhani
- Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Neurosciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
150
|
Pathways to well-being: Untangling the causal relationships among biopsychosocial variables. Soc Sci Med 2021; 272:112846. [DOI: 10.1016/j.socscimed.2020.112846] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/30/2019] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
|