101
|
Claser C, Malleret B, Peng K, Bakocevic N, Gun SY, Russell B, Ng LG, Rénia L. Rodent Plasmodium-infected red blood cells: Imaging their fates and interactions within their hosts. Parasitol Int 2014; 63:187-94. [DOI: 10.1016/j.parint.2013.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/30/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
|
102
|
Polimeni M, Prato M. Host matrix metalloproteinases in cerebral malaria: new kids on the block against blood-brain barrier integrity? Fluids Barriers CNS 2014; 11:1. [PMID: 24467887 PMCID: PMC3905658 DOI: 10.1186/2045-8118-11-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/24/2014] [Indexed: 12/23/2022] Open
Abstract
Cerebral malaria (CM) is a life-threatening complication of falciparum malaria, associated with high mortality rates, as well as neurological impairment in surviving patients. Despite disease severity, the etiology of CM remains elusive. Interestingly, although the Plasmodium parasite is sequestered in cerebral microvessels, it does not enter the brain parenchyma: so how does Plasmodium induce neuronal dysfunction? Several independent research groups have suggested a mechanism in which increased blood–brain barrier (BBB) permeability might allow toxic molecules from the parasite or the host to enter the brain. However, the reported severity of BBB damage in CM is variable depending on the model system, ranging from mild impairment to full BBB breakdown. Moreover, the factors responsible for increased BBB permeability are still unknown. Here we review the prevailing theories on CM pathophysiology and discuss new evidence from animal and human CM models implicating BBB damage. Finally, we will review the newly-described role of matrix metalloproteinases (MMPs) and BBB integrity. MMPs comprise a family of proteolytic enzymes involved in modulating inflammatory response, disrupting tight junctions, and degrading sub-endothelial basal lamina. As such, MMPs represent potential innovative drug targets for CM.
Collapse
Affiliation(s)
| | - Mauro Prato
- Dipartimento di Neuroscienze, Università di Torino, C,so Raffaello 30, 10125 Torino, Italy.
| |
Collapse
|
103
|
Toxoplasma gondii upregulates interleukin-12 to prevent Plasmodium berghei-induced experimental cerebral malaria. Infect Immun 2014; 82:1343-53. [PMID: 24396042 DOI: 10.1128/iai.01259-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A chronic infection with the parasite Toxoplasma gondii has previously been shown to protect mice against subsequent viral, bacterial, or protozoal infections. Here we have shown that a chronic T. gondii infection can prevent Plasmodium berghei ANKA-induced experimental cerebral malaria (ECM) in C57BL/6 mice. Treatment with soluble T. gondii antigens (STAg) reduced parasite sequestration and T cell infiltration in the brains of P. berghei-infected mice. Administration of STAg also preserved blood-brain barrier function, reduced ECM symptoms, and significantly decreased mortality. STAg treatment 24 h post-P. berghei infection led to a rapid increase in serum levels of interleukin 12 (IL-12) and gamma interferon (IFN-γ). By 5 days after P. berghei infection, STAg-treated mice had reduced IFN-γ levels compared to those of mock-treated mice, suggesting that reductions in IFN-γ at the time of ECM onset protected against lethality. Using IL-10- and IL-12βR-deficient mice, we found that STAg-induced protection from ECM is IL-10 independent but IL-12 dependent. Treatment of P. berghei-infected mice with recombinant IL-12 significantly decreased parasitemia and mortality. These data suggest that IL-12, either induced by STAg or injected as a recombinant protein, mediates protection from ECM-associated pathology potentially through early induction of IFN-γ and reduction in parasitemia. These results highlight the importance of early IL-12 induction in protection against ECM.
Collapse
|
104
|
Maude RJ, Silamut K, Plewes K, Charunwatthana P, Ho M, Abul Faiz M, Rahman R, Hossain MA, Hassan MU, Bin Yunus E, Hoque G, Islam F, Ghose A, Hanson J, Schlatter J, Lacey R, Eastaugh A, Tarning J, Lee SJ, White NJ, Chotivanich K, Day NPJ, Dondorp AM. Randomized controlled trial of levamisole hydrochloride as adjunctive therapy in severe falciparum malaria with high parasitemia. J Infect Dis 2014; 209:120-9. [PMID: 23943850 PMCID: PMC3864382 DOI: 10.1093/infdis/jit410] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 07/08/2013] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cytoadherence and sequestration of erythrocytes containing mature stages of Plasmodium falciparum are central to the pathogenesis of severe malaria. The oral anthelminthic drug levamisole inhibits cytoadherence in vitro and reduces sequestration of late-stage parasites in uncomplicated falciparum malaria treated with quinine. METHODS Fifty-six adult patients with severe malaria and high parasitemia admitted to a referral hospital in Bangladesh were randomized to receive a single dose of levamisole hydrochloride (150 mg) or no adjuvant to antimalarial treatment with intravenous artesunate. RESULTS Circulating late-stage parasites measured as the median area under the parasite clearance curves were 2150 (interquartile range [IQR], 0-28 025) parasites/µL × hour in patients treated with levamisole and 5489 (IQR, 192-25 848) parasites/µL × hour in controls (P = .25). The "sequestration ratios" at 6 and 12 hours for all parasite stages and changes in microvascular blood flow did not differ between treatment groups (all P > .40). The median time to normalization of plasma lactate (<2 mmol/L) was 24 (IQR, 12-30) hours with levamisole vs 28 (IQR, 12-36) hours without levamisole (P = .15). CONCLUSIONS There was no benefit of a single-dose of levamisole hydrochloride as adjuvant to intravenous artesunate in the treatment of adults with severe falciparum malaria. Rapid parasite killing by intravenous artesunate might obscure the effects of levamisole.
Collapse
Affiliation(s)
- Richard J. Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Kamolrat Silamut
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Katherine Plewes
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prakaykaew Charunwatthana
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - May Ho
- Department of Microbiology and Infectious Disease, University of Calgary, Alberta, Canada
| | - M. Abul Faiz
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Specialized Care and Research, Chittagong
- Dev Care Foundation, Dhaka
| | | | - Md Amir Hossain
- Department of Medicine, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | - Mahtab U. Hassan
- Department of Medicine, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | - Emran Bin Yunus
- Centre for Specialized Care and Research, Chittagong
- Dev Care Foundation, Dhaka
| | - Gofranul Hoque
- Department of Medicine, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | - Faridul Islam
- Department of Medicine, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | - Aniruddha Ghose
- Department of Medicine, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | - Josh Hanson
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Schlatter
- Department of Pharmacy and Toxicology, University Hospital of Jean Verdier, Bondy, France
| | - Rachel Lacey
- Worcestershire Royal Hospital, Worcester, United Kingdom
| | | | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Sue J. Lee
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Kesinee Chotivanich
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| |
Collapse
|
105
|
Ankarklev J, Hjelmqvist D, Mantel PY. Uncovering the Role of Erythrocyte-Derived Extracellular Vesicles in Malaria: From Immune Regulation to Cell Communication. J Circ Biomark 2014. [DOI: 10.5772/58596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Johan Ankarklev
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Daisy Hjelmqvist
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pierre-Yves Mantel
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA
| |
Collapse
|
106
|
Adukpo S, Kusi KA, Ofori MF, Tetteh JKA, Amoako-Sakyi D, Goka BQ, Adjei GO, Edoh DA, Akanmori BD, Gyan BA, Dodoo D. High plasma levels of soluble intercellular adhesion molecule (ICAM)-1 are associated with cerebral malaria. PLoS One 2013; 8:e84181. [PMID: 24386348 PMCID: PMC3873986 DOI: 10.1371/journal.pone.0084181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/12/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cerebral malaria (CM) is responsible for most of the malaria-related deaths in children in sub-Saharan Africa. Although, not well understood, the pathogenesis of CM involves parasite and host factors which contribute to parasite sequestration through cytoadherence to the vascular endothelium. Cytoadherence to brain microvasculature is believed to involve host endothelial receptor, CD54 or intercellular adhesion molecule (ICAM)-1, while other receptors such as CD36 are generally involved in cytoadherence of parasites in other organs. We therefore investigated the contributions of host ICAM-1 expression and levels of antibodies against ICAM-1 binding variant surface antigen (VSA) on parasites to the development of CM. METHODOLOGY/PRINCIPAL FINDINGS Paediatric malaria patients, 0.5 to 13 years were recruited and grouped into CM and uncomplicated malaria (UM) patients, based on well defined criteria. Standardized ELISA protocol was used to measure soluble ICAM-1 (sICAM-1) levels from acute plasma samples. Levels of IgG to CD36- or ICAM-1-binding VSA were measured by flow cytometry during acute and convalescent states. Wilcoxon sign rank-test analysis to compare groups revealed association between sICAM-1 levels and CM (p<0.0037). Median levels of antibodies to CD36-binding VSA were comparable in the two groups at the time of admission and 7 days after treatment was initiated (p>0.05). Median levels of antibodies to CD36-binding VSAs were also comparable between acute and convalescent samples within any patient group. Median levels of antibodies to ICAM-1-binding VSAs were however significantly lower at admission time than during recovery in both groups. CONCLUSIONS/SIGNIFICANCE High levels of sICAM-1 were associated with CM, and the sICAM-1 levels may reflect expression levels of the membrane bound form. Anti-VSA antibody levels to ICAM-binding parasites was more strongly associated with both UM and CM than antibodies to CD36 binding parasites. Thus, increasing host sICAM-1 levels were associated with CM whilst antibodies to parasite expressing non-ICAM-1-binding VSAs were not.
Collapse
Affiliation(s)
- Selorme Adukpo
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Animal Biology and Conservation Science, University of Ghana, Legon, Accra, Ghana
- * E-mail:
| | - Kwadwo A. Kusi
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Michael F. Ofori
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - John K. A. Tetteh
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Daniel Amoako-Sakyi
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Bamenla Q. Goka
- Department of Child Health, University of Ghana Medical School, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - George O. Adjei
- Department of Child Health, University of Ghana Medical School, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Dominic A. Edoh
- Department of Animal Biology and Conservation Science, University of Ghana, Legon, Accra, Ghana
| | - Bartholomew D. Akanmori
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ben A. Gyan
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Daniel Dodoo
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
107
|
Frevert U, Nacer A, Cabrera M, Movila A, Leberl M. Imaging Plasmodium immunobiology in the liver, brain, and lung. Parasitol Int 2013; 63:171-86. [PMID: 24076429 DOI: 10.1016/j.parint.2013.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 08/28/2013] [Accepted: 09/18/2013] [Indexed: 01/10/2023]
Abstract
Plasmodium falciparum malaria is responsible for the deaths of over half a million African children annually. Until a decade ago, dynamic analysis of the malaria parasite was limited to in vitro systems with the typical limitations associated with 2D monocultures or entirely artificial surfaces. Due to extremely low parasite densities, the liver was considered a black box in terms of Plasmodium sporozoite invasion, liver stage development, and merozoite release into the blood. Further, nothing was known about the behavior of blood stage parasites in organs such as the brain where clinical signs manifest and the ensuing immune response of the host that may ultimately result in a fatal outcome. The advent of fluorescent parasites, advances in imaging technology, and availability of an ever-increasing number of cellular and molecular probes have helped illuminate many steps along the pathogenetic cascade of this deadly tropical parasite.
Collapse
Affiliation(s)
- Ute Frevert
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, 341 E 25 Street, New York, NY 10010, USA.
| | | | | | | | | |
Collapse
|
108
|
Transdermal glyceryl trinitrate as an effective adjunctive treatment with artemether for late-stage experimental cerebral malaria. Antimicrob Agents Chemother 2013; 57:5462-71. [PMID: 23979751 DOI: 10.1128/aac.00488-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cerebral malaria (CM) is associated with low nitric oxide (NO) bioavailability, cerebrovascular constriction, occlusion, and hypoperfusion. Administration of exogenous NO partially prevents the neurological syndrome and associated vascular pathology in an experimental CM (ECM) mouse model. In this study, we evaluated the effects of transdermal glyceryl trinitrate in preventing ECM and, in combination with artemether, rescuing late-stage ECM mice from mortality. The glyceryl trinitrate and/or artemether effect on survival and clinical recovery was evaluated in C57BL/6 mice infected with P. berghei ANKA. NO synthase (NOS) expression in mouse brain was determined by Western blots. Mean arterial pressure (MAP) and pial arteriolar diameter were monitored using a tail-cuff blood pressure system and a cranial window preparation, respectively. Preventative administration of glyceryl trinitrate at 0.025 mg/h decreased ECM mortality from 67 to 11% and downregulated inducible NOS expression in the brain. When administered as adjunctive rescue therapy with artemether, glyceryl trinitrate increased survival from 47 to 79%. The adjunctive therapy caused a sustained reversal of pial arteriolar vasoconstriction in ECM mice, an effect not observed with artemether alone. Glyceryl trinitrate induced a 13% decrease in MAP in uninfected mice but did not further affect MAP in hypotensive ECM mice. Glyceryl trinitrate, when combined with artemether, was an effective adjunctive rescue treatment for ECM. This treatment ameliorated pial arteriolar vasospasm and did not significantly affect MAP. These results indicate that transdermal glyceryl trinitrate has potential to be considered as a candidate for adjunctive therapy for CM.
Collapse
|
109
|
Cytoadherence of Plasmodium berghei-infected red blood cells to murine brain and lung microvascular endothelial cells in vitro. Infect Immun 2013; 81:3984-91. [PMID: 23940206 DOI: 10.1128/iai.00428-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequestration of infected red blood cells (iRBC) within the cerebral and pulmonary microvasculature is a hallmark of human cerebral malaria (hCM). The interaction between iRBC and the endothelium in hCM has been studied extensively and is linked to the severity of malaria. Experimental CM (eCM) caused by Plasmodium berghei ANKA reproduces most features of hCM, although the sequestration of RBC infected by P. berghei ANKA (PbA-iRBC) has not been completely delineated. The role of PbA-iRBC sequestration in the severity of eCM is not well characterized. Using static and flow cytoadherence assays, we provide the first direct in vitro evidence for the binding of PbA-iRBC to murine brain and lung microvascular endothelial cells (MVEC). We found that basal PbA-iRBC cytoadherence to MVECs was significantly higher than that of normal red blood cells (NRBC) and of RBC infected with P. berghei K173 (PbK173-iRBC), a strain that causes noncerebral malaria (NCM). MVEC prestimulation with tumor necrosis factor (TNF) failed to promote any further significant increase in mixed-stage iRBC adherence. Interestingly, enrichment of the blood for mature parasites significantly increased PbA-iRBC binding to the MVECs prestimulated with TNF, while blockade of VCAM-1 reduced this adhesion. Our study provides evidence for the firm, flow-resistant binding to endothelial cells of iRBC from strain ANKA-infected mice, which develop CM, and for less binding of iRBC from strain K173-infected mice, which develop NCM. An understanding of P. berghei cytoadherence may help elucidate the importance of sequestration in the development of CM and aid the development of antibinding therapies to help reduce the burden of this syndrome.
Collapse
|
110
|
Jain K, Sood S, Gowthamarajan K. Modulation of cerebral malaria by curcumin as an adjunctive therapy. Braz J Infect Dis 2013; 17:579-91. [PMID: 23906771 PMCID: PMC9425129 DOI: 10.1016/j.bjid.2013.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 12/31/2022] Open
Abstract
Cerebral malaria is the most severe and rapidly fatal neurological complication of Plasmodium falciparum infection and responsible for more than two million deaths annually. The current therapy is inadequate in terms of reducing mortality or post-treatment symptoms such as neurological and cognitive deficits. The pathophysiology of cerebral malaria is quite complex and offers a variety of targets which remain to be exploited for better therapeutic outcome. The present review discusses on the pathophysiology of cerebral malaria with particular emphasis on scope and promises of curcumin as an adjunctive therapy to improve survival and overcome neurological deficits.
Collapse
Affiliation(s)
- Kunal Jain
- Department of Pharmaceutics, J.S.S. College of Pharmacy, Udhagamandalam, Tamilnadu 643001, India.
| | | | | |
Collapse
|
111
|
Punsawad C, Maneerat Y, Chaisri U, Nantavisai K, Viriyavejakul P. Nuclear factor kappa B modulates apoptosis in the brain endothelial cells and intravascular leukocytes of fatal cerebral malaria. Malar J 2013; 12:260. [PMID: 23890318 PMCID: PMC3728032 DOI: 10.1186/1475-2875-12-260] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/17/2013] [Indexed: 01/11/2023] Open
Abstract
Background Cerebral malaria (CM) caused by Plasmodium falciparum is known to be associated with the sequestration of parasitized red blood cells (PRBCs) in the microvasculature and the release of soluble cytokines. In addition, the involvement of signaling molecules has gained wide interest in the pathogenesis of CM. An important signaling factor, nuclear factor kappa B (NF-κB) is known to regulate apoptosis. This work aimed to study the expression of NF-κB p65 and its correlation with apoptosis in the brain of fatal CM. Methods The expression of NF-κB p65 and cleaved caspase-3 in the brain of fatal P. falciparum malaria cases was investigated by immunohistochemistry. Histopathological features were analysed together with the correlations of NF-κB p65 and cleaved caspase-3 expression. Results NF-κB p65 activation and cleaved caspase-3 expression were significantly increased in the neurons, glial cells, vascular endothelial cells (ECs) and intravascular leukocytes of the brain in fatal CM, compared with the control brain (p < 0.001) and non-cerebral malaria (NCM) (p = 0.034). The percentage of neurons that expressed nuclear NF-κB p65 showed a positive correlation with the total score of histopathological changes (rs = 0.678; p = 0.045). Significant positive correlations were established between vascular ECs NF-κB index and ECs apoptotic index (rs = 0.717; p = 0.030) and between intravascular leukocytes NF-κB index and leukocytes apoptotic index (rs = 0.696; p = 0.037) in fatal CM. Conclusions This study documented that NF-κB p65 is one of the signaling factors that modulates apoptosis in the brain ECs and intravascular leukocytes of fatal CM.
Collapse
Affiliation(s)
- Chuchard Punsawad
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
112
|
Ribacke U, Moll K, Albrecht L, Ahmed Ismail H, Normark J, Flaberg E, Szekely L, Hultenby K, Persson KEM, Egwang TG, Wahlgren M. Improved in vitro culture of Plasmodium falciparum permits establishment of clinical isolates with preserved multiplication, invasion and rosetting phenotypes. PLoS One 2013; 8:e69781. [PMID: 23894537 PMCID: PMC3718792 DOI: 10.1371/journal.pone.0069781] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 06/12/2013] [Indexed: 11/26/2022] Open
Abstract
To be able to robustly propagate P. falciparum at optimal conditions in vitro is of fundamental importance for genotypic and phenotypic studies of both established and fresh clinical isolates. Cryo-preserved P. falciparum isolates from Ugandan children with severe or uncomplicated malaria were investigated for parasite phenotypes under different in vitro growth conditions or studied directly from the peripheral blood. The parasite cultures showed a minimal loss of parasite-mass and preserved percentage of multiple infected pRBCs to that in peripheral blood, maintained adhesive phenotypes and good outgrowth and multiplication rates when grown in suspension and supplemented with gas. In contrast, abnormal and greatly fluctuating levels of multiple infections were observed during static growth conditions and outgrowth and multiplication rates were inferior. Serum, as compared to Albumax, was found necessary for optimal presentation of PfEMP1 at the pRBC surface and/or for binding of serum proteins (immunoglobulins). Optimal in vitro growth conditions of P. falciparum therefore include orbital shaking (50 rev/min), human serum (10%) and a fixed gas composition (5% O2, 5% CO2, 90% N2). We subsequently established 100% of 76 frozen patient isolates and found rosetting with schizont pRBCs in every isolate (>26% schizont rosetting rate). Rosetting during schizogony was often followed by invasion of the bound RBC as seen by regular and time-lapse microscopy as well as transmission electron microscopy. The peripheral parasitemia, the level of rosetting and the rate of multiplication correlated positively to one another for individual isolates. Rosetting was also more frequent with trophozoite and schizont pRBCs of children with severe versus uncomplicated malaria (p<0.002; p<0.004). The associations suggest that rosetting enhances the ability of the parasite to multiply within the human host.
Collapse
Affiliation(s)
- Ulf Ribacke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Letusa Albrecht
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hodan Ahmed Ismail
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Emilie Flaberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laszlo Szekely
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Kristina E. M. Persson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
113
|
Dondorp AM, Omodeo-Salè F, Chotivanich K, Taramelli D, White NJ. Oxidative stress and rheology in severe malaria. Redox Rep 2013; 8:292-4. [PMID: 14962368 DOI: 10.1179/135100003225002934] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
There is mounting evidence that the release of haemozoin (beta-haematin), which is produced in large amounts during malaria infection and is released into the circulation during schizont rupture, is associated with damage to cell membranes through an oxidative mechanism. The red blood cell membrane is thus oxidised, causing rigidity of the cell. This can contribute to the pathophysiology of severe malaria, since red blood cells will have to deform considerably in order to squeeze through the microcirculation, the patency of which is disturbed by sequestered red blood cells containing the mature forms of the parasite. Rigidity of red blood cells forms a new target for intervention. Since this seems to be caused by oxidative damage to the red blood cell membrane, the anti-oxidant N-acetylcysteine is a promising candidate for adjunctive treatment in severe malaria, which still has a mortality rate as high as 20%.
Collapse
Affiliation(s)
- A M Dondorp
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | | | | | | | | |
Collapse
|
114
|
Milner DA, Valim C, Carr RA, Chandak PB, Fosiko NG, Whitten R, Playforth KB, Seydel KB, Kamiza S, Molyneux ME, Taylor TE. A histological method for quantifying Plasmodium falciparum in the brain in fatal paediatric cerebral malaria. Malar J 2013; 12:191. [PMID: 23758807 PMCID: PMC3701562 DOI: 10.1186/1475-2875-12-191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/03/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The sequestration of Plasmodium falciparum-infected erythrocytes in brain microvasculature through cytoadherence to endothelium, is the hallmark of the definitive diagnosis of cerebral malaria and plays a critical role in malaria pathogenesis. The complex pathophysiology, which leads each patient to the final outcome of cerebral malaria, is multifaceted and thus, metrics to delineate specific patterns within cerebral malaria are needed to further parse patients. METHODS A method was developed for quantification utilizing counts of capillary contents (early-stage parasites, late-stage parasites and fibrin) from histological preparations of brain tissue after death, and compared it to the standard approach, in which the percentage of parasitized vessels in cross-section is determined. RESULTS Within the initial cohort of 50 patients, two different observers agreed closely on the percentage of vessels parasitized, pigmented parasites and pigment globules (ICC = 0.795-0.970). Correlations between observers for correct diagnostic classification were high (Kendall's tau-b = 0.8779, Kappa = 0.8413). When these methods were applied prospectively to a second set of 50 autopsy samples, they revealed a heterogeneous distribution of sequestered parasites in the brain with pigmented parasites and pigment globules present in the cerebellum > cortex > brainstem. There was no difference in the distribution of early stages of parasites or in the percentage of vessels parasitized across the same sites. The second cohort of cases was also used to test a previously published classification and regression tree (CART) analysis; the quantitative data alone were able to accurately classify and distinguish cerebral malaria from non-cerebral malaria. Classification errors occurred within a subclassification of cerebral malaria (CM1 vs CM2). A repeat CART analysis for the second cohort generated slightly different classification rules with more accurate subclassification, although misclassification still occurred. CONCLUSIONS The traditional measure of parasite sequestration in falciparum malaria, the percentage of vessels parasitized, is the most reliable and consistent for the general diagnosis of cerebral malaria. Methods that involve quantitative measures of different life cycle stages are useful for distinguishing patterns within the cerebral malaria population; these subclassifications may be important for studies of disease pathogenesis and ancillary treatment.
Collapse
Affiliation(s)
- Danny A Milner
- Anatomic and Clinical Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Clarissa Valim
- Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | - Nedson G Fosiko
- Histopathology, University of Malawi College of Medicine, Blantyre, Malawi, Africa
| | - Richard Whitten
- Anatomic and Clinical Pathology, Cellnetix Pathology and Laboratories, Olympia, WA, USA
| | | | - Karl B Seydel
- Medicine, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Steve Kamiza
- Histopathology, University of Malawi College of Medicine, Blantyre, Malawi, Africa
| | - Malcolm E Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Terrie E Taylor
- Medicine, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
115
|
Cunnington AJ, Bretscher MT, Nogaro SI, Riley EM, Walther M. Comparison of parasite sequestration in uncomplicated and severe childhood Plasmodium falciparum malaria. J Infect 2013; 67:220-30. [PMID: 23623771 PMCID: PMC3744804 DOI: 10.1016/j.jinf.2013.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/13/2013] [Accepted: 04/15/2013] [Indexed: 12/31/2022]
Abstract
Objectives To determine whether sequestration of parasitized red blood cells differs between children with uncomplicated and severe Plasmodium falciparum malaria. Methods We quantified circulating-, total- and sequestered-parasite biomass, using a mathematical model based on plasma concentration of P. falciparum histidine rich protein 2, in Gambian children with severe (n = 127) and uncomplicated (n = 169) malaria. Results Circulating- and total-, but not sequestered-, parasite biomass estimates were significantly greater in children with severe malaria than in those with uncomplicated malaria. Sequestered biomass estimates in children with hyperlactataemia or prostration were similar to those in uncomplicated malaria, whereas sequestered biomass was higher in patients with severe anaemia, and showed a trend to higher values in cerebral malaria and fatal cases. Blood lactate concentration correlated with circulating- and total-, but not sequestered parasite biomass. These findings were robust after controlling for age, prior antimalarial treatment and clonality of infection, and over a realistic range of variation in model parameters. Conclusion Extensive sequestration is not a uniform requirement for severe paediatric malaria. The pathophysiology of hyperlactataemia and prostration appears to be unrelated to sequestered parasite biomass. Different mechanisms may underlie different severe malaria syndromes, and different therapeutic strategies may be required to improve survival.
Collapse
Affiliation(s)
- Aubrey J Cunnington
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | | | | | | |
Collapse
|
116
|
Abstract
One hundred and twenty years ago, the Italian malariologists Marchiafava and Bignami proposed that the fundamental pathological process underlying lethal falciparum malaria was microvascular obstruction. Since then, several alternative hypotheses have been proposed. These formed the basis for adjunctive interventions, which have either been ineffective or harmful. Recent evidence strongly suggests that Marchiafava and Bignami were right.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | | | | | | |
Collapse
|
117
|
Lopera-Mesa TM, Doumbia S, Chiang S, Zeituni AE, Konate DS, Doumbouya M, Keita AS, Stepniewska K, Traore K, Diakite SAS, Ndiaye D, Sa JM, Anderson JM, Fay MP, Long CA, Diakite M, Fairhurst RM. Plasmodium falciparum clearance rates in response to artesunate in Malian children with malaria: effect of acquired immunity. J Infect Dis 2013; 207:1655-63. [PMID: 23448727 PMCID: PMC3636783 DOI: 10.1093/infdis/jit082] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background. Artemisinin resistance, a long parasite clearance half-life in response to artemisinin, has been described in patients with Plasmodium falciparum malaria in southeast Asia. Few baseline half-lives have been reported from Africa, where artemisinins were recently introduced. Methods. We treated P. falciparum malaria in 215 Malian children aged 0.5–15 years with artesunate (0, 24, 48 hours) and amodiaquine (72, 96, 120 hours). We estimated half-life by measuring parasite density every 6 hours until undetectable and evaluated the effects of age, sex, ethnicity, and red blood cell (RBC) polymorphisms on half-life. We quantified the proportion of parasitized RBCs recognized by autologous immunoglobulin G (IgG). Results. The geometric mean half-life was 1.9 hours (95% confidence interval, 1.8–2.0) and did not correlate with parasite ex vivo susceptibility to artemisinins. In a linear model accounting for host factors, half-life decreased by 4.1 minutes for every 1-year increase in age. The proportion of parasitized RBCs recognized by IgG correlated inversely with half-life (r = −0.475; P = .0006). Conclusions. Parasite clearance in response to artesunate is faster in Mali than in southeast Asia. IgG responses to parasitized RBCs shorten half-life and may influence this parameter in areas where age is not an adequate surrogate of immunity and correlates of parasite-clearing immunity have not been identified. Clinical Trials Registration. NCT00669084.
Collapse
Affiliation(s)
- Tatiana M Lopera-Mesa
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Brown A, Turner L, Christoffersen S, Andrews KA, Szestak T, Zhao Y, Larsen S, Craig AG, Higgins MK. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1. J Biol Chem 2013; 288:5992-6003. [PMID: 23297413 PMCID: PMC3581401 DOI: 10.1074/jbc.m112.416347] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/20/2012] [Indexed: 11/06/2022] Open
Abstract
The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria. The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from CIDR (cysteine-rich interdomain regions) and DBL (Duffy-binding-like) domains and show extensive variation in sequence, size, and domain organization. Here we use biophysical methods to characterize the entire ∼300-kDa ectodomain from IT4VAR13, a protein that interacts with the host receptor, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLβ domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1 ectodomain in complex with its ligand. They show that it combines a modular domain arrangement consisting of individual ligand binding domains, with a defined higher order architecture that exposes the ICAM-1 binding surface to allow adhesion.
Collapse
Affiliation(s)
- Alan Brown
- From the Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Louise Turner
- Centre for Molecular Parasitology, University of Copenhagen, Øster Farimagsgade 5, Bygning 221014, Copenhagen, Denmark
| | - Stig Christoffersen
- Centre for Molecular Parasitology, University of Copenhagen, Øster Farimagsgade 5, Bygning 221014, Copenhagen, Denmark
- the Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen, Denmark
| | - Katrina A. Andrews
- From the Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Tadge Szestak
- Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, United Kingdom
| | - Yuguang Zhao
- Division of Structural Biology, University of Oxford, Oxford, OX3 7BN, and
| | - Sine Larsen
- the Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen, Denmark
| | - Alister G. Craig
- Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, United Kingdom
| | - Matthew K. Higgins
- the Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
119
|
Prapansilp P, Medana I, Mai NTH, Day NPJ, Phu NH, Yeo TW, Hien TT, White NJ, Anstey NM, Turner GDH. A clinicopathological correlation of the expression of the angiopoietin-Tie-2 receptor pathway in the brain of adults with Plasmodium falciparum malaria. Malar J 2013; 12:50. [PMID: 23383853 PMCID: PMC3570345 DOI: 10.1186/1475-2875-12-50] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/14/2013] [Indexed: 02/08/2023] Open
Abstract
Background Plasma angiopoietin (Ang)-2 is associated with disease severity and mortality in adults and children with falciparum malaria. However the mechanism of action of the angiopoietins in fatal malaria is unclear. This study aimed to determine whether the expression of Ang-1 and Ang-2 and their receptor Tie-2 in cerebral endothelial or parenchymal cells was specific to cerebral malaria (CM), correlated with coma or other severe clinical features, and whether plasma and CSF levels of these markers correlated with the clinical and neuropathological features of severe and fatal malaria in Vietnamese adults. Methods Immunohistochemistry was performed for Ang-1, Ang-2 and Tie-2 on post-mortem brain tissue from fatal malaria cases and controls. Quantitative ELISA for plasma and cerebrospinal fluid levels of Ang-1, Ang-2 and Tie-2 was done to compare fatal cases with surviving patients from the same study. Results Immunohistochemistry revealed significant differences in expression in endothelial and parenchymal cells compared to controls. However there was no significant difference in expression of these markers on endothelial cells, astroglial cells or neurons between CM and non-cerebral malaria cases. Immunostaining of Ang-1, Ang-2 and Tie-2 was also not associated with Plasmodium falciparum-infected erythrocyte sequestration in the brain. However Ang-1 and Ang-2 expression in neurons was significantly correlated with the incidence of microscopic haemorrhages. Plasma levels of Ang-2 and Ang-2/Ang-1 ratio were associated with the number of severe malaria complications and were significant and independent predictors of metabolic acidosis and fatal outcome. Conclusions The independent prognostic significance of Ang-2 and the Ang-2/Ang-1 ratio in severe malaria was confirmed, although immunohistochemistry in fatal cases did not reveal increased expression on brain endothelium in cerebral versus non-cerebral cases. Activation of the Ang-Tie-2 pathway in severe malaria is therefore related to acidosis, number of severity criteria and outcome, but is not a specific event in the brain during cerebral malaria.
Collapse
|
120
|
Hendriksen ICE, White LJ, Veenemans J, Mtove G, Woodrow C, Amos B, Saiwaew S, Gesase S, Nadjm B, Silamut K, Joseph S, Chotivanich K, Day NPJ, von Seidlein L, Verhoef H, Reyburn H, White NJ, Dondorp AM. Defining falciparum-malaria-attributable severe febrile illness in moderate-to-high transmission settings on the basis of plasma PfHRP2 concentration. J Infect Dis 2013; 207:351-61. [PMID: 23136222 PMCID: PMC3532834 DOI: 10.1093/infdis/jis675] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/23/2012] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In malaria-endemic settings, asymptomatic parasitemia complicates the diagnosis of malaria. Histidine-rich protein 2 (HRP2) is produced by Plasmodium falciparum, and its plasma concentration reflects the total body parasite burden. We aimed to define the malaria-attributable fraction of severe febrile illness, using the distributions of plasma P. falciparum HRP2 (PfHRP2) concentrations from parasitemic children with different clinical presentations. METHODS Plasma samples were collected from and peripheral blood slides prepared for 1435 children aged 6-60 months in communities and a nearby hospital in northeastern Tanzania. The study population included children with severe or uncomplicated malaria, asymptomatic carriers, and healthy control subjects who had negative results of rapid diagnostic tests. The distributions of plasma PfHRP2 concentrations among the different groups were used to model severe malaria-attributable disease. RESULTS The plasma PfHRP2 concentration showed a close correlation with the severity of infection. PfHRP2 concentrations of >1000 ng/mL denoted a malaria-attributable fraction of severe disease of 99% (95% credible interval [CI], 96%-100%), with a sensitivity of 74% (95% CI, 72%-77%), whereas a concentration of <200 ng/mL denoted severe febrile illness of an alternative diagnosis in >10% (95% CI, 3%-27%) of patients. Bacteremia was more common among patients in the lowest and highest PfHRP2 concentration quintiles. CONCLUSIONS The plasma PfHRP2 concentration defines malaria-attributable disease and distinguishes severe malaria from coincidental parasitemia in African children in a moderate-to-high transmission setting.
Collapse
Affiliation(s)
- Ilse C E Hendriksen
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
Malaria, the most significant parasitic disease of man, kills approximately one million people per year. Half of these deaths occur in those with cerebral malaria (CM). The World Health Organization (WHO) defines CM as an otherwise unexplained coma in a patient with malarial parasitemia. Worldwide, CM occurs primarily in African children and Asian adults, with the vast majority (greater than 90%) of cases occurring in children 5 years old or younger in sub-Saharan Africa. The pathophysiology of the disease is complex and involves infected erythrocyte sequestration, cerebral inflammation, and breakdown of the blood-brain barrier. A recently characterized malarial retinopathy is visual evidence of Plasmodium falciparum's pathophysiological processes occurring in the affected patient. Treatment consists of supportive care and antimalarial administration. Thus far, adjuvant therapies have not been shown to improve mortality rates or neurological outcomes in children with CM. For those who survive CM, residual neurological abnormalities are common. Epilepsy, cognitive impairment, behavioral disorders, and gross neurological deficits which include motor, sensory, and language impairments are frequent sequelae. Primary prevention strategies, including bed nets, vaccine development, and chemoprophylaxis, are in varied states of development and implementation. Continuing efforts to find successful primary prevention options and strategies to decrease neurological sequelae are needed.
Collapse
Affiliation(s)
- Douglas G Postels
- Department of Neurology and Ophthalmology, International Neurologic and Psychiatric Epidemiology Program (INPEP), Michigan State University, East Lansing, MI, USA.
| | | |
Collapse
|
122
|
Nacer A, Movila A, Baer K, Mikolajczak SA, Kappe SHI, Frevert U. Neuroimmunological blood brain barrier opening in experimental cerebral malaria. PLoS Pathog 2012; 8:e1002982. [PMID: 23133375 PMCID: PMC3486917 DOI: 10.1371/journal.ppat.1002982] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/07/2012] [Indexed: 12/31/2022] Open
Abstract
Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB. Plasmodium falciparum, the deadliest of all human malaria parasites, can cause cerebral malaria, a severe and frequently fatal complication of this devastating disease. Young children are predominantly at risk and may progress rapidly from the first signs of neurological involvement to coma and death. Here we used a murine model for high-resolution in vivo imaging to demonstrate that cerebral malaria, but not high parasitemia and severe anemia, is associated with extensive leakage of fluid from cerebral blood vessels into the brain tissue. This vascular leakage occurs downstream from the capillary bed, at the neuroimmunological blood brain barrier, a site recently recognized as the immune cell entry point into the brain during neuroinflammation. Vascular leakage is closely associated with the appearance of neurological signs suggesting that the ultimate cause of brain edema, coma and death in cerebral malaria is a widespread opening of the neuroimmunological blood brain barrier. Indeed, vascular leakage, neurological signs, and death from ECM can be prevented with endothelial barrier-stabilizing drugs. Based on the unique role of this anatomical feature in neuroinflammation, our findings are expected to have implications for other infectious diseases and autoimmune disorders of the central nervous system.
Collapse
Affiliation(s)
- Adela Nacer
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Alexandru Movila
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Kerstin Baer
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | | | - Stefan H. I. Kappe
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Ute Frevert
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
123
|
Cserti-Gazdewich CM, Dhabangi A, Musoke C, Ssewanyana I, Ddungu H, Nakiboneka-Ssenabulya D, Nabukeera-Barungi N, Mpimbaza A, Dzik WH. Cytoadherence in paediatric malaria: ABO blood group, CD36, and ICAM1 expression and severe Plasmodium falciparum infection. Br J Haematol 2012; 159:223-36. [PMID: 22909232 PMCID: PMC3470923 DOI: 10.1111/bjh.12014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/12/2012] [Indexed: 11/28/2022]
Abstract
As a leading cause of childhood mortality worldwide, selection pressure by Plasmodium falciparum continues to shape the human genome. Severe disturbances within the microcirculation result from the adhesion of infected erythrocytes to host receptors on monocytes, platelets, and endothelium. In this prospective study, we compared expression of all major host cytoadhesion receptors among Ugandan children presenting with uncomplicated malaria (n = 1078) versus children with severe malaria (n = 855), including cerebral malaria (n = 174), severe anaemia (n = 522), and lactic acidosis (n = 154). We report a significant survival advantage attributed to blood group O and increased monocyte expression of CD36 and ICAM1 (CD54). The high case fatality rate syndromes of cerebral malaria and lactic acidosis were associated with high platelet CD36 expression and thrombocytopenia, and severe malaria anaemia was characterized by low ICAM1 expression. In a logistic regression model of disease severity, odds ratios for the mitigating effects of blood group O, CD36, and ICAM1 phenotypes were greater than that of sickle haemoglobin. Host genetic adaptations to Plasmodium falciparum suggest new potential malaria treatment strategies.
Collapse
|
124
|
Hanson J, Lam SWK, Mahanta KC, Pattnaik R, Alam S, Mohanty S, Hasan MU, Hossain A, Charunwatthana P, Chotivanich K, Maude RJ, Kingston H, Day NP, Mishra S, White NJ, Dondorp AM. Relative Contributions of Macrovascular and Microvascular Dysfunction to Disease Severity in Falciparum Malaria. J Infect Dis 2012; 206:571-9. [DOI: 10.1093/infdis/jis400] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
125
|
Krause MA, Diakite SAS, Lopera-Mesa TM, Amaratunga C, Arie T, Traore K, Doumbia S, Konate D, Keefer JR, Diakite M, Fairhurst RM. α-Thalassemia impairs the cytoadherence of Plasmodium falciparum-infected erythrocytes. PLoS One 2012; 7:e37214. [PMID: 22623996 PMCID: PMC3356384 DOI: 10.1371/journal.pone.0037214] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 04/16/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND α-Thalassemia results from decreased production of α-globin chains that make up part of hemoglobin tetramers (Hb; α(2)β(2)) and affects up to 50% of individuals in some regions of sub-Saharan Africa. Heterozygous (-α/αα) and homozygous (-α/-α) genotypes are associated with reduced risk of severe Plasmodium falciparum malaria, but the mechanism of this protection remains obscure. We hypothesized that α-thalassemia impairs the adherence of parasitized red blood cells (RBCs) to microvascular endothelial cells (MVECs) and monocytes--two interactions that are centrally involved in the pathogenesis of severe disease. METHODS AND FINDINGS We obtained P. falciparum isolates directly from Malian children with malaria and used them to infect αα/αα (normal), -α/αα and -α/-α RBCs. We also used laboratory-adapted P. falciparum clones to infect -/-α RBCs obtained from patients with HbH disease. Following a single cycle of parasite invasion and maturation to the trophozoite stage, we tested the ability of parasitized RBCs to bind MVECs and monocytes. Compared to parasitized αα/αα RBCs, we found that parasitized -α/αα, -α/-α and -/-α RBCs showed, respectively, 22%, 43% and 63% reductions in binding to MVECs and 13%, 33% and 63% reductions in binding to monocytes. α-Thalassemia was associated with abnormal display of P. falciparum erythrocyte membrane protein 1 (PfEMP1), the parasite's main cytoadherence ligand and virulence factor, on the surface of parasitized RBCs. CONCLUSIONS Parasitized α-thalassemic RBCs show PfEMP1 display abnormalities that are reminiscent of those on the surface of parasitized sickle HbS and HbC RBCs. Our data suggest a model of malaria protection in which α-thalassemia ameliorates the pro-inflammatory effects of cytoadherence. Our findings also raise the possibility that other unstable hemoglobins such as HbE and unpaired α-globin chains (in the case of β-thalassemia) protect against life-threatening malaria by a similar mechanism.
Collapse
Affiliation(s)
- Michael A. Krause
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Seidina A. S. Diakite
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Bamako, Bamako, Mali
| | - Tatiana M. Lopera-Mesa
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Takayuki Arie
- Department of Physics and Electronics, School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Karim Traore
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Bamako, Bamako, Mali
| | - Saibou Doumbia
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Bamako, Bamako, Mali
| | - Drissa Konate
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Bamako, Bamako, Mali
| | - Jeffrey R. Keefer
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Mahamadou Diakite
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Bamako, Bamako, Mali
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
126
|
Deroost K, Lays N, Noppen S, Martens E, Opdenakker G, Van den Steen PE. Improved methods for haemozoin quantification in tissues yield organ-and parasite-specific information in malaria-infected mice. Malar J 2012; 11:166. [PMID: 22583751 PMCID: PMC3473299 DOI: 10.1186/1475-2875-11-166] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/07/2012] [Indexed: 12/03/2022] Open
Abstract
Background Despite intensive research, malaria remains a major health concern for non-immune residents and travelers in malaria-endemic regions. Efficient adjunctive therapies against life-threatening complications such as severe malarial anaemia, encephalopathy, placental malaria or respiratory problems are still lacking. Therefore, new insights into the pathogenesis of severe malaria are imperative. Haemozoin (Hz) or malaria pigment is produced during intra-erythrocytic parasite replication, released in the circulation after schizont rupture and accumulates inside multiple organs. Many in vitro and ex vivo immunomodulating effects are described for Hz but in vivo data are limited. This study aimed to improve methods for Hz quantification in tissues and to investigate the accumulation of Hz in different organs from mice infected with Plasmodium parasites with a varying degree of virulence. Methods An improved method for extraction of Hz from tissues was elaborated and coupled to an optimized, quantitative, microtiter plate-based luminescence assay with a high sensitivity. In addition, a technique for measuring Hz by semi-quantitative densitometry, applicable on transmitted light images, was developed. The methods were applied to measure Hz in various organs of C57BL/6 J mice infected with Plasmodium berghei ANKA, P. berghei NK65 or Plasmodium chabaudi AS. The used statistical methods were the Mann–Whitney U test and Pearsons correlation analysis. Results Most Hz was detected in livers and spleens, lower levels in lungs and kidneys, whereas sub-nanomolar amounts were observed in brains and hearts from infected mice, irrespectively of the parasite strain used. Furthermore, total Hz contents correlated with peripheral parasitaemia and were significantly higher in mice with a lethal P. berghei ANKA or P. berghei NK65-infection than in mice with a self-resolving P. chabaudi AS-infection, despite similar peripheral parasitaemia levels. Conclusions The developed techniques were useful to quantify Hz in different organs with a high reproducibility and sensitivity. An organ-specific Hz deposition pattern was found and was independent of the parasite strain used. Highest Hz levels were identified in mice infected with lethal parasite strains suggesting that Hz accumulation in tissues is associated with malaria-related mortality.
Collapse
Affiliation(s)
- Katrien Deroost
- Laboratory of Immunobiology, Rega Institute, University of Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
127
|
Rubach MP, Mukemba J, Florence S, John B, Crookston B, Lopansri BK, Yeo TW, Piera KA, Alder SC, Weinberg JB, Anstey NM, Granger DL, Mwaikambo ED. Plasma Plasmodium falciparum histidine-rich protein-2 concentrations are associated with malaria severity and mortality in Tanzanian children. PLoS One 2012; 7:e35985. [PMID: 22586457 PMCID: PMC3346811 DOI: 10.1371/journal.pone.0035985] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 03/29/2012] [Indexed: 11/30/2022] Open
Abstract
Plasma Plasmodium falciparum histidine-rich protein-2 (PfHRP-2) concentrations, a measure of parasite biomass, have been correlated with malaria severity in adults, but not yet in children. We measured plasma PfHRP-2 in Tanzanian children with uncomplicated (n = 61) and cerebral malaria (n = 45; 7 deaths). Median plasma PfHRP-2 concentrations were higher in cerebral malaria (1008 [IQR 342–2572] ng/mL) than in uncomplicated malaria (465 [IQR 36–1426] ng/mL; p = 0.017). In cerebral malaria, natural log plasma PfHRP-2 was associated with coma depth (r = −0.42; p = 0.006) and mortality (OR: 3.0 [95% CI 1.03–8.76]; p = 0.04). In this relatively small cohort study in a mesoendemic transmission area of Africa, plasma PfHRP-2 was associated with pediatric malaria severity and mortality. Further studies among children in areas of Africa with higher malaria transmission and among children with different clinical manifestations of severe malaria will help determine the wider utility of quantitative PfHRP-2 as a measure of parasite biomass and prognosis in sub-Saharan Africa.
Collapse
Affiliation(s)
- Matthew P. Rubach
- University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Jackson Mukemba
- Hubert Kairuki Memorial University, Dar es Salaam, United Republic of Tanzania
| | - Salvatore Florence
- Hubert Kairuki Memorial University, Dar es Salaam, United Republic of Tanzania
| | - Bernard John
- Hubert Kairuki Memorial University, Dar es Salaam, United Republic of Tanzania
| | - Benjamin Crookston
- University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Bert K. Lopansri
- Loyola University Medical Center, Maywood, Illinois, United States of America
| | - Tsin W. Yeo
- Menzies School for Health Research and Charles Darwin University, Darwin, Australia
- Royal Darwin Hospital, Darwin, Australia
| | - Kim A. Piera
- Menzies School for Health Research and Charles Darwin University, Darwin, Australia
| | - Stephen C. Alder
- University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - J. Brice Weinberg
- VA Medical Centers and Duke University, Durham, North Carolina, United States of America
| | - Nicholas M. Anstey
- Menzies School for Health Research and Charles Darwin University, Darwin, Australia
- Royal Darwin Hospital, Darwin, Australia
| | - Donald L. Granger
- University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
- * E-mail:
| | - Esther D. Mwaikambo
- Hubert Kairuki Memorial University, Dar es Salaam, United Republic of Tanzania
| |
Collapse
|
128
|
Rénia L, Howland SW, Claser C, Charlotte Gruner A, Suwanarusk R, Hui Teo T, Russell B, Ng LFP. Cerebral malaria: mysteries at the blood-brain barrier. Virulence 2012; 3:193-201. [PMID: 22460644 PMCID: PMC3396698 DOI: 10.4161/viru.19013] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cerebral malaria is the most severe pathology caused by the malaria parasite, Plasmodium falciparum. The pathogenic mechanisms leading to cerebral malaria are still poorly defined as studies have been hampered by limited accessibility to human tissues. Nevertheless, histopathology of post-mortem human tissues and mouse models of cerebral malaria have indicated involvement of the blood-brain barrier in cerebral malaria. In contrast to viruses and bacteria, malaria parasites do not infiltrate and infect the brain parenchyma. Instead, rupture of the blood-brain barrier occurs and may lead to hemorrhages resulting in neurological alterations. Here, we review the most recent findings from human studies and mouse models on the interactions of malaria parasites and the blood-brain barrier, shedding light on the pathogenesis of cerebral malaria, which may provide directions for possible interventions.
Collapse
Affiliation(s)
- Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A STAR), Biopolis, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Ponsford MJ, Medana IM, Prapansilp P, Hien TT, Lee SJ, Dondorp AM, Esiri MM, Day NPJ, White NJ, Turner GDH. Sequestration and microvascular congestion are associated with coma in human cerebral malaria. J Infect Dis 2012; 205:663-71. [PMID: 22207648 PMCID: PMC3266137 DOI: 10.1093/infdis/jir812] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 04/04/2011] [Indexed: 01/04/2023] Open
Abstract
The pathogenesis of coma in severe Plasmodium falciparum malaria remains poorly understood. Obstruction of the brain microvasculature because of sequestration of parasitized red blood cells (pRBCs) represents one mechanism that could contribute to coma in cerebral malaria. Quantitative postmortem microscopy of brain sections from Vietnamese adults dying of malaria confirmed that sequestration in the cerebral microvasculature was significantly higher in patients with cerebral malaria (CM; n = 21) than in patients with non-CM (n = 23). Sequestration of pRBCs and CM was also significantly associated with increased microvascular congestion by infected and uninfected erythrocytes. Clinicopathological correlation showed that sequestration and congestion were significantly associated with deeper levels of premortem coma and shorter time to death. Microvascular congestion and sequestration were highly correlated as microscopic findings but were independent predictors of a clinical diagnosis of CM. Increased microvascular congestion accompanies coma in CM, associated with parasite sequestration in the cerebral microvasculature.
Collapse
Affiliation(s)
| | | | - Panote Prapansilp
- Nuffield Department of Clinical Laboratory Sciences
- Nuffield Department of Clinical Medicine, The John Radcliffe Hospital, University of Oxford, United Kingdom
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tran Tinh Hien
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | - Arjen M. Dondorp
- Nuffield Department of Clinical Medicine, The John Radcliffe Hospital, University of Oxford, United Kingdom
- Mahidol-Oxford Research Unit
| | | | - Nicholas P. J. Day
- Nuffield Department of Clinical Medicine, The John Radcliffe Hospital, University of Oxford, United Kingdom
- Mahidol-Oxford Research Unit
| | - Nicholas J. White
- Nuffield Department of Clinical Medicine, The John Radcliffe Hospital, University of Oxford, United Kingdom
- Mahidol-Oxford Research Unit
| | - Gareth D. H. Turner
- Nuffield Department of Clinical Medicine, The John Radcliffe Hospital, University of Oxford, United Kingdom
- Mahidol-Oxford Research Unit
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
130
|
Fatih FA, Siner A, Ahmed A, Woon LC, Craig AG, Singh B, Krishna S, Cox-Singh J. Cytoadherence and virulence - the case of Plasmodium knowlesi malaria. Malar J 2012; 11:33. [PMID: 22305466 PMCID: PMC3330018 DOI: 10.1186/1475-2875-11-33] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/03/2012] [Indexed: 12/02/2022] Open
Abstract
Background Cytoadherence of infected red blood cells to brain endothelium is causally implicated in malarial coma, one of the severe manifestations of falciparum malaria. Cytoadherence is mediated by specific binding of variant parasite antigens, expressed on the surface of infected erythrocytes, to endothelial receptors including, ICAM-1, VCAM and CD36. In fatal cases of severe falciparum malaria with coma, blood vessels in the brain are characteristically congested with infected erythrocytes. Brain sections from a fatal case of knowlesi malaria, but without coma, were similarly congested with infected erythrocytes. The objective of this study was to determine the binding phenotype of Plasmodium knowlesi infected human erythrocytes to recombinant human ICAM-1, VCAM and CD36. Methods Five patients with PCR-confirmed P. knowlesi malaria were recruited into the study with consent between April and August 2010. Pre-treatment venous blood was washed and cultured ex vivo to increase the proportion of schizont-infected erythrocytes. Cultured blood was seeded into Petri dishes with triplicate areas coated with ICAM-1, VCAM and CD36. Following incubation at 37°C for one hour the dishes were washed and the number of infected erythrocytes bound/mm2 to PBS control areas and to recombinant human ICAM-1 VCAM and CD36 coated areas were recorded. Each assay was performed in duplicate. Assay performance was monitored with the Plasmodium falciparum clone HB3. Results Blood samples were cultured ex vivo for up to 14.5 h (mean 11.3 ± 1.9 h) to increase the relative proportion of mature trophozoite and schizont-infected red blood cells to at least 50% (mean 65.8 ± 17.51%). Three (60%) isolates bound significantly to ICAM-1 and VCAM, one (20%) isolate bound to VCAM and none of the five bound significantly to CD36. Conclusions Plasmodium knowlesi infected erythrocytes from human subjects bind in a specific but variable manner to the inducible endothelial receptors ICAM-1 and VCAM. Binding to the constitutively-expressed endothelial receptor CD36 was not detected. Further work will be required to define the pathological consequences of these interactions.
Collapse
Affiliation(s)
- Farrah A Fatih
- Centre for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Laishram DD, Sutton PL, Nanda N, Sharma VL, Sobti RC, Carlton JM, Joshi H. The complexities of malaria disease manifestations with a focus on asymptomatic malaria. Malar J 2012; 11:29. [PMID: 22289302 PMCID: PMC3342920 DOI: 10.1186/1475-2875-11-29] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 01/31/2012] [Indexed: 12/02/2022] Open
Abstract
Malaria is a serious parasitic disease in the developing world, causing high morbidity and mortality. The pathogenesis of malaria is complex, and the clinical presentation of disease ranges from severe and complicated, to mild and uncomplicated, to asymptomatic malaria. Despite a wealth of studies on the clinical severity of disease, asymptomatic malaria infections are still poorly understood. Asymptomatic malaria remains a challenge for malaria control programs as it significantly influences transmission dynamics. A thorough understanding of the interaction between hosts and parasites in the development of different clinical outcomes is required. In this review, the problems and obstacles to the study and control of asymptomatic malaria are discussed. The human and parasite factors associated with differential clinical outcomes are described and the management and treatment strategies for the control of the disease are outlined. Further, the crucial gaps in the knowledge of asymptomatic malaria that should be the focus of future research towards development of more effective malaria control strategies are highlighted.
Collapse
Affiliation(s)
- Dolie D Laishram
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Mohanty S, Mishra SK, Patnaik R, Dutt AK, Pradhan S, Das B, Patnaik J, Mohanty AK, Lee SJ, Dondorp AM. Brain swelling and mannitol therapy in adult cerebral malaria: a randomized trial. Clin Infect Dis 2012; 53:349-55. [PMID: 21810747 PMCID: PMC3148260 DOI: 10.1093/cid/cir405] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mild cerebral swelling on CT-scan was common in adult patients with cerebral malaria, but severity of swelling was not correlated with coma depth or survival. Mannitol as adjunctive treatment for cerebral malaria prolonged coma duration and may be harmful. Background. Coma is a frequent presentation of severe malaria in adults and an important cause of death. The role of cerebral swelling in its pathogenesis, and the possible benefit of intravenous mannitol therapy to treat this, is uncertain. Methods. A computed tomographic (CT) scan of the cerebrum and lumbar puncture with measurement of cerebrospinal fluid (CSF) pressure were performed on admission for 126 consecutive adult Indian patients with cerebral malaria. Patients with brain swelling on CT scan were randomized to adjunctive treatment with intravenous mannitol (1.5 g/kg followed by 0.5 g/kg every 8 hours; n = 30) or no adjunctive therapy (n = 31). Results. On CT scan 80 (63%) of 126 patients had cerebral swelling, of whom 36 (29%) had moderate or severe swelling. Extent of brain swelling was not related to coma depth or mortality. CSF pressures were elevated (≥200 mm H2O) in 43 (36%) of 120 patients and correlated with CT scan findings (P for trend = .001). Mortality with mannitol therapy was 9 (30%) of 30 versus 4 (13%) of 31 without adjunctive therapy (hazard ratio, 2.4 [95% confidence interval, 0.8–7.3]; P = .11). Median coma recovery time was 90 hours (range, 22–380 hours) with mannitol versus 32 hours (range, 5–168 hours) without (P = .02). Conclusions. Brain swelling on CT scan is a common finding in adult patients with cerebral malaria but is not related to coma depth or survival. Mannitol therapy as adjunctive treatment for brain swelling in adult cerebral malaria prolongs coma duration and may be harmful.
Collapse
Affiliation(s)
- Sanjib Mohanty
- Depatment of Medicine and Radiology, Ispat General Hospital, Rourkela, Orissa, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Hendriksen ICE, Mwanga-Amumpaire J, von Seidlein L, Mtove G, White LJ, Olaosebikan R, Lee SJ, Tshefu AK, Woodrow C, Amos B, Karema C, Saiwaew S, Maitland K, Gomes E, Pan-Ngum W, Gesase S, Silamut K, Reyburn H, Joseph S, Chotivanich K, Fanello CI, Day NPJ, White NJ, Dondorp AM. Diagnosing severe falciparum malaria in parasitaemic African children: a prospective evaluation of plasma PfHRP2 measurement. PLoS Med 2012; 9:e1001297. [PMID: 22927801 PMCID: PMC3424256 DOI: 10.1371/journal.pmed.1001297] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/13/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In African children, distinguishing severe falciparum malaria from other severe febrile illnesses with coincidental Plasmodium falciparum parasitaemia is a major challenge. P. falciparum histidine-rich protein 2 (PfHRP2) is released by mature sequestered parasites and can be used to estimate the total parasite burden. We investigated the prognostic significance of plasma PfHRP2 and used it to estimate the malaria-attributable fraction in African children diagnosed with severe malaria. METHODS AND FINDINGS Admission plasma PfHRP2 was measured prospectively in African children (from Mozambique, The Gambia, Kenya, Tanzania, Uganda, Rwanda, and the Democratic Republic of the Congo) aged 1 month to 15 years with severe febrile illness and a positive P. falciparum lactate dehydrogenase (pLDH)-based rapid test in a clinical trial comparing parenteral artesunate versus quinine (the AQUAMAT trial, ISRCTN 50258054). In 3,826 severely ill children, Plasmadium falciparum PfHRP2 was higher in patients with coma (p = 0.0209), acidosis (p<0.0001), and severe anaemia (p<0.0001). Admission geometric mean (95%CI) plasma PfHRP2 was 1,611 (1,350-1,922) ng/mL in fatal cases (n = 381) versus 1,046 (991-1,104) ng/mL in survivors (n = 3,445, p<0.0001), without differences in parasitaemia as assessed by microscopy. There was a U-shaped association between log(10) plasma PfHRP2 and risk of death. Mortality increased 20% per log(10) increase in PfHRP2 above 174 ng/mL (adjusted odds ratio [AOR] 1.21, 95%CI 1.05-1.39, p = 0.009). A mechanistic model assuming a PfHRP2-independent risk of death in non-malaria illness closely fitted the observed data and showed malaria-attributable mortality less than 50% with plasma PfHRP2≤174 ng/mL. The odds ratio (OR) for death in artesunate versus quinine-treated patients was 0.61 (95%CI 0.44-0.83, p = 0.0018) in the highest PfHRP2 tertile, whereas there was no difference in the lowest tertile (OR 1.05; 95%CI 0.69-1.61; p = 0.82). A limitation of the study is that some conclusions are drawn from a mechanistic model, which is inherently dependent on certain assumptions. However, a sensitivity analysis of the model indicated that the results were robust to a plausible range of parameter estimates. Further studies are needed to validate our findings. CONCLUSIONS Plasma PfHRP2 has prognostic significance in African children with severe falciparum malaria and provides a tool to stratify the risk of "true" severe malaria-attributable disease as opposed to other severe illnesses in parasitaemic African children.
Collapse
Affiliation(s)
- Ilse C. E. Hendriksen
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | | | | | - George Mtove
- National Institute for Medical Research, Amani Centre, Tanga, Tanzania
| | - Lisa J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | | | - Sue J. Lee
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Antoinette K. Tshefu
- Kinshasa School of Public Health, Kingasani Research Centre, Kinshasa, Democratic Republic of the Congo
| | - Charles Woodrow
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Ben Amos
- Teule Hospital, Muheza, Tanzania
| | - Corine Karema
- Malaria Control Program, Ministry of Health, Kigali, Rwanda
| | - Somporn Saiwaew
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kathryn Maitland
- Kenya Medical Research Institute (KEMRI)–Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Wirichada Pan-Ngum
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Samwel Gesase
- National Institute for Medical Research, Tanga Medical Research Centre, Tanga, Tanzania
| | - Kamolrat Silamut
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Hugh Reyburn
- London School of Tropical Medicine & Hygiene, London, United Kingdom
| | - Sarah Joseph
- Medical Research Council, London, United Kingdom
| | - Kesinee Chotivanich
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Caterina I. Fanello
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
134
|
Wongtanachai J, Silamut K, Day NPJ, Dondorp A, Chaisri U. Effects of antimalarial drugs on movement of Plasmodium falciparum. THE SOUTHEAST ASIAN JOURNAL OF TROPICAL MEDICINE AND PUBLIC HEALTH 2012; 43:1-9. [PMID: 23082547 PMCID: PMC3808808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In vitro antimalarial drug susceptibility is conventionally assessed by the concentration dependent growth inhibition of Plasmodium in an in vitro culture system. Inhibition of the kinetic properties of the parasites could provide an alternative method to assess in vitro antimalarial drugs sensitivity. In this study we used a novel real time microscopic technique, which does not require fixation and staining of the parasite, to study the effects of antimalarial drugs on the intracellular movement of Plasmodium (P.) falciparum trophozoites. Using real time microscopy movement of P. falciparum pigment within erythrocytes was investigated before and after antimalarial drugs exposure (artesunate, quinine, and piperaquine). For artesunate, the 50% inhibition concentration (IC50) at which movement in half of the trophozoites was abolished was estimated by sigmoid curve fitting. Intra- and inter-observer agreements were also assessed. Healthy unexposed P. falciparum trophozoites in culture showed very active movement of malaria pigment. Quinine and piperaquine had no effect but artesunate did reduce pigment movement which started after 2.5 hours exposure to the drug. The mean (SD) IC50 for artesunate regarding abolishment of pigment movement was 54 (14) ng/ml. Assessments of intra- and inter-rater agreement showed good reproducibility of the technique (Kappa value 0.82 to 0.91). Abolishment of active movement of malaria pigment is an alternative approach to assess drug sensitivity for artesunate. Malaria pigment movement is abolished by artesunate early after exposure, but at concentrations higher than those inhibiting growth.
Collapse
Affiliation(s)
- Jaiaue Wongtanachai
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok
| | - Kamolrat Silamut
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas PJ Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjen Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok
| |
Collapse
|
135
|
Geurts N, Opdenakker G, Van den Steen PE. Matrix metalloproteinases as therapeutic targets in protozoan parasitic infections. Pharmacol Ther 2011; 133:257-79. [PMID: 22138604 DOI: 10.1016/j.pharmthera.2011.11.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 10/28/2011] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are associated with processes of tissue remodeling and are expressed in all infections with protozoan parasites. We here report the status of MMP research in malaria, trypanosomiasis, leishmaniasis and toxoplasmosis. In all these infections, the balances between MMPs and endogenous MMP inhibitors are disturbed, mostly in favor of active proteolysis. When the infection is associated with leukocyte influx into specific organs, immunopathology and collateral tissue damage may occur. These pathologies include cerebral malaria, sleeping sickness (human African trypanosomiasis), Chagas disease (human American trypanosomiasis), leishmaniasis and toxoplasmic encephalitis in immunocompromised hosts. Destruction of the integrity of the blood-brain barrier (BBB) is a common denominator that may be executed by leukocytic MMPs under the control of host cytokines and chemokines as well as influenced by parasite products. Mechanisms by which parasite-derived products alter host expression of MMP and endogenous MMP inhibitors, have only been described for hemozoin (Hz) in malaria. Hence, understanding these interactions in other parasitic infections remains an important challenge. Furthermore, the involved parasites are also known to produce their own metalloproteinases, and this forms an extra stimulus to investigate MMP inhibitory drugs as therapeutics. MMP inhibitors (MMPIs) may dampen collateral tissue damage, as is anecdotically reported for tetracyclines as MMP regulators in parasite infections.
Collapse
Affiliation(s)
- Nathalie Geurts
- Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Leuven, Minderbroedersstraat 10, B3000 Leuven, Belgium
| | | | | |
Collapse
|
136
|
Davis SP, Amrein M, Gillrie MR, Lee K, Muruve DA, Ho M. Plasmodium falciparum-induced CD36 clustering rapidly strengthens cytoadherence via p130CAS-mediated actin cytoskeletal rearrangement. FASEB J 2011; 26:1119-30. [PMID: 22106368 DOI: 10.1096/fj.11-196923] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The adhesion of infected red blood cells (IRBCs) to microvascular endothelium is critical in the pathogenesis of severe malaria. Here we used atomic force and confocal microscopy to examine the adhesive forces between IRBCs and human dermal microvascular endothelial cells. Initial contact of the cells generated a mean ± sd adhesion force of 167 ± 208 pN from the formation of single or multiple bonds with CD36. The strength of adhesion increased by 5- to 6-fold within minutes of contact through a signaling pathway initiated by CD36 ligation by live IRBCs, or polystyrene beads coated with anti-CD36 or PpMC-179, a recombinant peptide representing the minimal binding domain of the parasite ligand PfEMP1 to CD36. Engagement of CD36 led to localized phosphorylation of Src family kinases and the adaptor protein p130CAS, resulting in actin recruitment and CD36 clustering by 50-60% of adherent beads. Uninfected red blood cells or IgG-coated beads had no effect. Inhibition of the increase in adhesive strength by the Src family kinase inhibitor PP1 or gene silencing of p130CAS decreased adhesion by 39 ± 12 and 48 ± 20%, respectively, at 10 dyn/cm(2) in a flow chamber assay. Modulation of adhesive strength at PfEMP1-CD36-actin cytoskeleton synapses could be a novel target for antiadhesive therapy.
Collapse
Affiliation(s)
- Shevaun P Davis
- Department of Microbiology, Immunology, and Infectious Diseases, 3330 Hospital Dr. NW, Calgary, AB, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
137
|
Phiri HT, Bridges DJ, Glover SJ, van Mourik JA, de Laat B, M'baya B, Taylor TE, Seydel KB, Molyneux ME, Faragher EB, Craig AG, Bunn JEG. Elevated plasma von Willebrand factor and propeptide levels in Malawian children with malaria. PLoS One 2011; 6:e25626. [PMID: 22125593 PMCID: PMC3219631 DOI: 10.1371/journal.pone.0025626] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 09/08/2011] [Indexed: 11/18/2022] Open
Abstract
Background In spite of the significant mortality associated with Plasmodium falciparum infection, the mechanisms underlying severe disease remain poorly understood. We have previously shown evidence of endothelial activation in Ghanaian children with malaria, indicated by elevated plasma levels of both von Willebrand factor (VWF) and its propeptide. In the current prospective study of children in Malawi with retinopathy confirmed cerebral malaria, we compared these markers with uncomplicated malaria, non malarial febrile illness and controls. Methods and Findings Children with cerebral malaria, mild malaria and controls without malaria were recruited into the study. All comatose patients were examined by direct and indirect ophthalmoscopy. Plasma VWF and propeptide levels were measured by ELISA. Median VWF and propeptide levels were significantly higher in patients with uncomplicated malaria than in children with non-malarial febrile illness of comparable severity, in whom levels were higher than in non-febrile controls. Median concentrations of both markers were higher in cerebral malaria than in uncomplicated malaria, and were similar in patients with and without retinopathy. Levels of both VWF and propeptide fell significantly 48 hours after commencing therapy and were normal one month later. Conclusions In children with malaria plasma VWF and propeptide levels are markedly elevated in both cerebral and mild paediatric malaria, with levels matching disease severity, and these normalize upon recovery. High levels of both markers also occur in retinopathy-negative ‘cerebral malaria’ cases, many of whom are thought to be suffering from diseases other than malaria, indicating that further studies of these markers will be required to determine their sensitivity and specificity.
Collapse
Affiliation(s)
- Happy T. Phiri
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
| | - Daniel J. Bridges
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
| | - Simon J. Glover
- Blantyre Malaria Project, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Jan A. van Mourik
- Departments of Plasma Proteins and Blood Coagulation, Sanquin, Amsterdam, The Netherlands
| | - Bas de Laat
- Departments of Plasma Proteins and Blood Coagulation, Sanquin, Amsterdam, The Netherlands
| | | | - Terrie E. Taylor
- Blantyre Malaria Project, College of Medicine, University of Malawi, Blantyre, Malawi
- Department of Internal Medicine, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Karl B. Seydel
- Blantyre Malaria Project, College of Medicine, University of Malawi, Blantyre, Malawi
- Department of Internal Medicine, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Malcolm E. Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Alister G. Craig
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - James E. G. Bunn
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- College of Medicine, Blantyre, Malawi
- * E-mail:
| |
Collapse
|
138
|
Inhaled nitric oxide reduces endothelial activation and parasite accumulation in the brain, and enhances survival in experimental cerebral malaria. PLoS One 2011; 6:e27714. [PMID: 22110737 PMCID: PMC3218025 DOI: 10.1371/journal.pone.0027714] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/22/2011] [Indexed: 01/08/2023] Open
Abstract
The host immune response contributes to the onset and progression of severe malaria syndromes, such as cerebral malaria. Adjunctive immunomodulatory strategies for severe malaria may improve clinical outcome beyond that achievable with artemisinin-based therapy alone. Here, we report that prophylaxis with inhaled nitric oxide significantly reduced systemic inflammation (lower TNF, IFNγ and MCP-1 in peripheral blood) and endothelial activation (decreased sICAM-1 and vWF, and increased angiopoeitin-1 levels in peripheral blood) in an experimental cerebral malaria model. Mice that received inhaled nitric oxide starting prior to infection had reduced parasitized erythrocyte accumulation in the brain, decreased brain expression of ICAM-1, and preserved vascular integrity compared to control mice. Inhaled nitric oxide administered in combination with artesunate, starting as late as 5.5 days post-infection, improved survival over treatment with artesunate alone (70% survival in the artesunate only vs. 100% survival in the artesunate plus iNO group, p = 0.03). These data support the clinical investigation of inhaled nitric oxide as a novel adjunctive therapy in patients with severe malaria.
Collapse
|
139
|
The neuropathology of fatal cerebral malaria in malawian children. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2146-58. [PMID: 21514429 PMCID: PMC3081150 DOI: 10.1016/j.ajpath.2011.01.016] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/26/2010] [Accepted: 01/07/2011] [Indexed: 12/21/2022]
Abstract
We examined the brains of 50 Malawian children who satisfied the clinical definition of cerebral malaria (CM) during life; 37 children had sequestration of infected red blood cells (iRBCs) and no other cause of death, and 13 had a nonmalarial cause of death with no cerebral sequestration. For comparison, 18 patients with coma and no parasitemia were included. We subdivided the 37 CM cases into two groups based on the cerebral microvasculature pathology: iRBC sequestration only (CM1) or sequestration with intravascular and perivascular pathology (CM2). We characterized and quantified the axonal and myelin damage, blood-brain barrier (BBB) disruption, and cellular immune responses and correlated these changes with iRBC sequestration and microvascular pathology. Axonal and myelin damage was associated with ring hemorrhages and vascular thrombosis in the cerebral and cerebellar white matter and brainstem of the CM2 cases. Diffuse axonal and myelin damage were present in CM1 and CM2 cases in areas of prominent iRBC sequestration. Disruption of the BBB was associated with ring hemorrhages and vascular thrombosis in CM2 cases and with sequestration in both CM1 and CM2 groups. Monocytes with phagocytosed hemozoin accumulated within microvessels containing iRBCs in CM2 cases but were not present in the adjacent neuropil. These findings are consistent with a link between iRBC sequestration and intravascular and perivascular pathology in fatal pediatric CM, resulting in myelin damage, axonal injury, and breakdown of the BBB.
Collapse
|
140
|
Bruce-Hickman D. Oxygen therapy for cerebral malaria. Travel Med Infect Dis 2011; 9:223-30. [PMID: 21807563 DOI: 10.1016/j.tmaid.2011.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 10/17/2022]
Abstract
Malaria is an important global health issue, killing nearly one million people worldwide each year. There is a disproportionate disease burden, since 89% of cases are of African origin, and 85% of deaths worldwide occur in children under 5 years of age of age.(1) Cerebral malaria (CM) is the most serious complication of infection. Despite prompt anti-malarial treatment, fatalities remain high - mortality rates while undergoing treatment with Artemisinin or quinine-based therapy reach 15% and 22% respectively.(2) There is, therefore, a need to develop an adjunct therapy to preserve neurological function during the treatment period. Recent experimental research has indicated hyperbaric oxygenation (HBO) to be a rational and effective adjunct therapy.(3) This article examines the current understanding of CM, and the possible benefits provided by HBO therapy.
Collapse
Affiliation(s)
- Damian Bruce-Hickman
- UCL Medical School & Department of Neuroscience, Physiology and Pharmacology, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
141
|
Serghides L. The Case for the Use of PPARγ Agonists as an Adjunctive Therapy for Cerebral Malaria. PPAR Res 2011; 2012:513865. [PMID: 21772838 PMCID: PMC3135089 DOI: 10.1155/2012/513865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/28/2011] [Indexed: 12/24/2022] Open
Abstract
Cerebral malaria is a severe complication of Plasmodium falciparum infection associated with high mortality even when highly effective antiparasitic therapy is used. Adjunctive therapies that modify the pathophysiological processes caused by malaria are a possible way to improve outcome. This review focuses on the utility of PPARγ agonists as an adjunctive therapy for the treatment of cerebral malaria. The current knowledge of PPARγ agonist use in malaria is summarized. Findings from experimental CNS injury and disease models that demonstrate the potential for PPARγ agonists as an adjunctive therapy for cerebral malaria are also discussed.
Collapse
Affiliation(s)
- Lena Serghides
- Sandra A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, Toronto General Hospital, University Health Network, 101 College Street, Suite 10-359, Toronto, ON, Canada M5G 1L7
| |
Collapse
|
142
|
Zanini GM, Cabrales P, Barkho W, Frangos JA, Carvalho LJM. Exogenous nitric oxide decreases brain vascular inflammation, leakage and venular resistance during Plasmodium berghei ANKA infection in mice. J Neuroinflammation 2011; 8:66. [PMID: 21649904 PMCID: PMC3118350 DOI: 10.1186/1742-2094-8-66] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/07/2011] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Cerebral malaria (CM) is a lethal complication of Plasmodium falciparum infections. In the Plasmodium berghei ANKA (PbA) murine model, CM is associated with marked brain inflammation, increased expression of endothelial cell adhesion molecules and leukocyte and platelet accumulation in brain vessels, causing vascular occlusion and decreased blood flow, damaging the endothelium and leading to blood-brain barrier breakdown, leakage and hemorrhages. Exogenous nitric oxide (NO) administration largely prevents the syndrome. Here we evaluated whether the mechanism of action of NO in preventing murine CM is related to its anti-inflammatory properties and to protection of the endothelium. METHODS C57Bl/6 mice infected with PbA were treated twice a day with saline or dipropylenetriamineNONOate (DPTA-NO). Endothelial cell adhesion molecule (ICAM-1, VCAM, E- and P-selectin) expression in brain tissue on day 6 of infection was assessed in both groups by western blot. For intravital microscopy studies, DPTA-NO-treated and saline-treated mice with a previously implanted closed cranial window were injected with albumin-FITC, anti-CD45-TxR and anti-CD41-FITC antibodies on day 6 of infection for quantification of albumin leakage, leukocyte and platelet adherence in pial vessels. RESULTS PbA-infected mice treated with the NO-donor DPTA-NO showed decreased expression of ICAM-1 and P-selectin, but not VCAM-1, in the brain, compared to saline-treated mice. DPTA-NO treatment also decreased the number of adherent leukocytes and platelets in pial vessels, particularly in venules 30-50 μm in diameter, decreased inflammatory vascular resistance and prevented the occurrence of arteriolar and venular albumin leakage observed in saline-treated PbA-infected mice, as assessed by intravital microscopy. CONCLUSIONS These results indicate that the protective effect of exogenous NO on murine CM is associated with decreased brain vascular expression of inflammatory markers resulting in attenuated endothelial junction damage and facilitating blood flow.
Collapse
|
143
|
Cserti-Gazdewich CM, Mayr WR, Dzik WH. Plasmodium falciparum malaria and the immunogenetics of ABO, HLA, and CD36 (platelet glycoprotein IV). Vox Sang 2011; 100:99-111. [PMID: 21175660 DOI: 10.1111/j.1423-0410.2010.01429.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasmodium falciparum malaria has long been a killer of the young, and has selected for polymorphisms affecting not only erythrocytes, but the immunogenetics of three histocompatibility systems: ABO, human leukocyte antigen (HLA), and CD36. The ABO system is important because the original allele, encoding glycosylation with the A sugar, acts as an adhesion ligand with infected red blood cells (iRBC), thereby promoting vasoocclusion. The prevalence of blood group O, which reduces this cytoadhesion, has increased in endemic areas. Other adaptations which could mitigate A-mediated rosetting include weaker A expression and increased soluble A secretion. The role of the HLA system in malaria has been harder to verify. Although HLA-B53 and DRB1*04 may be associated with clinical outcome, HLA studies are challenged by numerous comparisons in this most polymorphic of systems, and confounded by increasingly heterogeneous populations. Certain HLA markers may also reflect linkage artefact with other malaria-relevant polymorphisms. HLA may be less important because the parasite predominantly invades a compartment which does not express HLA. Adhesion of iRBCs is also mediated by CD36, expressed on platelets, monocytes, and microvascular endothelium. CD36 on monocytes is involved in clearing iRBC, while CD36 on platelets and the endothelium may play a role in tissue sequestration. The genetics of CD36 expression are complex, and recent research is fraught with inconsistent results. The solution may lie in examining genotype-phenotype correlations, zygosity effects on differential tissue expression, or other mechanisms altering CD36 tissue expression. Carefully designed prospective studies should bridge the gap between in-vitro observations and clinical outcomes.
Collapse
Affiliation(s)
- C M Cserti-Gazdewich
- Department of Medicine (Hematology), University Health Network/Toronto General Hospital, Toronto, ON,
| | | | | |
Collapse
|
144
|
Amaratunga C, Lopera-Mesa TM, Brittain NJ, Cholera R, Arie T, Fujioka H, Keefer JR, Fairhurst RM. A role for fetal hemoglobin and maternal immune IgG in infant resistance to Plasmodium falciparum malaria. PLoS One 2011; 6:e14798. [PMID: 21532754 PMCID: PMC3075246 DOI: 10.1371/journal.pone.0014798] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 01/25/2011] [Indexed: 11/30/2022] Open
Abstract
Background In Africa, infant susceptibility to Plasmodium falciparum malaria increases substantially as fetal hemoglobin (HbF) and maternal immune IgG disappear from circulation. During the first few months of life, however, resistance to malaria is evidenced by extremely low parasitemias, the absence of fever, and the almost complete lack of severe disease. This resistance has previously been attributed in part to poor parasite growth in HbF-containing red blood cells (RBCs). A specific role for maternal immune IgG in infant resistance to malaria has been hypothesized but not yet identified. Methods and Findings We found that P. falciparum parasites invade and develop normally in fetal (cord blood, CB) RBCs, which contain up to 95% HbF. However, these parasitized CB RBCs are impaired in their binding to human microvascular endothelial cells (MVECs), monocytes, and nonparasitized RBCs – cytoadherence interactions that have been implicated in the development of high parasite densities and the symptoms of malaria. Abnormal display of the parasite's cytoadherence antigen P. falciparum erythrocyte membrane protein-1 (PfEMP-1) on CB RBCs accounts for these findings and is reminiscent of that on HbC and HbS RBCs. IgG purified from the plasma of immune Malian adults almost completely abolishes the adherence of parasitized CB RBCs to MVECs. Conclusions Our data suggest a model of malaria protection in which HbF and maternal IgG act cooperatively to impair the cytoadherence of parasitized RBCs in the first few months of life. In highly malarious areas of Africa, an infant's contemporaneous expression of HbC or HbS and development of an immune IgG repertoire may effectively reconstitute the waning protective effects of HbF and maternal immune IgG, thereby extending the malaria resistance of infancy into early childhood.
Collapse
Affiliation(s)
- Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tatiana M. Lopera-Mesa
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nathaniel J. Brittain
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rushina Cholera
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Takayuki Arie
- Department of Physics and Electronics, School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Hisashi Fujioka
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jeffrey R. Keefer
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
145
|
Ochola LB, Siddondo BR, Ocholla H, Nkya S, Kimani EN, Williams TN, Makale JO, Liljander A, Urban BC, Bull PC, Szestak T, Marsh K, Craig AG. Specific receptor usage in Plasmodium falciparum cytoadherence is associated with disease outcome. PLoS One 2011; 6:e14741. [PMID: 21390226 PMCID: PMC3048392 DOI: 10.1371/journal.pone.0014741] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 01/07/2011] [Indexed: 12/22/2022] Open
Abstract
Our understanding of the basis of severe disease in malaria is incomplete. It is clear that pathology is in part related to the pro-inflammatory nature of the host response but a number of other factors are also thought to be involved, including the interaction between infected erythrocytes and endothelium. This is a complex system involving several host receptors and a major parasite-derived variant antigen (PfEMP1) expressed on the surface of the infected erythrocyte membrane. Previous studies have suggested a role for ICAM-1 in the pathology of cerebral malaria, although these have been inconclusive. In this study we have examined the cytoadherence patterns of 101 patient isolates from varying clinical syndromes to CD36 and ICAM-1, and have used variant ICAM-1 proteins to further characterise this adhesive phenotype. Our results show that increased binding to CD36 is associated with uncomplicated malaria while ICAM-1 adhesion is raised in parasites from cerebral malaria cases.
Collapse
Affiliation(s)
- Lucy B Ochola
- KEMRI/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Abu Sayeed A, Maude RJ, Hasan MU, Mohammed N, Hoque MG, Dondorp AM, Faiz MA. Malarial retinopathy in Bangladeshi adults. Am J Trop Med Hyg 2011; 84:141-7. [PMID: 21212217 PMCID: PMC3005494 DOI: 10.4269/ajtmh.2011.10-0205] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To establish if assessment of malarial retinopathy in adult malaria using ophthalmoscopy by non-ophthalmologists has clinical and prognostic significance, 210 Bangladeshi adults were assessed by both direct and indirect ophthalmoscopy; 20 of 20 healthy subjects and 20 of 20 patients with vivax malaria showed no retinal changes, whereas in patients with falciparum malaria, indirect ophthalmoscopy revealed malarial retinopathy (predominantly retinal hemorrhages) in 18 of 21 (86%) fatal, 31 of 75 (41%) cerebral, 16 of 64 (25%) non-cerebral but severe, and 1 of 31 (3%) uncomplicated cases. Direct ophthalmoscopy missed retinopathy in one of these cases and found fewer retinal hemorrhages (mean difference = 3.09; 95% confidence interval = 1.50–4.68; P < 0.0001). Severity of retinopathy increased with severity of disease (P for trend < 0.0001), and renal failure, acidosis, and moderate/severe retinopathy were independent predictors of mortality by both ophthalmoscopic techniques. Direct ophthalmoscopy by non-ophthalmologists is an important clinical tool to aid diagnosis and prognosis in adults with severe malaria, and indirect ophthalmoscopy by non-ophthalmologists, although more sensitive, provides minimal additional prognostic information.
Collapse
|
147
|
Abstract
We report on the case of a French citizen who was found dead in his home, 4 days after returning from Cameroon. The patient died of imported malaria, as revealed by the postmortem investigations. Few such cases have been reported throughout the world. This article reviews deaths due to malaria diagnosed at the time of autopsy in France between 1995 and 2005. We conclude that the nonspecific symptoms of malaria can lead to a misdiagnosis and the need for a forensic expert to intervene at the scene of death, which usually occurs in the home. We will remind forensic pathologists of the clinical, biologic, and forensic aspects of this infectious disease. In particular, the uses of microbiologic analyses, the QBC malaria test and the Core malaria Pan/Pv/pf test as well as brain tissue histology will be reviewed.
Collapse
|
148
|
Medana IM, Day NPJ, Roberts R, Sachanonta N, Turley H, Pongponratn E, Hien TT, White NJ, Turner GDH. Induction of the vascular endothelial growth factor pathway in the brain of adults with fatal falciparum malaria is a non-specific response to severe disease. Histopathology 2010; 57:282-94. [PMID: 20716170 PMCID: PMC2941727 DOI: 10.1111/j.1365-2559.2010.03619.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Medana I M, Day N P J, Roberts R, Sachanonta N, Turley H, Pongponratn E, Hien T T, White N J. & Turner G D H (2010) Histopathology57, 282–294 Induction of the vascular endothelial growth factor pathway in the brain of adults with fatal falciparum malaria is a non-specific response to severe disease
Collapse
Affiliation(s)
- Isabelle M Medana
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Schrimpe AC, Wright DW. Comparative analysis of gene expression changes mediated by individual constituents of hemozoin. Chem Res Toxicol 2010; 22:433-45. [PMID: 19191707 DOI: 10.1021/tx8002752] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plasmodium protozoa, the source of malarial infections, catabolize large quantities of hemoglobin during an intraerythrocytic phase. During this process, free heme is detoxified through biomineralization into an insoluble heme aggregate, hemozoin (Hz). In its native state, Hz is associated with a variety of lipid peroxidation products including 4-hydroxy-2-nonenal (HNE). In the present study, gene expression profiles were used to compare responses to two of the individual components of Hz in a model macrophage cell line. LPS-stimulated RAW 264.7 cells were exposed to HNE and the synthetic form of Hz, beta-hematin (BH), for 6 or 24 h. Microarray analysis identified alterations in gene expression induced by exposure to HNE and opsonized BH (fold change, > or = 1.8; p value, < or = 0.01). Patterns of gene expression were compared to changes induced by an opsonized control latex bead challenge in LPS-stimulated cells and revealed that the BH response was predominantly phagocytic. Ingenuity Pathway Analysis demonstrated that HNE mediated a short-term oxidative stress response and had a prolonged effect on the expression of genes associated with categories of "Cell Cycle", "Cellular Assembly and Organization", "DNA Replication, Recombination, and Repair", and "Cellular Development". Comparisons of expression changes caused by BH and HNE with those observed during malarial infection suggest that BH and HNE are involved in inflammatory response modulation, altered NF-kappaB signal transduction, extracellular matrix (ECM) degradation, and dyserythropoiesis. HNE exposure led to several significant steady-state expression changes including repressed chemokine (C-C motif) ligand 5 (Ccl5), indicative of dyserythropoiesis, and a severe matrix metalloproteinase 9 (Mmp9)/tissue inhibitor of metalloproteinase 1 (Timp1) imbalance in favor of ECM proteolysis.
Collapse
|
150
|
Monatrakul P, Mungthin M, Dondorp AM, Krudsood S, Udomsangpetch R, Wilairatana P, White NJ, Chotivanich K. Modulating effects of plasma containing anti-malarial antibodies on in vitro anti-malarial drug susceptibility in Plasmodium falciparum. Malar J 2010; 9:326. [PMID: 21078202 PMCID: PMC2993733 DOI: 10.1186/1475-2875-9-326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 11/16/2010] [Indexed: 11/17/2022] Open
Abstract
Background The efficacy of anti-malarial drugs is determined by the level of parasite susceptibility, anti-malarial drug bioavailability and pharmacokinetics, and host factors including immunity. Host immunity improves the in vivo therapeutic efficacy of anti-malarial drugs, but the mechanism and magnitude of this effect has not been characterized. This study characterized the effects of 'immune' plasma to Plasmodium falciparumon the in vitro susceptibility of P. falciparum to anti-malarial drugs. Methods Titres of antibodies against blood stage antigens (mainly the ring-infected erythrocyte surface antigen [RESA]) were measured in plasma samples obtained from Thai patients with acute falciparum malaria. 'Immune' plasma was selected and its effects on in vitro parasite growth and multiplication of the Thai P. falciparum laboratory strain TM267 were assessed by light microscopy. The in vitro susceptibility to quinine and artesunate was then determined in the presence and absence of 'immune' plasma using the 3H-hypoxanthine uptake inhibition method. Drug susceptibility was expressed as the concentrations causing 50% and 90% inhibition (IC50 and IC90), of 3H-hypoxanthine uptake. Results Incubation with 'immune' plasma reduced parasite maturation and decreased parasite multiplication in a dose dependent manner. 3H-hypoxanthine incorporation after incubation with 'immune' plasma was decreased significantly compared to controls (median [range]; 181.5 [0 to 3,269] cpm versus 1,222.5 [388 to 5,932] cpm) (p= 0.001). As a result 'immune' plasma reduced apparent susceptibility to quinine substantially; median (range) IC50 6.4 (0.5 to 23.8) ng/ml versus 221.5 (174.4 to 250.4) ng/ml (p = 0.02), and also had a borderline effect on artesunate susceptibility; IC50 0.2 (0.02 to 0.3) ng/ml versus 0.8 (0.2 to 2.3) ng/ml (p = 0.08). Effects were greatest at low concentrations, changing the shape of the concentration-effect relationship. IC90 values were not significantly affected; median (range) IC90 448.0 (65 to > 500) ng/ml versus 368.8 (261 to 501) ng/ml for quinine (p > 0.05) and 17.0 (0.1 to 29.5) ng/ml versus 7.6 (2.3 to 19.5) ng/ml for artesunate (p = 0.4). Conclusions 'Immune' plasma containing anti-malarial antibodies inhibits parasite development and multiplication and increases apparent in vitro anti-malarial drug susceptibility of P. falciparum. The IC90 was much less affected than the IC50 measurement.
Collapse
Affiliation(s)
- Preeyaporn Monatrakul
- Department of Clinical Tropical Medicine, Mahidol University, 420/6 Rajvithi, Bangkok, Thailand
| | | | | | | | | | | | | | | |
Collapse
|