101
|
Masaki T, Habara M, Shibutani S, Hanaki S, Sato Y, Tomiyasu H, Shimada M. Dephosphorylation of the EGFR protein by calcineurin at serine 1046/1047 enhances its stability. Biochem Biophys Res Commun 2023; 641:84-92. [PMID: 36525928 DOI: 10.1016/j.bbrc.2022.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) is highly expressed or abnormally activated in several types of cancers, such as lung and colorectal cancers. Inhibitors that suppress the tyrosine kinase activity of EGFR have been used in the treatment of lung cancer. However, resistance to these inhibitors has become an issue in cancer treatment, and the development of new therapies that inhibit EGFR is desired. We found that calcineurin, a Ca2+/calmodulin-activated serine/threonine phosphatase, is a novel regulator of EGFR. Inhibition of calcineurin by FK506 treatment or calcineurin depletion promoted EGFR degradation in cancer cells. In addition, we found that calcineurin dephosphorylates EGFR at serine (S)1046/1047, which in turn stabilizes EGFR. Furthermore, in human colon cancer cells transplanted into mice, the inhibition of calcineurin by FK506 decreased EGFR expression. These results indicate that calcineurin stabilizes EGFR by dephosphorylating S1046/1047 and promotes tumor growth. These findings suggest that calcineurin may be a new therapeutic target for cancers with high EGFR expression or activation.
Collapse
Affiliation(s)
- Takahiro Masaki
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Makoto Habara
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Shusaku Shibutani
- Department of Veterinary Hygiene, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Shunsuke Hanaki
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Yuki Sato
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Haruki Tomiyasu
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Midori Shimada
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan.
| |
Collapse
|
102
|
Taha Tolba EAEH, Ahmed Amer HZ. In silico Analysis of Tyrosine Kinases Receptor in Papillary and Medullary Thyroid Cancer Using Sequence-alignment-based Methods. BIOTECHNOLOGY(FAISALABAD) 2023; 22:18-27. [DOI: 10.3923/biotech.2023.18.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
103
|
Abbas-Aghababazadeh F, Xu W, Haibe-Kains B. The impact of violating the independence assumption in meta-analysis on biomarker discovery. Front Genet 2023; 13:1027345. [PMID: 36726714 PMCID: PMC9885264 DOI: 10.3389/fgene.2022.1027345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/25/2022] [Indexed: 01/06/2023] Open
Abstract
With rapid advancements in high-throughput sequencing technologies, massive amounts of "-omics" data are now available in almost every biomedical field. Due to variance in biological models and analytic methods, findings from clinical and biological studies are often not generalizable when tested in independent cohorts. Meta-analysis, a set of statistical tools to integrate independent studies addressing similar research questions, has been proposed to improve the accuracy and robustness of new biological insights. However, it is common practice among biomarker discovery studies using preclinical pharmacogenomic data to borrow molecular profiles of cancer cell lines from one study to another, creating dependence across studies. The impact of violating the independence assumption in meta-analyses is largely unknown. In this study, we review and compare different meta-analyses to estimate variations across studies along with biomarker discoveries using preclinical pharmacogenomics data. We further evaluate the performance of conventional meta-analysis where the dependence of the effects was ignored via simulation studies. Results show that, as the number of non-independent effects increased, relative mean squared error and lower coverage probability increased. Additionally, we also assess potential bias in the estimation of effects for established meta-analysis approaches when data are duplicated and the assumption of independence is violated. Using pharmacogenomics biomarker discovery, we find that treating dependent studies as independent can substantially increase the bias of meta-analyses. Importantly, we show that violating the independence assumption decreases the generalizability of the biomarker discovery process and increases false positive results, a key challenge in precision oncology.
Collapse
Affiliation(s)
| | - Wei Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada,Ontario Institute for Cancer Research, Toronto, ON, Canada,Department of Computer Science, University of Toronto, Toronto, ON, Canada,*Correspondence: Benjamin Haibe-Kains,
| |
Collapse
|
104
|
Basu D, Pal R, Sarkar M, Barma S, Halder S, Roy H, Nandi S, Samadder A. To Investigate Growth Factor Receptor Targets and Generate Cancer Targeting Inhibitors. Curr Top Med Chem 2023; 23:2877-2972. [PMID: 38164722 DOI: 10.2174/0115680266261150231110053650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.
Collapse
Affiliation(s)
- Debroop Basu
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Riya Pal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, IndiaIndia
| | - Maitrayee Sarkar
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Soubhik Barma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sumit Halder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Vijayawada, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
105
|
Imaging strategies for receptor tyrosine kinase dimers in living cells. Anal Bioanal Chem 2023; 415:67-82. [PMID: 36190534 DOI: 10.1007/s00216-022-04334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/10/2023]
Abstract
Receptor tyrosine kinases (RTKs) are the essential regulators of cell signal transduction pathways and play important roles in biological processes. RTK dimerization is generally considered the first step in receptor activation and cell communication. And the abnormal expression of RTK dimers is closely related to the occurrence and development of many diseases. Therefore, the visualization of RTK dimerization is of great significance for monitoring physiological processes. The genetic and nongenetic imaging strategies have attracted widespread attention due to their high efficiency and high sensitivity. In this review, the RTKs and their dimers as well as the advances in strategies for imaging RTK dimers are introduced. Furthermore, we analyze the limitations of existing imaging strategies and put forward suggestions for the future development of imaging probes. We expect that this review will inspire more in-depth investigation of RTK dimers, which will also broaden the application of strategies of RTK dimers in biomedical areas.
Collapse
|
106
|
Huang Y, Zhao X, Zhang Q, Yang X, Hou G, Peng C, Jia M, Zhou L, Yamamoto T, Zheng J. Novel therapeutic perspectives for crescentic glomerulonephritis through targeting parietal epithelial cell activation and proliferation. Expert Opin Ther Targets 2023; 27:55-69. [PMID: 36738160 DOI: 10.1080/14728222.2023.2177534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Kidney injury is clinically classified as crescentic glomerulonephritis (CrGN) when ≥50% of the glomeruli in a biopsy sample contain crescentic lesions. However, current strategies, such as systemic immunosuppressive therapy and plasmapheresis for CrGN, are partially effective, and these drugs have considerable systemic side effects. Hence, targeted therapy to prevent glomerular crescent formation and expansion remains an unmet clinical need. AREAS COVERED Hyperproliferative parietal epithelial cells (PECs) are the main constituent cells of the glomerular crescent with cell-tracing evidence. Crescents obstruct the flow of primary urine, pressure the capillaries, and degenerate the affected nephrons. We reviewed the markers of PEC activation and proliferation, potential therapeutic effects of thrombin and thrombin receptor inhibitors, and how podocytes cross-talk with PECs. These experiments may help identify potential early specific targets for the prevention and treatment of glomerular crescentic injury. EXPERT OPINION Inhibiting PEC activation and proliferation in CrGN can alleviate glomerular crescent progression, which has been supported by preclinical studies with evidence of genetic deletion. Clarifying the outcome of PEC transformation to the podocyte phenotype and suppressing thrombin, thrombin receptors, and PEC hyperproliferation in early therapeutic strategies will be the research goals in the next ten years.
Collapse
Affiliation(s)
- Yanjie Huang
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xueru Zhao
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Qiushuang Zhang
- Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gailing Hou
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoqun Peng
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mengzhen Jia
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Li Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Tatsuo Yamamoto
- Department of Nephrology, Fujieda Municipal General Hospital, 4-1-11 Surugadai, Fujieda, Japan
| | - Jian Zheng
- Institute of Pediatrics of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
107
|
Liu Y, Zhang M, Jang H, Nussinov R. Higher-order interactions of Bcr-Abl can broaden chronic myeloid leukemia (CML) drug repertoire. Protein Sci 2023; 32:e4504. [PMID: 36369657 PMCID: PMC9795542 DOI: 10.1002/pro.4504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
Abstract
Bcr-Abl, a nonreceptor tyrosine kinase, is associated with leukemias, especially chronic myeloid leukemia (CML). Deletion of Abl's N-terminal region, to which myristoyl is linked, renders the Bcr-Abl fusion oncoprotein constitutively active. The substitution of Abl's N-terminal region by Bcr enables Bcr-Abl oligomerization. Oligomerization is critical: it promotes clustering on the membrane, which is essential for potent MAPK signaling and cell proliferation. Here we decipher the Bcr-Abl specific, step-by-step oligomerization process, identify a specific packing surface, determine exactly how the process is structured and identify its key elements. Bcr's coiled coil (CC) domain at the N-terminal controls Bcr-Abl oligomerization. Crystallography validated oligomerization via Bcr-Abl dimerization between two Bcr CC domains, with tetramerization via tight packing between two binary assemblies. However, the structural principles guiding Bcr CC domain oligomerization are unknown, hindering mechanistic understanding and drugs exploiting it. Using molecular dynamics (MD) simulations, we determine that the binary complex of the Bcr CC domain serves as a basic unit in the quaternary complex providing a specific surface for dimer-dimer packing and higher-order oligomerization. We discover that the small α1-helix is the key. In the binary assembly, the helix forms interchain aromatic dimeric packing, and in the quaternary assembly, it contributes to the specific dimer-dimer packing. Our mechanism is supported by the experimental literature. It offers the key elements controlling this process which can expand the drug discovery strategy, including by Bcr CC-derived peptides, and candidate residues for small covalent drugs, toward quenching oligomerization, supplementing competitive and allosteric tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer Innovation LaboratoryNational Cancer InstituteFrederickMarylandUSA
| | - Mingzhen Zhang
- Computational Structural Biology SectionFrederick National Laboratory for Cancer ResearchFrederickMarylandUSA
| | - Hyunbum Jang
- Computational Structural Biology SectionFrederick National Laboratory for Cancer ResearchFrederickMarylandUSA
| | - Ruth Nussinov
- Computational Structural Biology SectionFrederick National Laboratory for Cancer ResearchFrederickMarylandUSA,Department of Human Molecular Genetics and BiochemistrySackler School of Medicine, Tel Aviv UniversityTel AvivIsrael
| |
Collapse
|
108
|
Application of plasma membrane proteomics to identify cancer biomarkers. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
109
|
DİRİCAN E, KARABULUT UZUNÇAKMAK S, ÖZCAN H. Şizofreni hastalarında CYB mtDNA mutasyonları ve PI3K/AKT/mTOR sinyal yolağındaki genlerin ekspresyon durumu. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1186118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Amaç: Bu çalışma, şizofreni hastalarında sitokrom b (CYB) mitokondriyal DNA (mtDNA) mutasyonlarını taramayı ve PI3K/AKT/mTOR sinyal yolağındaki genlerin mRNA ifadelerini analiz etmeyi amaçlamıştır.
Gereç ve Yöntem: Bu çalışmada 44 şizofreni hastasından ve 41 sağlıklı bireyden DNA (hasta) ve RNA (hasta ve kontrol) izolasyonu için tam kan alındı. CYB mtDNA mutasyonları için örnekler PCR ile amplifiye edildi ve Sanger DNA dizi analiziyle tanımlandı. PIK3CA, AKT1 ve mTOR genlerinin mRNA ekspresyonu için RT-PCR ve 2-∆∆Ct metodu kullanıldı.
Bulgular: Şizofreni hastalarında m.15326 A>G (43/44), m.15452 C>A (5/44), m.15078 A>G (3/44), m.14872 C>T (3/44) ve m.14798 T>C (3/44) en sık rastalanan CYB mtDNA mutasyonlarıydı. İn silico analizler, mutasyonların bir kısmının zararlı, hastalık yapıcı veya benign karakterle ilişkili olduğunu gösterdi. Şizofreni hastalarında PIK3CA, AKT1 ve mTOR genlerinin mRNA ekspresyonu sağlıklı bireylere göre anlamlı derecede yüksekti. PIK3CA ve AKT1 genleri arasında anlamlı orta şiddette pozitif bir korelasyon tespit edildi. Ayrıca ROC analizi ile PIK3CA, AKT1 ve mTOR genlerinin hasta grubunda iyi tanısal güce sahip olduğu belirlendi. ROC analizleri, özellikle PIK3CA'nın şizofreni hastaları için % 80 duyarlılık ve % 63,4 seçicilik ile önemli bir tanı değerine sahip olduğunu gösterdi.
Sonuç: Şizofreni hastalarında hem CYB mtDNA mutasyon sıklığı hem de PIK3CA, AKT1 ve mTOR mRNA ekspresyon düzeyi sağlıklı bireylere göre daha yüksekti. Bu mekanizmaları daha geniş şizofreni popülasyonunda çalışmanın hastalığın tanı, tedavi veya prognozunda değerli olabileceğine inanıyoruz.
Collapse
Affiliation(s)
- Ebubekir DİRİCAN
- BAYBURT ÜNİVERSİTESİ, BAYBURT SAĞLIK HİZMETLERİ MESLEK YÜKSEKOKULU
| | | | | |
Collapse
|
110
|
Pereira WA, Nascimento ÉCM, Martins JBL. Electronic and structural study of T315I mutated form in DFG-out conformation of BCR-ABL inhibitors. J Biomol Struct Dyn 2022; 40:9774-9788. [PMID: 34121617 DOI: 10.1080/07391102.2021.1935320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, the four main drugs for the treatment of chronic myeloid leukemia were analyzed, being imatinib, dasatinib, nilotinib and ponatinib followed by four derivative molecules of nilotinib and ponatinib. For these derivative molecules, the fluorine atoms were replaced by hydrogen and chlorine atoms in order to shade light to the structural effects on this set of inhibitors. Electronic studies were performed at density functional theory level with the B3LYP functional and 6-311+G(d,p) basis set. The frontier molecular orbitals, gap HOMO-LUMO, and NBO were analyzed and compared to docking studies for mutant T315I tyrosine kinase protein structure code 3IK3, in the DFG-out conformation. Structural similarities were pointed out, such as the presence of groups common to all inhibitors and modifications raised up on new generations of imatinib-based inhibitors. One of them is the trifluoromethyl group present in nilotinib and later included in ponatinib, in addition to the 1-methylpiperazin-1-ium group that is present in imatinib and ponatinib. The frontier molecular orbitals of imatinib and ponatinib are contributing to the same amino acid residues, and the ineffectiveness of imatinib against the T315I mutation was discussed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Washington A Pereira
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| | - Érica C M Nascimento
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| | - João B L Martins
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| |
Collapse
|
111
|
Almowallad S, Alqahtani LS, Mobashir M. NF-kB in Signaling Patterns and Its Temporal Dynamics Encode/Decode Human Diseases. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122012. [PMID: 36556376 PMCID: PMC9788026 DOI: 10.3390/life12122012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Defects in signaling pathways are the root cause of many disorders. These malformations come in a wide variety of types, and their causes are also very diverse. Some of these flaws can be brought on by pathogenic organisms and viruses, many of which can obstruct signaling processes. Other illnesses are linked to malfunctions in the way that cell signaling pathways work. When thinking about how errors in signaling pathways might cause disease, the idea of signalosome remodeling is helpful. The signalosome may be conveniently divided into two types of defects: phenotypic remodeling and genotypic remodeling. The majority of significant illnesses that affect people, including high blood pressure, heart disease, diabetes, and many types of mental illness, appear to be caused by minute phenotypic changes in signaling pathways. Such phenotypic remodeling modifies cell behavior and subverts normal cellular processes, resulting in illness. There has not been much progress in creating efficient therapies since it has been challenging to definitively confirm this connection between signalosome remodeling and illness. The considerable redundancy included into cell signaling systems presents several potential for developing novel treatments for various disease conditions. One of the most important pathways, NF-κB, controls several aspects of innate and adaptive immune responses, is a key modulator of inflammatory reactions, and has been widely studied both from experimental and theoretical perspectives. NF-κB contributes to the control of inflammasomes and stimulates the expression of a number of pro-inflammatory genes, including those that produce cytokines and chemokines. Additionally, NF-κB is essential for controlling innate immune cells and inflammatory T cells' survival, activation, and differentiation. As a result, aberrant NF-κB activation plays a role in the pathogenesis of several inflammatory illnesses. The activation and function of NF-κB in relation to inflammatory illnesses was covered here, and the advancement of treatment approaches based on NF-κB inhibition will be highlighted. This review presents the temporal behavior of NF-κB and its potential relevance in different human diseases which will be helpful not only for theoretical but also for experimental perspectives.
Collapse
Affiliation(s)
- Sanaa Almowallad
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23445, Saudi Arabia
- Correspondence: (L.S.A.); (M.M.)
| | - Mohammad Mobashir
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, P.O. Box 1031, S-17121 Stockholm, Sweden
- Department of Biosciences, Faculty of Natural Science, Jamia Millia Islamia, New Delhi 110025, India
- Special Infectious Agents Unit—BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Correspondence: (L.S.A.); (M.M.)
| |
Collapse
|
112
|
Targeting KRASp.G12C Mutation in Advanced Non-Small Cell Lung Cancer: a New Era Has Begun. Curr Treat Options Oncol 2022; 23:1699-1720. [PMID: 36394791 DOI: 10.1007/s11864-022-01033-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
OPINION STATEMENT KRASp.G12C mutation occurs in 12% of newly diagnosed advanced NSCLC and has recently emerged as a positive predictive biomarker for the selection of advanced NSCLC patients who may respond to novel KRASp.G12C inhibitors. The recent discovery of a new binding pocket under the effector region of KRAS G12C oncoprotein has made direct pharmacological inhibition of the KRASp.G12 mutation possible, leading to the clinical development of a new series of direct selective inhibitors, with a potential major impact on patients' survival and quality of life. Promising efficacy and tolerability data emerging from the early phase CodeBreak trial have already supported the regulatory approval of sotorasib as first in class targeted treatment for the second-line treatment of KRASp.G12C-positive NSCLC population, following immunotherapy-based first-line therapies, while the randomized phase III CodeBreak 200 clinical study has recently confirmed a significant superiority of sotorasib over docetaxel in terms of progression-free survival and quality of life. However, KRAS mutant NSCLC is a high heterogeneous disease characterized by a high rate of co-mutations, most frequently involving P53, STK11, and KEAP1 genes, which significantly modulate the composition of the tumor microenvironment and consequently affect clinical responses to both immunotherapy and targeted inhibitors now available in clinical practice. Both pre-clinical and clinical translational series have recently revealed a wide spectrum of resistance mechanisms occurring under selective KRASG12C inhibitors, including both on-target and off-target molecular alterations as well as morphological switching, negatively affecting the antitumor activity of these drugs when used as single agent therapies. The understanding of such biological background along with the emergence of pre-clinical data provided a strong rational to investigate different combination strategies, including the inhibition of SHP2, SOS1, and KRAS G12C downstream effectors, as well as the addition of immunotherapy and/or chemotherapy to targeted therapy. The preliminary results of these trials have recently suggested a promising activity of SHP2 inhibitors in the front-line setting, while toxicity issues limited the concurrent administration of immune-checkpoint inhibitors and sotorasib. The identification of predictive genomic/immunological biomarkers will be crucial to understand how to optimally sequencing/combining different drugs and ultimately personalize treatment strategies under clinical investigation, to definitively increase the survival outcomes of KRASp.G12C mutant advanced NSCLC patients.
Collapse
|
113
|
Gaber AA, Sobhy M, Turky A, Abdulwahab HG, Al-Karmalawy AA, Elhendawy MA, Radwan MM, Elkaeed EB, Ibrahim IM, Elzahabi HSA, Eissa IH. Discovery of new 1 H-pyrazolo[3,4- d]pyrimidine derivatives as anticancer agents targeting EGFR WT and EGFR T790M. J Enzyme Inhib Med Chem 2022; 37:2283-2303. [PMID: 36000168 PMCID: PMC9466626 DOI: 10.1080/14756366.2022.2112575] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 10/28/2022] Open
Abstract
New 1H-pyrazolo[3,4-d]pyrimidine derivatives were designed and synthesised to act as epidermal growth factor receptor inhibitors (EGFRIs). The synthesised derivatives were assessed for their in vitro anti-proliferative activities against A549 and HCT-116 cancer cells. Compounds 8, 10, 12a, and 12b showed potent anti-proliferative activities. Compound 12b was the most promising member with IC50 values of 8.21 and 19.56 µM against A549 and HCT-116, respectively. Compounds 8, 10, 12a, and 12b were evaluated for their kinase inhibitory activities against wild EGFR (EGFRWT). Compound 12b was the most potent member showing an IC50 value of 0.016 µM. In addition, compound 12b showed noticeable activity against mutant EGFR (EGFRT790M) (IC50 = 0.236 µM). Flow cytometric analyses revealed that compound 12b is a good apoptotic inducer and can arrest the cell cycle at S and G2/M phases. Furthermore, it produced an 8.8-fold increase in BAX/Bcl-2 ratio. Molecular docking studies were carried out against EGFRWT and EGFRT790M.
Collapse
Affiliation(s)
- Ahmed A. Gaber
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Sobhy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Abdallah Turky
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Mostafa. A. Elhendawy
- Department of Chemistry and Biochemistry, University of Mississippi, MS, USA
- Department of Agriculture Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mohamed. M. Radwan
- National Center for Natural Products Research, University of Mississippi, University, MS, USA
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ibrahim M. Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Heba S. A. Elzahabi
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
114
|
Dewdney B, Ursich L, Fletcher EV, Johns TG. Anoctamins and Calcium Signalling: An Obstacle to EGFR Targeted Therapy in Glioblastoma? Cancers (Basel) 2022; 14:cancers14235932. [PMID: 36497413 PMCID: PMC9740065 DOI: 10.3390/cancers14235932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma is the most common form of high-grade glioma in adults and has a poor survival rate with very limited treatment options. There have been no significant advancements in glioblastoma treatment in over 30 years. Epidermal growth factor receptor is upregulated in most glioblastoma tumours and, therefore, has been a drug target in recent targeted therapy clinical trials. However, while many inhibitors and antibodies for epidermal growth factor receptor have demonstrated promising anti-tumour effects in preclinical models, they have failed to improve outcomes for glioblastoma patients in clinical trials. This is likely due to the highly plastic nature of glioblastoma tumours, which results in therapeutic resistance. Ion channels are instrumental in the development of many cancers and may regulate cellular plasticity in glioblastoma. This review will explore the potential involvement of a class of calcium-activated chloride channels called anoctamins in brain cancer. We will also discuss the integrated role of calcium channels and anoctamins in regulating calcium-mediated signalling pathways, such as epidermal growth factor signalling, to promote brain cancer cell growth and migration.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6319-1023
| | - Lauren Ursich
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| | - Terrance G. Johns
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
115
|
Jin Y, Ma L, Zhang W, Yang W, Feng Q, Wang H. Extracellular signals regulate the biogenesis of extracellular vesicles. Biol Res 2022; 55:35. [PMID: 36435789 PMCID: PMC9701380 DOI: 10.1186/s40659-022-00405-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022] Open
Abstract
Extracellular vesicles (EVs) are naturally released membrane vesicles that act as carriers of proteins and RNAs for intercellular communication. With various biomolecules and specific ligands, EV has represented a novel form of information transfer, which possesses extremely outstanding efficiency and specificity compared to the classical signal transduction. In addition, EV has extended the concept of signal transduction to intercellular aspect by working as the collection of extracellular information. Therefore, the functions of EVs have been extensively characterized and EVs exhibit an exciting prospect for clinical applications. However, the biogenesis of EVs and, in particular, the regulation of this process by extracellular signals, which are essential to conduct further studies and support optimal utility, remain unclear. Here, we review the current understanding of the biogenesis of EVs, focus on the regulation of this process by extracellular signals and discuss their therapeutic value.
Collapse
Affiliation(s)
- Yong Jin
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China
| | - Lele Ma
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China
| | - Wanying Zhang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China
| | - Wen Yang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China.,National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital/Institute, The Second Military Medical University, Shanghai, 20815, China
| | - Qiyu Feng
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China.
| | - Hongyang Wang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China. .,National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital/Institute, The Second Military Medical University, Shanghai, 20815, China.
| |
Collapse
|
116
|
Xie S, Chen M, Fang W, Liu S, Wu Q, Liu C, Xing Y, Shi W, Xu M, Zhang M, Chen S, Zeng X, Wang S, Deng W, Tang Q. Diminished arachidonate 5-lipoxygenase perturbs phase separation and transcriptional response of Runx2 to reverse pathological ventricular remodeling. EBioMedicine 2022; 86:104359. [PMID: 36395739 PMCID: PMC9672960 DOI: 10.1016/j.ebiom.2022.104359] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Arachidonate 5-lipoxygenase (Alox5) belongs to a class of nonheme iron-containing dioxygenases involved in the catalysis of leukotriene biosynthesis. However, the effects of Alox5 itself on pathological cardiac remodeling and heart failure remain elusive. METHODS The role of Alox5 in pathological cardiac remodeling was investigated by Alox5 genetic depletion, AAV9-mediated overexpression in cardiomyocytes, and a bone marrow (BM) transplantation approach. Neonatal rat cardiomyocytes were used to explore the effects of Alox5 in vitro. Molecular and signaling pathways were revealed by CUT &Tag, IP-MS, RNA sequencing and bioinformatic analyses. FINDINGS Untargeted metabolomics showed that serum 5-HETE (a primary product of Alox5) levels were little changed in patients with cardiac hypertrophy, while Alox5 expression was significantly upregulated in murine hypertensive cardiac samples and human cardiac samples of hypertrophy, which prompted us to test whether high Alox5 levels under hypertensive stimuli were directly associated with pathologic myocardium in an enzymatic activity-independent manner. Herein, we revealed that Alox5 deficiency significantly ameliorated transverse aortic constriction (TAC)-induced hypertrophy. Cardiomyocyte-specific Alox5 depletion attenuated hypertensive ventricular remodeling. Conversely, cardiac-specifical Alox5 overexpression showed a pro-hypertrophic cardiac phenotype. Ablation of Alox5 in bone marrow-derived cells did not affect pathological cardiac remodeling and heart failure. Mechanically, Runx2 was identified as a target of Alox5. In this regard, Alox5 PEST domain could directly bind to Runx2 PTS domain, promoting nuclear localization of Runx2 in an enzymatic activity-independent manner, simultaneously contributed to liquid-liquid phase separation (LLPS) of Runx2 at specific domain in the nucleus and increased transcription of EGFR in cardiomyocytes. Runx2 depletion alleviated hypertrophy in Ang II-pretreated Alox5-overexpressing cardiomyocytes. INTERPRETATION Overall, our study demonstrated that targeting Alox5 exerted a protective effect against cardiac remodeling and heart failure under hypertensive stimuli by disturbing LLPS of Runx2 and substantial reduction of EGFR transcription activation in cardiomyocytes. Our findings suggest that negative modulation of Alox5-Runx2 may provide a therapeutic approach against pathological cardiac remodeling and heart failure. FUNDING National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Mengya Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Shiqiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Chen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wenke Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Min Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Si Chen
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Xiaofeng Zeng
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Shasha Wang
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China,Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Corresponding author. Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China.
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China,Corresponding author. Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China.
| |
Collapse
|
117
|
Wu Y, Sun B, Guo X, Wu L, Hu Y, Qin L, Yang T, Li M, Qin T, Jiang M, Liu T. Zishen Pill alleviates diabetes in Db/db mice via activation of PI3K/AKT pathway in the liver. Chin Med 2022; 17:128. [PMID: 36352450 PMCID: PMC9647929 DOI: 10.1186/s13020-022-00683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Background The rising global incidence of type 2 diabetes mellitus (T2DM) highlights a need for new therapies. The Zishen Pill (ZSP) is a traditional Chinese herbal decoction that has previously shown hypoglycemic effects in C57BL/KsJ-db/db mice, although the therapeutic mechanism remains unknown. This study aims to explore the underlying mechanisms of ZSP’s hypoglycemic effects using db/db mice. Methods Db/db mice were divided into two groups: model group and ZSP group, while wt/wt mice were used as a normal control. ZSP was given to mice by gavage for 40 days. During treatment, blood glucose level and body weight were monitored continuously. Oral glucose tolerance test (OGTT) was performed at day 35. Blood and tissue samples were collected at the end of treatment for further analyses. Mice liver samples were analyzed with mRNA transcriptomics using functional annotation and pathway enrichment to identify potential mechanisms that were then explored with qPCR and Western Blot techniques. Results ZSP treatment significantly reduced weight gain and glycemic severity in db/db mice. ZSP also partially restored the glucose homeostasis in db/db mice and increased the hepatic glycogen content. Transcriptomic analyses showed ZSP increased expression of genes involved in glycolysis including Hk2, Hk3, Gck and Pfkb1, and decreased expression of G6pase. Additionally, the gene and protein expression of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway, and Csf1 and Flt3 mRNA expression were significantly upregulated in ZSP group. Conclusion ZSP treatment reduced the severity of diabetic symptoms in db/db mice. ZSP increased expression of genes associated with glycogen synthesis and glycolysis, and decreased gluconeogenesis via the enhancement of the PI3K/AKT signaling in the liver. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00683-8.
Collapse
|
118
|
Pathmanathan S, Yao Z, Coelho P, Valla R, Drecun L, Benz C, Snider J, Saraon P, Grozavu I, Kotlyar M, Jurisica I, Park M, Stagljar I. B cell linker protein (BLNK) is a regulator of Met receptor signaling and trafficking in non-small cell lung cancer. iScience 2022; 25:105419. [DOI: 10.1016/j.isci.2022.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/16/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
|
119
|
Chaudhuri A, Ramesh K, Kumar DN, Dehari D, Singh S, Kumar D, Agrawal AK. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
120
|
Hedna R, Kovacic H, Pagano A, Peyrot V, Robin M, Devred F, Breuzard G. Tau Protein as Therapeutic Target for Cancer? Focus on Glioblastoma. Cancers (Basel) 2022; 14:5386. [PMID: 36358803 PMCID: PMC9653627 DOI: 10.3390/cancers14215386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Despite being extensively studied for several decades, the microtubule-associated protein Tau has not finished revealing its secrets. For long, Tau has been known for its ability to promote microtubule assembly. A less known feature of Tau is its capability to bind to cancer-related protein kinases, suggesting a possible role of Tau in modulating microtubule-independent cellular pathways that are associated with oncogenesis. With the intention of finding new therapeutic targets for cancer, it appears essential to examine the interaction of Tau with these kinases and their consequences. This review aims at collecting the literature data supporting the relationship between Tau and cancer with a particular focus on glioblastoma tumors in which the pathological significance of Tau remains largely unexplored. We will first treat this subject from a mechanistic point of view showing the pivotal role of Tau in oncogenic processes. Then, we will discuss the involvement of Tau in dysregulating critical pathways in glioblastoma. Finally, we will outline promising strategies to target Tau protein for the therapy of glioblastoma.
Collapse
Affiliation(s)
- Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Alessandra Pagano
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Vincent Peyrot
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Maxime Robin
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France
| | - François Devred
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| |
Collapse
|
121
|
Cheppali SK, Dharan R, Katzenelson R, Sorkin R. Supported Natural Membranes on Microspheres for Protein-Protein Interaction Studies. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49532-49541. [PMID: 36306148 DOI: 10.1021/acsami.2c13095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiple biological and pathological processes, such as signaling, cell-cell communication, and infection by various viruses, occur at the plasma membrane. The eukaryotic plasma membrane is made up of thousands of different lipids, membrane proteins, and glycolipids, and its composition is dynamic and constantly changing. Due to the central importance of membranes on the one hand and their complexity on the other, membrane model systems are instrumental for interrogating membrane-related biological processes. Here, we develop a new tool for protein-membrane interaction studies. Our method is based on natural membranes obtained from extracellular vesicles. We form membrane bilayers supported on polystyrene microspheres that can be trapped and manipulated using optical tweezers. This method allows working with membrane proteins of interest within a background of native membrane components where their correct orientation is preserved. We demonstrate our method's applicability by successfully measuring the interaction forces between the Spike protein of SARS-CoV-2 and its human receptor, ACE2. We further show that these interactions are blocked by the addition of an antibody against the receptor binding domain of the Spike protein. Our approach is versatile and broadly applicable for various membrane biology and biophysics questions.
Collapse
Affiliation(s)
- Sudheer K Cheppali
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel6997801
| | - Raviv Dharan
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel6997801
| | - Roni Katzenelson
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel6997801
| | - Raya Sorkin
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel6997801
| |
Collapse
|
122
|
Ahsan MJ, Choudhary K, Ali A, Ali A, Azam F, Almalki AH, Santali EY, Bakht MA, Tahir A, Salahuddin. Synthesis, DFT Analyses, Antiproliferative Activity, and Molecular Docking Studies of Curcumin Analogues. PLANTS (BASEL, SWITZERLAND) 2022; 11:2835. [PMID: 36365289 PMCID: PMC9655326 DOI: 10.3390/plants11212835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 10/03/2023]
Abstract
With 19.3 million new cases and almost 10 million deaths in 2020, cancer has become a leading cause of death today. Curcumin and its analogues were found to have promising anticancer activity. Inspired by curcumin’s promising anticancer activity, we prepared three semi-synthetic analogues by chemically modifying the diketone function of curcumin to its pyrazole counterpart. The curcumin analogues (3a−c) were synthesized by two different methods, followed by their DFT analyses to study the HOMO/LUMO configuration to access the stability of compounds (∆E = 3.55 to 3.35 eV). The curcumin analogues (3a−c) were tested for antiproliferative activity against a total of five dozen cancer cell lines in a single (10 µM) and five dose (0.001 to 100 µM) assays. 3,5-Bis(4-hydroxy-3-methoxystyryl)-1H-pyrazole-1-yl-(phenoxy)ethanone (3b) and 3,5-bis(4-hydroxy-3-methoxystyryl)-1H-pyrazole-1-yl-(2,4-dichlorophenoxy)ethanone (3c) demonstrated the most promising antiproliferative activity against the cancer cell lines with growth inhibitions of 92.41% and 87.28%, respectively, in a high single dose of 10 µM and exhibited good antiproliferative activity (%GIs > 68%) against 54 out of 56 cancer cell lines and 54 out of 60 cell lines, respectively. The compound 3b and 3c demonstrated the most potent antiproliferative activity in a 5-dose assay with GI50 values ranging between 0.281 and 5.59 µM and 0.39 and 0.196 and 3.07 µM, respectively. The compound 3b demonstrated moderate selectivity against a leukemia panel with a selectivity ratio of 4.59. The HOMO-LUMO energy-gap (∆E) of the compounds in the order of 3a > 3b > 3c, was found to be in harmony with the anticancer activity in the order of 3c ≥ 3b > 3a. Following that, all of the curcumin analogues were molecular docked against EGFR, one of the most appealing targets for antiproliferative activity. In a molecular docking simulation, the ligand 3b exhibited three different types of interactions: H-bond, π-π-stacking and π-cationic. The ligand 3b displayed three H-bonds with the residues Met793 (with methoxy group), Lys875 (with phenolic group) and Asp855 (with methoxy group). The π-π-stacking interaction was observed between the phenyl (of phenoxy) and the residue Phe997, while π-cationic interaction was displayed between the phenyl (of curcumin) and the residue Arg841. Similarly, the ligand 3c displayed five H-bonds with the residue Met793 (with methoxy and phenolic groups), Lys845 (methoxy group), Cys797 (phenoxy oxygen), and Asp855 (phenolic group), as well as a halogen bond with residue Cys797 (chloro group). Furthermore, all the compound 3a−c demonstrated significant binding affinity (−6.003 to −7.957 kcal/mol) against the active site of EGFR. The curcumin analogues described in the current work might offer beneficial therapeutic intervention for the treatment and prevention of cancer. Future anticancer drug discovery programs can be expedited by further modifying these analogues to create new compounds with powerful anticancer potentials.
Collapse
Affiliation(s)
- Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur 302 039, Rajasthan, India
| | - Kavita Choudhary
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur 302 039, Rajasthan, India
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Uniazah 51911, Saudi Arabia
| | - Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Eman Y. Santali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Md. Afroz Bakht
- Department of Chemistry, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia
| | - Abu Tahir
- Department of Pharmacology, Hakikullah Choudhary College of Pharmacy, Ghari Ghat 271 312, Uttar Pradesh, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Technology (Pharmacy Institute), Knowledge Park-2, Greater Noida 201 306, Uttar Pradesh, India
| |
Collapse
|
123
|
Boutin A, Marcus-Samuels B, Eliseeva E, Neumann S, Gershengorn MC. Opposing Effects of EGF Receptor Signaling on Proliferation and Differentiation Initiated by EGF or TSH/EGF Receptor Transactivation. Endocrinology 2022; 163:bqac136. [PMID: 36281035 PMCID: PMC9761572 DOI: 10.1210/endocr/bqac136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/19/2022]
Abstract
Regulation of thyroid cells by thyrotropin (TSH) and epidermal growth factor (EGF) has been known but different effects of these regulators on proliferation and differentiation have been reported. We studied these responses in primary cultures of human thyroid cells to determine whether TSH receptor (TSHR) signaling may involve EGF receptor (EGFR) transactivation. We confirm that EGF stimulates proliferation and de-differentiation whereas TSH causes differentiation in the absence of other growth factors. We show that TSH/TSHR transactivates EGFR and characterize it as follows: (1) TSH-induced upregulation of thyroid-specific genes is inhibited by 2 inhibitors of EGFR kinase activity, AG1478 and erlotinib; (2) the mechanism of transactivation is independent of an extracellular EGFR ligand by showing that 2 antibodies, cetuximab and panitumumab, that completely inhibited binding of EGFR ligands to EGFR had no effect on transactivation, and by demonstrating that no EGF was detected in media conditioned by thyrocytes incubated with TSH; (3) TSH/TSHR transactivation of EGFR is different than EGFR activation by EGF by showing that EGF led to rapid phosphorylation of EGFR whereas transactivation occurred in the absence of receptor phosphorylation; (4) EGF caused downregulation of EGFR whereas transactivation had no effect on EGFR level; (5) EGF and TSH stimulation converged on the protein kinase B (AKT) pathway, because TSH, like EGF, stimulated phosphorylation of AKT that was inhibited by EGFR inhibitors; and (6) TSH-induced upregulation of thyroid genes was inhibited by the AKT inhibitor MK2206. Thus, TSH/TSHR causes EGFR transactivation that is independent of extracellular EGFR ligand and in part mediates TSH regulation of thyroid hormone biosynthetic genes.
Collapse
Affiliation(s)
- Alisa Boutin
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernice Marcus-Samuels
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elena Eliseeva
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
124
|
Wang N, Cao Y, Si C, Shao P, Su G, Wang K, Bao J, Yang L. Emerging Role of ERBB2 in Targeted Therapy for Metastatic Colorectal Cancer: Signaling Pathways to Therapeutic Strategies. Cancers (Basel) 2022; 14:5160. [PMID: 36291943 PMCID: PMC9600272 DOI: 10.3390/cancers14205160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022] Open
Abstract
Despite recent improvements in the comprehensive therapy of malignancy, metastatic colorectal cancer (mCRC) continues to have a poor prognosis. Notably, 5% of mCRC cases harbor Erb-B2 receptor tyrosine kinase 2 (ERBB2) alterations. ERBB2, commonly referred to as human epidermal growth factor receptor 2, is a member of the human epidermal growth factor receptor family of protein tyrosine kinases. In addition to being a recognized therapeutic target in the treatment of gastric and breast malignancies, it is considered crucial in the management of CRC. In this review, we describe the molecular biology of ERBB2 from the perspective of biomarkers for mCRC-targeted therapy, including receptor structures, signaling pathways, gene alterations, and their detection methods. We also discuss the relationship between ERBB2 aberrations and the underlying mechanisms of resistance to anti-EGFR therapy and immunotherapy tolerance in these patients with a focus on novel targeted therapeutics and ongoing clinical trials. This may aid the development of a new standard of care in patients with ERBB2-positive mCRC.
Collapse
Affiliation(s)
- Nannan Wang
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Yuepeng Cao
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Chengshuai Si
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Peng Shao
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Guoqing Su
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Ke Wang
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Jun Bao
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Liu Yang
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| |
Collapse
|
125
|
Chao D, Xu X, Miao Y, Yang L, Gao Q, Xu R, Tian Y, Zhao Y, Du Y, Han D. Covalent stabilization of DNA nanostructures on cell membranes for efficient surface receptor-mediated labeling and function regulations. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
126
|
Hanif MA, Hossen S, Cho Y, Sukhan ZP, Choi CY, Kho KH. Characterization and Expression Analysis of Mollusk-like Growth Factor: A Secreted Protein Involved in Pacific Abalone Embryonic and Larval Development. BIOLOGY 2022; 11:1445. [PMID: 36290349 PMCID: PMC9598359 DOI: 10.3390/biology11101445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
Abstract
Growth factors are mostly secreted proteins that play key roles in an organism's biophysical processes through binding to specific receptors on the cell surface. The mollusk-like growth factor (MLGF) is a novel cell signaling protein in the adenosine deaminase-related growth factor (ADGF) subfamily. In this study, the MLGF gene was cloned and characterized from the digestive gland tissue of Pacific abalone and designated as Hdh-MLGF. The transcribed full-length sequence of Hdh-MLGF was 1829 bp long with a 1566 bp open reading frame (ORF) encoding 521 amino acids. The deduced amino acid sequence contained a putative signal peptide and two conserved adenosine deaminase domains responsible for regulating molecular function. Fluorescence in situ hybridization localized Hdh-MLGF in the submucosa layer of digestive tubules in the digestive gland. The mRNA expression analysis indicated that Hdh-MLGF expression was restricted to the digestive gland in the adult Pacific abalone. However, Hdh-MLGF mRNA expressions were observed in all stages of embryonic and larval development, suggesting Hdh-MLGF might be involved in the Pacific abalone embryonic and larval development. This is the first study describing Hdh-MLGF and its involvement in the Pacific abalone embryonic and larval development.
Collapse
Affiliation(s)
- Md Abu Hanif
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Korea
| | - Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Korea
| | - Yusin Cho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Korea
| | - Zahid Parvez Sukhan
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Korea
| | - Cheol Young Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan 49112, Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Korea
| |
Collapse
|
127
|
Park JS, Choi J, Cao L, Mohanty J, Suzuki Y, Park A, Baker D, Schlessinger J, Lee S. Isoform-specific inhibition of FGFR signaling achieved by a de-novo-designed mini-protein. Cell Rep 2022; 41:111545. [PMID: 36288716 PMCID: PMC9636537 DOI: 10.1016/j.celrep.2022.111545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
Cellular signaling by fibroblast growth factor receptors (FGFRs) is a highly regulated process mediated by specific interactions between distinct subsets of fibroblast growth factor (FGF) ligands and two FGFR isoforms generated by alternative splicing: an epithelial b- and mesenchymal c-isoforms. Here, we investigate the properties of a mini-protein, mb7, developed by an in silico design strategy to bind to the ligand-binding region of FGFR2. We describe structural, biophysical, and cellular analyses demonstrating that mb7 binds with high affinity to the c-isoforms of FGFR, resulting in inhibition of cellular signaling induced by a subset of FGFs that preferentially activate c-isoforms of FGFR. Notably, as mb7 blocks interaction between FGFR with Klotho proteins, it functions as an antagonist of the metabolic hormones FGF19 and FGF21, providing mechanistic insights and strategies for the development of therapeutics for diseases driven by aberrantly activated FGFRs. Park et al. show that a de-novo-designed mini-protein, mb7, can specifically recognize c-isoforms of FGFRs. By masking the regions of FGFR that are critical for the FGFR activation, mb7 can potently inhibit cellular signaling by a subset of FGFs that preferentially activate FGFR c-isoform signaling.
Collapse
|
128
|
Zheng TJ, Parra-Izquierdo I, Reitsma SE, Heinrich MC, Larson MK, Shatzel JJ, Aslan JE, McCarty OJT. Platelets and tyrosine kinase inhibitors: clinical features, mechanisms of action, and effects on physiology. Am J Physiol Cell Physiol 2022; 323:C1231-C1250. [PMID: 35938677 PMCID: PMC9576167 DOI: 10.1152/ajpcell.00040.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) have emerged as a promising class of target-directed, small molecule inhibitors used to treat hematologic malignancies, inflammatory diseases, and autoimmune disorders. Recently, TKIs have also gained interest as potential antiplatelet-directed therapeutics that could be leveraged to reduce pathologic thrombus formation and atherothrombotic complications, while minimally affecting platelet hemostatic function. This review provides a mechanistic overview and summarizes the known effects of tyrosine kinase inhibitors on platelet signaling and function, detailing prominent platelet signaling pathways downstream of the glycoprotein VI (GPVI) receptor, integrin αIIbβ3, and G protein-coupled receptors (GPCRs). This review focuses on mechanistic as well as clinically relevant and emerging TKIs targeting major families of tyrosine kinases including but not limited to Bruton's tyrosine kinase (BTK), spleen tyrosine kinase (Syk), Src family kinases (SFKs), Janus kinases (JAK), and signal transducers and activators of transcription (STAT) and evaluates their effects on platelet aggregation and adhesion, granule secretion, receptor expression and activation, and protein phosphorylation events. In summation, this review highlights current advances and knowledge on the effects of select TKIs on platelet biology and furthers insight on signaling pathways that may represent novel druggable targets coupled to specific platelet functional responses.
Collapse
Affiliation(s)
- Tony J Zheng
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Iván Parra-Izquierdo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Stéphanie E Reitsma
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Michael C Heinrich
- Portland Veterans Affairs Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Molecular and Cellular Biosciences, Oregon Health & Science University, Portland, Oregon
| | - Mark K Larson
- Department of Biology, Augustana University, Sioux Falls, South Dakota
| | - Joseph J Shatzel
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon
| | - Joseph E Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental & Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
129
|
Kong Q, Weng Y, Zheng Z, Chen W, Li P, Cai Z, Tian R. Integrated and High-Throughput Approach for Sensitive Analysis of Tyrosine Phosphoproteome. Anal Chem 2022; 94:13728-13736. [PMID: 36179360 DOI: 10.1021/acs.analchem.2c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tyrosine phosphorylation (pTyr) regulates various signaling pathways under normal and cancerous states. Due to their low abundance and transient and dynamic natures, systematic profiling of pTyr sites is challenging. Antibody and engineered binding domain-based approaches have been well applied to pTyr peptide enrichment. However, traditional methods have the disadvantage of a long sample preparation process, which makes them unsuitable for processing limited amount of samples, especially in a high-throughput manner. In this study we developed a 96-well microplate-based approach to integrate all the sample preparation steps starting from cell culture to MS-compatible pTyr peptide enrichment in three consecutive 96-well microplates. By assembling an engineered SH2 domain onto a microplate, nonspecific adsorption of phosphopeptides is greatly reduced, which allows us to remove the Ti-IMAC purification and three C18 desalting steps (after digestion, pTyr enrichment, and Ti-IMAC purification) and, therefore, greatly simplifies the entire pTyr peptide enrichment workflow, especially when processing a large number of samples. Starting with 96-well microplate-cultured, pervanadate-stimulated cells, our approach could enrich 21% more pTyr sites than the traditional serial pTyr enrichment approach and showed good sensitivity and reproducibility in the range of 200 ng to 200 μg peptides. Importantly, we applied this approach to profile tyrosine kinase inhibitor-mediated EGFR signaling pathway and could well differentiate the distinct response of different pTyr sites. Collectively, the integrated 96-well microplate-based approach is valuable for profiling pTyr sites from limited biological samples and in a high-throughput manner.
Collapse
Affiliation(s)
- Qian Kong
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Yicheng Weng
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Zhendong Zheng
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Wendong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Pengfei Li
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
130
|
Benzimidazole-linked pyrazolo[1,5-a]pyrimidine conjugates: synthesis and detail evaluation as potential anticancer agents. Mol Divers 2022:10.1007/s11030-022-10481-x. [DOI: 10.1007/s11030-022-10481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
|
131
|
Meineke R, Stelz S, Busch M, Werlein C, Kühnel M, Jonigk D, Rimmelzwaan GF, Elbahesh H. FDA-Approved Inhibitors of RTK/Raf Signaling Potently Impair Multiple Steps of In Vitro and Ex Vivo Influenza A Virus Infections. Viruses 2022; 14:2058. [PMID: 36146864 PMCID: PMC9504178 DOI: 10.3390/v14092058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza virus (IV) infections pose a burden on global public health with significant morbidity and mortality. The limited range of currently licensed IV antiviral drugs is susceptible to the rapid rise of resistant viruses. In contrast, FDA-approved kinase inhibitors can be repurposed as fast-tracked host-targeted antivirals with a higher barrier of resistance. Extending our recent studies, we screened 21 FDA-approved small-molecule kinase inhibitors (SMKIs) and identified seven candidates as potent inhibitors of pandemic and seasonal IV infections. These SMKIs were further validated in a biologically and clinically relevant ex vivo model of human precision-cut lung slices. We identified steps of the virus infection cycle affected by these inhibitors (entry, replication, egress) and found that most SMKIs affected both entry and egress. Based on defined and overlapping targets of these inhibitors, the candidate SMKIs target receptor tyrosine kinase (RTK)-mediated activation of Raf/MEK/ERK pathways to limit influenza A virus infection. Our data and the established safety profiles of these SMKIs support further clinical investigations and repurposing of these SMKIs as host-targeted influenza therapeutics.
Collapse
Affiliation(s)
- Robert Meineke
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Sonja Stelz
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Maximilian Busch
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Christopher Werlein
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Mark Kühnel
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| |
Collapse
|
132
|
Asmamaw MD, Shi XJ, Zhang LR, Liu HM. A comprehensive review of SHP2 and its role in cancer. Cell Oncol 2022; 45:729-753. [PMID: 36066752 DOI: 10.1007/s13402-022-00698-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase ubiquitously expressed mainly in the cytoplasm of several tissues. SHP2 modulates diverse cell signaling events that control metabolism, cell growth, differentiation, cell migration, transcription and oncogenic transformation. It interacts with diverse molecules in the cell, and regulates key signaling events including RAS/ERK, PI3K/AKT, JAK/STAT and PD-1 pathways downstream of several receptor tyrosine kinases (RTKs) upon stimulation by growth factors and cytokines. SHP2 acts as both a phosphatase and a scaffold, and plays prominently oncogenic functions but can be tumor suppressor in a context-dependent manner. It typically acts as a positive regulator of RTKs signaling with some inhibitory functions reported as well. SHP2 expression and activity is regulated by such factors as allosteric autoinhibition, microRNAs, ubiquitination and SUMOylation. Dysregulation of SHP2 expression or activity causes many developmental diseases, and hematological and solid tumors. Moreover, upregulated SHP2 expression or activity also decreases sensitivity of cancer cells to anticancer drugs. SHP2 is now considered as a compelling anticancer drug target and several classes of SHP2 inhibitors with different mode of action are developed with some already in clinical trial phases. Moreover, novel SHP2 substrates and functions are rapidly growing both in cell and cancer. In view of this, we comprehensively and thoroughly reviewed literatures about SHP2 regulatory mechanisms, substrates and binding partners, biological functions, roles in human cancers, and different classes of small molecule inhibitors target this oncoprotein in cancer.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Xiao-Jing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China. .,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, Henan Province, 450001, People's Republic of China.
| |
Collapse
|
133
|
Copeland J, Wilson K, Simoes-Costa M. Micromanaging pattern formation: miRNA regulation of signaling systems in vertebrate development. FEBS J 2022; 289:5166-5175. [PMID: 34310060 DOI: 10.1111/febs.16139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
Early embryogenesis requires the establishment of fields of progenitor cells with distinct molecular signatures. A balance of intrinsic and extrinsic cues determines the boundaries of embryonic territories and pushes progenitor cells toward different fates. This process involves multiple layers of regulation, including signaling systems, transcriptional networks, and post-transcriptional control. In recent years, microRNAs (miRNAs) have emerged as undisputed regulators of developmental processes. Here, we discuss how miRNAs regulate pattern formation during vertebrate embryogenesis. We survey how miRNAs modulate the activity of signaling pathways to optimize transcriptional responses in embryonic cells. We also examine how localized RNA interference can generate spatial complexity during early development. Unraveling the complex crosstalk between miRNAs, signaling systems and cell fate decisions will be crucial for our understanding of developmental outcomes and disease.
Collapse
Affiliation(s)
- Jacqueline Copeland
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Kayla Wilson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
134
|
Tamburello M, Altieri B, Sbiera I, Sigala S, Berruti A, Fassnacht M, Sbiera S. FGF/FGFR signaling in adrenocortical development and tumorigenesis: novel potential therapeutic targets in adrenocortical carcinoma. Endocrine 2022; 77:411-418. [PMID: 35583844 PMCID: PMC9385797 DOI: 10.1007/s12020-022-03074-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/08/2022] [Indexed: 12/14/2022]
Abstract
FGF/FGFR signaling regulates embryogenesis, angiogenesis, tissue homeostasis and wound repair by modulating proliferation, differentiation, survival, migration and metabolism of target cells. Understandably, compelling evidence for deregulated FGF signaling in the development and progression of different types of tumors continue to emerge and FGFR inhibitors arise as potential targeted therapeutic agents, particularly in tumors harboring aberrant FGFR signaling. There is first evidence of a dual role of the FGF/FGFR system in both organogenesis and tumorigenesis, of which this review aims to provide an overview. FGF-1 and FGF-2 are expressed in the adrenal cortex and are the most powerful mitogens for adrenocortical cells. Physiologically, they are involved in development and maintenance of the adrenal gland and bind to a family of four tyrosine kinase receptors, among which FGFR1 and FGFR4 are the most strongly expressed in the adrenal cortex. The repeatedly proven overexpression of these two FGFRs also in adrenocortical cancer is thus likely a sign of their participation in proliferation and vascularization, though the exact downstream mechanisms are not yet elucidated. Thus, FGFRs potentially offer novel therapeutic targets also for adrenocortical carcinoma, a type of cancer resistant to conventional antimitotic agents.
Collapse
Affiliation(s)
- Mariangela Tamburello
- Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Barbara Altieri
- Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Iuliu Sbiera
- Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Martin Fassnacht
- Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
- Comprehenssive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Silviu Sbiera
- Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
135
|
Rogers MA, Campaña MB, Long R, Fantauzzo KA. PDGFR dimer-specific activation, trafficking and downstream signaling dynamics. J Cell Sci 2022; 135:jcs259686. [PMID: 35946433 PMCID: PMC9482349 DOI: 10.1242/jcs.259686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Signaling through the platelet-derived growth factor receptors (PDGFRs) plays a critical role in multiple cellular processes during development. The two PDGFRs, PDGFRα and PDGFRβ, dimerize to form homodimers and/or heterodimers. Here, we overcome previous limitations in studying PDGFR dimer-specific dynamics by generating cell lines stably expressing C-terminal fusions of each PDGFR with bimolecular fluorescence complementation (BiFC) fragments corresponding to the N-terminal or C-terminal regions of the Venus fluorescent protein. We find that PDGFRβ receptors homodimerize more quickly than PDGFRα receptors in response to PDGF ligand, with increased levels of autophosphorylation. Furthermore, we demonstrate that PDGFRα homodimers are trafficked and degraded more quickly, whereas PDGFRβ homodimers are more likely to be recycled back to the cell membrane. We show that PDGFRβ homodimer activation results in a greater amplitude of phospho-ERK1/2 and phospho-AKT signaling, as well as increased proliferation and migration. Finally, we demonstrate that inhibition of clathrin-mediated endocytosis leads to changes in cellular trafficking and downstream signaling, particularly for PDGFRα homodimers. Collectively, our findings provide significant insight into how biological specificity is introduced to generate unique responses downstream of PDGFR engagement. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Katherine A. Fantauzzo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
136
|
Verma V, Dileepan M, Huang Q, Phan T, Hu WS, Ly H, Liang Y. Influenza A virus activates cellular Tropomyosin receptor kinase A (TrkA) signaling to promote viral replication and lung inflammation. PLoS Pathog 2022; 18:e1010874. [PMID: 36121891 PMCID: PMC9521937 DOI: 10.1371/journal.ppat.1010874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/29/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Influenza A virus (IAV) infection causes acute respiratory disease with potential severe and deadly complications. Viral pathogenesis is not only due to the direct cytopathic effect of viral infections but also to the exacerbated host inflammatory responses. Influenza viral infection can activate various host signaling pathways that function to activate or inhibit viral replication. Our previous studies have shown that a receptor tyrosine kinase TrkA plays an important role in the replication of influenza viruses in vitro, but its biological roles and functional mechanisms in influenza viral infection have not been characterized. Here we show that IAV infection strongly activates TrkA in vitro and in vivo. Using a chemical-genetic approach to specifically control TrkA kinase activity through a small molecule compound 1NMPP1 in a TrkA knock-in (TrkA KI) mouse model, we show that 1NMPP1-mediated TrkA inhibition completely protected mice from a lethal IAV infection by significantly reducing viral loads and lung inflammation. Using primary lung cells isolated from the TrkA KI mice, we show that specific TrkA inhibition reduced IAV viral RNA synthesis in airway epithelial cells (AECs) but not in alveolar macrophages (AMs). Transcriptomic analysis confirmed the cell-type-specific role of TrkA in viral RNA synthesis, and identified distinct gene expression patterns under the TrkA regulation in IAV-infected AECs and AMs. Among the TrkA-activated targets are various proinflammatory cytokines and chemokines such as IL6, IL-1β, IFNs, CCL-5, and CXCL9, supporting the role of TrkA in mediating lung inflammation. Indeed, while TrkA inhibitor 1NMPP1 administered after the peak of IAV replication had no effect on viral load, it was able to decrease lung inflammation and provided partial protection in mice. Taken together, our results have demonstrated for the first time an important biological role of TrkA signaling in IAV infection, identified its cell-type-specific contribution to viral replication, and revealed its functional mechanism in virus-induced lung inflammation. This study suggests TrkA as a novel host target for therapeutic development against influenza viral disease.
Collapse
Affiliation(s)
- Vikram Verma
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Thu Phan
- Department of Chemical Engineering and Material Sciences, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Shou Hu
- Department of Chemical Engineering and Material Sciences, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| |
Collapse
|
137
|
Immunogenic Cell Death Enhances Immunotherapy of Diffuse Intrinsic Pontine Glioma: From Preclinical to Clinical Studies. Pharmaceutics 2022; 14:pharmaceutics14091762. [PMID: 36145510 PMCID: PMC9502387 DOI: 10.3390/pharmaceutics14091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is the most lethal tumor involving the pediatric central nervous system. The median survival of children that are diagnosed with DIPG is only 9 to 11 months. More than 200 clinical trials have failed to increase the survival outcomes using conventional cytotoxic or myeloablative chemotherapy. Immunotherapy presents exciting therapeutic opportunities against DIPG that is characterized by unique and heterogeneous features. However, the non-inflammatory DIPG microenvironment greatly limits the role of immunotherapy in DIPG. Encouragingly, the induction of immunogenic cell death, accompanied by the release of damage-associated molecular patterns (DAMPs) shows satisfactory efficacy of immune stimulation and antitumor strategies. This review dwells on the dilemma and advances in immunotherapy for DIPG, and the potential efficacy of immunogenic cell death (ICD) in the immunotherapy of DIPG.
Collapse
|
138
|
Zhang Y, Gao X, Bai X, Yao S, Chang YZ, Gao G. The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Transl Neurodegener 2022; 11:39. [PMID: 35996194 PMCID: PMC9395820 DOI: 10.1186/s40035-022-00313-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Furin is an important mammalian proprotein convertase that catalyzes the proteolytic maturation of a variety of prohormones and proproteins in the secretory pathway. In the brain, the substrates of furin include the proproteins of growth factors, receptors and enzymes. Emerging evidence, such as reduced FURIN mRNA expression in the brains of Alzheimer's disease patients or schizophrenia patients, has implicated a crucial role of furin in the pathophysiology of neurodegenerative and neuropsychiatric diseases. Currently, compared to cancer and infectious diseases, the aberrant expression of furin and its pharmaceutical potentials in neurological diseases remain poorly understood. In this article, we provide an overview on the physiological roles of furin and its substrates in the brain, summarize the deregulation of furin expression and its effects in neurodegenerative and neuropsychiatric disorders, and discuss the implications and current approaches that target furin for therapeutic interventions. This review may expedite future studies to clarify the molecular mechanisms of furin deregulation and involvement in the pathogenesis of neurodegenerative and neuropsychiatric diseases, and to develop new diagnosis and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoqin Gao
- Shijiazhuang People's Hospital, Hebei Medical University, Shijiazhuang, 050027, China
| | - Xue Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shanshan Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
139
|
Leong SK, Hsiao JC, Shie JJ. A Multiscale Molecular Dynamic Analysis Reveals the Effect of Sialylation on EGFR Clustering in a CRISPR/Cas9-Derived Model. Int J Mol Sci 2022; 23:ijms23158754. [PMID: 35955894 PMCID: PMC9368999 DOI: 10.3390/ijms23158754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial and viral pathogens can modulate the glycosylation of key host proteins to facilitate pathogenesis by using various glycosidases, particularly sialidases. Epidermal growth factor receptor (EGFR) signaling is activated by ligand-induced receptor dimerization and oligomerization. Ligand binding induces conformational changes in EGFR, leading to clusters and aggregation. However, information on the relevance of EGFR clustering in the pattern of glycosylation during bacterial and viral invasion remains unclear. In this study, (1) we established CRISPR/Cas9-mediated GFP knock-in (EGFP-KI) HeLa cells expressing fluorescently tagged EGFR at close to endogenous levels to study EGF-induced EGFR clustering and molecular dynamics; (2) We studied the effect of sialylation on EGF-induced EGFR clustering and localization in live cells using a high content analysis platform and raster image correlation spectroscopy (RICS) coupled with a number and brightness (N&B) analysis; (3) Our data reveal that the removal of cell surface sialic acids by sialidase treatment significantly decreases EGF receptor clustering with reduced fluorescence intensity, number, and area of EGFR-GFP clusters per cell upon EGF stimulation. Sialylation appears to mediate EGF-induced EGFR clustering as demonstrated by the change of EGFR-GFP clusters in the diffusion coefficient and molecular brightness, providing new insights into the role of sialylation in EGF-induced EGFR activation; and (4) We envision that the combination of CRISPR/Cas9-mediated fluorescent tagging of endogenous proteins and fluorescence imaging techniques can be the method of choice for studying the molecular dynamics and interactions of proteins in live cells.
Collapse
Affiliation(s)
- Shwee Khuan Leong
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Taiwan International Graduate Program (TIGP), Sustainable Chemical Science & Technology (SCST), Academia Sinica, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu 30050, Taiwan
| | - Jye-Chian Hsiao
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Correspondence:
| |
Collapse
|
140
|
Salman G, Aldujaily E, Jabardi M, Qassid OL. Investigating the clinical significance of EGFR expression using machine learning in a series of Iraqi patients with triple-negative breast cancer. J Med Life 2022; 15:967-978. [PMID: 36188649 PMCID: PMC9514808 DOI: 10.25122/jml-2021-0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2022] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is a heterogeneous disease with a distinct profile of the expression of each tumor. Triple-negative breast cancer (TNBC) is a molecular subtype of breast cancer characterized by an aggressive clinical behavior linked to loss or reduced expression of estrogen, progesterone, and Her2/neu receptors. The study's main objective was to investigate the clinical significance of epidermal growth factor receptor (EGFR) overexpression in a series of Iraqi patients with TNBC. The sectional analytic study involved immunohistochemical analysis of EGFR expression in randomly selected 53 formalin fixed paraffin embedded tissue blocks of TNBC cases out of 127 Iraqi patients with TNBC and correlated expression data with clinicopathological parameters including survival time. Machine learning (statistical tests and principal component analysis (PCA)) was used to predict the outcome of the patients using EGFR expression data together with clinicopathological parameters. EGFR was expressed in approximately 28% of TNBC cases. We estimated the risk of mortality and distant metastasis based on EGFR expression and clinicopathologic factors using the principal component analysis (PCA) model. We found a substantial positive correlation between clinical stage and distant metastasis, clinical stage and death, death and distant metastasis, and death and positive EGFR expression. Overall, EGFR expression was linked to a poor prognosis and increased mortality. A higher risk of distant metastasis and death was associated with an advanced clinical stage of the tumor. Furthermore, the existence of distant metastases increased the risk of death. These findings raise the possibility of using EGFR expression data with other clinicopathological parameters to predict the outcome of patients with TNBC.
Collapse
Affiliation(s)
- Gufran Salman
- Department of Basic Science, Faculty of Dentistry, University of Kufa, Kufa, Iraq
| | - Esraa Aldujaily
- Department of Pathology and Forensic Medicine, Faculty of Medicine, University of Kufa, Kufa, Iraq,Corresponding Author: Esraa Aldujaily, Department of Pathology and Forensic Medicine, Faculty of Medicine, University of Kufa, Kufa, Iraq. E-mail:
| | - Mohammed Jabardi
- Department of Computer Science, College of Education, University of Kufa, Kufa, Iraq
| | - Omar Layth Qassid
- Cancer Research Center, University of Leicester, Leicester City, United Kingdom
| |
Collapse
|
141
|
Zhao W, Liu L, Li X, Xu S. EphA10 drives tumor progression and immune evasion by regulating the MAPK/ERK cascade in lung adenocarcinoma. Int Immunopharmacol 2022; 110:109031. [PMID: 35839564 DOI: 10.1016/j.intimp.2022.109031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/24/2022]
Abstract
Backgrounds Lung adenocarcinoma is the most frequent histological type among patients with lung cancer. Ephrin receptor A10 (EphA10), a member of the receptor tyrosine kinase family, has been reported to participate in tumor progression, but its role in lung adenocarcinoma (LUAD) remains unknown. Methods Immunohistochemistry staining and real-time PCR were employed to determine the expression of EphA10 in clinical LUAD samples. EphA10 silencing or overexpression in LUAD cells was achieved by transduction of lentivirus. The effects of EphA10 on LUAD cells were evaluated by CCK-8, EdU staining, flow cytometry, Transwell, and Western blot. The in vivo tumor growth was assessed in the xenograft mice model. Results EphA10 was overexpressed in LUAD tissues. Higher EphA10 expression was observed in the tissues at the advanced tumor stage and was positively correlated with the EGFR. Mechanistically, silencing of EphA10 suppressed proliferation, migration, invasion, and epithelial-mesenchymal transition of LUAD cells. Additionally, EphA10 knockdown significantly reduced the PD-L1 expression in LUAD cells and enhanced NK cell-mediated anti-tumor effects. Furthermore, EphA10 activated the MAPK/ERK pathway, and U0126, an inhibitor of MEK, markedly reversed the promoting impacts of EphA10 overexpression on LUAD cells. Consistently, results from subcutaneous tumor xenografts in nude mice confirmed that EphA10 knockdown significantly inhibited tumor growth in vivo. Conclusions This work demonstrates that EphA10 drives tumor progression and immune evasion by regulating the MAPK/ERK cascade in LUAD, implying that EphA10 has the potential to be a therapeutic target in treating LUAD.
Collapse
Affiliation(s)
- Wenyue Zhao
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Lu Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Xuehao Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China.
| |
Collapse
|
142
|
Wang H, Chi L, Yu F, Dai H, Si X, Gao C, Wang Z, Liu L, Zheng J, Ke Y, Liu H, Zhang Q. The overview of Mitogen-activated extracellular signal-regulated kinase (MEK)-based dual inhibitor in the treatment of cancers. Bioorg Med Chem 2022; 70:116922. [PMID: 35849914 DOI: 10.1016/j.bmc.2022.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Mitogen-activated extracellular signal-regulated kinase 1 and 2 (MEK1/2) are the critical components of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) signaling pathway which is one of the well-characterized kinase cascades regulating cell proliferation, differentiation, growth, metabolism, survival and mobility both in normal and cancer cells. The aberrant activation of MAPK/ERK1/2 pathway is a hallmark of numerous human cancers, therefore targeting the components of this pathway to inhibit its dysregulation is a promising strategy for cancer treatment. Enormous efforts have been done in the development of MEK1/2 inhibitors and encouraging advancements have been made, including four inhibitors approved for clinical use. However, due to the multifactorial property of cancer and rapidly arising drug resistance, the clinical efficacy of these MEK1/2 inhibitors as monotherapy are far from ideal. Several alternative strategies have been developed to improve the limited clinical efficacy, including the dual inhibitor which is a single drug molecule able to simultaneously inhibit two targets. In this review, we first introduced the activation and function of the MAPK/ERK1/2 components and discussed the advantages of MEK1/2-based dual inhibitors compared with the single inhibitors and combination therapy in the treatment of cancers. Then, we overviewed the MEK1/2-based dual inhibitors for the treatment of cancers and highlighted the theoretical basis of concurrent inhibition of MEK1/2 and other targets for development of these dual inhibitors. Besides, the status and results of these dual inhibitors in both preclinical and clinical studies were also the focus of this review.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Lingling Chi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Fuqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Hongling Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| |
Collapse
|
143
|
Moshe Halamish H, Zlotver I, Sosnik A. Polymeric nanoparticles surface-complexed with boric acid actively target solid tumors overexpressing sialic acid. J Colloid Interface Sci 2022; 626:916-929. [PMID: 35835042 DOI: 10.1016/j.jcis.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Sialic acid is a fundamental component of the tumor microenvironment, modulates cell-cell and cell-extracellular matrix interactions and is associated with bad prognosis and clinical outcomes in different cancers. Capitalizing on the ability of boric acid to form cyclic esters with diols, in this work, we design self-assembled multi-micellar colloidal systems of an amphiphilic poly(vinyl alcohol)-g-poly(methyl methacrylate) copolymer surface-modified with boric acid for the active targeting of solid tumors that overexpress sialic acid. Nanoparticles display sizes in the 100-200 nm range and a spherical morphology, as determined by dynamic light scattering and high resolution-scanning electron microscopy, respectively. The uptake and anti-proliferative activity are assessed in 2D and 3D models of rhabdomyosarcoma in vitro. Surface boration increases the nanoparticle permeability and uptake, especially in rhabdomyosarcoma spheroids that overexpress sialic acid to a greater extent than 2D cultures. The biodistribution of non-borated and borated nanoparticles upon intravenous injection to a subcutaneous rhabdomyosarcoma murine xenograft model confirm a statistically significant increase in the intertumoral accumulation of the modified nanocarriers with respect to the unmodified counterparts and a sharp decrease in major clearance organs such as the liver. Overall, our results highlight the promise of these borated nanomaterials to actively target hypersialylated solid tumors.
Collapse
Affiliation(s)
- Hen Moshe Halamish
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City 3200003 Haifa, Israel
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City 3200003 Haifa, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City 3200003 Haifa, Israel.
| |
Collapse
|
144
|
Zhou K, Chen Q, Chen J, Liang D, Feng W, Liu M, Wang Q, Wang R, Ouyang Q, Quan C, Chen S. Spatiotemporal regulation of insulin signaling by liquid–liquid phase separation. Cell Discov 2022; 8:64. [PMID: 35790738 PMCID: PMC9256590 DOI: 10.1038/s41421-022-00430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/04/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractInsulin signals through its receptor to recruit insulin receptor substrates (IRS) and phosphatidylinositol 3-kinase (PI3K) to the plasma membrane for production of phosphatidylinositol-3,4,5-trisphosphate (PIP3) from phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], which consequently activates protein kinase B (PKB). How insulin signals transduce from the plasma membrane into the cytoplasm is not clearly understood. Here we show that liquid–liquid phase separation (LLPS) plays a critical role in spatiotemporal control of insulin signaling through regulating multiple components including IRS1. Both protein concentration and insulin stimulation can drive the formation of intracellular IRS1 condensates through LLPS. Components including PI(4,5)P2, p85-PI3K and PDK1 are constitutively present in IRS1 condensates whereas production of PIP3 and recruitment of PKB in them are induced by insulin. Thus, IRS1 condensates function as intracellular signal hubs to mediate insulin signaling, whose formation is impaired in insulin resistant cells. Collectively, these data reveal an important function of LLPS in spatiotemporal control of insulin signaling.
Collapse
|
145
|
Basu B, Ghosh MK. Ubiquitination and deubiquitination in the regulation of epithelial-mesenchymal transition in cancer: Shifting gears at the molecular level. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119261. [PMID: 35307468 DOI: 10.1016/j.bbamcr.2022.119261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The process of conversion of non-motile epithelial cells to their motile mesenchymal counterparts is known as epithelial-mesenchymal transition (EMT), which is a fundamental event during embryonic development, tissue repair, and for the maintenance of stemness. However, this crucial process is hijacked in cancer and becomes the means by which cancer cells acquire further malignant properties such as increased invasiveness, acquisition of stem cell-like properties, increased chemoresistance, and immune evasion ability. The switch from epithelial to mesenchymal phenotype is mediated by a wide variety of effector molecules such as transcription factors, epigenetic modifiers, post-transcriptional and post-translational modifiers. Ubiquitination and de-ubiquitination are two post-translational processes that are fundamental to the ubiquitin-proteasome system (UPS) of the cell, and the shift in equilibrium between these two processes during cancer dictates the suppression or activation of different intracellular processes, including EMT. Here, we discuss the complex and dynamic relationship between components of the UPS and EMT in cancer.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
146
|
Chien PJ, Shih YL, Cheng CT, Tu HL. Chip assisted formation of phase-separated liposomes for reconstituting spatial protein-lipid interactions. LAB ON A CHIP 2022; 22:2540-2548. [PMID: 35667105 DOI: 10.1039/d2lc00089j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spatially organized molecular interactions are fundamental features underlying many biochemical processes in cells. These spatially defined reactions are essential to ensure high signaling specificity and are indispensable for maintaining cell functions. The construction of synthetic cell models that can resemble such properties is thus important yet less investigated. In this study, we present a reliable method for the rapid production of highly uniform phase-separated liposomes as synthetic cell models. Specifically, a microfluidics-based strategy coupled with custom reagents for generating size-tunable liposomes with various lipid compositions is presented. In addition, an important cell signaling interacting pair, the pleckstrin homology (PH) domain and PIP2 lipid, is used to demonstrate the controlled molecular assembly inside these liposomes. The result shows that PIP2 on phase-separated domains successfully recruits the PH domains to realize spatially defined molecular interactions. Such a system is versatile and can be expanded to synthesize other proteins for realizing multiplexed molecular interactions in the same liposome. Phase-separated lipid domains can also be used to recruit targeted proteins to initiate localized reactions, thus paving the way for organizing a complex signaling cascade in the synthetic cell.
Collapse
Affiliation(s)
- Po-Jen Chien
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Yi-Lun Shih
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chieh-Teng Cheng
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taiwan
| |
Collapse
|
147
|
Wang R, Yang M, Jiang L, Huang M. Role of Angiopoietin-Tie axis in vascular and lymphatic systems and therapeutic interventions. Pharmacol Res 2022; 182:106331. [PMID: 35772646 DOI: 10.1016/j.phrs.2022.106331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 12/29/2022]
Abstract
The Angiopoietin (Ang)-Tyrosine kinase with immunoglobulin-like and EGF-like domains (Tie) axis is an endothelial cell-specific ligand-receptor signaling pathway necessary for vascular and lymphatic development. The Ang-Tie axis is involved in regulating angiogenesis, vascular remodeling, vascular permeability, and inflammation to maintain vascular quiescence. Disruptions in the Ang-Tie axis are involved in many vascular and lymphatic system diseases and play an important role in physiological and pathological vascular conditions. Given recent advances in the Ang-Tie axis in the vascular and lymphatic systems, this review focuses on the multiple functions of the Ang-Tie axis in inflammation-induced vascular permeability, vascular remodeling, atherosclerosis, ocular angiogenesis, tumor angiogenesis, and metastasis. A summary of relevant therapeutic approaches to the Ang-Tie axis, including therapeutic antibodies, recombinant proteins and small molecule drugs are also discussed. The purpose of this review is to provide new hypotheses and identify potential therapeutic strategies based on the Ang-Tie signaling axis for the treatment of vascular and lymphatic-related diseases.
Collapse
Affiliation(s)
- Rui Wang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Moua Yang
- Division of Hemostasis & Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, United States
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| |
Collapse
|
148
|
Du X, McManus DP, Fogarty CE, Jones MK, You H. Schistosoma mansoni Fibroblast Growth Factor Receptor A Orchestrates Multiple Functions in Schistosome Biology and in the Host-Parasite Interplay. Front Immunol 2022; 13:868077. [PMID: 35812433 PMCID: PMC9257043 DOI: 10.3389/fimmu.2022.868077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/26/2022] [Indexed: 12/02/2022] Open
Abstract
Stem cells play significant roles in driving the complex life cycle of Schistosoma mansoni. Fibroblast growth factor (FGF) receptor A (SmFGFRA) is essential for maintaining the integrity of schistosome stem cells. Using immunolocalization, we demonstrated that SmFGFRA was distributed abundantly in germinal/stem cells of different S. mansoni life stages including eggs, miracidia, cercariae, schistosomula and adult worms. Indeed, SmFGFRA was also localized amply in embryonic cells and in the perinuclear region of immature eggs; von Lichtenberg's layer and the neural mass of mature eggs; the ciliated surface and neural mass of miracidia; the tegument cytosol of cercariae, schistosomula and adult worms; and was present in abundance in the testis and vitellaria of adult worms of S. mansoni. The distribution pattern of SmFGFRA illustrates the importance of this molecule in maintaining stem cells, development of the nervous and reproductive system of schistosomes, and in the host-parasite interplay. We showed SmFGFRA can bind human FGFs, activating the mitogen activated protein kinase (MAPK) pathway of adult worms in vitro. Inhibition of FGF signaling by the specific tyrosine kinase inhibitor BIBF 1120 significantly reduced egg hatching ability and affected the behavior of miracidia hatched from the treated eggs, emphasizing the importance of FGF signaling in driving the life cycle of S. mansoni. Our findings provide increased understanding of the complex schistosome life cycle and host-parasite interactions, indicating components of the FGF signaling pathway may represent promising targets for developing new interventions against schistosomiasis.
Collapse
Affiliation(s)
- Xiaofeng Du
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Donald P. McManus
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Conor E. Fogarty
- Genecology Research Centre, University of the Sunshine Coast, Brisbane, QLD, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
149
|
Puno MR, Lima CD. Structural basis for RNA surveillance by the human nuclear exosome targeting (NEXT) complex. Cell 2022; 185:2132-2147.e26. [PMID: 35688134 PMCID: PMC9210550 DOI: 10.1016/j.cell.2022.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/04/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
RNA quality control relies on co-factors and adaptors to identify and prepare substrates for degradation by ribonucleases such as the 3' to 5' ribonucleolytic RNA exosome. Here, we determined cryogenic electron microscopy structures of human nuclear exosome targeting (NEXT) complexes bound to RNA that reveal mechanistic insights to substrate recognition and early steps that precede RNA handover to the exosome. The structures illuminate ZCCHC8 as a scaffold, mediating homodimerization while embracing the MTR4 helicase and flexibly anchoring RBM7 to the helicase core. All three subunits collaborate to bind the RNA, with RBM7 and ZCCHC8 surveying sequences upstream of the 3' end to facilitate RNA capture by MTR4. ZCCHC8 obscures MTR4 surfaces important for RNA binding and extrusion as well as MPP6-dependent recruitment and docking onto the RNA exosome core, interactions that contribute to RNA surveillance by coordinating RNA capture, translocation, and extrusion from the helicase to the exosome for decay.
Collapse
Affiliation(s)
- M Rhyan Puno
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
150
|
Interactions between EGFR and EphA2 promote tumorigenesis through the action of Ephexin1. Cell Death Dis 2022; 13:528. [PMID: 35668076 PMCID: PMC9170705 DOI: 10.1038/s41419-022-04984-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
The cell signaling factors EGFR, EphA2, and Ephexin1 are associated with lung and colorectal cancer and play an important role in tumorigenesis. Although the respective functional roles of EGFR and EphA2 are well known, interactions between these proteins and a functional role for the complex is not understood. Here, we showed that Ephexin1, EphA2, and EGFR are each expressed at higher levels in lung and colorectal cancer patient tissues, and binding of EGFR to EphA2 was associated with both increased tumor grade and metastatic cases in both cancer types. Treatment with Epidermal Growth Factor (EGF) induced binding of the RR domain of EGFR to the kinase domain of EphA2, and this binding was promoted by Ephexin1. Additionally, the AKT-mediated phosphorylation of EphA2 (at Ser897) promoted interactions with EGFR, pointing to the importance of this pathway. Two mutations in EGFR, L858R and T790M, that are frequently observed in lung cancer patients, promoted binding to EphA2, and this binding was dependent on Ephexin1. Our results indicate that the formation of a complex between EGFR, EphA2, and Ephexin1 plays an important role in lung and colorectal cancers, and that inhibition of this complex may be an effective target for cancer therapy.
Collapse
|