101
|
Piechulek T, Rehlen T, Walliser C, Vatter P, Moepps B, Gierschik P. Isozyme-specific stimulation of phospholipase C-gamma2 by Rac GTPases. J Biol Chem 2005; 280:38923-31. [PMID: 16172125 DOI: 10.1074/jbc.m509396200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The regulation of the two isoforms of phospholipase C-gamma, PLCgamma(1) and PLCgamma(2), by cell surface receptors involves protein tyrosine phosphorylation as well as interaction with adapter proteins and phosphatidylinositol 3,4,5-trisphosphate (PtdInsP(3)) generated by inositol phospholipid 3-kinases (PI3Ks). All three processes may lead to recruitment of the PLCgamma isozymes to the plasma membrane and/or stimulation of their catalytic activity. Recent evidence suggests that PLCgamma may also be regulated by Rho GTPases. In this study, PLCgamma(1) and PLCgamma(2) were reconstituted in intact cells and in a cell-free system with Rho GTPases to examine their influence on PLCgamma activity. PLCgamma(2), but not PLCgamma(1), was markedly activated in intact cells by constitutively active Rac1(G12V), Rac2(G12V), and Rac3(G12V) but not by Cdc42(G12V) and RhoA(G14V). The mechanism of PLCgamma(2) activation was apparently independent of phosphorylation of tyrosine residues known to be modified by PLCgamma(2)-activating protein-tyrosine kinases. Activation of PLCgamma(2) by Rac2(G12V) in intact cells coincided with a translocation of PLCgamma(2) from the soluble to the particulate fraction. PLCgamma isozyme-specific activation of PLCgamma(2) by Rac GTPases (Rac1 approximately Rac2 > Rac3), but not by Cdc42 or RhoA, was also observed in a cell-free system. Herein, activation of wild-type Rac GTPases with guanosine 5'-(3-O-thio)triphosphate caused a marked stimulation of PLCgamma(2) but had no effect on the activity of PLCgamma(1). PLCgamma(1) and PLCgamma(2) have previously been shown to be indiscriminately activated by PtdInsP(3) in vitro. Thus, the results suggest a novel mechanism of PLCgamma(2) activation by Rac GTPases involving neither protein tyrosine phosphorylation nor PI3K-mediated generation of PtdInsP(3).
Collapse
Affiliation(s)
- Thomas Piechulek
- Department of Pharmacology and Toxicology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
102
|
Cheng K, Raufman JP. Bile acid-induced proliferation of a human colon cancer cell line is mediated by transactivation of epidermal growth factor receptors. Biochem Pharmacol 2005; 70:1035-47. [PMID: 16139803 DOI: 10.1016/j.bcp.2005.07.023] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 12/20/2022]
Abstract
Although epidemiological studies indicate an association between elevations in fecal bile acids and the development of colorectal cancer, the cellular mechanism for the proliferative actions of bile acids is not clear. Studies from other laboratories indicate a paradoxical pro-apoptotic action of bile acids on cell culture lines. Our previous studies indicate that cholinergic agonist-induced proliferation of colon cancer cells that express M3 muscarinic receptors (M3R) is mediated by transactivation of the epidermal growth factor receptor (EGFR) and that bile acids stimulate proliferation of colon cancer cells that express M3R. In the present study, we investigated the effects of bile acids on cell signaling and proliferation of a human colon cancer cell line (H508 cells) that abundantly expresses M3R and EGFR. Treatment with taurine and glycine conjugates of lithocholic and deoxycholic acids stimulated reversible activation of the p44/42 MAP kinase signaling cascade and proliferation of H508 cells. Bile acids did not stimulate proliferation of SNU-C4 colon cancer cells that express EGFR but not muscarinic receptors. Atropine, a muscarinic receptor inverse agonist, blocked bile acid-induced H508 cell proliferation. At concentrations that stimulate cell proliferation, conjugated bile acids did not activate caspase-3, a key mediator of apoptosis. Conjugated bile acids stimulated phosphorylation of EGFR Tyr992, thereby implicating EGFR transactivation in the cellular mechanism underlying their proliferative actions. This was confirmed by observing that inhibitors of EGFR activation and antibodies to the ligand-binding domain of EGFR blocked both the signaling and proliferative actions of bile acids. Collectively, these results suggest that in this colon cancer cell line, bile acid-induced colon cancer cell proliferation is M3R-dependent and is mediated by transactivation of EGFR.
Collapse
Affiliation(s)
- Kunrong Cheng
- Division of Gastroenterology and Hepatology, VA Maryland Health Care System and Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S. Green Street, N3W62 Baltimore, MD 21201, USA
| | | |
Collapse
|
103
|
Hsu MF, Sun SP, Chen YS, Tsai CR, Huang LJ, Tsao LT, Kuo SC, Wang JP. Distinct effects of N-ethylmaleimide on formyl peptide- and cyclopiazonic acid-induced Ca2+ signals through thiol modification in neutrophils. Biochem Pharmacol 2005; 70:1320-9. [PMID: 16143313 DOI: 10.1016/j.bcp.2005.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 07/11/2005] [Accepted: 07/22/2005] [Indexed: 10/25/2022]
Abstract
In this study, we demonstrate that N-ethylmaleimide (NEM), a cell permeable thiol-alkylating agent, enhanced the [Ca2+]i rise caused by stimulation with cyclopiazonic acid (CPA), a sarcoplasmic-endoplasmic reticulum Ca2+-ATPase inhibitor, in rat neutrophils. In addition, NEM attenuated the formyl-Met-Leu-Phe (fMLP)-induced [Ca2+]i rise whether NEM was added to cells prior to or after fMLP stimulation. Moreover, application of NEM after fMLP activation in the absence of external Ca2+ inhibited the Ca2+ signal upon addition of Ca2+ to the medium. Similar patterns were also obtained by using 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), a cell impermeable dithiol-oxidizing agent, which replaced NEM in the CPA- and fMLP-induced [Ca2+]i rise experiments. Treatment with dithiothreitol (DTT), a cell permeable dithiol-reducing agent, N-acetyl-l-cysteine (NAC), a cell permeable monothiol-reducing agent, and tris-(2-carboxyethyl)phosphine (TCEP), a cell impermeable reductant without a thiol group, all rescued the fMLP-induced Ca2+ signal from NEM. Rat neutrophils express the mRNA encoding for transient receptor potential (TRP) C6, inositol trisphosphate receptor (IP3R) 2 and IP3R3. NEM had no effect on the mitochondrial membrane potential. NEM could restore the polarization and F-actin accumulation of fMLP-treated cells to those of the control. In the absence of external Ca2+, NEM rendered the CPA-induced [Ca2+]i elevation persistently but inhibited the fMLP-induced Ca2+ spike, which was reversed by tris-(2-cyanoethyl)phosphine (TCP), a cell permeable reductant without a thiol group. DTNB did not affect the Ca2+ spike caused by fMLP. These results indicate that through protein thiol oxidation, NEM affects the receptor-activated and the store depletion-derived Ca2+ signals in an opposing manner.
Collapse
Affiliation(s)
- Mei-Feng Hsu
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Jones NP, Peak J, Brader S, Eccles SA, Katan M. PLCgamma1 is essential for early events in integrin signalling required for cell motility. J Cell Sci 2005; 118:2695-706. [PMID: 15944397 DOI: 10.1242/jcs.02374] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell motility is a critical event in many processes and is underlined by complex signalling interactions. Although many components have been implicated in different forms of cell migration, identification of early key mediators of these events has proved difficult. One potential signalling intermediate, PLCgamma1, has previously been implicated in growth-factor-mediated chemotaxis but its position and roles in more-complex motility events remain poorly understood. This study links PLCgamma1 to early, integrin-regulated changes leading to cell motility. The key role of PLCgamma1 was supported by findings that specific depletion of PLCgamma1 by small interfering (si)RNA, or by pharmacological inhibition, or the absence of this isoform in PLCgamma1(-/-) cells resulted in the failure to form cell protrusions and undergo cell spreading and elongation in response to integrin engagement. This integrin-PLCgamma1 pathway was shown to underlie motility processes involved in morphogenesis of endothelial cells on basement membranes and invasion of cancer cells into such three-dimensional matrices. By combining cellular and biochemical approaches, we have further characterized this signalling pathway. Upstream of PLCgamma1 activity, beta1 integrin and Src kinase are demonstrated to be essential for phosphorylation of PLCgamma1, formation of protein complexes and accumulation of intracellular calcium. Cancer cell invasion and the early morphological changes associated with cell motility were abolished by inhibition of beta1 integrin or Src. Our findings establish PLCgamma1 as a key player in integrin-mediated cell motility processes and identify other critical components of the signalling pathway involved in establishing a motile phenotype. This suggests a more general role for PLCgamma1 in cell motility, functioning as a mediator of both growth factor and integrin-initiated signals.
Collapse
Affiliation(s)
- Neil P Jones
- Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | | | | | | | | |
Collapse
|
105
|
Deng L, Velikovsky CA, Swaminathan CP, Cho S, Mariuzza RA, Huber R. Structural basis for recognition of the T cell adaptor protein SLP-76 by the SH3 domain of phospholipase Cgamma1. J Mol Biol 2005; 352:1-10. [PMID: 16061254 PMCID: PMC2753203 DOI: 10.1016/j.jmb.2005.06.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 06/24/2005] [Accepted: 06/30/2005] [Indexed: 11/29/2022]
Abstract
The enzyme phospholipase Cgamma1 (PLCgamma1) is essential for T cell signaling and activation. Following T cell receptor ligation, PLCgamma1 interacts through its SH2 and SH3 domains with the adaptors LAT and SLP-76, respectively, to form a multiprotein signaling complex that leads to activation of PLCgamma1 by Syk tyrosine kinases. To identify the binding site for PLCgamma1 in SLP-76, we used isothermal titration calorimetry to measure affinities for the interaction of PLCgamma1-SH3 with a set of overlapping peptides spanning the central proline-rich region of SLP-76. PLCgamma1-SH3 bound with high specificity to the SLP-76 motif 186PPVPPQRP193, which represents the minimal binding site. To understand the basis for selective recognition, we determined the crystal structures of PLCgamma1-SH3 in free form, and bound to a 10-mer peptide containing this site, to resolutions of 1.60 A and 1.81 A, respectively. The structures reveal that several key contacting residues of the SH3 shift toward the SLP-76 peptide upon complex formation, optimizing the fit and strengthening hydrophobic interactions. Selectivity results mainly from strict shape complementarity between protein and peptide, rather than sequence-specific hydrogen bonding. In addition, Pro193 of SLP-76 assists in positioning Arg192 into the compass pocket of PLCgamma1-SH3, which coordinates the compass residue through an unusual aspartate. The PLCgamma1-SH3/SLP-76 structure provides insights into ligand binding by SH3 domains related to PLCgamma1-SH3, as well as into recognition by PLCgamma1 of signaling partners other than SLP-76.
Collapse
Affiliation(s)
| | | | | | | | - Roy A. Mariuzza
- Corresponding author E-mail address of the corresponding author:
| | | |
Collapse
|
106
|
Soboloff J, Spassova M, Xu W, He LP, Cuesta N, Gill DL. Role of endogenous TRPC6 channels in Ca2+ signal generation in A7r5 smooth muscle cells. J Biol Chem 2005; 280:39786-94. [PMID: 16204251 DOI: 10.1074/jbc.m506064200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitously expressed canonical transient receptor potential (TRPC) ion channels are considered important in Ca2+ signal generation, but their mechanisms of activation and roles remain elusive. Whereas most studies have examined overexpressed TRPC channels, we used molecular, biochemical, and electrophysiological approaches to assess the expression and function of endogenous TRPC channels in A7r5 smooth muscle cells. Real time PCR and Western analyses reveal TRPC6 as the only member of the diacylglycerol-responsive TRPC3/6/7 subfamily of channels expressed at significant levels in A7r5 cells. TRPC1, TRPC4, and TRPC5 were also abundant. An outwardly rectifying, nonselective cation current was activated by phospholipase C-coupled vasopressin receptor activation or by the diacylglycerol analogue, oleoyl-2-acetyl-sn-glycerol (OAG). Introduction of TRPC6 small interfering RNA sequences into A7r5 cells by electroporation led to 90% reduction of TRPC6 transcript and 80% reduction of TRPC6 protein without any detectable compensatory changes in the expression of other TRPC channels. The OAG-activated nonselective cation current was similarly reduced by TRPC6 RNA interference. Intracellular Ca2+ measurements using fura-2 revealed that thapsigargin-induced store-operated Ca2+ entry was unaffected by TRPC6 knockdown, whereas vasopressin-induced Ca2+ entry was suppressed by more than 50%. In contrast, OAG-induced Ca2+ transients were unaffected by TRPC6 knockdown. Nevertheless, OAG-induced Ca2+ entry bore the hallmarks of TRPC6 function; it was inhibited by protein kinase C and blocked by the Src-kinase inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Importantly, OAG-induced Ca2+ entry was blocked by the potent L-type Ca2+ channel inhibitor, *nimodipine. Thus, TRPC6 activation probably results primarily in Na ion entry and depolarization, leading to activation of L-type channels as the mediators of Ca2+ entry. Calculations reveal that even 90% reduction of TRPC6 channels would allow depolarization sufficient to activate L-type channels. This tight coupling between TRPC6 and L-type channels is probably important in mediating smooth muscle cell membrane potential and muscle contraction.
Collapse
Affiliation(s)
- Jonathan Soboloff
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
107
|
Madesh M, Hawkins BJ, Milovanova T, Bhanumathy CD, Joseph SK, Ramachandrarao SP, Sharma K, Kurosaki T, Fisher AB. Selective role for superoxide in InsP3 receptor-mediated mitochondrial dysfunction and endothelial apoptosis. J Cell Biol 2005; 170:1079-90. [PMID: 16186254 PMCID: PMC2171541 DOI: 10.1083/jcb.200505022] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 08/16/2005] [Indexed: 01/05/2023] Open
Abstract
Reactive oxygen species (ROS) play a divergent role in both cell survival and cell death during ischemia/reperfusion (I/R) injury and associated inflammation. In this study, ROS generation by activated macrophages evoked an intracellular Ca2+ ([Ca2+]i) transient in endothelial cells that was ablated by a combination of superoxide dismutase and an anion channel blocker. [Ca2+]i store depletion, but not extracellular Ca2+ chelation, prevented [Ca2+]i elevation in response to O2*- that was inositol 1,4,5-trisphosphate (InsP3) dependent, and cells lacking the three InsP3 receptor (InsP3R) isoforms failed to display the [Ca2+]i transient. Importantly, the O2*--triggered Ca2+ mobilization preceded a loss in mitochondrial membrane potential that was independent of other oxidants and mitochondrially derived ROS. Activation of apoptosis occurred selectively in response to O2*- and could be prevented by [Ca2+]i buffering. This study provides evidence that O2*- facilitates an InsP3R-linked apoptotic cascade and may serve a critical function in I/R injury and inflammation.
Collapse
Affiliation(s)
- Muniswamy Madesh
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Lievremont JP, Numaga T, Vazquez G, Lemonnier L, Hara Y, Mori E, Trebak M, Moss SE, Bird GS, Mori Y, Putney JW. The role of canonical transient receptor potential 7 in B-cell receptor-activated channels. J Biol Chem 2005; 280:35346-51. [PMID: 16123040 DOI: 10.1074/jbc.m507606200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase C signaling stimulates Ca2+ entry across the plasma membrane through multiple mechanisms. Ca2+ store depletion stimulates store-operated Ca2+-selective channels, or alternatively, other phospholipase C-dependent events activate Ca2+-permeable non-selective cation channels. Transient receptor potential 7 (TRPC7) is a non-selective cation channel that can be activated by both mechanisms when ectopically expressed, but the regulation of native TRPC7 channels is not known. We knocked out TRPC7 in DT40 B-cells, which expresses both forms of Ca2+ entry. No difference in the store-operated current I(crac) was detected between TRPC7-/- and wild-type cells. Wild-type cells demonstrated nonstore-operated cation entry and currents in response to activation of the B-cell receptor or protease-activated receptor 2, intracellular dialysis with GTPgammaS, or application of the synthetic diacylglycerol oleyl-acetyl-glycerol. These responses were absent in TRPC7-/- cells but could be restored by transfection with human TRPC7. In conclusion, in B-lymphocytes, TRPC7 appeared to participate in the formation of ion channels that could be activated by phospholipase C-linked receptors. This represents the first demonstration of a physiological function for endogenous TRPC7 channels.
Collapse
Affiliation(s)
- Jean-Philippe Lievremont
- Department of Health and Human Services, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Liu X, Ye K. Src homology domains in phospholipase C-gamma1 mediate its anti-apoptotic action through regulating the enzymatic activity. J Neurochem 2005; 93:892-8. [PMID: 15857392 DOI: 10.1111/j.1471-4159.2005.03064.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phospholipase-gamma1 (PLC-gamma1) prevents programmed cell death, for which the enzymatic activity has been implicated. However, the biological function of Src homology (SH) domains of PLC-gamma1 in promoting cell survival remains elusive. Here, we showed that deletion of the N-SH2 domain or both N-SH2 and C-SH2 domains, but not the SH3 domain, abolished the anti-apoptotic activity of PLC-gamma1. Surprisingly, removal of the whole SH domain inhibited apoptosis. The lipase-inactive PLC-gamma1 mutant (LIM) failed to suppress apoptosis. Moreover, the phospholipase activity in SH3- or whole SH domain-deleted cells was comparable to that of wild-type cells. By contrast, the enzymatic activity was substantially ablated in SH2 domain-deleted or LIM cells. A pharmacological inhibitor of PLC-gamma1 robustly diminished the anti-apoptotic action in wild-type, SH3- or whole SH domain-deleted cells, whereas pretreatment of SH2 domain-deleted or LIM cells with agents activating PKC and calcium mobilization markedly promoted cell survival. These results indicate that SH domains in PLC-gamma1 might mediate its anti-apoptotic action by regulating the enzymatic activity.
Collapse
Affiliation(s)
- Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
110
|
Jho D, Mehta D, Ahmmed G, Gao XP, Tiruppathi C, Broman M, Malik AB. Angiopoietin-1 opposes VEGF-induced increase in endothelial permeability by inhibiting TRPC1-dependent Ca2 influx. Circ Res 2005; 96:1282-90. [PMID: 15920022 DOI: 10.1161/01.res.0000171894.03801.03] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiopoietin-1 (Ang1) exerts a vascular endothelial barrier protective effect by blocking the action of permeability-increasing mediators such as vascular endothelial growth factor (VEGF) through unclear mechanisms. Because VEGF may signal endothelial hyperpermeability through the phospholipase C (PLC)-IP3 pathway that activates extracellular Ca2+ entry via the plasmalemmal store-operated channel transient receptor potential canonical-1 (TRPC1), we addressed the possibility that Ang1 acts by inhibiting this Ca2+ entry mechanism in endothelial cells. Studies in endothelial cell monolayers demonstrated that Ang1 inhibited the VEGF-induced Ca2+ influx and increase in endothelial permeability in a concentration-dependent manner. Inhibitors of the PLC-IP3 Ca2+ signaling pathway prevented the VEGF-induced Ca2+ influx and hyperpermeability similar to the inhibitory effects seen with Ang1. Ang1 had no effect on PLC phosphorylation and IP3 production, thus its permeability-decreasing effect could not be ascribed to inhibition of PLC activation. However, Ang1 interfered with downstream IP3-dependent plasmalemmal Ca2+ entry without affecting the release of intracellular Ca2+ stores. Anti-TRPC1 antibody inhibited the VEGF-induced Ca2+ entry and the increased endothelial permeability. TRPC1 overexpression in endothelial cells augmented the VEGF-induced Ca2+ entry, and application of Ang1 opposed this effect. In immunoprecipitation studies, Ang1 inhibited the association of IP3 receptor (IP3R) and TRPC1, consistent with the coupling hypothesis of Ca2+ entry. These results demonstrate that Ang1 blocks the TRPC1-dependent Ca2+ influx induced by VEGF by interfering with the interaction of IP3R with TRPC1, and thereby abrogates the increase in endothelial permeability.
Collapse
Affiliation(s)
- David Jho
- Department of Pharmacology and The Center of Lung and Vascular Biology, The University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Wang JP, Tsai JJ, Chen YS, Hsu MF. Stimulation of intracellular Ca2+ elevation in neutrophils by thiol-oxidizing phenylarsine oxide. Biochem Pharmacol 2005; 69:1225-34. [PMID: 15794943 DOI: 10.1016/j.bcp.2005.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 01/26/2005] [Indexed: 11/24/2022]
Abstract
Phenylarsine oxide (PAO), a trivalent arsenical compound, stimulated [Ca2+]i elevation in rat neutrophils in a Ca2+-containing medium but caused no appreciable response in a Ca2+-free medium. PAO also induced external Mn2+ entry, which was inhibited by N-acetyl-L-cysteine (NAC), but failed to elicit any appreciable Ba2+ and Sr2+ entry. Pretreatment of neutrophils with thiol-reducing agents including dithiothreitol (DTT), NAC, 2,3-dimercapto-1-propanol (DMP), 2,3-dimercaptopropane-1-sulfonic acid (DMPS) and tris-(2-carboxyethyl)phosphine (TCEP), all greatly inhibited PAO-induced [Ca2+]i elevation. Addition of Ni2+ or La3+ followed by PAO stimulation also attenuated the Ca2+ signals in a concentration-dependent manner. PAO had no significant effect on the production of reactive oxygen intermediates (ROI) and nitric oxide (NO) nor did it decrease cellular low molecular weight thiols levels. PAO-induced [Ca2+]i elevation was significantly inhibited by 1-[6-[17beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U-73122), the inhibitor of phospholipase C-coupled processes, genistein, a general tyrosine kinase inhibitor, phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, calyculin A, a cortical actin stabilizer, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY 294002), a phosphoinositide 3-kinase inhibitor, 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365), and cis-N-(2-phenylcyclopentyl)azacyclotridec-1-en-2-amine (MDL-12,330A), the blockers of receptor-gated and store-operated Ca2+ channels, whereas there was no appreciable effect exerted by aristolochic acid, a phospholipase A2 inhibitor, 7-nitroindazole and N-(3-aminomethyl)benzylacetamidine (1400W), the blockers of NO synthase, and by suspension in a Na+-deprived medium. In contrast, 2-aminoethoxydiphenyl borane (2-APB), the blocker of IP3 receptor and Ca2+ influx, enhanced the PAO-induced response. PAO had no effect on the plasma membrane Ca2+-ATPase (PMCA) activity in the pharmacological isolated neutrophil preparation and the neutrophil membrane fractions. These results indicate that PAO stimulates [Ca2+]i rise in rat neutrophils mainly through the oxidation of vicinal thiol groups on the cell surface membrane to activation of a non-store operated Ca2+ entry (non-SOCE) without affecting the activity of PMCA and the plasmalemmal Na+/Ca2+ exchanger.
Collapse
Affiliation(s)
- Jih-Pyang Wang
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan, ROC.
| | | | | | | |
Collapse
|
112
|
Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Veliçelebi G, Stauderman KA. STIM1, an essential and conserved component of store-operated Ca2+ channel function. ACTA ACUST UNITED AC 2005; 169:435-45. [PMID: 15866891 PMCID: PMC2171946 DOI: 10.1083/jcb.200502019] [Citation(s) in RCA: 1502] [Impact Index Per Article: 75.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Store-operated Ca2+ (SOC) channels regulate many cellular processes, but the underlying molecular components are not well defined. Using an RNA interference (RNAi)-based screen to identify genes that alter thapsigargin (TG)-dependent Ca2+ entry, we discovered a required and conserved role of Stim in SOC influx. RNAi-mediated knockdown of Stim in Drosophila S2 cells significantly reduced TG-dependent Ca2+ entry. Patch-clamp recording revealed nearly complete suppression of the Drosophila Ca2+ release-activated Ca2+ (CRAC) current that has biophysical characteristics similar to CRAC current in human T cells. Similarly, knockdown of the human homologue STIM1 significantly reduced CRAC channel activity in Jurkat T cells. RNAi-mediated knockdown of STIM1 inhibited TG- or agonist-dependent Ca2+ entry in HEK293 or SH-SY5Y cells. Conversely, overexpression of STIM1 in HEK293 cells modestly enhanced TG-induced Ca2+ entry. We propose that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels.
Collapse
Affiliation(s)
- Jack Roos
- Torrey Pines Therapeutics, Inc., La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
In a recent issue of Nature, van Rossum et al. report binding of a "split" pleckstrin homology (PH) domain from phospholipase C-gamma(1) to the TRPC3 ion channel. Through sequence analyses and in vitro studies, they suggest a novel mode of protein-protein interaction in which two PH domain fragments in distinct proteins associate to form an "intermolecular" PH domain that binds inositol phospholipids and is required for ion channel location and function.
Collapse
Affiliation(s)
- Mark A Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
114
|
Yu P, Constien R, Dear N, Katan M, Hanke P, Bunney TD, Kunder S, Quintanilla-Martinez L, Huffstadt U, Schröder A, Jones NP, Peters T, Fuchs H, de Angelis MH, Nehls M, Grosse J, Wabnitz P, Meyer TPH, Yasuda K, Schiemann M, Schneider-Fresenius C, Jagla W, Russ A, Popp A, Josephs M, Marquardt A, Laufs J, Schmittwolf C, Wagner H, Pfeffer K, Mudde GC. Autoimmunity and Inflammation Due to a Gain-of-Function Mutation in Phospholipase Cγ2 that Specifically Increases External Ca2+ Entry. Immunity 2005; 22:451-65. [PMID: 15845450 DOI: 10.1016/j.immuni.2005.01.018] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Revised: 01/07/2005] [Accepted: 01/12/2005] [Indexed: 01/16/2023]
Abstract
The identification of specific genetic loci that contribute to inflammatory and autoimmune diseases has proved difficult due to the contribution of multiple interacting genes, the inherent genetic heterogeneity present in human populations, and a lack of new mouse mutants. By using N-ethyl-N-nitrosourea (ENU) mutagenesis to discover new immune regulators, we identified a point mutation in the murine phospholipase Cg2 (Plcg2) gene that leads to severe spontaneous inflammation and autoimmunity. The disease is composed of an autoimmune component mediated by autoantibody immune complexes and B and T cell independent inflammation. The underlying mechanism is a gain-of-function mutation in Plcg2, which leads to hyperreactive external calcium entry in B cells and expansion of innate inflammatory cells. This mutant identifies Plcg2 as a key regulator in an autoimmune and inflammatory disease mediated by B cells and non-B, non-T haematopoietic cells and emphasizes that by distinct genetic modulation, a single point mutation can lead to a complex immunological phenotype.
Collapse
Affiliation(s)
- Philipp Yu
- Ingenium Pharmaceuticals AG, Fraunhoferstrasse 13, 82152 Martinsried, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
In electrically nonexcitable cells, Ca2+influx is essential for regulating a host of kinetically distinct processes involving exocytosis, enzyme control, gene regulation, cell growth and proliferation, and apoptosis. The major Ca2+entry pathway in these cells is the store-operated one, in which the emptying of intracellular Ca2+stores activates Ca2+influx (store-operated Ca2+entry, or capacitative Ca2+entry). Several biophysically distinct store-operated currents have been reported, but the best characterized is the Ca2+release-activated Ca2+current, ICRAC. Although it was initially considered to function only in nonexcitable cells, growing evidence now points towards a central role for ICRAC-like currents in excitable cells too. In spite of intense research, the signal that relays the store Ca2+content to CRAC channels in the plasma membrane, as well as the molecular identity of the Ca2+sensor within the stores, remains elusive. Resolution of these issues would be greatly helped by the identification of the CRAC channel gene. In some systems, evidence suggests that store-operated channels might be related to TRP homologs, although no consensus has yet been reached. Better understood are mechanisms that inactivate store-operated entry and hence control the overall duration of Ca2+entry. Recent work has revealed a central role for mitochondria in the regulation of ICRAC, and this is particularly prominent under physiological conditions. ICRACtherefore represents a dynamic interplay between endoplasmic reticulum, mitochondria, and plasma membrane. In this review, we describe the key electrophysiological features of ICRACand other store-operated Ca2+currents and how they are regulated, and we consider recent advances that have shed insight into the molecular mechanisms involved in this ubiquitous and vital Ca2+entry pathway.
Collapse
Affiliation(s)
- Anant B Parekh
- Department of Physiology, University of Oxford, United Kingdom.
| | | |
Collapse
|
116
|
Tu CL, Chang W, Bikle DD. Phospholipase cgamma1 is required for activation of store-operated channels in human keratinocytes. J Invest Dermatol 2005; 124:187-97. [PMID: 15654973 DOI: 10.1111/j.0022-202x.2004.23544.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Store-operated calcium entry depicts the movement of extracellular Ca2+ into cells through plasma membrane Ca2+ channels activated by depletion of intracellular Ca2+ stores. The members of the canonical subfamily of transient receptor potential channels (TRPC) have been implicated as the molecular bases for store-operated channels (SOC). Here we investigate the role of phospholipase C (PLC) in regulation of native SOC and the expression of endogenous TRPC in human epidermal keratinocytes. Calcium entry in response to store depletion with thapsigargin was reversibly blocked by 2-aminoethoxydiphenyl borane, an effective SOC inhibitor, and suppressed by the diacylglycerol analoge, 1-oleoyl-2-acetyl-sn-glycerol. Inhibition of PLC with U73122 or transfection of a PLCgamma1 antisense cDNA construct completely blocked SOC activity, indicating a requirement for PLC, especially PLCgamma1, in the activation of SOC. RT-PCR and immunoblotting analyses showed that TRPC1, TRPC3, TRPC4, TRPC5, and TRPC6 are expressed in keratinocytes. Knockdown of the level of endogenous TRPC1 or TRPC4 inhibited store-operated calcium entry, indicating they are part of the native SOC. Co-immunoprecipitation studies demonstrated that TRPC1, but not TRPC4, interacts with PLCgamma1 and the inositol 1,4,5-trisphosphate receptor (IP3R). The association of TRPC1 with PLCgamma1 and IP3R decreased in keratinocytes with higher intracellular Ca2+, coinciding with a downregulation in SOC activity. Our results indicate that the activation of SOC in keratinocytes depends, at least partly, on the interaction of TRPC with PLCgamma1 and IP3R.
Collapse
Affiliation(s)
- Chia-Ling Tu
- Endocrine Unit, Veteran Affairs Medical Center and Department of Medicine, University of California, San Francisco, California 94121, USA.
| | | | | |
Collapse
|
117
|
Dwivedi Y, Mondal AC, Rizavi HS, Shukla PK, Pandey GN. Single and repeated stress-induced modulation of phospholipase C catalytic activity and expression: role in LH behavior. Neuropsychopharmacology 2005; 30:473-83. [PMID: 15536495 DOI: 10.1038/sj.npp.1300605] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PI-PLC, a critical enzyme of the phosphoinositide (PI) signaling pathway, mediates many physiological functions in the brain, including cellular plasticity. Stress-induced learned helplessness (LH) in animals serves as a model of behavioral depression. Recently, we observed that repeated stress prolongs the duration of LH behavior in rats, enabling us to compare neurobiologic abnormalities in acute and chronic depression. Here we examine whether LH behavior is associated with alterations in phospholipase C (PLC), and whether repetition of inescapable shock has similar or dissimilar effects on PLC to those of the single-stress paradigm. Rats were exposed to inescapable shock either once on day 1, or twice, on days 1 and 7. Rats were tested for escape latency on days 2 and 4 after day 1 inescapable shock or on days 2, 8, and 14 after day 1 and 7 inescapable shock. PI-PLC activity and mRNA and protein expression of three different PLC isozymes were determined in the frontal cortex and hippocampus. Higher escape latencies were observed in LH rats tested on day 2 after single inescapable shock and on day 14 after repeated inescapable shock. Single inescapable shock reduced PI-PLC activity in the frontal cortex and hippocampus of LH rats. On the other hand, repeated inescapable shock not only reduced PI-PLC activity in these brain areas of LH rats but also selectively decreased the expression of PLC beta1 and PLC gamma1 isozymes. Our results suggest different responsiveness at the level of PI-PLC after single vs repeated stress, and that reductions in PLC may be critical in the pathophysiology of depression and other stress-related disorders.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
118
|
He LP, Hewavitharana T, Soboloff J, Spassova MA, Gill DL. A Functional Link between Store-operated and TRPC Channels Revealed by the 3,5-Bis(trifluoromethyl)pyrazole Derivative, BTP2. J Biol Chem 2005; 280:10997-1006. [PMID: 15647288 DOI: 10.1074/jbc.m411797200] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The coupling between receptor-mediated Ca2+ store release and the activation of "store-operated" Ca2+ entry channels is an important but so far poorly understood mechanism. The transient receptor potential (TRP) superfamily of channels contains several members that may serve the function of store-operated channels (SOCs). The 3,5-bis(trifluoromethyl)pyrazole derivative, BTP2, is a recently described inhibitor of SOC activity in T-lymphocytes. We compared its action on SOC activation in a number of cell types and evaluated its modification of three specific TRP channels, canonical transient receptor potential 3 (TRPC3), TRPC5, and TRPV6, to throw light on any link between SOC and TRP channel function. Using HEK293 cells, DT40 B cells, and A7r5 smooth muscle cells, BTP2 blocked store-operated Ca2+ entry within 10 min with an IC50 of 0.1-0.3 microM. Store-operated Ca2+ entry induced by Ca2+ pump blockade or in response to muscarinic or B cell receptor activation was similarly sensitive to BTP2. Using the T3-65 clonal HEK293 cell line stably expressing TRPC3 channels, TRPC3-mediated Sr2+ entry activated by muscarinic receptors was also blocked by BTP2 with an IC50 of <0.3 microM. Importantly, direct activation of TRPC3 channels by diacylglycerol was also blocked by BTP2 (IC50 approximately 0.3 microM). BTP2 still blocked TRPC3 in medium with N-methyl-D-glucamine-chloride replacing Na+, indicating BTP2 did not block divalent cation entry by depolarization induced by activating monovalent cation entry channels. Whereas whole-cell carbachol-induced TRPC3 current was blocked by 3 microM BTP2, single TRPC3 channel recordings revealed persistent short openings suggesting BTP2 reduces the open probability of the channel rather than its pore properties. TRPC5 channels transiently expressed in HEK293 cells were blocked by BTP2 in the same range as TRPC3. However, function of the highly Ca(2+)-selective TRPV6 channel, with many channel properties akin to SOCs, was entirely unaffected by BTP2. The results indicate a strong functional link between the operation of expressed TRPC channels and endogenous SOC activity.
Collapse
Affiliation(s)
- Li-Ping He
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
119
|
van Rossum DB, Patterson RL, Sharma S, Barrow RK, Kornberg M, Gill DL, Snyder SH. Phospholipase Cγ1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature 2005; 434:99-104. [PMID: 15744307 DOI: 10.1038/nature03340] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 12/17/2004] [Indexed: 11/09/2022]
Abstract
Many ion channels are regulated by lipids, but prominent motifs for lipid binding have not been identified in most ion channels. Recently, we reported that phospholipase Cgamma1 (PLC-gamma1) binds to and regulates TRPC3 channels, components of agonist-induced Ca2+ entry into cells. This interaction requires a domain in PLC-gamma1 that includes a partial pleckstrin homology (PH) domain-a consensus lipid-binding and protein-binding sequence. We have developed a gestalt algorithm to detect hitherto 'invisible' PH and PH-like domains, and now report that the partial PH domain of PLC-gamma1 interacts with a complementary partial PH-like domain in TRPC3 to elicit lipid binding and cell-surface expression of TRPC3. Our findings imply a far greater abundance of PH domains than previously appreciated, and suggest that intermolecular PH-like domains represent a widespread signalling mode.
Collapse
Affiliation(s)
- Damian B van Rossum
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
120
|
Huang W, Ochs HD, Dupont B, Vyas YM. The Wiskott-Aldrich Syndrome Protein Regulates Nuclear Translocation of NFAT2 and NF-κB (RelA) Independently of Its Role in Filamentous Actin Polymerization and Actin Cytoskeletal Rearrangement. THE JOURNAL OF IMMUNOLOGY 2005; 174:2602-11. [PMID: 15728466 DOI: 10.4049/jimmunol.174.5.2602] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Effector functions mediated by NK cells involve cytotoxicity and transcription-dependent production and release of cytokines and chemokines. Although the JAK/STAT pathway mediates lymphokine-induced transcriptional regulation in NK cells, very little is known about transcriptional regulation induced during cell-cell contact. We demonstrate that the Wiskott-Aldrich syndrome protein (WASp) is an important component for integration of signals leading to nuclear translocation of NFAT2 and NF-kappaB (RelA) during cell-cell contact and NKp46-dependent signaling. This WASp function is independent of its known role in F-actin polymerization and cytoskeletal rearrangement. Absence of WASp results in decreased accumulation of calcineurin, WASp-interacting protein, and molecules upstream of calcium mobilization, i.e., activated ZAP70 and phospholipase C-gamma1, in the disorganized NK cell immune synapse. Production of GM-CSF, but not IFN-gamma, is decreased, while natural cytotoxicity of Wiskott-Aldrich syndrome-NK cells is maintained. Our results indicate that WASp independently regulates its dual functions, i.e., actin cytoskeletal remodeling and transcription in NK cells.
Collapse
Affiliation(s)
- Winifred Huang
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute for Cancer Research, New York, NY 10021, USA
| | | | | | | |
Collapse
|
121
|
Jagiello P, Wieczorek S, Yu P, Csernok E, Gross WL, Epplen JT. Association study with Wegener granulomatosis of the human phospholipase Cgamma2 gene. J Negat Results Biomed 2005; 4:1. [PMID: 15703080 PMCID: PMC549077 DOI: 10.1186/1477-5751-4-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 02/09/2005] [Indexed: 11/30/2022] Open
Abstract
Background Wegener Granulomatosis (WG) is a multifactorial disease of yet unknown aetiology characterized by granulomata of the respiratory tract and systemic necrotizing vasculitis. Analyses of candidate genes revealed several associations, e.g. with α(1)-antitrypsin, proteinase 3 and with the HLA-DPB1 locus. A mutation in the abnormal limb mutant 5 (ALI5) mouse in the region coding for the hydrophobic ridge loop 3 (HRL3) of the phospholipaseCγ2 (PLCγ-2) gene, corresponding to human PLCγ-2 exon 27, leads to acute and chronic inflammation and granulomatosis. For that reason, we screened exons 11, 12 and 13 coding for the hydrophobic ridge loop 1 and 2 (HRL1 and 2, respectively) and exon 27 of the PLCγ-2 protein by single strand conformation polymorphism (SSCP), sequencing and PCR/ restriction fragment length polymorphism (RFLP) analyses. In addition, we screened indirectly for disease association via 4 microsatellites with pooled DNA in the PLCγ-2 gene. Results Although a few polymorphisms in these distinct exons were observed, significant differences in allele frequencies were not identified between WG patients and respective controls. In addition, the microsatellite analyses did not reveal a significant difference between our patient and control cohort. Conclusion This report does not reveal any hints for an involvement of the PLCγ-2 gene in the pathogenesis of WG in our case-control study.
Collapse
Affiliation(s)
- Peter Jagiello
- Department of Human Genetics, Ruhr-University Bochum Germany
| | | | - Philipp Yu
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, Germany
| | - Elena Csernok
- Department of Rheumatology, University Hospital Luebeck and Rheumaklinik Bad Bramstedt, Germany
| | - Wolfgang L Gross
- Department of Rheumatology, University Hospital Luebeck and Rheumaklinik Bad Bramstedt, Germany
| | - Joerg T Epplen
- Department of Human Genetics, Ruhr-University Bochum Germany
| |
Collapse
|
122
|
Spassova MA, Soboloff J, He LP, Hewavitharana T, Xu W, Venkatachalam K, van Rossum DB, Patterson RL, Gill DL. Calcium entry mediated by SOCs and TRP channels: variations and enigma. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1742:9-20. [PMID: 15590052 DOI: 10.1016/j.bbamcr.2004.09.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 08/30/2004] [Accepted: 09/01/2004] [Indexed: 11/28/2022]
Abstract
Ca(2+) signals in response to receptors mediate and control countless cellular functions ranging from short-term responses such as secretion and contraction to longer-term regulation of growth, cell division and apoptosis. The spatial and temporal details of Ca(2+) signals have been resolved with great precision in many cells. Ca(2+) signals activated by phospholipase C-coupled receptors have two components: Ca(2+) release from endoplasmic reticulum (ER) stores mediated by inositol 1,4,5-trisphosphate (InsP(3)) receptors, and Ca(2+) entry from outside the cell. The latter remains largely a molecular and mechanistic mystery. The activation of "store-operated" Ca(2+) channels is believed to account for the entry of Ca(2+). However, debate now focuses on how much of a contribution emptying of stores plays to the activation of Ca(2+) entry in response to physiological activation of receptors. Here we discuss recent information and ideas on the exchange of signals between the plasma membrane (PM) and ER that results in activation of Ca(2+) entry channels following receptor stimulation and/or store emptying.
Collapse
Affiliation(s)
- Maria A Spassova
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Chu X, Tong Q, Wozney J, Zhang W, Cheung JY, Conrad K, Mazack V, Stahl R, Barber DL, Miller BA. Identification of an N-terminal TRPC2 splice variant which inhibits calcium influx. Cell Calcium 2005; 37:173-82. [PMID: 15589997 DOI: 10.1016/j.ceca.2004.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 08/03/2004] [Accepted: 08/03/2004] [Indexed: 11/18/2022]
Abstract
TRPC2 is a member of the transient receptor potential (TRP) superfamily of Ca2+-permeable channels expressed in nonexcitable cells. TRPC2 is involved in a number of physiological processes including sensory activation of the vomeronasal organ, sustained Ca2+ entry in sperm, and regulation of calcium influx by erythropoietin. Here, a new splice variant of TRPC2, called "Similar to mouse TRPC2" (smTRPC2), was identified consisting of 213 amino acids, largely coincident with the N-terminus of TRPC2 clone 17. This splice variant lacks all six TRPC2 transmembrane domains and the calcium pore. Expression of smTRPC2 was found in all tissues examined by RT-PCR and in primary erythroid cells by RT-PCR and Western blotting. Confocal microscopy of CHO-S cells transfected with TRPC2 clone 14 and smTRPC2 demonstrated that TRPC2 clone 14 and smTRPC2 both localize at or near the plasma membrane and in the perinuclear region. Cell surface localization of TRPC2 was confirmed with biotinylation, and was not substantially affected by smTRPC2 expression. Coassociation of TRPC2 c14 and alpha with smTRPC2 was confirmed by immunoprecipitation. To examine the functional significance of smTRPC2 expression, a CHO-S model was used to study its effect on calcium influx stimulated by Epo through TRPC2. Single CHO-S cells which express transfected Epo-R were identified by detection of green fluorescent protein (GFP). Cells that express transfected TRPC2 c14 or alpha were identified by detection of blue fluorescent protein (BFP). [Ca]i was quantitiated with Fura Red fluorescence using digital video imaging. Epo stimulated calcium influx through TRPC2 isoforms c14 and alpha, which was inhibited by coexpression of smTRPC2. These data demonstrate that a short splice variant of TRPC2 exists in many cell types, which associates with and modifies the activity of functional TRPC2 splice variants.
Collapse
Affiliation(s)
- Xin Chu
- The Henry Hood Research Program, The Sigfried and Janet Weis Center for Research, The Geisinger Clinic, Danville, PA 17822, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Wang JP, Chen YS, Tsai CR, Huang LJ, Kuo SC. The blockade of cyclopiazonic acid-induced store-operated Ca2+ entry pathway by YC-1 in neutrophils. Biochem Pharmacol 2005; 68:2053-64. [PMID: 15476676 DOI: 10.1016/j.bcp.2004.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2004] [Accepted: 07/09/2004] [Indexed: 10/26/2022]
Abstract
In the presence of external Ca2+, pretreatment of neutrophils with 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) inhibited the cyclopiazonic acid (CPA)-induced [Ca2+](i) elevation in a concentration- but not a time-dependent manner, while YC-1 had no effect on the Ca2+ signals in a Ca2+-free medium. YC-1 failed to inhibit ATP- and interleukin-8 (IL-8)-induced [Ca2+](i) changes. Addition of YC-1 after cell activation strongly inhibited the CPA-induced [Ca2+](i) changes. In a classical Ca2+ readdition protocol, a similar extent inhibition of Ca2+ spike by YC-1 introduced either prior to or after CPA stimulation was obtained. In rat neutrophils, mRNA for endothelial differentiation gene (edg)1, edg5, edg6 and edg8, the putative targets for sphingosine 1-phosphate (S1P), could be detected. However, S1P was found to have little effect on Ca(2+) signals. YC-1 did not inhibit but enhanced the sphingosine-induced [Ca2+](i) changes. Inhibition by YC-1 of CPA-induced [Ca2+](i) changes was not prevented by 7-nitroindazole and N-(3-aminomethyl)benzylacetamidine (1400W), two nitric oxide synthase (NOS) inhibitors, by aristolochic acid, a phospholipase A(2) inhibitor, or by suspension in a Na(+)-deprived medium. YC-1 did not affect the mitochondrial membrane potential. Moreover, YC-1 did not alter [Ca2+](i) changes in response to ionomycin after CPA and formyl-Met-Leu-Phe (fMLP) stimulation in a Ca2+-free medium. YC-1 had no effect on the basal [Ca2+](i) level, the pharmacologically isolated plasma membrane Ca2+-ATPase activity, and Ba2+ entry into CPA-activated cells. YC-1 alone resulted in the accumulation of actin filaments in neutrophils, while significantly reduced the intensity of actin filament staining in the subsequent activation with CPA. These results indicate that YC-1 inhibited CPA-activated store-operated Ca2+ entry (SOCE) probably through the direct blockade of channel activation and/or the disruption of the integrity of the actin cytoskeleton necessary for supporting Ca2+ entry pathway in neutrophils.
Collapse
Affiliation(s)
- Jih-Pyang Wang
- Department of Education and Research, Taichung Veterans General Hospital, Taichung 407, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
125
|
Saha S, Gupta DD, Chakrabarti MK. Involvement of phospholipase C in Yersinia enterocolitica heat stable enterotoxin (Y-STa) mediated rise in intracellular calcium level in rat intestinal epithelial cells. Toxicon 2005; 45:361-7. [PMID: 15683875 DOI: 10.1016/j.toxicon.2004.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 11/02/2004] [Accepted: 11/03/2004] [Indexed: 11/26/2022]
Abstract
In response to Yersinia enterocolitica heat stable enterotoxin (Y-STa) intracellular calcium level was increased with a prolong sustained phase in presence of calcium chloride in extracellular environment in rat intestinal epithelial cells. Chelation of extracellular calcium with EGTA (extracellular calcium chelator) and suspension of cells in calcium free buffer demonstrated a rapid but transient rise in calcium level, which suggested that Y-STa induced rise in intracellular calcium concentration was the combination of both intracellular calcium store depletion and calcium influx from extracellular environment. Moreover, in response to Y-STa phosphoinositide specific phospholipase C activity and inositol tri phosphate (IP3) level was increased and U73122, a phospholipase C inhibitor could completely inhibit Y-STa induced calcium rise. However, treatment of rat enterocytes with dantrolene IP3, a mediated calcium release inhibitor from intracellular store resulted partial inhibition of Y-STa induced rise in intracellular calcium level. Similar observation was noted with IP3 receptor antagonist 2ABP (2-amino-ethoxydiphenylborate). These results suggested that beside phospholipase C IP3 pathway, phospholipase C might have an independent role in Y-STa induced calcium influx. Rise in phospholipase Cgamma isoform activity in response to Y-STa suggested that gamma isoform of phospholipase C might have a role in Y-STa mediated rise in intracellular calcium level.
Collapse
Affiliation(s)
- Subhrajit Saha
- Pathophysiology Division, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Calcutta 700010, India
| | | | | |
Collapse
|
126
|
Kim YJ, Sekiya F, Poulin B, Bae YS, Rhee SG. Mechanism of B-cell receptor-induced phosphorylation and activation of phospholipase C-gamma2. Mol Cell Biol 2004; 24:9986-99. [PMID: 15509800 PMCID: PMC525462 DOI: 10.1128/mcb.24.22.9986-9999.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Phospholipase C-gamma2 (PLC-gamma2) plays an important role in B-cell signaling. Phosphorylation of various tyrosine residues of PLC-gamma2 has been implicated in regulation of its lipase activity. With the use of antibodies specific for each of the putative phosphorylation sites, we have now shown that PLC-gamma2 is phosphorylated on Y753, Y759, and Y1217 in response to engagement of the B-cell receptor in Ramos cells, as well as in murine splenic B cells. In cells stimulated maximally via this receptor, the extent of phosphorylation of Y1217 was three times that of Y753 or of Y759. Stimulation of Jurkat T cells or platelets via their immunoreceptors also elicited phosphorylation of Y753 and Y759 but not that of Y1217. A basal level of phosphorylation of Y753 was apparent in unstimulated lymphocytes. The extent of phosphorylation of Y753 and Y759, but not that of Y1217, correlated with the lipase activity of PLC-gamma2. Examination of the effects of various pharmacological inhibitors and of RNA interference in Ramos cells suggested that Btk is largely, but not completely, responsible for phosphorylation of Y753 and Y759, whereas phosphorylation of Y1217 is independent of Btk. Finally, phosphorylation of Y1217 and that of Y753 and Y759 occurred on different PLC-gamma2 molecules.
Collapse
Affiliation(s)
- Yeun Ju Kim
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
127
|
Role of intracellular calcium signaling in the pathophysiology and pharmacotherapy of bipolar disorder: current status. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.cnr.2004.09.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
128
|
Kim SY, Ahn BH, Kim J, Bae YS, Kwak JY, Min G, Kwon TK, Chang JS, Lee YH, Yoon SH, Min DS. Phospholipase C, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, and redox state are involved in epigallocatechin gallate-induced phospholipase D activation in human astroglioma cells. ACTA ACUST UNITED AC 2004; 271:3470-80. [PMID: 15317582 DOI: 10.1111/j.0014-2956.2004.04242.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We show that epigallocatechin-3 gallate (EGCG), a major component of green tea, stimulates phospholipase D (PLD) activity in U87 human astroglioma cells. EGCG-induced PLD activation was abolished by the phospholipase C (PLC) inhibitor and a lipase inactive PLC-gamma1 mutant, which is dependent on intracellular or extracellular Ca(2+), with the possible involvement of Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). EGCG induced translocation of PLC-gamma1 from the cytosol to the membrane and PLC-gamma1 interaction with PLD1. EGCG regulates the activity of PLD by modulating the redox state of the cells, and antioxidants reverse this effect. Moreover, EGCG-induced PLD activation was reduced by PKC inhibitors or down-regulation of PKC. Taken together, these results show that, in human astroglioma cells, EGCG regulates PLD activity via a signaling pathway involving changes in the redox state that stimulates a PLC-gamma1 [Ins(1,4,5)P(3)-Ca(2+)]-CaM kinase II-PLD pathway and a PLC-gamma1 (diacylglycerol)-PKC-PLD pathway.
Collapse
Affiliation(s)
- Shi Yeon Kim
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Singh BB, Lockwich TP, Bandyopadhyay BC, Liu X, Bollimuntha S, Brazer SC, Combs C, Das S, Leenders AGM, Sheng ZH, Knepper MA, Ambudkar SV, Ambudkar IS. VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx. Mol Cell 2004; 15:635-46. [PMID: 15327778 DOI: 10.1016/j.molcel.2004.07.010] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 05/25/2004] [Accepted: 07/09/2004] [Indexed: 11/17/2022]
Abstract
The mechanism(s) involved in agonist-stimulation of TRPC3 channels is not yet known. Here we demonstrate that TRPC3-N terminus interacts with VAMP2 and alphaSNAP. Further, endogenous and exogenously expressed TRPC3 colocalized and coimmunoprecipitated with SNARE proteins in neuronal and epithelial cells. Imaging of GFP-TRPC3 revealed its localization in the plasma membrane region and in mobile intracellular vesicles. Recovery of TRPC3-GFP fluorescence after photobleaching of the plasma membrane region was decreased by brefeldin-A or BAPTA-AM. Cleavage of VAMP2 with tetanus toxin (TeNT) did not prevent delivery of TRPC3 to the plasma membrane region but reduced its surface expression. TeNT also decreased carbachol and OAG, but not thapsigargin, stimulated Ca2+ influx. Importantly, carbachol, not thapsigargin, increased surface expression of TRPC3 that was attenuated by TeNT and not by BAPTA. In aggregate, these data suggest that VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to carbachol-stimulation of Ca2+ influx.
Collapse
Affiliation(s)
- Brij B Singh
- Secretory Physiology Section, Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Buckley CT, Sekiya F, Kim YJ, Rhee SG, Caldwell KK. Identification of Phospholipase C-γ1 as a Mitogen-activated Protein Kinase Substrate. J Biol Chem 2004; 279:41807-14. [PMID: 15258148 DOI: 10.1074/jbc.m407851200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery of sequence motifs that mediate protein-protein interactions, coupled with the availability of protein amino acid sequence data, allows for the identification of putative protein binding pairs. The present studies were based on our identification of an amino acid sequence in phosphatidylinositol-specific phospholipase C-gamma1 (PLC-gamma1) that fits the consensus sequence for a mitogen-activated protein kinase (MAPK) binding site, termed the D-domain. Extracellular signal-regulated kinase 2 (ERK2), an MAPK, and phospho-ERK2 were bound by an immobilized peptide sequence containing the identified PLC-gamma1 D-domain. Furthermore, a peptide containing the PLC-gamma1 D-domain was able to competitively inhibit the in vitro phosphorylation of recombinant PLC-gamma1 by recombinant phospho-ERK2, whereas a control peptide derived from a distant region of PLC-gamma1 was ineffective. Similarly, the peptide containing the PLC-gamma1 D-domain, but not the control peptide, competitively inhibited the in vitro phosphorylation of Elk-1 and c-Jun catalyzed by recombinant phospho-ERK2 and phospho-c-Jun N-terminal kinase 3 (phospho-JNK3), another type of MAPK, respectively. Incubation of anti-PLC-gamma1 immunocomplexes isolated from rat brain with recombinant phospho-ERK2 opposed the increase in PLC-gamma1-catalyzed hydrolysis of phosphatidylinositol 4,5-P(2) (PtdIns(4,5)P(2)), which was produced by a tyrosine kinase associated with the immunocomplexes, whereas in vitro phosphorylation of recombinant PLC-gamma1 by recombinant phospho-ERK2 did not alter PLC-gamma1-catalyzed PtdIns(4,5)P(2) hydrolysis. These studies have uncovered a previously unidentified mechanism for the integration of PLC-gamma1- and ERK2-dependent signaling.
Collapse
Affiliation(s)
- Colin T Buckley
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
131
|
Beech DJ, Muraki K, Flemming R. Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 2004; 559:685-706. [PMID: 15272031 PMCID: PMC1665181 DOI: 10.1113/jphysiol.2004.068734] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 07/20/2004] [Indexed: 12/25/2022] Open
Abstract
Throughout the body there are smooth muscle cells controlling a myriad of tubes and reservoirs. The cells show enormous diversity and complexity compounded by a plasticity that is critical in physiology and disease. Over the past quarter of a century we have seen that smooth muscle cells contain--as part of a gamut of ion-handling mechanisms--a family of cationic channels with significant permeability to calcium, potassium and sodium. Several of these channels are sensors of calcium store depletion, G-protein-coupled receptor activation, membrane stretch, intracellular Ca2+, pH, phospholipid signals and other factors. Progress in understanding the channels has, however, been hampered by a paucity of specific pharmacological agents and difficulty in identifying the underlying genes. In this review we summarize current knowledge of these smooth muscle cationic channels and evaluate the hypothesis that the underlying genes are homologues of Drosophila TRP (transient receptor potential). Direct evidence exists for roles of TRPC1, TRPC4/5, TRPC6, TRPV2, TRPP1 and TRPP2, and more are likely to be added soon. Some of these TRP proteins respond to a multiplicity of activation signals--promiscuity of gating that could enable a variety of context-dependent functions. We would seem to be witnessing the first phase of the molecular delineation of these cationic channels, something that should prove a leap forward for strategies aimed at developing new selective pharmacological agents and understanding the activation mechanisms and functions of these channels in physiological systems.
Collapse
Affiliation(s)
- D J Beech
- School of Biomedical Sciences, University of Leeds, LS2 9JT, UK.
| | | | | |
Collapse
|
132
|
Tong Q, Chu X, Cheung JY, Conrad K, Stahl R, Barber DL, Mignery G, Miller BA. Erythropoietin-modulated calcium influx through TRPC2 is mediated by phospholipase Cgamma and IP3R. Am J Physiol Cell Physiol 2004; 287:C1667-78. [PMID: 15329338 DOI: 10.1152/ajpcell.00265.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we examined the mechanisms through which erythropoietin (Epo) activates the calcium-permeable transient receptor potential protein channel (TRPC)2. Erythroblasts were isolated from the spleens of phenylhydrazine-treated mice, and Epo stimulation resulted in a significant and dose-dependent increase in intracellular calcium concentration ([Ca(2+)](i)). This increase in [Ca(2+)](i) was inhibited by pretreatment with the phospholipase C (PLC) inhibitor U-73122 but not by the inactive analog U-73343, demonstrating the requirement for PLC activity in Epo-modulated Ca(2+) influx in primary erythroid cells. To determine whether PLC is involved in the activation of TRPC2 by Epo, cell models were used to examine this interaction. Single CHO-S cells that expressed transfected Epo receptor (Epo-R) and TRPC2 were identified, and [Ca(2+)](i) was quantitated. Epo-induced Ca(2+) influx through TRPC2 was inhibited by pretreatment with U-73122 or by downregulation of PLCgamma1 by RNA interference. PLC activation results in the production of inositol 1,4,5-trisphosphate (IP(3)), and TRPC2 has IP(3) receptor (IP(3)R) binding sites. To determine whether IP(3)R is involved in Epo-R signaling, TRPC2 mutants were prepared with partial or complete deletions of the COOH-terminal IP(3)R binding domains. In cells expressing TRPC2 IP(3)R binding mutants and Epo-R, no significant increase in [Ca(2+)](i) was observed after Epo stimulation. TRPC2 coassociated with Epo-R, PLCgamma, and IP(3)R, and the association between TRPC2 and IP(3)R was disrupted in these mutants. Our data demonstrate that Epo-R modulates TRPC2 activation through PLCgamma; that interaction of IP(3)R with TRPC2 is required; and that Epo-R, TRPC2, PLCgamma, and IP(3)R interact to form a signaling complex.
Collapse
Affiliation(s)
- Qin Tong
- Department of Pediatrics, Milton S. Hershey Medical Center, PO Box 850, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Choi JW, Lee-Kwon W, Jeon ES, Kang YJ, Kawano K, Kim HS, Suh PG, Donowitz M, Kim JH. Lysophosphatidic acid induces exocytic trafficking of Na(+)/H(+) exchanger 3 by E3KARP-dependent activation of phospholipase C. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1683:59-68. [PMID: 15238220 DOI: 10.1016/j.bbalip.2004.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 04/12/2004] [Accepted: 04/22/2004] [Indexed: 11/18/2022]
Abstract
Lysophosphatidic acid (LPA) stimulates Na(+)/H(+) exchanger 3 (NHE3) activity in opossum kidney proximal tubule (OK) cells by increasing the apical membrane amount of NHE3. This occurs by stimulation of exocytic trafficking of NHE3 to the apical plasma membrane by an E3KARP-dependent mechanism. However, it is still unclear how E3KARP leads to the LPA-induced exocytosis of NHE3. In the current study, we demonstrate that stable expression of exogenous E3KARP increases LPA-induced phospholipase C (PLC) activation and subsequent elevation of intracellular Ca(2+) in opossum kidney proximal tubule (OK) cells. Pretreatment with U73122, a PLC inhibitor, prevented the LPA-induced NHE3 activation and the exocytic trafficking of NHE3. To understand how the elevation of intracellular Ca(2+) leads to the stimulation of NHE3, we pretreated OK cells with BAPTA-AM, an intracellular Ca(2+) chelator. BAPTA-AM completely blocked the LPA-induced increase of NHE3 activity and surface NHE3 amount by decreasing the LPA-induced exocytic trafficking of NHE3. Pretreatment with GF109203X, a PKC inhibitor, did not affect the percent of LPA-induced NHE3 activation and increase of surface NHE3 amount. From these results, we suggest that E3KARP plays a necessary role in LPA-induced PLC activation, and that PLC-dependent elevation of intracellular Ca(2+) but not PKC activation is necessary for the LPA-induced increase of NHE3 exocytosis.
Collapse
Affiliation(s)
- Jung Woong Choi
- Department of Physiology and Medicine, Gastrointestinal Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Vazquez G, Wedel BJ, Kawasaki BT, Bird GSJ, Putney JW. Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels. J Biol Chem 2004; 279:40521-8. [PMID: 15271991 DOI: 10.1074/jbc.m405280200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the canonical transient receptor potential (TRPC) subfamily of cation channels are candidates for capacitative and non-capacitative Ca2+ entry channels. When ectopically expressed in cell lines, TRPC3 can be activated by phospholipase C-mediated generation of diacylglycerol or by addition of synthetic diacylglycerols, independently of Ca2+ store depletion. Apart from this mode of regulation, little is known about other receptor-dependent signaling events that modulate TRPC3 activity. In the present study the role of tyrosine kinases in receptor- and diacylglycerol-dependent activation of TRPC3 was investigated. In HEK293 cells stably expressing TRPC3, pharmacological inhibition of tyrosine kinases, and specifically of Src kinases, abolished activation of TRPC3 by muscarinic receptor stimulation and by diacylglycerol. Channel regulation was lost following expression of a dominant-negative mutant of Src, or when TRPC3 was expressed in an Src-deficient cell line. In both instances, wild-type Src restored TRPC3 regulation. We conclude that Src plays an obligatory role in the mechanism for receptor and diacylglycerol activation of TRPC3.
Collapse
Affiliation(s)
- Guillermo Vazquez
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | |
Collapse
|
135
|
Abstract
A major mechanism whereby calcium entry into cells is regulated is the store-operated or capacitative calcium entry pathway. In this article, two basic issues are discussed: (i) the methods investigators use to measure store-operated entry, and (ii) the role played by the store-operated pathway in responses to hormones and neurotransmitters under physiological conditions. The two topics are considered together because they are closely interrelated; as we begin to ask questions about calcium movements at low concentrations of agonists, the technology to measure these movements becomes increasing challenging.
Collapse
Affiliation(s)
- James W Putney
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Post Office Box 12233, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
136
|
Choi JH, Park JB, Bae SS, Yun S, Kim HS, Hong WP, Kim IS, Kim JH, Han MY, Ryu SH, Patterson RL, Snyder SH, Suh PG. Phospholipase C-gamma1 is a guanine nucleotide exchange factor for dynamin-1 and enhances dynamin-1-dependent epidermal growth factor receptor endocytosis. J Cell Sci 2004; 117:3785-95. [PMID: 15252117 DOI: 10.1242/jcs.01220] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase C-gamma1 (PLC-gamma1), which interacts with a variety of signaling molecules through its two Src homology (SH) 2 domains and a single SH3 domain has been implicated in the regulation of many cellular functions. We demonstrate that PLC-gamma1 acts as a guanine nucleotide exchange factor (GEF) of dynamin-1, a 100 kDa GTPase protein, which is involved in clathrin-mediated endocytosis of epidermal growth factor (EGF) receptor. Overexpression of PLC-gamma1 increases endocytosis of the EGF receptor by increasing guanine nucleotide exchange activity of dynamin-1. The GEF activity of PLC-gamma1 is mediated by the direct interaction of its SH3 domain with dynamin-1. EGF-dependent activation of ERK and serum response element (SRE) are both up-regulated in PC12 cells stably overexpressing PLC-gamma1, but knockdown of PLC-gamma1 by siRNA significantly reduces ERK activation. These results establish a new role for PLC-gamma1 in the regulation of endocytosis and suggest that endocytosis of activated EGF receptors may mediate PLC-gamma1-dependent proliferation.
Collapse
Affiliation(s)
- Jang Hyun Choi
- Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyojadong, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Sekiya F, Poulin B, Kim YJ, Rhee SG. Mechanism of Tyrosine Phosphorylation and Activation of Phospholipase C-γ1. J Biol Chem 2004; 279:32181-90. [PMID: 15161916 DOI: 10.1074/jbc.m405116200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phospholipase C-gamma 1 (PLC-gamma 1) is phosphorylated on three tyrosine residues: Tyr-771, Tyr-783, and Tyr-1253. With the use of antibodies specific for each of these phosphorylation sites, we have now determined the kinetics and magnitude of phosphorylation at each site. Phosphorylation of Tyr-783, which is essential for lipase activation, was observed in all stimulated cell types examined. The extent of phosphorylation of Tyr-1253 was approximately 50 to 70% of that of Tyr-783 in cells stimulated with platelet-derived growth factor (PDGF) or epidermal growth factor (EGF), but Tyr-1253 phosphorylation was not detected in B or T cell lines stimulated through B- and T-cell antigen receptors, respectively. Tyr-771 was phosphorylated only at a low level in all cells studied. In cells stimulated with PDGF, phosphorylation and dephosphorylation of Tyr-783 and of Tyr-1253 occurred with similar kinetics; the receptor kinase appeared to phosphorylate both sites, albeit with Tyr-783 favored over Tyr-1253, before the bound PLC-gamma 1 was released, and phosphorylation at the two sites occurred independently. PDGF and EGF induced similar levels of phosphorylation of Tyr-783 and of Tyr-1253 in a cell line that expressed receptors for both growth factors. However, only PDGF, not EGF, elicited substantial PLC activity, suggesting that Tyr-783 phosphorylation was not sufficient for enzyme activation. Finally, concurrent production of phosphatidylinositol 3,4,5-trisphosphate was found to contribute to the activation of phosphorylated PLC-gamma 1.
Collapse
Affiliation(s)
- Fujio Sekiya
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
138
|
Gee CE, Lacaille JC. Group I metabotropic glutamate receptor actions in oriens/alveus interneurons of rat hippocampal CA1 region. Brain Res 2004; 1000:92-101. [PMID: 15053957 DOI: 10.1016/j.brainres.2003.11.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
Group I metabotropic glutamate receptors (mGluRs) are important for hippocampal interneuron function. We used whole-cell recording and confocal imaging to characterize group I mGluR actions in CA1 oriens/alveus interneurons in slices. In tetrodotoxin and ionotropic glutamate receptor antagonists, the group I mGluR specific agonist DHPG increased intradendritic Ca(2+) levels and depolarized interneurons, whereas the group II mGluR specific agonist DCG-IV and the group III mGluR specific agonist L-AP4 did not. DHPG-induced depolarizing and Ca(2+) responses were antagonized by the group I mGluR antagonist 4CPG, but only Ca(2+) responses were significantly inhibited by the mGluR1 antagonist CPCCOEt. DHPG-induced depolarizing responses were not blocked by the inositol-1,4,5-trisphosphate (IP(3)) receptor inhibitor heparin, the protein kinase C (PKC) antagonists GF-109203X, or the inhibitor of phospholipase C (PLC) U73122. Thus, these responses to DHPG may not be transduced by the PLC-->IP(3)/diacylglycerol (DAG) pathway classically linked to group I mGluRs. DHPG-induced depolarizations were not blocked by intracellular GDP beta S or bath-application of N-ethylmaleimide (NEM), suggesting the involvement of a G protein-independent pathway. Our findings indicate that group I mGluRs induce a depolarization of oriens/alveus interneurons via a G protein-independent mechanism different from their classic signalling pathway. Since depolarizations are associated with intracellular Ca(2+) rises, these actions may be important for their synaptic plasticity and vulnerability to excitotoxicity.
Collapse
Affiliation(s)
- Christine E Gee
- Centre de Recherche en Sciences Neurologiques and Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, Quebec, Canada H3C 3J7
| | | |
Collapse
|
139
|
Abstract
The inositol 1,4,5 trisphosphate (IP3) receptor (IP3R) is a Ca2+ release channel that responds to the second messenger IP3. Exquisite modulation of intracellular Ca2+ release via IP3Rs is achieved by the ability of IP3R to integrate signals from numerous small molecules and proteins including nucleotides, kinases, and phosphatases, as well as nonenzyme proteins. Because the ion conduction pore composes only approximately 5% of the IP3R, the great bulk of this large protein contains recognition sites for these substances. Through these regulatory mechanisms, IP3R modulates diverse cellular functions, which include, but are not limited to, contraction/excitation, secretion, gene expression, and cellular growth. We review the unique properties of the IP3R that facilitate cell-type and stimulus-dependent control of function, with special emphasis on protein-binding partners.
Collapse
Affiliation(s)
- Randen L Patterson
- Department of Neuroscience, Johns Hopkins University, Johns Hopkins Medical School, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
140
|
van Rossum DB, Patterson RL, Kiselyov K, Boehning D, Barrow RK, Gill DL, Snyder SH. Agonist-induced Ca2+ entry determined by inositol 1,4,5-trisphosphate recognition. Proc Natl Acad Sci U S A 2004; 101:2323-7. [PMID: 14983008 PMCID: PMC356949 DOI: 10.1073/pnas.0308565100] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been considered that Ca2+ release is the causal trigger for Ca2+ entry after receptor activation. In DT40 B cells devoid of inositol 1,4,5-trisphosphate receptors (IP3R), the lack of Ca2+ entry in response to receptor activation is attributed to the absence of Ca2+ release. We reveal in this article that IP3R recognition of IP3 determines agonist-induced Ca2+ entry (ACE), independent of its Ca2+ release activity. In DT40 IP3R(-/-) cells, endogenous ACE can be rescued with type 1 IP3R mutants (both a DeltaC-terminal truncation mutant and a D2550A pore mutant), which are defective in Ca2+ release channel activity. Thus, in response to B cell receptor activation, ACE is restored in an IP3R-dependent manner without Ca2+ store release. Conversely, ACE cannot be rescued with mutant IP3Rs lacking IP3 binding (both the Delta90-110 and R265Q IP3-binding site mutants). We conclude that an IP3-dependent conformational change in the IP3R, not endoplasmic reticulum Ca2+ pool release, triggers ACE.
Collapse
Affiliation(s)
- Damian B van Rossum
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
141
|
Patterson RL, van Rossum DB, Barrow RK, Snyder SH. RACK1 binds to inositol 1,4,5-trisphosphate receptors and mediates Ca2+ release. Proc Natl Acad Sci U S A 2004; 101:2328-32. [PMID: 14983009 PMCID: PMC356950 DOI: 10.1073/pnas.0308567100] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RACK1 is not a G protein but closely resembles the heterotrimeric Gbeta-subunit. RACK1 serves as a scaffold, linking protein kinase C to its substrates. We demonstrate that RACK1 physiologically binds inositol 1,4,5-trisphosphate receptors and regulates Ca2+ release by enhancing inositol 1,4,5-trisphosphate receptor binding affinity for inositol 1,4,5-trisphosphate. Overexpression of RACK1 or depletion of RACK1 by interference RNA markedly augments or diminishes Ca2+ release, respectively, without affecting Ca2+ entry. These findings establish RACK1 as a physiologic mediator of agonist-induced Ca2+ release.
Collapse
Affiliation(s)
- Randen L Patterson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
142
|
Ma HT, Venkatachalam K, Rys-Sikora KE, He LP, Zheng F, Gill DL. Modification of phospholipase C-gamma-induced Ca2+ signal generation by 2-aminoethoxydiphenyl borate. Biochem J 2004; 376:667-76. [PMID: 14558886 PMCID: PMC1223825 DOI: 10.1042/bj20031345] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 10/08/2003] [Accepted: 10/15/2003] [Indexed: 01/29/2023]
Abstract
The mechanisms by which Ca(2+)-store-release channels and Ca(2+)-entry channels are coupled to receptor activation are poorly understood. Modification of Ca(2+) signals by 2-aminoethoxydiphenyl borate (2-APB), suggests the agent may target entry channels or the machinery controlling their activation. In DT40 B-cells and Jurkat T-cells, complete Ca(2+) store release was induced by 2-APB (EC(50) 10-20 microM). At 75 microM, 2-APB emptied stores completely in both lymphocyte lines, but had no such effect on other cells. In DT40 cells, 2-APB mimicked B-cell receptor (BCR) cross-linking, but no effect was observed in mutant DT40 lines devoid of inositol 1,4,5-trisphosphate (InsP(3)) receptors (InsP(3)Rs) or phospholipase C-gamma2 (PLC-gamma2). Like the BCR, 2-APB activated transfected TRPC3 (canonical transient receptor potential) channels, which acted as sensors for PLC-gamma2-generated diacylglycerol in DT40 cells. The action of 2-APB on InsP(3)Rs and TRPC3 channels was prevented by PLC-inhibition, and required PLC-gamma2 catalytic activity. However, unlike BCR activation, no increased InsP(3) level could be measured in response to 2-APB. Also, calyculin A-induced cytoskeletal reorganization prevented 2-APB-induced InsP(3)R and TRPC3-channel activation, but not that induced by the BCR. 2-APB still activated TRPC3 channels in DT40 cells with fully depleted Ca(2+) stores, indicating its action was not via Ca(2+) release. Significantly, 2-APB-induced InsP(3)R and TRPC3 activation was prevented in DT40 knockout cells devoid of the BCR- and PLC-gamma2-coupled adaptor/kinases, Syk, Lyn, Btk or BLNK. The results suggest that 2-APB activates Ca(2+) signals in lymphocytes by initiating and enhancing coupling between components of the BCR-PLC-gamma2 complex and both Ca(2+)-entry and Ca(2+)-release channels.
Collapse
Affiliation(s)
- Hong-Tao Ma
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
143
|
Affiliation(s)
- H Llewelyn Roderick
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK
| | | |
Collapse
|
144
|
Rong R, Ahn JY, Chen P, Suh PG, Ye K. Phospholipase Activity of Phospholipase C-γ1 Is Required for Nerve Growth Factor-regulated MAP Kinase Signaling Cascade in PC12 Cells. J Biol Chem 2003; 278:52497-503. [PMID: 14570902 DOI: 10.1074/jbc.m306744200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase C-gamma1 (PLC-gamma1) hydrolyzes phosphatidylinositol 4,5-bisphosphate to the second messengers inositol 1,4,5-trisphosphate and diacylglycerol (DAG). PLC-gamma1 is implicated in a variety of cellular signalings and processes including mitogenesis and calcium entry. However, numerous studies demonstrate that the lipase activity is not required for PLC-gamma1 to mediate these events. Here, we report that the phospholipase activity of PLC-gamma1 plays an essential role in nerve growth factor (NGF)-triggered Raf/MEK/MAPK pathway activation in PC12 cells. Employing PC12 cells stably transfected with an inducible form of wild-type PLC-gamma1 or lipase inactive PLC-gamma1 with histidine 335 mutated into glutamine in the catalytic domain, we show that NGF provokes robust activation of MAP kinase in wild-type but not in lipase inactive cells. Both Ras/C-Raf/MEK1 and Rap1/B-Raf/MEK1 pathways are intact in the wild-type cells. By contrast, these signaling cascades are diminished in the mutant cells. Pretreatment with cell permeable DAG analog 1-oleyl-2-acetylglycerol rescues the MAP kinase pathway activation in the mutant cells. These observations indicate that the lipase activity of PLC-gamma1 mediates NGF-regulated MAPK signaling upstream of Ras/Rap1 activation probably through second messenger DAG-activated Ras and Rap-GEFs.
Collapse
Affiliation(s)
- Rong Rong
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
145
|
Takenaka K, Fukami K, Otsuki M, Nakamura Y, Kataoka Y, Wada M, Tsuji K, Nishikawa SI, Yoshida N, Takenawa T. Role of phospholipase C-L2, a novel phospholipase C-like protein that lacks lipase activity, in B-cell receptor signaling. Mol Cell Biol 2003; 23:7329-38. [PMID: 14517301 PMCID: PMC230318 DOI: 10.1128/mcb.23.20.7329-7338.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase C (PLC) plays important roles in phosphoinositide turnover by regulating the calcium-protein kinase C signaling pathway. PLC-L2 is a novel PLC-like protein which lacks PLC activity, although it is very homologous with PLC delta. PLC-L2 is expressed in hematopoietic cells, but its physiological roles and intracellular functions in the immune system have not yet been clarified. To elucidate the physiological function of PLC-L2, we generated mice which had a genetic PLC-L2 deficiency. PLC-L2-deficient mice grew with no apparent abnormalities. However, mature B cells from PLC-L2-deficient mice were hyperproliferative in response to B-cell receptor (BCR) cross-linking, although B2 cell development appeared to be normal. Molecular biological analysis revealed that calcium influx and NFATc accumulation in nuclei were increased in PLC-L2-deficient B cells. Extracellular signal-regulated kinase activity was also enhanced in PLC-L2-deficient B cells. These mice had a stronger T-cell-independent antigen response. These results indicate that PLC-L2 is a novel negative regulator of BCR signaling and immune responses.
Collapse
Affiliation(s)
- Kei Takenaka
- Department of Biochemistry, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Li WP, Tsiokas L, Sansom SC, Ma R. Epidermal growth factor activates store-operated Ca2+ channels through an inositol 1,4,5-trisphosphate-independent pathway in human glomerular mesangial cells. J Biol Chem 2003; 279:4570-7. [PMID: 14612458 DOI: 10.1074/jbc.m304334200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the fastest cellular responses following activation of epidermal growth factor receptor is an increase in intracellular Ca2+ concentration. This event is attributed to a transient Ca2+ release from internal stores and Ca2+ entry from extracellular compartment. Store-operated Ca2+ channels are defined the channels activated in response to store depletion. In the present study, we determined whether epidermal growth factor activated store-operated Ca2+ channels and further, whether depletion of internal Ca2+ stores was required for the epidermal growth factor-induced Ca2+ entry in human glomerular mesangial cells. We found that 100 nm epidermal growth factor activated a Ca2+-permeable channel that had identical biophysical and pharmacological properties to channels activated by 1 microm thapsigargin in human glomerular mesangial cells or A431 cells. The epidermal growth factor-induced Ca2+ currents were completely abolished by a selective phospho-lipase C inhibitor, U73122. However, xestospongin C, a specific inositol 1,4,5-trisphosphate receptor inhibitor, did not affect the membrane currents elicited by epidermal growth factor despite a slight reduction in background currents. Following emptying of internal Ca2+ stores by thapsigargin, epidermal growth factor still potentiated the Ca2+ currents as determined by the whole-cell patch configuration. Furthermore, epidermal growth factor failed to trigger measurable Ca2+ release from endoplasmic reticulum. However, another physiological agent linked to phospholipase C and inositol 1,4,5-trisphosphate cascade, angiotensin II, produced a striking Ca2+ transient. These results indicate that epidermal growth factor activates store-operated Ca2+ channels through an inositol 1,4,5-trisphosphate-independent, but phospholipase C-dependent, pathway in human glomerular mesangial cells.
Collapse
Affiliation(s)
- Wei-Ping Li
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | | | |
Collapse
|
147
|
Nishida M, Sugimoto K, Hara Y, Mori E, Morii T, Kurosaki T, Mori Y. Amplification of receptor signalling by Ca2+ entry-mediated translocation and activation of PLCgamma2 in B lymphocytes. EMBO J 2003; 22:4677-88. [PMID: 12970180 PMCID: PMC212724 DOI: 10.1093/emboj/cdg457] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Revised: 07/22/2003] [Accepted: 07/23/2003] [Indexed: 11/14/2022] Open
Abstract
In non-excitable cells, receptor-activated Ca2+ signalling comprises initial transient responses followed by a Ca2+ entry-dependent sustained and/or oscillatory phase. Here, we describe the molecular mechanism underlying the second phase linked to signal amplification. An in vivo inositol 1,4,5-trisphosphate (IP3) sensor revealed that in B lymphocytes, receptor-activated and store-operated Ca2+ entry greatly enhanced IP3 production, which terminated in phospholipase Cgamma2 (PLCgamma2)-deficient cells. Association between receptor-activated TRPC3 Ca2+ channels and PLCgamma2, which cooperate in potentiating Ca2+ responses, was demonstrated by co-immunoprecipitation. PLCgamma2-deficient cells displayed diminished Ca2+ entry-induced Ca2+ responses. However, this defect was canceled by suppressing IP3-induced Ca2+ release, implying that IP3 and IP3 receptors mediate the second Ca2+ phase. Furthermore, confocal visualization of PLCgamma2 mutants demonstrated that Ca2+ entry evoked a C2 domain-mediated PLCgamma2 translocation towards the plasma membrane in a lipase-independent manner to activate PLCgamma2. Strikingly, Ca2+ entry-activated PLCgamma2 maintained Ca2+ oscillation and extracellular signal-regulated kinase activation downstream of protein kinase C. We suggest that coupling of Ca2+ entry with PLCgamma2 translocation and activation controls the amplification and co-ordination of receptor signalling.
Collapse
Affiliation(s)
- Motohiro Nishida
- Division of Molecular and Cellular Physiology, Center for Integrative Bioscience, Okazaki National Research Institutes, Okazaki, Aichi 444-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
148
|
Mori Y, Inagaki C, Kuno M, Inoue R, Okada Y, Imaizumi Y. [Ionic mechanisms underlying the regulation of cell proliferation, differentiation and death]. Nihon Yakurigaku Zasshi 2003; 122:201-14. [PMID: 12939538 DOI: 10.1254/fpj.122.201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ion channels and transporters act as major components that regulate membrane excitability in neurons, muscles, and some secretory glands, but may also contribute to the regulation of proliferation, differentiation, and death in a greater variety of cells including non-excitable ones. The molecular basis of ionic mechanisms underlying the later regulation has been partly identified in the last several years and is a hot issue now. In this short review, some of the molecular mechanisms underlying these regulations and novel compounds acting on the mechanisms were introduced as exciting topics in this area. Several types of transient receptor potential (TRP), identified as Ca(2+)-permeable, non-selective cation channels, may play obligatory roles in functional complexes, which regulate multiple signal transduction pathways triggering proliferation, differentiation, or death of many cell types. In addition, the relation between Cl(-) pump activity and the induction of beta-amyloid protein toxicity for neuronal cell death in Alzheimer disease was described. Unique functions of H(+) channel and pump in osteoclasts in bone mineral homeostasis and remodeling were also discussed. Finally, topics about activation of specific types of Cl(-) channels and K(+) channels, which are responsible for the induction of apoptosis or proliferation in several types of cells, were introduced.
Collapse
Affiliation(s)
- Yasuo Mori
- Ctr. Integ. Biosci., Okazaki Natl. Res. Inst., Japan
| | | | | | | | | | | |
Collapse
|
149
|
Hikida M, Johmura S, Hashimoto A, Takezaki M, Kurosaki T. Coupling between B cell receptor and phospholipase C-gamma2 is essential for mature B cell development. J Exp Med 2003; 198:581-9. [PMID: 12913095 PMCID: PMC2194178 DOI: 10.1084/jem.20030280] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two signaling pathways known to be essential for progression from immature to mature B cells are BAFF receptor (BAFF-R) and the B cell receptor (BCR). Here, we first show that phospholipase C (PLC)-gamma2 is required for a BAFF-R-mediated survival signal. Then, we have examined the question of whether the reduced number of mature B cells in PLC-gamma2-/- mice is caused by a defect in either BCR or BAFF-R signaling. We find that a PLC-gamma2 SH2 mutant, which inhibits coupling between BCR and PLC-gamma2, fails to restore B cell maturation, despite supporting BAFF-dependent survival. Therefore, our data suggest that the BAFF-R-mediated survival signal, provided by PLC-gamma2, is not sufficient to promote B cell maturation, and that, in addition, activation of PLC-gamma2 by BCR is required for B cell development.
Collapse
Affiliation(s)
- Masaki Hikida
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi 570-8506, Japan
| | | | | | | | | |
Collapse
|
150
|
Venkatachalam K, Zheng F, Gill DL. Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 2003; 278:29031-40. [PMID: 12721302 DOI: 10.1074/jbc.m302751200] [Citation(s) in RCA: 274] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of receptor-induced activation of the ubiquitously expressed family of mammalian canonical transient receptor potential (TRPC) channels has been the focus of intense study. Primarily responding to phospholipase C (PLC)-coupled receptors, the channels are reported to receive modulatory input from diacylglycerol, endoplasmic reticulum inositol 1,4,5-trisphosphate receptors and Ca2+ stores. Analysis of TRPC5 channels transfected within DT40 B cells and deletion mutants thereof revealed efficient activation in response to PLC-beta or PLC-gamma activation, which was independent of inositol 1,4,5-trisphoshate receptors or the content of stores. In both HEK293 cells and DT40 cells, TRPC5 and TRPC3 channel responses to PLC activation were highly analogous, but only TRPC3 and not TRPC5 channels responded to the addition of the permeant diacylglycerol (DAG) analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG). However, OAG application or elevated endogenous DAG, resulting from either DAG lipase or DAG kinase inhibition, completely prevented TRPC5 or TRPC4 activation. This inhibitory action of DAG on TRPC5 and TRPC4 channels was clearly mediated by protein kinase C (PKC), in distinction to the stimulatory action of DAG on TRPC3, which is established to be PKC-independent. PKC activation totally blocked TRPC3 channel activation in response to OAG, and the activation was restored by PKC-blockade. PKC inhibition resulted in decreased TRPC3 channel deactivation. Store-operated Ca2+ entry in response to PLC-coupled receptor activation was substantially reduced by OAG or DAG-lipase inhibition in a PKC-dependent manner. However, store-operated Ca2+ entry in response to the pump blocker, thapsigargin, was unaffected by PKC. The results reveal that each TRPC subtype is strongly inhibited by DAG-induced PKC activation, reflecting a likely universal feedback control on TRPCs, and that DAG-mediated PKC-independent activation of TRPC channels is highly subtype-specific. The profound yet distinct control by PKC and DAG of the activation of TRPC channel subtypes is likely the basis of a spectrum of regulatory phenotypes of expressed TRPC channels.
Collapse
Affiliation(s)
- Kartik Venkatachalam
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|