101
|
Malacombe M, Ceridono M, Calco V, Chasserot-Golaz S, McPherson PS, Bader MF, Gasman S. Intersectin-1L nucleotide exchange factor regulates secretory granule exocytosis by activating Cdc42. EMBO J 2006; 25:3494-503. [PMID: 16874303 PMCID: PMC1538555 DOI: 10.1038/sj.emboj.7601247] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 06/29/2006] [Indexed: 11/09/2022] Open
Abstract
Rho GTPases are key regulators of the actin cytoskeleton in membrane trafficking events. We previously reported that Cdc42 facilitates exocytosis in neuroendocrine cells by stimulating actin assembly at docking sites for secretory granules. These findings raise the question of the mechanism activating Cdc42 in exocytosis. The neuronal guanine nucleotide exchange factor, intersectin-1L, which specifically activates Cdc42 and is at an interface between membrane trafficking and actin dynamics, appears as an ideal candidate to fulfill this function. Using PC12 and chromaffin cells, we now show the presence of intersectin-1 at exocytotic sites. Moreover, through an RNA interference strategy coupled with expression of various constructs encoding the guanine nucleotide exchange domain, we demonstrate that intersectin-1L is an essential component of the exocytotic machinery. Silencing of intersectin-1 prevents secretagogue-induced activation of Cdc42 revealing intersectin-1L as the factor integrating Cdc42 activation to the exocytotic pathway. Our results extend the current role of intersectin-1L in endocytosis to a function in exocytosis and support the idea that intersectin-1L is an adaptor that coordinates exo-endocytotic membrane trafficking in secretory cells.
Collapse
Affiliation(s)
- Magali Malacombe
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
| | - Mara Ceridono
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
| | - Valérie Calco
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Marie-France Bader
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
| | - Stéphane Gasman
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, 5 rue Blaise Pascal, 67084 Strasbourg, France. Tel.: +33 388456712; Fax: +33 388601664; E-mail:
| |
Collapse
|
102
|
Sim ATR, Ludowyke RI, Verrills NM. Mast cell function: regulation of degranulation by serine/threonine phosphatases. Pharmacol Ther 2006; 112:425-39. [PMID: 16790278 DOI: 10.1016/j.pharmthera.2006.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 04/26/2006] [Indexed: 01/28/2023]
Abstract
Mast cells play both effector and modulatory roles in a range of allergic and immune responses. The principal function of these cells is the release of inflammatory mediators from mast cells by degranulation, which involves a complex interplay of signalling molecules. Understanding the molecular architecture underlying mast cell signalling has attracted renewed interest as the capacity for therapeutic intervention through controlling mast cell degranulation is now accepted as a viable proposition. The dynamic regulation of signalling by protein phosphorylation is a well-established phenomenon and many of the early events involved in mast cell activation are well understood. Less well understood however are the events further downstream of receptor activation that allow movement of granules through the cytoskeletal barrier and docking and fusion of granules with the plasma membrane. Whilst a potential role for the protein phosphatase family of signalling enzymes in mast cell function has been accepted for some time, the evidence has largely been derived from the use of broad specificity pharmacological inhibitors and results often depend upon the experimental conditions, leading to conflicting views. In this review, we present and discuss the pharmacological and recent molecular evidence that protein phosphatases, and in particular the protein phosphatase serine/threonine phosphatase type 2A (PP2A), have major regulatory roles to play and may be potential targets for the design of new therapeutic agents.
Collapse
Affiliation(s)
- Alistair T R Sim
- School of Biomedical Sciences and Hunter Medical Research Institute, Faculty of Health, The University of Newcastle, Callaghan, NSW, Australia.
| | | | | |
Collapse
|
103
|
Abstract
Neurons and related cell types often contain two major classes of neurosecretory vesicles, synaptic vesicles (SVs) and dense-core granules (DCGs), which store and release distinct cargo. SVs store and release classic neurotransmitters, which facilitate propagation of action potentials across the synaptic cleft, whereas DCGs transport, store, and release hormones, proteins, and neuropeptides, which facilitate neuronal survival, synaptic transmission, and learning. Over the past few years, there has been a major surge in our understanding of many of the key molecular mechanisms underlying cargo release from SVs and DCGs. This surge has been driven largely by the use of fluorescence microscopy (especially total internal reflection fluorescence microscopy) to visualize SVs or DCGs in living cells. This review highlights some of the recent insights into cargo release from neurosecretory vesicles provided by fluorescence microscopy, with emphasis on DCGs.
Collapse
Affiliation(s)
- Bethe A Scalettar
- Department of Physics, Lewis & Clark College, Portland, OR 97219, USA.
| |
Collapse
|
104
|
|
105
|
Tsuboi T, Fukuda M. Rab3A and Rab27A cooperatively regulate the docking step of dense-core vesicle exocytosis in PC12 cells. J Cell Sci 2006; 119:2196-203. [PMID: 16684812 DOI: 10.1242/jcs.02962] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent studies have suggested that two small GTPases, Rab3A and Rab27A, play a key role in the late steps of dense-core vesicle exocytosis in endocrine cells; however, neither the precise mechanisms by which these two GTPases regulate dense-core vesicle exocytosis nor the functional relationship between them is clear. In this study, we expressed a number of different Rab proteins, from Rab1 to Rab41 in PC12 cells and systematically screened them for those that are specifically localized on dense-core vesicles. We found that four Rabs (Rab3A, Rab27A, Rab33A, Rab37) are predominantly targeted to dense-core vesicles in PC12 cells, and that three of them (Rab3A, Rab27A, Rab33A) are endogenously expressed on dense-core vesicles. We further investigated the effect of silencing each Rab with specific small interfering RNA on vesicle dynamics by total internal reflection fluorescence microscopy in a single PC12 cell. Silencing either Rab3A or Rab27A in PC12 cells significantly decreased the number of dense-core vesicles docked to the plasma membrane without altering the kinetics of individual exocytotic events, whereas silencing of Rab33A had no effect at all. Simultaneous silencing of Rab3A and Rab27A caused a significantly greater decrease in number of vesicles docked to the plasma membrane. Our findings indicate that Rab3A and Rab27A cooperatively regulate docking step(s) of dense-core vesicles to the plasma membrane.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama, Japan
| | | |
Collapse
|
106
|
Allersma MW, Bittner MA, Axelrod D, Holz RW. Motion matters: secretory granule motion adjacent to the plasma membrane and exocytosis. Mol Biol Cell 2006; 17:2424-38. [PMID: 16510523 PMCID: PMC1446096 DOI: 10.1091/mbc.e05-10-0938] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Total internal reflection fluorescence microscopy was used to monitor changes in individual granule motions related to the secretory response in chromaffin cells. Because the motions of granules are very small (tens of nanometers), instrumental noise in the quantitation of granule motion was taken into account. ATP and Ca2+, both of which prime secretion before fusion, also affect granule motion. Removal of ATP in permeabilized cells causes average granule motion to decrease. Nicotinic stimulation causes a calcium-dependent increase in average granule motion. This effect is more pronounced for granules that undergo exocytosis than for those that do not. Fusion is not preceded by a reduction in mobility. Granules sometimes move 100 nm or more up to and within a tenth of a second before fusion. Thus, the jittering motion of granules adjacent to the plasma membrane is regulated by factors that regulate secretion and may play a role in secretion. Motion continues until shortly before fusion, suggesting that interaction of granule and plasma membrane proteins is transient. Disruption of actin dynamics did not significantly alter granule motion.
Collapse
Affiliation(s)
- Miriam W Allersma
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-0632, USA.
| | | | | | | |
Collapse
|
107
|
|
108
|
Giau R, Carrette J, Bockaert J, Homburger V. Constitutive secretion of protease nexin-1 by glial cells and its regulation by G-protein-coupled receptors. J Neurosci 2006; 25:8995-9004. [PMID: 16192390 PMCID: PMC6725596 DOI: 10.1523/jneurosci.2430-05.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Extracellular serine proteases and their inhibitors (serpins) play a key role for synaptic plasticity in the developing and adult CNS. Serpins also counteract the extravasated proteases during brain injury. We studied the mechanisms by which one of the most important serpins, serpinE2 or protease nexin-1 (PN-1), is secreted by glial cells and how its secretion is regulated by extracellular signals. Using time-lapse videomicroscopy and biochemical methods, we demonstrate that PN-1 is constitutively secreted through small vesicles animated by a discontinuous movement using microtubules as tracks. The F-actin network underneath the plasma membrane acting as a barrier hindered PN-1 vesicle exocytosis. Vasointestinal/pituitary adenylate cyclase peptides and the G-protein activator mastoparan increased PN-1 secretion by disrupting the F-actin barrier. The receptor-mediated regulation of PN-1 constitutive secretion may be an important mechanism adapting extracellular proteolytic activity to synaptic activity.
Collapse
Affiliation(s)
- Ronald Giau
- Unité Mixte de Recherche, Centre National de la Recherche Scientifique 5203, U 661 Institut National de la Santé et de la Recherche Médicale, Université Montpellier I, F-34094 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
109
|
Abstract
The cytoskeleton plays important roles in plant cell shape determination by influencing the patterns in which cell wall materials are deposited. Cortical microtubules are thought to orient the direction of cell expansion primarily via their influence on the deposition of cellulose into the wall, although the precise nature of the microtubule-cellulose relationship remains unclear. In both tip-growing and diffusely growing cell types, F-actin promotes growth and also contributes to the spatial regulation of growth. F-actin has been proposed to play a variety of roles in the regulation of secretion in expanding cells, but its functions in cell growth control are not well understood. Recent work highlighted in this review on the morphogenesis of selected cell types has yielded substantial new insights into mechanisms governing the dynamics and organization of cytoskeletal filaments in expanding plant cells and how microtubules and F-actin interact to direct patterns of cell growth. Nevertheless, many important questions remain to be answered.
Collapse
Affiliation(s)
- Laurie G Smith
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093-0116, USA.
| | | |
Collapse
|
110
|
Hao M, Li X, Rizzo MA, Rocheleau JV, Dawant BM, Piston DW. Regulation of two insulin granule populations within the reserve pool by distinct calcium sources. J Cell Sci 2005; 118:5873-84. [PMID: 16317050 DOI: 10.1242/jcs.02684] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insulin granule trafficking is a key step of glucose-stimulated insulin secretion from pancreatic beta cells. Using quantitative live cell imaging, we examined insulin granule movements within the reserve pool upon secretory stimulation in betaTC3 cells. For this study, we developed a custom image analysis program that permitted automatic tracking of the individual motions of over 20,000 granules. This analysis of a large sample size enabled us to study micro-populations of granules that were not quantifiable in previous studies. While over 90% of the granules depend on Ca2+ efflux from the endoplasmic reticulum for their mobilization, a small and fast-moving population of granules responds to extracellular Ca2+ influx after depolarization of the plasma membrane. We show that this differential regulation of the two granule populations is consistent with localized Ca2+ signals, and that the cytoskeletal network is involved in both types of granule movement. The fast-moving granules are correlated temporally and spatially to the replacement of the secreted insulin granules, which supports the hypothesis that these granules are responsible for replenishing the readily releasable pool. Our study provides a model by which glucose and other secretory stimuli can regulate the readily releasable pool through the same mechanisms that regulate insulin secretion.
Collapse
Affiliation(s)
- Mingming Hao
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
111
|
Giner D, Neco P, Francés MDM, López I, Viniegra S, Gutiérrez LM. Real-time dynamics of the F-actin cytoskeleton during secretion from chromaffin cells. J Cell Sci 2005; 118:2871-80. [PMID: 15976446 DOI: 10.1242/jcs.02419] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmitted light images showed an intricate and dynamic cytoplasmic structural network in cultured bovine chromaffin cells observed under high magnification. These structures were sensitive to chemicals altering F-actin-myosin and colocalised with peripheral F-actin, beta-actin and myosin II. Interestingly, secretagogues induced a Ca2+-dependent, rapid (>10 second) and transitory (60-second cycle) disassembling of these cortical structures. The simultaneous formation of channel-like structures perpendicular to the plasmalemma conducting vesicles to the cell limits and open spaces devoid of F-actin in the cytoplasm were also observed. Vesicles moved using F-actin pathways and avoided diffusion in open, empty zones. These reorganisations representing F-actin transfer from the cortical barrier to the adjacent cytoplasmic area have been also confirmed by studying fluorescence changes in cells expressing GFP-beta-actin. Thus, these data support the function of F-actin-myosin II network acting simultaneously as a barrier and carrier system during secretion, and that transmitted light images could be used as an alternative to fluorescence in the study of cytoskeleton dynamics in neuroendocrine cells.
Collapse
Affiliation(s)
- Daniel Giner
- Instituto de Neurociencias, Centro Mixto CSIC-Universidad Miguel Hernández, Campus de San Juan, 03550 Alicante, Spain
| | | | | | | | | | | |
Collapse
|
112
|
Hibbert JE, Butt RH, Coorssen JR. Actin is not an essential component in the mechanism of calcium-triggered vesicle fusion. Int J Biochem Cell Biol 2005; 38:461-71. [PMID: 16309945 DOI: 10.1016/j.biocel.2005.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2005] [Accepted: 10/17/2005] [Indexed: 10/25/2022]
Abstract
Actin has been suggested as an essential component in the membrane fusion stage of exocytosis. In some model systems disruption of the actin filament network associated with exocytotic membranes results in a decrease in secretion. Here we analyze the fast Ca2+-triggered membrane fusion steps of regulated exocytosis using a stage-specific preparation of native secretory vesicles (SV) to directly test whether actin plays an essential role in this mechanism. Although present on secretory vesicles, selective pharmacological inhibition of actin did not affect the Ca2+-sensitivity, extent, or kinetics of membrane fusion, nor did the addition of exogenous actin or an anti-actin antibody. There was also no discernable affect on inter-vesicle contact (docking). Overall, the results do not support a direct role for actin in the fast, Ca2+-triggered steps of regulated membrane fusion. It would appear that actin acts elsewhere within the exocytotic cycle.
Collapse
Affiliation(s)
- Julie E Hibbert
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alta., Canada T2N 4N1
| | | | | |
Collapse
|
113
|
Baldini G, Martelli AM, Tabellini G, Horn C, Machaca K, Narducci P, Baldini G. Rabphilin Localizes with the Cell Actin Cytoskeleton and Stimulates Association of Granules with F-actin Cross-linked by α-Actinin. J Biol Chem 2005; 280:34974-84. [PMID: 16043482 DOI: 10.1074/jbc.m502695200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In endocrine cell, granules accumulate within an F-actin-rich region below the plasma membrane. The mechanisms involved in this process are largely unknown. Rabphilin is a cytosolic protein that is expressed in neurons and neuroendocrine cells and binds with high affinity to members of the Rab3 family of GTPases localized to synaptic vesicles and dense core granules. Rabphilin also interacts with alpha-actinin, a protein that cross-links F-actin into bundles and networks and associates with the granule membrane. Here we asked whether rabphilin, in addition to its granule localization, also interacts with the cell actin cytoskeleton. Immunofluorescence and immunoelectron microscopy show that rabphilin localizes to the sub-plasmalemmal actin cytoskeleton both in neuroendocrine and unspecialized cells. By using purified components, it is found that association of rabphilin with F-actin is dependent on added alpha-actinin. In an in vitro assay, granules, unlike endosomes or mitochondria, associate with F-actin cross-linked by alpha-actinin. Rabphilin is shown to stimulate this process. Rabphilin enhances by approximately 8-fold the granule ability to localize within regions of elevated concentration of cross-linked F-actin. These results suggest that rabphilin, by interacting with alpha-actinin, organizes the cell cytoskeleton to facilitate granule localization within F-actin-rich regions.
Collapse
Affiliation(s)
- Giovanna Baldini
- Dipartimento di Morfologia Umana Normale, via Manzoni 16, Trieste, Universita' di Trieste, Trieste I-34138, Italy.
| | | | | | | | | | | | | |
Collapse
|
114
|
Ivarsson R, Jing X, Waselle L, Regazzi R, Renström E. Myosin 5a Controls Insulin Granule Recruitment During Late-Phase Secretion. Traffic 2005; 6:1027-35. [PMID: 16190983 DOI: 10.1111/j.1600-0854.2005.00342.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have examined the importance of the actin-based molecular motor myosin 5a for insulin granule transport and insulin secretion. Expression of myosin 5a was downregulated in clonal INS-1E cells using RNAinterference. Stimulated hormone secretion was reduced by 46% and single-cell exocytosis, measured by capacitance recordings, was inhibited by 42% after silencing. Silencing of Slac-2c/MYRIP, which links insulin granules to myosin 5a, resulted in similar inhibition of single-cell exocytosis. Antibody inhibition of the myosin 5a-Slac-2c/MYRIP interaction significantly reduced the recruitment of insulin granules for release. The pool of releasable granules independent of myosin 5a activity was estimated to approximately 550 granules. Total internal reflection microscopy was then applied to directly investigate granule recruitment to the plasma membrane. Silencing of myosin 5a inhibited granule recruitment during late phase of insulin secretion. In conclusion, we propose a model where insulin granules are transported through the actin network via both myosin 5a-mediated transport and via passive diffusion, with the former playing the major role during stimulatory conditions.
Collapse
Affiliation(s)
- Rosita Ivarsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
115
|
Li CH, Bai L, Li DD, Xia S, Xu T. Dynamic tracking and mobility analysis of single GLUT4 storage vesicle in live 3T3-L1 cells. Cell Res 2005; 14:480-6. [PMID: 15625015 DOI: 10.1038/sj.cr.7290251] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Glucose transporter 4 (GLUT4) is responsible for insulin-stimulated glucose transporting into the insulin-sensitive fat and muscle cells. The dynamics of GLUT4 storage vesicles (GSVs) remains to be explored and it is unclear how GSVs are arranged based on their mobility. We examined this issue in 3T3-L1 cells via investigating the three-dimensional mobility of single GSV labeled with EGFP-fused GLUT4. A thin layer of cytosol right adjacent to the plasma membrane was illuminated and successively imaged at 5 Hz under a total internal reflection fluorescence microscope with a penetration depth of 136 nm. Employing single particle tracking, the three-dimensional subpixel displacement of single GSV was tracked at a spatial precision of 22 nm. Both the mean square displacement and the diffusion coefficient were calculated for each vesicle. Tracking results revealed that vesicles moved as if restricted within a cage that has a mean radius of 160 nm, suggesting the presence of some intracellular tethering matrix. By constructing the histogram of the diffusion coefficients of GSVs, we observed a smooth distribution instead of the existence of distinct groups. The result indicates that GSVs are dynamically retained in a continuous and wide range of mobility rather than into separate classes.
Collapse
Affiliation(s)
- Chen Hong Li
- Institute of Biophysics and Biochemistry, Huazhong University of Science and Technology, Wuhan 43007, China
| | | | | | | | | |
Collapse
|
116
|
Abstract
Munc-18 interacts with the SNARE protein syntaxin and is supposed to influence transmitter release by controlling the formation of exocytosis-relevant SNARE complexes. Here, we used combined biochemical and physiological analyses to study the role of the Munc-18/syntaxin interaction in large dense core vesicle (LDCV) exocytosis of neuroendocrine PC12 cells. We compared two Munc-18 mutants carrying mutations in the syntaxin-binding region and show that Munc-18's membrane association depends on direct binding to syntaxin. The data suggest that perturbation of syntaxin binding inhibits neurotransmitter release upstream of the individual fusion event implying an essential role of the Munc-18/syntaxin complex leading to exocytosis. Furthermore, we show that a Munc-18 mutant lacking any syntaxin binding has a stimulatory effect on secretion, and provide evidence that the Munc-18/Mint1 interaction may constitute a second pathway for Munc-18 to regulate exocytosis. We propose that Munc-18 represents a dynamic link between syntaxin-related and Mint1-related mechanisms, both involved in the control of LDCV exocytosis in neuroendocrine cells.
Collapse
Affiliation(s)
- Dagmar Schütz
- Max-Planck-Institute for Biophysical Chemistry, Department of Neurobiology, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
117
|
He Y, Li HW, Yeung ES. Motion of Single DNA Molecules at a Liquid−Solid Interface As Revealed by Variable-Angle Evanescent-Field Microscopy. J Phys Chem B 2005; 109:8820-32. [PMID: 16852048 DOI: 10.1021/jp0447284] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A variable-angle total-internal-reflection fluorescence microscope (VATIRFM) capable of providing a large range of incident angles was constructed for imaging single DNA molecule dynamics at a solid/liquid interface. An algorithm using a public-domain image-processing program, ImageJ, was developed for single-molecule counting. The experimental counts at various incident angles with different evanescent-field layer (EFL) thicknesses are affected by molecular diffusion. The dynamics of molecules near the surface and the observed counts in the VATIRFM are elucidated using a limited one-dimensional random-walk diffusion model. The simulation fits well with the experimental counting results. Further analysis using the simulation reveals the details of single-molecule motion. One implication is that the measured intensities cannot be used directly to determine the distances of molecules from the surface, though the majority of fluorescence does come from the EFL. Another implication is that rather than providing molecular concentrations within EFL the experimental counting results depict the distance-dependent dynamics of molecules near the surface. Thus, the VATIRFM could be a powerful technique to study the surface repulsion/attraction of molecules within a few hundred nanometers of the surface. Further studies show that molecules at low ionic strengths experience electrostatic repulsion at distances much further away from the surface than the calculated thickness of the electrical double layer.
Collapse
Affiliation(s)
- Yan He
- Ames Laboratory, U. S. Department of Energy, Ames, Iowa 50011-3111, USA
| | | | | |
Collapse
|
118
|
Bittner MA, Holz RW. Phosphatidylinositol-4,5-bisphosphate: actin dynamics and the regulation of ATP-dependent and -independent secretion. Mol Pharmacol 2005; 67:1089-98. [PMID: 15635040 DOI: 10.1124/mol.104.008474] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has long been believed that the cortical actin cytoskeleton plays an important role in regulating the secretion of hormones and neurotransmitters. In this study, we investigated the control of actin dynamics in primary neuroendocrine cells and determined the relationship of actin dynamics to various components of the secretory response. The amount of cortical f-actin in chromaffin cells was quantified in confocal images of cells stained with Alexa Fluor 568 phalloidin. Manipulations that decreased levels of phosphatidylinositol-4,5-bisphosphate (PIP(2)) (e.g., removal of ATP, the expression of a protein that can sequester PIP(2)) rapidly reduced the amount of cortical actin. In contrast, cytoskeletal disruptors such as latrunculin were much less able to reduce cortical actin levels, indicating that the amount of cortical f-actin depends more strongly on PIP(2) than on the availability of g-actin. Not only does PIP(2) regulate actin, but actin regulates the level of PIP(2), as revealed by PIP(2) labeling studies. Manipulation of cortical actin had differing effects on the ATP-dependent and -independent components of secretion. ATP-dependent secretion was particularly sensitive to changes in cortical actin stability and was inhibited by expression of a protein (Yersinia pestis protein kinase A) that disassembles cortical f-actin and by pharmacological agents that promote either disassembly or stabilization of actin. The data suggest that an ATP-dependent component of secretion requires rapid changes in actin dynamics. These results point to a complex web of interactions involving PIP(2), actin, and the secretory response.
Collapse
Affiliation(s)
- Mary A Bittner
- Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, Ann Arbor, MI 48109-0632, USA.
| | | |
Collapse
|
119
|
Li D, Xiong J, Qu A, Xu T. Three-dimensional tracking of single secretory granules in live PC12 cells. Biophys J 2005; 87:1991-2001. [PMID: 15345575 PMCID: PMC1304602 DOI: 10.1529/biophysj.104.043281] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deconvolution wide-field fluorescence microscopy and single-particle tracking were used to study the three-dimensional mobility of single secretory granules in live PC12 cells. Acridine orange-labeled granules were found to travel primarily in random and caged diffusion, whereas only a small fraction of granules traveled in directed fashion. High K(+) stimulation increased significantly the percentage of granules traveling in directed fashion. By dividing granules into the near-membrane group (within 1 microm from the plasma membrane) and cytosolic group, we have revealed significant differences between these two groups of granules in their mobility. The mobility of these two groups of granules is also differentially affected by disruption of F-actin, suggesting different mechanisms are involved in the motion of the two groups of granules. Our results demonstrate that combined deconvolution and single-particle tracking may find its application in three-dimensional tracking of long-term motion of granules and elucidating the underlying mechanisms.
Collapse
Affiliation(s)
- Dongdong Li
- Institute of Biophysics and Biochemistry, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | | | | | | |
Collapse
|
120
|
Affiliation(s)
- Martin Oheim
- Laboratory of Neurophysiology and New Microscopies, Ecole Supérieure de Physique et Chimie Industrielles, Paris, France.
| |
Collapse
|
121
|
Beaulieu V, Da Silva N, Pastor-Soler N, Brown CR, Smith PJS, Brown D, Breton S. Modulation of the actin cytoskeleton via gelsolin regulates vacuolar H+-ATPase recycling. J Biol Chem 2004; 280:8452-63. [PMID: 15591047 DOI: 10.1074/jbc.m412750200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The role of the actin cytoskeleton in regulating membrane protein trafficking is complex and depends on the cell type and protein being examined. Using the epididymis as a model system in which luminal acidification is crucial for sperm maturation and storage, we now report that modulation of the actin cytoskeleton by the calcium-activated actin-capping and -severing protein gelsolin plays a key role in regulating vacuolar H(+)-ATPase (V-ATPase) recycling. Epididymal clear cells contain abundant V-ATPase in their apical pole, and an increase in their cell-surface V-ATPase expression correlates with an increase in luminal proton secretion. We have shown that apical membrane accumulation of V-ATPase is triggered by an elevation in cAMP following activation of bicarbonate-regulated soluble adenylyl cyclase in response to alkaline luminal pH (Pastor-Soler, N., Beaulieu, V., Litvin, T. N., Da Silva, N., Chen, Y., Brown, D., Buck, J., Levin, L. R., and Breton, S. (2003) J. Biol. Chem. 278, 49523-49529). Here, we show that clear cells express high levels of gelsolin, indicating a potential role in the functional activity of these cells. When jasplakinolide was used to overcome the severing action of gelsolin by polymerizing actin, complete inhibition of the alkaline pH- and cAMP-induced apical membrane accumulation of V-ATPase was observed. Conversely, when gelsolin-mediated actin filament elongation was inhibited using a 10-residue peptide (PBP10) derived from the phosphatidylinositol 4,5-bisphosphate-binding region (phosphoinositide-binding domain 2) of gelsolin, significant V-ATPase apical membrane mobilization was induced, even at acidic luminal pH. In contrast, the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) and the phospholipase C inhibitor U-73122 inhibited the alkaline pH-induced V-ATPase apical accumulation. Thus, maintenance of the actin cytoskeleton in a depolymerized state by gelsolin facilitates calcium-dependent apical accumulation of V-ATPase in response to luminal pH alkalinization. Gelsolin is present in other cell types that express the V-ATPase in their plasma membrane and recycling vesicles, including kidney intercalated cells and osteoclasts. Therefore, modulation of the actin cortex by this severing and capping protein may represent a common mechanism by which these cells regulate their rate of proton secretion.
Collapse
Affiliation(s)
- Valérie Beaulieu
- Program in Membrane Biology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Bader MF, Doussau F, Chasserot-Golaz S, Vitale N, Gasman S. Coupling actin and membrane dynamics during calcium-regulated exocytosis: a role for Rho and ARF GTPases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1742:37-49. [PMID: 15590054 DOI: 10.1016/j.bbamcr.2004.09.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 09/22/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
Release of neurotransmitters and hormones occurs by calcium-regulated exocytosis, a process that shares many similarities in neurons and neuroendocrine cells. Exocytosis is confined to specific regions in the plasma membrane, where actin remodelling, lipid modifications and protein-protein interactions take place to mediate vesicle/granule docking, priming and fusion. The spatial and temporal coordination of the various players to form a "fast and furious" machinery for secretion remain poorly understood. ARF and Rho GTPases play a central role in coupling actin dynamics to membrane trafficking events in eukaryotic cells. Here, we review the role of Rho and ARF GTPases in supplying actin and lipid structures required for synaptic vesicle and secretory granule exocytosis. Their possible functional interplay may provide the molecular cues for efficient and localized exocytotic fusion.
Collapse
Affiliation(s)
- Marie-France Bader
- CNRS UPR-2356 Neurotransmission and Sécrétion Neuroendocrine INSERM, 5 rue Blaise Pascal, 67084 Strasbourg, France.
| | | | | | | | | |
Collapse
|
123
|
Konopka MC, Weisshaar JC. Heterogeneous Motion of Secretory Vesicles in the Actin Cortex of Live Cells: 3D Tracking to 5-nm Accuracy. J Phys Chem A 2004. [DOI: 10.1021/jp048162v] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael C. Konopka
- Department of Chemistry, University of WisconsinMadison, Madison, Wisconsin 53706
| | - James C. Weisshaar
- Department of Chemistry, University of WisconsinMadison, Madison, Wisconsin 53706
| |
Collapse
|
124
|
Kuzmenko ES, Djafarzadeh S, Cakar ZP, Fiedler K. LDL transcytosis by protein membrane diffusion. Int J Biochem Cell Biol 2004; 36:519-34. [PMID: 14687929 DOI: 10.1016/j.biocel.2003.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelial cell (EC) cultures of different, selected vascular beds and/or organs were screened for receptor-mediated transport of proteins with a semipermeable filter assay. In SVEC4-10 cells, a mouse lymphoid endothelial cell line, orosomucoid, albumin, insulin and LDL were transcytosed from the apical (luminal) to basal (abluminal) side by a receptor-mediated pathway. Specific LDL transcytosis involved transport of intact LDL. A pathway of degradation of LDL and basal release involved vesicles in transport to lysosomes and amino acid merocrine secretion. This newly described transcellular passage of LDL via lysosomes, as well as the standard pathway, were reduced to 70% by PEG(50)-cholesterol (PEG-Chol). Combined results of temperature-dependence analysis and PEG(50)-cholesterol sensitivity show that two pathways contribute to general LDL transcellular passage. We suggest a mechanism of domain hopping by protein membrane diffusion of receptors as the pathway for intact LDL delivery. Based on theoretical considerations we propose that active transport by protein membrane diffusion can be facilitated by an organizational structure of lipid microdomains and polar cellular organization.
Collapse
Affiliation(s)
- Elena S Kuzmenko
- Division of Biochemistry, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
125
|
Xin X, Ferraro F, Bäck N, Eipper BA, Mains RE. Cdk5 and Trio modulate endocrine cell exocytosis. J Cell Sci 2004; 117:4739-48. [PMID: 15331630 DOI: 10.1242/jcs.01333] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hormone secretion by pituitary cells is decreased by roscovitine, an inhibitor of cyclin-dependent kinase 5 (Cdk5). Roscovitine treatment reorganizes cortical actin and ultrastructural analysis demonstrates that roscovitine limits the ability of secretory granules to approach the plasma membrane or one another. Trio, a multifunctional RhoGEF expressed in pituitary cells, interacts with peptidylglycine α-amidating monooxygenase, a secretory granule membrane protein known to affect the actin cytoskeleton. Roscovitine inhibits the ability of Trio to activate Rac, and peptides corresponding to the Cdk5 consensus sites in Trio are phosphorylated by Cdk5. Together, these data suggest that control of the cortical actin cytoskeleton, long known to modulate hormone exocytosis and subsequent endocytosis, involves Cdk5-mediated activation of Trio.
Collapse
Affiliation(s)
- Xiaonan Xin
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
126
|
Ehre C, Rossi AH, Abdullah LH, De Pestel K, Hill S, Olsen JC, Davis CW. Barrier role of actin filaments in regulated mucin secretion from airway goblet cells. Am J Physiol Cell Physiol 2004; 288:C46-56. [PMID: 15342343 DOI: 10.1152/ajpcell.00397.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Airway goblet cells secrete mucin onto mucosal surfaces under the regulation of an apical, phospholipase C/G(q)-coupled P2Y(2) receptor. We tested whether cortical actin filaments negatively regulate exocytosis in goblet cells by forming a barrier between secretory granules and plasma membrane docking sites as postulated for other secretory cells. Immunostaining of human lung tissues and SPOC1 cells (an epithelial, mucin-secreting cell line) revealed an apical distribution of beta- and gamma-actin in ciliated and goblet cells. In goblet cells, actin appeared as a prominent subplasmalemmal sheet lying between granules and the apical membrane, and it disappeared from SPOC1 cells activated by purinergic agonist. Disruption of actin filaments with latrunculin A stimulated SPOC1 cell mucin secretion under basal and agonist-activated conditions, whereas stabilization with jasplakinolide or overexpression of beta- or gamma-actin conjugated to yellow fluorescent protein (YFP) inhibited secretion. Myristoylated alanine-rich C kinase substrate, a PKC-activated actin-plasma membrane tethering protein, was phosphorylated after agonist stimulation, suggesting a translocation to the cytosol. Scinderin (or adseverin), a Ca(2+)-activated actin filament severing and capping protein was cloned from human airway and SPOC1 cells, and synthetic peptides corresponding to its actin-binding domains inhibited mucin secretion. We conclude that actin filaments negatively regulate mucin secretion basally in airway goblet cells and are dynamically remodeled in agonist-stimulated cells to promote exocytosis.
Collapse
Affiliation(s)
- Camille Ehre
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599-7248, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Neco P, Giner D, Viniegra S, Borges R, Villarroel A, Gutiérrez LM. New roles of myosin II during vesicle transport and fusion in chromaffin cells. J Biol Chem 2004; 279:27450-7. [PMID: 15069078 DOI: 10.1074/jbc.m311462200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modified herpes virus (amplicons) were used to express myosin regulatory light chain (RLC) chimeras with green fluorescent protein (GFP) in cultured bovine chromaffin cells to study myosin II implication in secretion. After infection, RLC-GFP constructs were clearly identified in the cytoplasm and accumulated in the cortical region, forming a complex network that co-localized with cortical F-actin. Cells expressing wild type RLC-GFP maintained normal vesicle mobility, whereas cells expressing an unphosphorylatable form (T18A/S19A RLC-GFP) presented severe restrictions in granule movement as measured by individual tracking in dynamic confocal microscopy studies. Interestingly, the overexpression of this mutant form of RLC also affected the initial secretory burst elicited by either high K(+) or BaCl(2), as well as the secretion induced by fast release of calcium from caged compounds in individual cells. Moreover, T18A/S19A RLC-GFP-infected cells presented slower fusion kinetics of individual granules compared with controls as measured by analysis of amperometric spikes. Taken together, our results demonstrate the implication of myosin II in the transport of vesicles, and, surprisingly, in the final phases of exocytosis involving transitions affecting the activity of docked granules, and therefore uncovering a new role for this cytoskeletal element.
Collapse
Affiliation(s)
- Patricia Neco
- Instituto de Neurociencias, Centro Mixto CSIC-Universidad Miguel Hernandez, E-03550 Alicante, Spain
| | | | | | | | | | | |
Collapse
|
128
|
Watson RT, Kanzaki M, Pessin JE. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev 2004; 25:177-204. [PMID: 15082519 DOI: 10.1210/er.2003-0011] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since the discovery of insulin roughly 80 yr ago, much has been learned about how target cells receive, interpret, and respond to this peptide hormone. For example, we now know that insulin activates the tyrosine kinase activity of its cell surface receptor, thereby triggering intracellular signaling cascades that regulate many cellular processes. With respect to glucose homeostasis, these include the function of insulin to suppress hepatic glucose production and to increase glucose uptake in muscle and adipose tissues, the latter resulting from the translocation of the glucose transporter 4 (GLUT4) to the cell surface membrane. Although simple in broad outline, elucidating the molecular intricacies of these receptor-signaling pathways and membrane-trafficking processes continues to challenge the creative ingenuity of scientists, and many questions remain unresolved, or even perhaps unasked. The identification and functional characterization of specific molecules required for both insulin signaling and GLUT4 vesicle trafficking remain key issues in our pursuit of developing specific therapeutic agents to treat and/or prevent this debilitating disease process. To this end, the combined efforts of numerous research groups employing a range of experimental approaches has led to a clearer molecular picture of how insulin regulates the membrane trafficking of GLUT4.
Collapse
Affiliation(s)
- Robert T Watson
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
129
|
Varadi A, Tsuboi T, Johnson-Cadwell LI, Allan VJ, Rutter GA. Kinesin I and cytoplasmic dynein orchestrate glucose-stimulated insulin-containing vesicle movements in clonal MIN6 beta-cells. Biochem Biophys Res Commun 2004; 311:272-82. [PMID: 14592410 DOI: 10.1016/j.bbrc.2003.09.208] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glucose-stimulated mobilization of large dense-core vesicles (LDCVs) to the plasma membrane is essential for sustained insulin secretion. At present, the cytoskeletal structures and molecular motors involved in vesicle trafficking in beta-cells are poorly defined. Here, we describe simultaneous imaging of enhanced green fluorescent protein (EGFP)-tagged LDCVs and microtubules in beta-cells. Microtubules exist as a tangled array, along which vesicles describe complex directional movements. Whilst LDCVs frequently changed direction, implying the involvement of both plus- and minus-end directed motors, inactivation of the minus-end motor, cytoplasmic dynein, inhibited only a small fraction of all vesicle movements which were involved in vesicle recovery after glucose-stimulated exocytosis. By contrast, selective silencing of the plus-end motor, kinesin I, with small interfering RNAs substantially inhibited all vesicle movements. We conclude that the majority of LDCV transport in beta-cells is mediated by kinesin I, whilst dynein probably contributes to the recovery of vesicles after rapid kiss-and-run exocytosis.
Collapse
Affiliation(s)
- Aniko Varadi
- Henry Wellcome Laboratories for Integrated Cell Signaling, Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
130
|
Sennoune SR, Bakunts K, Martínez GM, Chua-Tuan JL, Kebir Y, Attaya MN, Martínez-Zaguilán R. Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am J Physiol Cell Physiol 2004; 286:C1443-52. [PMID: 14761893 DOI: 10.1152/ajpcell.00407.2003] [Citation(s) in RCA: 262] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor cells thrive in a hypoxic microenvironment with an acidic extracellular pH. To survive in this harsh environment, tumor cells must exhibit a dynamic cytosolic pH regulatory system. We hypothesize that vacuolar H(+)-ATPases (V-ATPases) that normally reside in acidic organelles are also located at the cell surface, thus regulating cytosolic pH and exacerbating the migratory ability of metastatic cells. Immunocytochemical data revealed for the first time that V-ATPase is located at the plasma membrane of human breast cancer cells: prominent in the highly metastatic and inconspicuous in the lowly metastatic cells. The V-ATPase activities in isolated plasma membranes were greater in highly than in lowly metastatic cells. The proton fluxes via V-ATPase evaluated by fluorescence spectroscopy in living cells were greater in highly than in lowly metastatic cells. Interestingly, lowly metastatic cells preferentially used the ubiquitous Na(+)/H(+) exchanger and HCO(3)(-)-based H(+)-transporting mechanisms, whereas highly metastatic cells used plasma membrane V-ATPases. The highly metastatic cells were more invasive and migratory than the lowly metastatic cells. V-ATPase inhibitors decreased the invasion and migration in the highly metastatic cells. Altogether, these data indicate that V-ATPases located at the plasma membrane are involved in the acquisition of a more metastatic phenotype.
Collapse
Affiliation(s)
- Souad R Sennoune
- Department of Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430-6551, USA.
| | | | | | | | | | | | | |
Collapse
|
131
|
Desnos C, Schonn JS, Huet S, Tran VS, El-Amraoui A, Raposo G, Fanget I, Chapuis C, Ménasché G, de Saint Basile G, Petit C, Cribier S, Henry JP, Darchen F. Rab27A and its effector MyRIP link secretory granules to F-actin and control their motion towards release sites. ACTA ACUST UNITED AC 2004; 163:559-70. [PMID: 14610058 PMCID: PMC2173641 DOI: 10.1083/jcb.200302157] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The GTPase Rab27A interacts with myosin-VIIa and myosin-Va via MyRIP or melanophilin and mediates melanosome binding to actin. Here we show that Rab27A and MyRIP are associated with secretory granules (SGs) in adrenal chromaffin cells and PC12 cells. Overexpression of Rab27A, GTPase-deficient Rab27A-Q78L, or MyRIP reduced secretory responses of PC12 cells. Amperometric recordings of single adrenal chromaffin cells revealed that Rab27A-Q78L and MyRIP reduced the sustained component of release. Moreover, these effects on secretion were partly suppressed by the actin-depolymerizing drug latrunculin but strengthened by jasplakinolide, which stabilizes the actin cortex. Finally, MyRIP and Rab27A-Q78L restricted the motion of SGs in the subplasmalemmal region of PC12 cells, as measured by evanescent-wave fluorescence microscopy. In contrast, the Rab27A-binding domain of MyRIP and a MyRIP construct that interacts with myosin-Va but not with actin increased the mobility of SGs. We propose that Rab27A and MyRIP link SGs to F-actin and control their motion toward release sites through the actin cortex.
Collapse
Affiliation(s)
- Claire Desnos
- Centre National de la Recherche Scientifique (CNRS) UPR 1929, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Tsuboi T, da Silva Xavier G, Leclerc I, Rutter GA. 5'-AMP-activated protein kinase controls insulin-containing secretory vesicle dynamics. J Biol Chem 2003; 278:52042-51. [PMID: 14532293 DOI: 10.1074/jbc.m307800200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in 5'-AMP-activated protein kinase (AMPK) activity have recently been implicated in the control of insulin secretion by glucose (da Silva Xavier, G., Leclerc, I., Varadi, A., Tsuboi, T., Moule, S. K., and Rutter, G. A. (2003) Biochem. J. 371, 761-774). Here, we examine the possibility that activation of AMPK may regulate distal steps in insulin secretion, including vesicle movement and fusion with the plasma membrane. Vesicle dynamics were imaged in single pancreatic MIN6 beta-cells expressing lumen-targeted pH-insensitive yellow fluorescent protein, neuropeptide Y.Venus, or monomeric red fluorescent protein by total internal reflection fluorescence and Nipkow disc confocal microscopy. Overexpression of a truncated, constitutively active form of AMPK (AMPKalpha1, 1-312, T172D; AMPK CA), inhibited glucose-stimulated (30 versus 3.0 mM) vesicle movements, and decreased the number of vesicles docked or fusing at the plasma membrane, while having no effect on the kinetics of individual secretory events. Expression of the activated form of AMPK also prevented dispersal of the cortical actin network at high glucose concentrations. Monitored in permeabilized cells, where the effects of AMPK CA on glucose metabolism and ATP synthesis were bypassed, AMPK CA inhibited Ca2+ and ATP-induced insulin secretion, and decreased ATP-dependent vesicle movements. These findings suggest that components of the vesicle transport network, including vesicle-associated motor proteins, may be targets of AMPK in beta-cells, dephosphorylation of which is required for vesicle mobilization at elevated glucose concentrations.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Henry Wellcome Laboratories for Integrated Cell Signalling and Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | |
Collapse
|
133
|
Gasman S, Chasserot-Golaz S, Malacombe M, Way M, Bader MF. Regulated exocytosis in neuroendocrine cells: a role for subplasmalemmal Cdc42/N-WASP-induced actin filaments. Mol Biol Cell 2003; 15:520-31. [PMID: 14617808 PMCID: PMC329227 DOI: 10.1091/mbc.e03-06-0402] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In neuroendocrine cells, actin reorganization is a prerequisite for regulated exocytosis. Small GTPases, Rho proteins, represent potential candidates coupling actin dynamics to membrane trafficking events. We previously reported that Cdc42 plays an active role in regulated exocytosis in chromaffin cells. The aim of the present work was to dissect the molecular effector pathway integrating Cdc42 to the actin architecture required for the secretory reaction in neuroendocrine cells. Using PC12 cells as a secretory model, we show that Cdc42 is activated at the plasma membrane during exocytosis. Expression of the constitutively active Cdc42(L61) mutant increases the secretory response, recruits neural Wiskott-Aldrich syndrome protein (N-WASP), and enhances actin polymerization in the subplasmalemmal region. Moreover, expression of N-WASP stimulates secretion by a mechanism dependent on its ability to induce actin polymerization at the cell periphery. Finally, we observed that actin-related protein-2/3 (Arp2/3) is associated with secretory granules and that it accompanies granules to the docking sites at the plasma membrane upon cell activation. Our results demonstrate for the first time that secretagogue-evoked stimulation induces the sequential ordering of Cdc42, N-WASP, and Arp2/3 at the interface between granules and the plasma membrane, thereby providing an actin structure that makes the exocytotic machinery more efficient.
Collapse
Affiliation(s)
- Stéphane Gasman
- Centre National de la Recherche Scientifique Unité Propre de Recherche 2356, Institut Fédératif de Recherche 37, 67084 Strasbourg, France.
| | | | | | | | | |
Collapse
|
134
|
Kjeken R, Egeberg M, Habermann A, Kuehnel M, Peyron P, Floetenmeyer M, Walther P, Jahraus A, Defacque H, Kuznetsov SA, Griffiths G. Fusion between phagosomes, early and late endosomes: a role for actin in fusion between late, but not early endocytic organelles. Mol Biol Cell 2003; 15:345-58. [PMID: 14617814 PMCID: PMC307552 DOI: 10.1091/mbc.e03-05-0334] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Actin is implicated in membrane fusion, but the precise mechanisms remain unclear. We showed earlier that membrane organelles catalyze the de novo assembly of F-actin that then facilitates the fusion between latex bead phagosomes and a mixture of early and late endocytic organelles. Here, we correlated the polymerization and organization of F-actin with phagosome and endocytic organelle fusion processes in vitro by using biochemistry and light and electron microscopy. When membrane organelles and cytosol were incubated at 37 degrees C with ATP, cytosolic actin polymerized rapidly and became organized into bundles and networks adjacent to membrane organelles. By 30-min incubation, a gel-like state was formed with little further polymerization of actin thereafter. Also during this time, the bulk of in vitro fusion events occurred between phagosomes/endocytic organelles. The fusion between latex bead phagosomes and late endocytic organelles, or between late endocytic organelles themselves was facilitated by actin, but we failed to detect any effect of perturbing F-actin polymerization on early endosome fusion. Consistent with this, late endosomes, like phagosomes, could nucleate F-actin, whereas early endosomes could not. We propose that actin assembled by phagosomes or late endocytic organelles can provide tracks for fusion-partner organelles to move vectorially toward them, via membrane-bound myosins, to facilitate fusion.
Collapse
Affiliation(s)
- Rune Kjeken
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Togo T, Steinhardt RA. Nonmuscle myosin IIA and IIB have distinct functions in the exocytosis-dependent process of cell membrane repair. Mol Biol Cell 2003; 15:688-95. [PMID: 14617807 PMCID: PMC329289 DOI: 10.1091/mbc.e03-06-0430] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vesicle generation, recruitment, and exocytosis are essential for repairing disruptions of cell membranes. The functions of nonmuscle myosin IIA and IIB in this exocytotic process of membrane repair were studied by the antisense technique. Knockdown of myosin IIB suppressed wound-induced exocytosis and the membrane resealing process. Knockdown of myosin IIA did not suppress exocytosis at an initial wound and had no inhibitory effect on the resealing at initial wounds but did inhibit the facilitated rate of resealing normally found at repeated wounds made at the same site. COS-7 cells, which lack myosin IIA, did not show the facilitated response of membrane resealing to a repeated wound. S91 melanoma cells, a mutant cell line lacking myosin Va, showed normal membrane resealing and normal facilitated responses. We concluded that myosin IIB was required for exocytosis and therefore cell membrane repair itself and that myosin IIA was required in facilitation of cell membrane repair at repeated wounds. Myosin IIB was primarily at the subplasmalemma cortex and myosin IIA was concentrated at the trans-Golgi network consistent with their distinct roles in vesicle trafficking in cell membrane repair.
Collapse
Affiliation(s)
- Tatsuru Togo
- Misaki Marine Biological Station, University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan
| | | |
Collapse
|
136
|
Gasman S, Chasserot-Golaz S, Bader MF, Vitale N. Regulation of exocytosis in adrenal chromaffin cells: focus on ARF and Rho GTPases. Cell Signal 2003; 15:893-9. [PMID: 12873702 DOI: 10.1016/s0898-6568(03)00052-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neurons and neuroendocrine cells release transmitters and hormones by exocytosis, a highly regulated process in which secretory vesicles or granules fuse with the plasma membrane to release their contents in response to a calcium trigger. Several stages have been recognized in exocytosis. After recruitment and docking at the plasma membrane, vesicles/granules enter a priming step, which is then followed by the fusion process. Cortical actin remodelling accompanies the exocytotic reaction, but the links between actin dynamics and trafficking events remain poorly understood. Here, we review the action of Rho and ADP-ribosylation factor (ARF) GTPases within the exocytotic pathway in adrenal chromaffin cells. Rho proteins are well known for their pivotal role in regulating the actin cytoskeleton. ARFs were originally identified as regulators of vesicle transport within cells. The possible interplay between these two families of GTPases and their downstream effectors provides novel insights into the mechanisms that govern exocytosis.
Collapse
Affiliation(s)
- Stéphane Gasman
- CNRS UPR-2356 Neurotransmission et Sécrétion Neuroendocrine, Centre de Neurochimie, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
137
|
Manneville JB, Etienne-Manneville S, Skehel P, Carter T, Ogden D, Ferenczi M. Interaction of the actin cytoskeleton with microtubules regulates secretory organelle movement near the plasma membrane in human endothelial cells. J Cell Sci 2003; 116:3927-38. [PMID: 12928328 DOI: 10.1242/jcs.00672] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of cytoskeletal elements in regulating transport and docking steps that precede exocytosis of secretory organelles is not well understood. We have used Total Internal Reflection Fluorescence (TIRF) microscopy to visualize the three-dimensional motions of secretory organelles near the plasma membrane in living endothelial cells. Weibel-Palade bodies (WPb), the large tubular storage organelles for von Willebrand factor, were labelled with Rab27a-GFP. By contrast, green fluorescent protein (GFP)-tagged tissue-type plasminogen activator (tPA-GFP) labelled submicron vesicular organelles. Both populations of GFP-labelled organelles underwent stimulated exocytosis. The movement of these morphologically distinct organelles was measured within the evanescent field that penetrated the first 200 nm above the plasma membrane. WPb and tPA-GFP vesicles displayed long-range bidirectional motions and short-range diffusive-like motions. Rotating and oscillating WPb were also observed. TIRF microscopy enabled us to quantify the contribution of actin and microtubules and their associated motors to the organelle motions close to the plasma membrane. Long-range motions, as well as WPb rotations and oscillations, were microtubule-and kinesin-dependent. Disruption of the actin cytoskeleton and inhibition of myosin motors increased the number of long-range motions and, in the case of WPb, their velocity. The actin and microtubules had opposite effects on the mobility of organelles undergoing short-range motions. Actin reduced the mobility and range of motion of both WPb and tPA vesicles, whereas microtubules and kinesin motors increased the mobility of WPb. The results show that the dynamics of endothelial secretory organelles close to the plasma membrane are controlled by the opposing roles of the microtubule and actin cytoskeletal transport systems.
Collapse
|
138
|
Lecuona E, Ridge K, Pesce L, Batlle D, Sznajder JI. The GTP-binding protein RhoA mediates Na,K-ATPase exocytosis in alveolar epithelial cells. Mol Biol Cell 2003; 14:3888-97. [PMID: 12972572 PMCID: PMC196585 DOI: 10.1091/mbc.e02-12-0781] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Revised: 05/01/2003] [Accepted: 05/02/2003] [Indexed: 01/08/2023] Open
Abstract
The purpose of this study was to define the role of the Rho family of small GTPases in the beta-adrenergic regulation of the Na,K-ATPase in alveolar epithelial cells (AEC). The beta-adrenergic receptor agonist isoproterenol (ISO) increased the Na,K-ATPase protein abundance at the plasma membrane and activated RhoA in a time-dependent manner. AEC pretreated with mevastatin, a specific inhibitor of prenylation, or transfected with the dominant negative RhoAN19, prevented ISO-mediated Na,K-ATPase exocytosis to the plasma membrane. The ISO-mediated activation of RhoA in AEC occurred via beta2-adrenergic receptors and involved Gs-PKA as demonstrated by incubation with the protein kinase A (PKA)-specific inhibitors H89 and PKI (peptide specific inhibitor), and Gi, as incubation with pertussis toxin or cells transfected with a minigene vector for Gi inhibited the ISO-mediated RhoA activation. However, cells transfected with minigene vectors for G12 and G13 did not prevent RhoA activation by ISO. Finally, the ISO-mediated Na,K-ATPase exocytosis was regulated by the Rho-associated kinase (ROCK), as preincubation with the specific inhibitor Y-27632 or transfection with dominant negative ROCK, prevented the increase in Na,K-ATPase at the plasma membrane. Accordingly, ISO regulates Na,K-ATPase exocytosis in AEC via the activation of beta2-adrenergic receptor, Gs, PKA, Gi, RhoA, and ROCK.
Collapse
Affiliation(s)
- Emilia Lecuona
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|
139
|
Abstract
Actin and its associated proteins participate in several intracellular trafficking mechanisms. This review assesses recent work that shows how actin participates in the terminal trafficking event of membrane bilayer fusion. A recent flurry of reports defines a role for Rho proteins in membrane fusion and also demonstrates that this role is distinct from any vesicle transport mechanism. Rho proteins are well known to govern actin remodeling, which implicates this process as a condition of membrane fusion. A small but significant body of work examines actin-regulated events of intracellular membrane fusion, exocytosis and endocytosis. In general, actin has been shown to act as a negative regulator of exocytosis. Cortical actin filaments act as a barrier that requires transient removal to allow vesicles to undergo docking at the plasma membrane. However, once docked, F-actin synthesis may act as a positive regulator to give the final stimulus to drive membrane fusion. F-actin synthesis is clearly needed for endocytosis and intracellular membrane fusion events. What may seem like dissimilar results are perhaps snapshots of a single mechanism of membranous actin remodeling (i.e. dynamic disassembly and reassembly) that is universally needed for all membrane fusion events.
Collapse
Affiliation(s)
- Gary Eitzen
- Department of Cell Biology, MSB 5-14, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| |
Collapse
|
140
|
Cabello-Agüeros JF, Hernández-González EO, Mújica A. The role of F-actin cytoskeleton-associated gelsolin in the guinea pig capacitation and acrosome reaction. ACTA ACUST UNITED AC 2003; 56:94-108. [PMID: 14506707 DOI: 10.1002/cm.10135] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The acrosomal reaction (AR) is a regulated sperm exocytotic process that involves fusion of the plasma membrane (PM) with the outer acrosomal membrane (OAM). Our group has described F-actin cytoskeletons associated to these membranes. It has been proposed that in regulated exocytosis, a cortical cytoskeleton acts as a barrier that obstructs membrane fusion, and must be disassembled for exocytosis to occur. Actin-severing proteins from the gelsolin family have been considered to break this barrier. The present study attempted to determine if gelsolin has a function in guinea pig sperm capacitation and AR. By indirect immunofluorescence (IIF), gelsolin was detected in the apical and postacrosomal regions of the head and in the flagellum in both capacitated and non-capacitated guinea pig spermatozoa. By Western blotting, gelsolin was detected in isolated PM and OAM of non-capacitated spermatozoa. Gelsolin and actin were detected in a mixture of PM-OAM obtained by sonication, and both proteins were absent in membranes of capacitated spermatozoa. Inhibition of three different pathways of PIP2 hydrolysis during capacitation did not cancel gelsolin loss from membranes. Gelsolin was detected by Western blotting associated to membrane cytoskeletons obtained after phalloidin F-actin stabilization and Triton-X treatment; additionally, by immunoprecipitation, it was shown that gelsolin is associated with actin. By electron microscopy we observed that skeletons disassemble during capacitation, but phalloidin prevents disassembly. A three-dimensional skeleton was observed that apparently joins PM with OAM. Exogenous gelsolin stimulates AR assayed in a permeabilized spermatozoa model. Results suggest that gelsolin disassembles F-actin cytoskeletons during capacitation, promoting AR.
Collapse
Affiliation(s)
- José F Cabello-Agüeros
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| | | | | |
Collapse
|
141
|
Neco P, Giner D, del Mar Francés M, Viniegra S, Gutiérrez LM. Differential participation of actin- and tubulin-based vesicle transport systems during secretion in bovine chromaffin cells. Eur J Neurosci 2003; 18:733-42. [PMID: 12924999 DOI: 10.1046/j.1460-9568.2003.02801.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of cytoskeletal elements in vesicle transport occurring during exocytosis was examined in adrenal medullary bovine chromaffin cells maintained in culture. Amperometric determination of depolarization-dependent catecholamine release from individual intact cells treated with actin or myosin inhibitors showed alterations in the fast and slow phases of secretion when compared with untreated cells. In contrast, microtubule disassemblers or stabilizers have a moderate effect on secretion, only affecting the release of slow secretory components. In experiments using confocal dynamic microscopy we have observed the drastic effect of actin and myosin inhibitors in abolishing vesicle movement throughout the cytoplasm, and the inhibition of granule mobility in deep perinuclear regions caused by the microtubule stabilizers. Following loss of mobility, vesicles were associated with filaments of F-actin or microtubules. In addition, the mobility of cortical vesicles was affected by actin-myosin inhibitors but not by microtubule inhibitors. The study of cortical cytoskeleton in living cells showed vesicles associated with dense tubular F-actin structures, with microtubules appearing as low density networks. These findings suggest that the distribution and density of both cytoskeletal elements in the cortical region may influence the recruitment of vesicle pools during secretion.
Collapse
Affiliation(s)
- Patricia Neco
- Instituto de Neurociencias, Centro Mixto CSIC-Universidad Miguel Hernández, Campus de San Juan, 03550 Alicante, Spain
| | | | | | | | | |
Collapse
|
142
|
Sim ATR, Baldwin ML, Rostas JAP, Holst J, Ludowyke RI. The role of serine/threonine protein phosphatases in exocytosis. Biochem J 2003; 373:641-59. [PMID: 12749763 PMCID: PMC1223558 DOI: 10.1042/bj20030484] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 05/09/2003] [Accepted: 05/16/2003] [Indexed: 10/27/2022]
Abstract
Modulation of exocytosis is integral to the regulation of cellular signalling, and a variety of disorders (such as epilepsy, hypertension, diabetes and asthma) are closely associated with pathological modulation of exocytosis. Emerging evidence points to protein phosphatases as key regulators of exocytosis in many cells and, therefore, as potential targets for the design of novel therapies to treat these diseases. Diverse yet exquisite regulatory mechanisms have evolved to direct the specificity of these enzymes in controlling particular cell processes, and functionally driven studies have demonstrated differential regulation of exocytosis by individual protein phosphatases. This Review discusses the evidence for the regulation of exocytosis by protein phosphatases in three major secretory systems, (1) mast cells, in which the regulation of exocytosis of inflammatory mediators plays a major role in the respiratory response to antigens, (2) insulin-secreting cells in which regulation of exocytosis is essential for metabolic control, and (3) neurons, in which regulation of exocytosis is perhaps the most complex and is essential for effective neurotransmission.
Collapse
Affiliation(s)
- Alistair T R Sim
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, and Clinical Neuroscience Program, Hunter Medical Research Institute, Callaghan, NSW 2308, Australia.
| | | | | | | | | |
Collapse
|
143
|
Abstract
By tagging secretory granules with the fluorescent protein dsRed-E5, which changes its emission from green to red over time, Duncan et al. analysed the age-dependent distribution of secretory vesicles within chromaffin cells. This elegant study illustrates as never before how age is a critical factor that segregates granules with respect to their localization and mobility and the probability of them undergoing exocytosis in response to different stimuli.
Collapse
Affiliation(s)
- Michele Solimena
- Experimental Diabetology, Carl Gustav Carus Medical School, University of Technology-Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | | |
Collapse
|
144
|
Li Q, Ho CS, Marinescu V, Bhatti H, Bokoch GM, Ernst SA, Holz RW, Stuenkel EL. Facilitation of Ca(2+)-dependent exocytosis by Rac1-GTPase in bovine chromaffin cells. J Physiol 2003; 550:431-45. [PMID: 12754309 PMCID: PMC2343055 DOI: 10.1113/jphysiol.2003.039073] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Rho family GTPases are primary mediators of cytoskeletal reorganization, although they have also been reported to regulate cell secretion. Yet, the extent to which Rho family GTPases are activated by secretory stimuli in neural and neuroendocrine cells remains unknown. In bovine adrenal chromaffin cells, we found Rac1, but not Cdc42, to be rapidly and selectively activated by secretory stimuli using an assay selective for the activated GTPases. To examine effects of activated Rac1 on secretion, constitutively active mutants of Rac1 (Rac1-V12, Rac1-L61) were transiently expressed in adrenal chromaffin cells. These mutants facilitated secretory responses elicited from populations of intact and digitonin-permeabilized cells as well as from cells under whole cell patch clamp. A dominant negative Rac1 mutant (Rac1-N17) produced no effect on secretion. Expression of RhoGDI, a negative regulator of Rac1, inhibited secretory responses while overexpression of effectors of Rac1, notably, p21-activated kinase (Pak1) and actin depolymerization factor (ADF) promoted evoked secretion. In addition, expression of effector domain mutants of Rac1-V12 that exhibit reduced activation of the cytoskeletal regulators Pak1 and Partner of Rac1 (POR1) resulted in a loss of Rac1-V12-mediated enhancement of evoked secretion. These findings suggest that Rac1, in part, functions to modulate secretion through actions on the cytoskeleton. Consistent with this hypothesis, the actin modifying drugs phalloidin and jasplakinolide enhanced secretion, while latrunculin-A inhibited secretion and eliminated the secretory effects of Rac1-V12. In summary, Rac1 was activated by secretory stimuli and modulated the secretory pathway downstream of Ca2+ influx, partly through regulation of cytoskeletal organization.
Collapse
Affiliation(s)
- Quanwen Li
- Department of Physiology, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Affiliation(s)
- Daniel Axelrod
- Department of Physics and Biophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
146
|
Rudolf R, Kögel T, Kuznetsov SA, Salm T, Schlicker O, Hellwig A, Hammer JA, Gerdes HH. Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells. J Cell Sci 2003; 116:1339-48. [PMID: 12615975 DOI: 10.1242/jcs.00317] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuroendocrine secretory granules, the storage organelles for neuropeptides and hormones, are formed at the trans-Golgi network, stored inside the cell and exocytosed upon stimulation. Previously, we have reported that newly formed secretory granules of PC12 cells are transported in a microtubule-dependent manner from the trans-Golgi network to the F-actin-rich cell cortex, where they undergo short directed movements and exhibit a homogeneous distribution. Here we provide morphological and biochemical evidence that myosin Va is associated with secretory granules. Expression of a dominant-negative tail domain of myosin Va in PC12 cells led to an extensive clustering of secretory granules close to the cell periphery, a loss of their cortical restriction and a strong reduction in their motility in the actin cortex. Based on this data we propose a model that implies a dual transport system for secretory granules: after microtubule-dependent delivery to the cell periphery, secretory granules exhibit a myosin Va-dependent transport leading to their restriction and even dispersal in the F-actin-rich cortex of PC12 cells.
Collapse
Affiliation(s)
- Rüdiger Rudolf
- Department of Neurobiology, Interdisciplinary Center of Neuroscience, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
Regulated exocytosis of secretory granules or dense-core granules has been examined in many well-characterized cell types including neurons, neuroendocrine, endocrine, exocrine, and hemopoietic cells and also in other less well-studied cell types. Secretory granule exocytosis occurs through mechanisms with many aspects in common with synaptic vesicle exocytosis and most likely uses the same basic protein components. Despite the widespread expression and conservation of a core exocytotic machinery, many variations occur in the control of secretory granule exocytosis that are related to the specialized physiological role of particular cell types. In this review we describe the wide range of cell types in which regulated secretory granule exocytosis occurs and assess the evidence for the expression of the conserved fusion machinery in these cells. The signals that trigger and regulate exocytosis are reviewed. Aspects of the control of exocytosis that are specific for secretory granules compared with synaptic vesicles or for particular cell types are described and compared to define the range of accessory control mechanisms that exert their effects on the core exocytotic machinery.
Collapse
Affiliation(s)
- Robert D Burgoyne
- The Physiological Laboratory, University of Liverpool, United Kingdom.
| | | |
Collapse
|
148
|
Schmoranzer J, Simon SM. Role of microtubules in fusion of post-Golgi vesicles to the plasma membrane. Mol Biol Cell 2003; 14:1558-69. [PMID: 12686609 PMCID: PMC153122 DOI: 10.1091/mbc.e02-08-0500] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Biosynthetic cargo is transported away from the Golgi in vesicles via microtubules. In the cell periphery the vesicles are believed to engage actin and then dock to fusion sites at the plasma membrane. Using dual-color total internal reflection fluorescence microscopy, we observed that microtubules extended within 100 nm of the plasma membrane and post-Golgi vesicles remained on microtubules up to the plasma membrane, even as fusion to the plasma membrane initiated. Disruption of microtubules eliminated the tubular shapes of the vesicles and altered the fusion events: vesicles required multiple fusions to deliver all of their membrane cargo to the plasma membrane. In contrast, the effects of disrupting actin on fusion behavior were subtle. We conclude that microtubules, rather than actin filaments, are the cytoskeletal elements on which post-Golgi vesicles are transported until they fuse to the plasma membrane.
Collapse
Affiliation(s)
- Jan Schmoranzer
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
149
|
Abstract
Depletion and replenishment of pools of synaptic vesicles are important determinants of short-term synaptic plasticity, but the underlying molecular mechanisms are not yet clear. As a first step toward understanding the process of vesicle recruitment, we have applied various specific agents directly to the presynaptic terminal of the calyx of Held synapse. Here we show that the nonhydrolyzable ATP analog ATP-gammaS retards the recovery from vesicle pool depletion, as does latrunculin A. Phalloidin has no effects on recovery, suggesting that dynamic actin reorganization is not necessary. Unexpectedly, neither N-ethylmaleimide nor staurosporine affected the recovery, calling into question the role of N-ethylmaleimide-sensitive factor and protein kinases. The results suggest that intact actin polymerization is involved in vesicle recruitment.
Collapse
|
150
|
Sakaba T, Neher E. Involvement of actin polymerization in vesicle recruitment at the calyx of Held synapse. J Neurosci 2003; 23:837-46. [PMID: 12574412 PMCID: PMC6741913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
Depletion and replenishment of pools of synaptic vesicles are important determinants of short-term synaptic plasticity, but the underlying molecular mechanisms are not yet clear. As a first step toward understanding the process of vesicle recruitment, we have applied various specific agents directly to the presynaptic terminal of the calyx of Held synapse. Here we show that the nonhydrolyzable ATP analog ATP-gammaS retards the recovery from vesicle pool depletion, as does latrunculin A. Phalloidin has no effects on recovery, suggesting that dynamic actin reorganization is not necessary. Unexpectedly, neither N-ethylmaleimide nor staurosporine affected the recovery, calling into question the role of N-ethylmaleimide-sensitive factor and protein kinases. The results suggest that intact actin polymerization is involved in vesicle recruitment.
Collapse
Affiliation(s)
- Takeshi Sakaba
- Department of Membrane Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, D-37077, Germany
| | | |
Collapse
|