101
|
Du L, Zhao G, Lin Y, Chan C, He Y, Jiang S, Wu C, Jin DY, Yuen KY, Zhou Y, Zheng BJ. Priming with rAAV encoding RBD of SARS-CoV S protein and boosting with RBD-specific peptides for T cell epitopes elevated humoral and cellular immune responses against SARS-CoV infection. Vaccine 2008; 26:1644-51. [PMID: 18289745 PMCID: PMC2600875 DOI: 10.1016/j.vaccine.2008.01.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 12/30/2007] [Accepted: 01/14/2008] [Indexed: 12/17/2022]
Abstract
Development of vaccines against severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is crucial in the prevention of SARS reemergence. The receptor-binding domain (RBD) of SARS-CoV spike (S) protein is an important target in developing safe and effective SARS vaccines. Our previous study has demonstrated that vaccination with adeno-associated virus encoding RBD (RBD-rAAV) induces high titer of neutralizing antibodies. In this study, we further assessed the immune responses and protective effect of the immunization with RBD-rAAV prime/RBD-specific T cell peptide boost. Compared with the RBD-rAAV prime/boost vaccination, RBD-rAAV prime/RBD-peptide (RBD-Pep) boost induced similar levels of Th1 and neutralizing antibody responses that protected the vaccinated mice from subsequent SARS-CoV challenge, but stronger Th2 and CTL responses. No significant immune responses and protective effects were detected in mice vaccinated with RBD-Pep or blank AAV alone. Since T cell epitopes are highly conserved and boosting with peptides may induce the production of effector memory T cells, which may be effective against viruses with mutations in the neutralizing epitopes, our results suggest that the vaccination protocol used may be ideal for providing effective, broad and long-term protection against SARS-CoV infection.
Collapse
Affiliation(s)
- Lanying Du
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Severe acute respiratory syndrome (SARS) vaccines. Vaccines (Basel) 2008. [PMCID: PMC7315341 DOI: 10.1016/b978-1-4160-3611-1.50060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
103
|
Abstract
Containment of the SARS coronavirus (SCV) outbreak was accompanied by the rapid characterization of this new pathogen's genome sequence in 2003, encouraging the development of anti-SCV therapeutics using short interfering RNA (siRNA) inhibitors. A pair of siRNA duplexes identified as potent SCV inhibitors in vitro was evaluated for in vivo efficacy and safety in a rhesus macaque SARS model using intranasal administration with clinical viable delivery carrier in three dosing regimens. Observations of SCV-induced SARS-like symptoms, measurements of SCV RNA presence in the respiratory tract, microscopic inspections of lung histopathology, and immunohistochemistry sections from 21 tested macaques consistently demonstrated siRNA-mediated anti-SCV activity. The prophylactic and therapeutic efficacies resulted in relief of animals from SCV infection-induced fever, diminished SCV in upper airway and lung alveoli, and milder acute diffuse alveoli damage (DAD). The dosages of siRNA used, 10 to 40 mg/kg, did not show any sign of siRNA-induced toxicity. These results support that a clinical investigation of this anti-SARS siRNA therapeutic agent is warranted. The study also illustrates the capability of siRNA to enable a massive reduction in development time for novel targeted therapeutic agents. We detail a representative example of large-mammal siRNA use.
Collapse
|
104
|
Luo D, Ni B, Zhao G, Jia Z, Zhou L, Pacal M, Zhang L, Zhang S, Xing L, Lin Z, Wang L, Li J, Liang Y, Shi X, Zhao T, Zou L, Wu Y, Wang X. Protection from infection with severe acute respiratory syndrome coronavirus in a Chinese hamster model by equine neutralizing F(ab')2. Viral Immunol 2007; 20:495-502. [PMID: 17931120 DOI: 10.1089/vim.2007.0038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To warrant potential clinical testing, the equine anti-severe acute respiratory syndrome coronavirus (SARS-CoV) F(ab')(2) requires evaluation in as many animal models as possible. In this study, we established a new animal model, the Chinese hamster, susceptible to SARS-CoV infection. SARS-CoV could propagate effectively and sustain high levels for 1 wk in animal lungs. All animals were protected from SARS-CoV infection in preventive settings. Further, when used therapeutically this antibody led to an approximately 4-log(10) decrease in viral burden in infected animal lungs. The pathological changes in lungs correlated closely with the dose of antibody administered. The excellent preventive and therapeutic roles of equine anti-SARS-CoV F(ab')(2) in several animal models, including the novel Chinese hamster model described in this study, have provided exciting data concerning its potential clinical study.
Collapse
Affiliation(s)
- Deyan Luo
- Department of Immunology, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 2007; 20:660-94. [PMID: 17934078 DOI: 10.1128/cmr.00023-07] [Citation(s) in RCA: 675] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Before the emergence of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) in 2003, only 12 other animal or human coronaviruses were known. The discovery of this virus was soon followed by the discovery of the civet and bat SARS-CoV and the human coronaviruses NL63 and HKU1. Surveillance of coronaviruses in many animal species has increased the number on the list of coronaviruses to at least 36. The explosive nature of the first SARS epidemic, the high mortality, its transient reemergence a year later, and economic disruptions led to a rush on research of the epidemiological, clinical, pathological, immunological, virological, and other basic scientific aspects of the virus and the disease. This research resulted in over 4,000 publications, only some of the most representative works of which could be reviewed in this article. The marked increase in the understanding of the virus and the disease within such a short time has allowed the development of diagnostic tests, animal models, antivirals, vaccines, and epidemiological and infection control measures, which could prove to be useful in randomized control trials if SARS should return. The findings that horseshoe bats are the natural reservoir for SARS-CoV-like virus and that civets are the amplification host highlight the importance of wildlife and biosecurity in farms and wet markets, which can serve as the source and amplification centers for emerging infections.
Collapse
|
106
|
Yang L, Peng H, Zhu Z, Li G, Huang Z, Zhao Z, Koup RA, Bailer RT, Wu C. Persistent memory CD4+ and CD8+ T-cell responses in recovered severe acute respiratory syndrome (SARS) patients to SARS coronavirus M antigen. J Gen Virol 2007; 88:2740-2748. [PMID: 17872527 PMCID: PMC2362397 DOI: 10.1099/vir.0.82839-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The membrane (M) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is a major glycoprotein with multiple biological functions. In this study, we found that memory T cells against M protein were persistent in recovered SARS patients by detecting gamma interferon (IFN-gamma) production using ELISA and ELISpot assays. Flow cytometric analysis showed that both CD4+ and CD8+ T cells were involved in cellular responses to SARS-CoV M antigen. Furthermore, memory CD8+ T cells displayed an effector memory cell phenotype expressing CD45RO- CCR7- CD62L-. In contrast, the majority of IFN-gamma+ CD4+ T cells were central memory cells with the expression of CD45RO+ CCR7+ CD62L-. The epitope screening from 30 synthetic overlapping peptides that cover the entire SARS-CoV M protein identified four human T-cell immunodominant peptides, p21-44, p65-91, p117-140 and p200-220. All four immunodominant peptides could elicit cellular immunity with a predominance of CD8+ T-cell response. This data may have important implication for developing SARS vaccines.
Collapse
Affiliation(s)
- Litao Yang
- Department of Immunology, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510089, China
| | - Hui Peng
- Department of Immunology, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510089, China
| | - Zhaoling Zhu
- Department of Immunology, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510089, China
| | - Gang Li
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zitong Huang
- Second Affiliated Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Zhixin Zhao
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | | | | | - Changyou Wu
- Department of Immunology, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510089, China
| |
Collapse
|
107
|
Xu Y, Jia Z, Zhou L, Wang L, Li J, Liang Y, Zhao T, Ni B, Wu Y. Evaluation of the safety, immunogenicity and pharmacokinetics of equine anti-SARS-CoV F(ab')(2) in macaque. Int Immunopharmacol 2007; 7:1834-40. [PMID: 17996696 PMCID: PMC7106090 DOI: 10.1016/j.intimp.2007.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2007] [Revised: 09/08/2007] [Accepted: 09/11/2007] [Indexed: 01/09/2023]
Abstract
To warrant potential clinical testing, the equine anti-SARS-CoV F(ab')(2) requires evaluation in as many animal models as possible and a safety test in a primate model. In this study, we evaluated the pharmacokinetics, tolerance and immunity of this kind of antibody in macaques and rats. Results showed that the F(ab')(2) fragments had a normal metabolism in injected animals. The general physiological indexes did not differ between animals injected with anti-SARS-CoV F(ab')(2) or saline. However, a mild inflammatory response in local injection site and a moderate immune response against this antibody in the successively injected animals were observed, which however recovered 3 weeks after the last injection. The antibody titring from 1:100 to 400 against the equine anti-SARS-CoV F(ab')(2) in the inoculated hosts could be detected at week 2 during the successive injections of the equine F(ab')(2). The considerable safety of this antibody used in primates and the fact that the immune system of the host can be motivated by post-injection of the F(ab')(2) indicate that this type of anti-SARS-CoV antibody can be used for prevention and treatment of SASR, especially at the early stage of this virus infection. In addition, it can also provide the precious time for the combined use of other anti-SARS-CoV agents such as antiviral drug and vaccine.
Collapse
Affiliation(s)
- Yunsheng Xu
- Department of Dermatology, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou 325000, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Bai B, Lu X, Meng J, Hu Q, Mao P, Lu B, Chen Z, Yuan Z, Wang H. Vaccination of mice with recombinant baculovirus expressing spike or nucleocapsid protein of SARS-like coronavirus generates humoral and cellular immune responses. Mol Immunol 2007; 45:868-75. [PMID: 17905435 PMCID: PMC7112626 DOI: 10.1016/j.molimm.2007.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/11/2007] [Accepted: 08/18/2007] [Indexed: 11/06/2022]
Abstract
Continuous efforts have been made to develop a prophylactic vaccine against severe acute respiratory syndrome coronavirus (SARS-CoV). In this study, two recombinant baculoviruses, vAc-N and vAc-S, were constructed, which contained the mammalian-cell activate promoter element, human elongation factor 1α-subunit (EF-1α), the human cytomegalovirus (CMV) immediate-early promoter, and the nucleocapsid (N) or spike (S) gene of bat SARS-like CoV (SL-CoV) under the control of the CMV promoter. Mice were subcutaneously and intraperitoneally injected with recombinant baculovirus, and both humoral and cellular immune responses were induced in the vaccinated groups. The secretion level of IFN-γ was much higher than that of IL-4 in vAc-N or vAc-S immunized groups, suggesting a strong Th1 bias towards cellular immune responses. Additionally, a marked increase of CD4 T cell immune responses and high levels of anti-SARS-CoV humoral responses were also detected in the vAc-N or vAc-S immunized groups. In contrast, there were significantly weaker cellular immune responses, as well as less antibody production than in the control groups. Our data demonstrates that the recombinant baculovirus can serve as an effective vaccine strategy. In addition, because effective SARS vaccines should act to not only prevent the reemergence of SARS-CoV, but also to provide cross-protection against SL-CoV, findings in this study may have implications for developing such cross-protective vaccines.
Collapse
Affiliation(s)
- Bingke Bai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071 Hubei, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Lin JT, Zhang JS, Su N, Xu JG, Wang N, Chen JT, Chen X, Liu YX, Gao H, Jia YP, Liu Y, Sun RH, Wang X, Yu DZ, Hai R, Gao Q, Ning Y, Wang HX, Li MC, Kan B, Dong GM, An Q, Wang YQ, Han J, Qin C, Yin WD, Dong XP. Safety and Immunogenicity from a Phase I Trial of Inactivated Severe Acute Respiratory Syndrome Coronavirus Vaccine. Antivir Ther 2007. [DOI: 10.1177/135965350701200702] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Emergence of severe acute respiratory syndrome (SARS) from the winter of 2002 to the spring of 2003 has caused a serious threat to public health. Methods To evaluate the safety and immunogenicity of the inactivated SARS coronavirus (SARS-CoV) vaccine, 36 subjects received two doses of 16 SARS-CoV units (SU) or 32 SU inactivated SARS-CoV vaccine, or placebo control. Results On day 42, the seroconversion reached 100% for both vaccine groups. On day 56, 100% of participants in the group receiving 16 SU and 91.1% in the group receiving 32 SU had seroconverted. The geometric mean titre of neutralizing antibody peaked 2 weeks after the second vaccination, but decreased 4 weeks later. Conclusion The inactivated vaccine was safe and well tolerated and can elicit SARS-CoV-specific neutralizing antibodies.
Collapse
Affiliation(s)
- Jiang-Tao Lin
- Beijing China-Japan Friendship Hospital, People's Republic of China
| | - Jian-San Zhang
- Beijing Sinovac Biotech Co. Ltd, People's Republic of China
| | - Nan Su
- Beijing China-Japan Friendship Hospital, People's Republic of China
| | - Jian-Guo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, People's Republic of China
| | - Nan Wang
- Beijing Sinovac Biotech Co. Ltd, People's Republic of China
| | | | - Xin Chen
- Beijing China-Japan Friendship Hospital, People's Republic of China
| | - Yu-Xuan Liu
- Beijing Sinovac Biotech Co. Ltd, People's Republic of China
| | - Hong Gao
- Beijing Sinovac Biotech Co. Ltd, People's Republic of China
| | - Yu-Ping Jia
- Beijing China-Japan Friendship Hospital, People's Republic of China
| | - Yan Liu
- Beijing Sinovac Biotech Co. Ltd, People's Republic of China
| | - Rui-Hua Sun
- Beijing China-Japan Friendship Hospital, People's Republic of China
| | - Xu Wang
- Beijing Sinovac Biotech Co. Ltd, People's Republic of China
| | - Dong-Zheng Yu
- State Key Laboratory for Infectious Disease Prevention and Control, Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, People's Republic of China
| | - Rong Hai
- State Key Laboratory for Infectious Disease Prevention and Control, Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qiang Gao
- Beijing Sinovac Biotech Co. Ltd, People's Republic of China
| | - Ye Ning
- Beijing Sinovac Biotech Co. Ltd, People's Republic of China
| | - Hong-Xia Wang
- Beijing Sinovac Biotech Co. Ltd, People's Republic of China
| | - Ma-Chao Li
- State Key Laboratory for Infectious Disease Prevention and Control, Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, People's Republic of China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, People's Republic of China
| | - Guan-Mu Dong
- National Institute for the Control of Pharmaceutical and Biological Products, Beijing, People's Republic of China
| | - Qi An
- National Institute for the Control of Pharmaceutical and Biological Products, Beijing, People's Republic of China
| | - Ying-Qun Wang
- Beijing Sinovac Biotech Co. Ltd, People's Republic of China
| | - Jun Han
- State Key Laboratory for Infectious Disease Prevention and Control, Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, People's Republic of China
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, People's Republic of China
| | - Wei-Dong Yin
- Beijing Sinovac Biotech Co. Ltd, People's Republic of China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, People's Republic of China
| |
Collapse
|
110
|
DiNapoli JM, Yang L, Suguitan A, Elankumaran S, Dorward DW, Murphy BR, Samal SK, Collins PL, Bukreyev A. Immunization of primates with a Newcastle disease virus-vectored vaccine via the respiratory tract induces a high titer of serum neutralizing antibodies against highly pathogenic avian influenza virus. J Virol 2007; 81:11560-8. [PMID: 17715243 PMCID: PMC2168795 DOI: 10.1128/jvi.00713-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ongoing outbreak of highly pathogenic avian influenza virus (HPAIV) in birds, the incidence of transmission to humans with a resulting high mortality rate, and the possibility of a human pandemic warrant the development of effective human vaccines against HPAIV. We developed an experimental live-attenuated vaccine for direct inoculation of the respiratory tract based on recombinant avian Newcastle disease virus (NDV) expressing the hemagglutinin (HA) glycoprotein of H5N1 HPAIV (NDV-HA). Expression of the HPAIV HA gene slightly reduced NDV virulence, as evidenced by the increased mean embryo death time and reduced replication in chickens. NDV-HA was administered to African green monkeys in two doses of 2 x 10(7) infectious units each with a 28-day interval to evaluate the systemic and local antibody responses specific to H5N1 HPAIV. The virus was shed only at low titers from the monkeys, indicative of safety. Two doses of NDV-HA induced a high titer of H5N1 HPAIV-neutralizing serum antibodies in all of the immunized monkeys. Moreover, a substantial mucosal immunoglobulin A response was induced in the respiratory tract after one and two doses. The titers of neutralizing antibodies achieved in this study suggest that the vaccine would be likely to prevent mortality and reduce morbidity caused by the H5N1 HPAIV. In addition, induction of a local immune response in the respiratory tract is an important advantage that is likely to reduce or prevent transmission of the virus during an outbreak or a pandemic. This vaccine is a candidate for clinical evaluation in humans.
Collapse
Affiliation(s)
- Joshua M DiNapoli
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases/NIH, 50 South Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Huang J, Cao Y, Du J, Bu X, Ma R, Wu C. Priming with SARS CoV S DNA and boosting with SARS CoV S epitopes specific for CD4+ and CD8+ T cells promote cellular immune responses. Vaccine 2007; 25:6981-91. [PMID: 17709158 PMCID: PMC7115420 DOI: 10.1016/j.vaccine.2007.06.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/16/2007] [Accepted: 06/19/2007] [Indexed: 01/19/2023]
Abstract
Cellular immune response plays an important role in antiviral immunity. In our previous study, immunization of mice with severe acute respiratory syndrome coronavirus (SARS CoV) spike (S) DNA vaccine could induce both humoral and cellular immunity in response to a pool of entire overlapping S peptides. Identification of functional dominant epitopes in SARS CoV S protein for T cells is crucial for further understanding of cellular immune responses elicited by SARS CoV S DNA vaccine. In present study, mice were immunized with SARS CoV S DNA vaccine. Subsequently, a pool of 17–19 mers overlapped SARS CoV S peptides, which served as immunogens, were scanned to identify the specific epitopes for T cells. Two H-2d restricted CD4+ T epitopes, N60 (S435–444) and P152 (S1111–1127), and two H-2d restricted CD8+ T cell epitopes, N50 (S365–374) and P141 (S1031–1047) were identified by three different methods, enzyme-linked immunosorbent assay (ELISA), enzyme linked immunospot assay (ELISPOT) and fluorescence activated cell sorter (FACS). The dominant CD4+ T cell epitope (N60) and CD8+ T cell epitope (N50) located in the receptor-binding domain (RBD) of SARS CoV S protein, which mediated virus combining and fusing to susceptible cells. Importantly, our novel finding is that mice primed with SARS S DNA vaccine and boosted with T cell epitopes (N50 and N60) could promote antigen specific CD4+ and CD8+ T cell immune responses. Our study provides valuable information for the design of vaccine for SARS study.
Collapse
Affiliation(s)
- Jun Huang
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yingnan Cao
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Jiali Du
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xianzhang Bu
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Rui Ma
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Changyou Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Corresponding author. Tel.: +86 20 8733 1552; fax: +86 20 8733 1552.
| |
Collapse
|
112
|
Zhao GP. SARS molecular epidemiology: a Chinese fairy tale of controlling an emerging zoonotic disease in the genomics era. Philos Trans R Soc Lond B Biol Sci 2007; 362:1063-81. [PMID: 17327210 PMCID: PMC2435571 DOI: 10.1098/rstb.2007.2034] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) was the first natural disaster that challenged the Chinese people at the beginning of the twenty-first century. It was caused by a novel animal coronavirus, never recognized or characterized before. This SARS coronavirus (SARS-CoV) exploited opportunities provided by 'wet markets' in southern China to adapt to the palm civet and human. Under the positive selection pressure of human host, certain mutated lineages of the virus became readily transmissible between humans and thus caused the epidemic of 2002-2003. This review will provide first-hand information, particularly from Guangdong, China, about the initial epidemiology, the identification of the aetiological agent of the disease, the molecular evolution study of the virus, the finding of SARS-like CoV in horseshoe bats and the mechanistic analysis for the cross-host tropism transition. The substantial scientific contributions made by the Chinese scientists towards understanding the virus and the disease will be emphasized. Along with the description of the scientific discoveries and analyses, the significant impact of these researches upon the public health measurement or regulations will be highlighted. It is aimed to appreciate the concerted and coordinated global response that controlled SARS within a short period of time as well as the research strategy and methodology developed along with this process, which can be applied in response to other public health challenges, particularly the future emerging/re-merging infectious diseases.
Collapse
Affiliation(s)
- Guo-ping Zhao
- Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Building 1, 250 Bi-Bo Road, Zhangjiang HiTech Park, Pudong, Shanghai 201203, People's Republic of China.
| |
Collapse
|
113
|
Luo F, Feng Y, Liu M, Li P, Pan Q, Jeza VT, Xia B, Wu J, Zhang XL. Type IVB pilus operon promoter controlling expression of the severe acute respiratory syndrome-associated coronavirus nucleocapsid gene in Salmonella enterica Serovar Typhi elicits full immune response by intranasal vaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:990-7. [PMID: 17596427 PMCID: PMC2044483 DOI: 10.1128/cvi.00076-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Attenuated Salmonella enterica serovar Typhi strains have been considered to be attractive as potential live oral delivery vector vaccines because of their ability to elicit the full array of immune responses in humans. In this study, we constructed an attenuated S. enterica serovar Typhi strain stably expressing conserved nucleocapsid (N) protein of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) by integrating the N gene into the pilV gene, which was under the control of the type IVB pilus operon promoter in S. enterica serovar Typhi. BALB/c mice were immunized with this recombinant strain through different routes: intranasally, orogastrically, intraperitoneally, and intravenously. Results showed that the intranasal route caused the highest production of specific immunoglobulin G (IgG), IgG2a, and secretory IgA, where IgG2a was imprinted as a Th1 cell bias. Moreover, this recombinant live vaccine induced significantly high levels of specific cytotoxic T-lymphocyte activities and increased gamma interferon-producing T cells compared with the parental strain. Our work provides insights into how the type IVB pilus operon promoter controlling SARS-CoV N gene expression in Salmonella might be attractive for a live-vector vaccine against SRAS-CoV infection, for it could induce mucosal, humoral, and cellular immune responses. Our work also indicates that the type IVB pilus operon promoter controlling foreign gene expression in Salmonella can elicit full immune responses by intranasal vaccination.
Collapse
Affiliation(s)
- Fengling Luo
- Department of Immunology, Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, The State Key Laboratory of Virology, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Nochi T, Takagi H, Yuki Y, Yang L, Masumura T, Mejima M, Nakanishi U, Matsumura A, Uozumi A, Hiroi T, Morita S, Tanaka K, Takaiwa F, Kiyono H. Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proc Natl Acad Sci U S A 2007; 104:10986-91. [PMID: 17573530 PMCID: PMC1904174 DOI: 10.1073/pnas.0703766104] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Indexed: 11/18/2022] Open
Abstract
Capable of inducing antigen-specific immune responses in both systemic and mucosal compartments without the use of syringe and needle, mucosal vaccination is considered ideal for the global control of infectious diseases. In this study, we developed a rice-based oral vaccine expressing cholera toxin B subunit (CTB) under the control of the endosperm-specific expression promoter 2.3-kb glutelin GluB-1 with codon usage optimization for expression in rice seed. An average of 30 mug of CTB per seed was stored in the protein bodies, which are storage organelles in rice. When mucosally fed, rice seeds expressing CTB were taken up by the M cells covering the Peyer's patches and induced CTB-specific serum IgG and mucosal IgA antibodies with neutralizing activity. When expressed in rice, CTB was protected from pepsin digestion in vitro. Rice-expressed CTB also remained stable and thus maintained immunogenicity at room temperature for >1.5 years, meaning that antigen-specific mucosal immune responses were induced at much lower doses than were necessary with purified recombinant CTB. Because they require neither refrigeration (cold-chain management) nor a needle, these rice-based mucosal vaccines offer a highly practical and cost-effective strategy for orally vaccinating large populations against mucosal infections, including those that may result from an act of bioterrorism.
Collapse
Affiliation(s)
- Tomonori Nochi
- *Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| | - Hidenori Takagi
- Transgenic Crop Research and Development Center, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Yoshikazu Yuki
- *Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| | - Lijun Yang
- Transgenic Crop Research and Development Center, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Takehiro Masumura
- Laboratory of Genetic Engineering, Graduate School of Agriculture, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan
- Kyoto Prefectural Institute of Agricultural Biotechnology, Seika-cho, Kyoto 619-0244, Japan; and
| | - Mio Mejima
- *Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| | - Ushio Nakanishi
- *Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Akiko Matsumura
- *Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| | - Akihiro Uozumi
- *Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Takachika Hiroi
- Department of Allergy and Immunology, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | - Shigeto Morita
- Laboratory of Genetic Engineering, Graduate School of Agriculture, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan
- Kyoto Prefectural Institute of Agricultural Biotechnology, Seika-cho, Kyoto 619-0244, Japan; and
| | - Kunisuke Tanaka
- Laboratory of Genetic Engineering, Graduate School of Agriculture, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan
- Kyoto Prefectural Institute of Agricultural Biotechnology, Seika-cho, Kyoto 619-0244, Japan; and
| | - Fumio Takaiwa
- Transgenic Crop Research and Development Center, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Hiroshi Kiyono
- *Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| |
Collapse
|
115
|
Ba L, Yi CE, Zhang L, Ho DD, Chen Z. Heterologous MVA-S prime Ad5-S boost regimen induces high and persistent levels of neutralizing antibody response against SARS coronavirus. Appl Microbiol Biotechnol 2007; 76:1131-6. [PMID: 17581748 PMCID: PMC7079952 DOI: 10.1007/s00253-007-1073-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 05/30/2007] [Accepted: 06/01/2007] [Indexed: 11/11/2022]
Abstract
Severe acute respiratory syndrome (SARS) is caused by a novel coronavirus (CoV), SARS-CoV. In previous studies, we showed that a SARS-CoV spike (S) glycoprotein-based modified vaccinia Ankara (MVA-S) vaccine could induce strong neutralizing antibody (Nab) response which might have played a critical role in protecting Chinese rhesus monkeys from the pathogenic viral challenge. To date, however, it remains unknown what the minimal level of Nab is required to achieve sterile immunity in humans. It is therefore important to explore techniques to maximize the level of Nab response in vivo. Here, we evaluate various vaccination regimens using combinations of DNA-S, MVA-S, and adenovirus type 5 (Ad5-S) vaccines. We show that in vaccinated mice and rabbits, a heterologous MVA-S prime with Ad5-S boost regimen induces the highest and most persistent level of Nab response when compared with other combinations. Interestingly, the initial level of Nab after prime does not necessarily predict the magnitude of the secondary response after the boost. Thus, our data provides a promising optimal regimen for vaccine development in humans against SARS-CoV infection.
Collapse
Affiliation(s)
- Lei Ba
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 1st Avenue, New York, NY 10016 USA
| | - Christopher E. Yi
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 1st Avenue, New York, NY 10016 USA
| | - Linqi Zhang
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 1st Avenue, New York, NY 10016 USA
| | - David D. Ho
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 1st Avenue, New York, NY 10016 USA
| | - Zhiwei Chen
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 1st Avenue, New York, NY 10016 USA
| |
Collapse
|
116
|
Abstract
Severe acute respiratory syndrome (SARS) presented as an atypical pneumonia that progressed to acute respiratory distress syndrome in approximately 20% of cases and was associated with a mortality of about 10%. The etiological agent was a novel coronavirus (CoV). Angiotensin-converting enzyme 2 is the functional receptor for SARS-CoV; DC-SIGN and CD209L (L-SIGN) can enhance viral entry. Although the virus infects the lungs, gastrointestinal tract, liver, and kidneys, the disease is limited to the lungs, where diffuse alveolar damage is accompanied by a disproportionately sparse inflammatory infiltrate. Pro-inflammatory cytokines and chemokines, particularly IP-10, IL-8, and MCP-1, are elevated in the lungs and peripheral blood, but there is an unusual lack of an antiviral interferon (IFN) response. The virus is susceptible to exogenous type I IFN but suppresses the induction of IFN. Innate immunity is important for viral clearance in the mouse model. Virus-specific neutralizing antibodies that develop during convalescence prevent reinfection in animal models.
Collapse
Affiliation(s)
- Jun Chen
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
117
|
DiNapoli JM, Kotelkin A, Yang L, Elankumaran S, Murphy BR, Samal SK, Collins PL, Bukreyev A. Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens. Proc Natl Acad Sci U S A 2007; 104:9788-93. [PMID: 17535926 PMCID: PMC1887550 DOI: 10.1073/pnas.0703584104] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The international outbreak of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) in 2002-2003 highlighted the need to develop pretested human vaccine vectors that can be used in a rapid response against newly emerging pathogens. We evaluated Newcastle disease virus (NDV), an avian paramyxovirus that is highly attenuated in primates, as a topical respiratory vaccine vector with SARS-CoV as a test pathogen. Complete recombinant NDV was engineered to express the SARS-CoV spike S glycoprotein, the viral neutralization and major protective antigen, from an added transcriptional unit. African green monkeys immunized through the respiratory tract with two doses of the vaccine developed a titer of SARS-CoV-neutralizing antibodies comparable with the robust secondary response observed in animals that have been immunized with a different experimental SARS-CoV vaccine and challenged with SARS-CoV. When animals immunized with NDV expressing S were challenged with a high dose of SARS-CoV, direct viral assay of lung tissues taken by necropsy at the peak of viral replication demonstrated a 236- or 1,102-fold (depending on the NDV vector construct) mean reduction in pulmonary SARS-CoV titer compared with control animals. NDV has the potential for further development as a pretested, highly attenuated, intranasal vector to be available for expedited vaccine development for humans, who generally lack preexisting immunity against NDV.
Collapse
Affiliation(s)
- Joshua M. DiNapoli
- *Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Alexander Kotelkin
- *Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Lijuan Yang
- *Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | | | - Brian R. Murphy
- *Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | | | - Peter L. Collins
- *Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Alexander Bukreyev
- *Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
- To whom correspondence should be addressed at:
Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6505, Bethesda, MD 20892. E-mail:
| |
Collapse
|
118
|
Roberts A, Lamirande EW, Vogel L, Jackson JP, Paddock CD, Guarner J, Zaki SR, Sheahan T, Baric R, Subbarao K. Animal models and vaccines for SARS-CoV infection. Virus Res 2007; 133:20-32. [PMID: 17499378 PMCID: PMC2323511 DOI: 10.1016/j.virusres.2007.03.025] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 03/28/2007] [Accepted: 03/29/2007] [Indexed: 01/04/2023]
Abstract
We summarize findings of SARS-CoV infections in several animal models each of which support viral replication in lungs accompanied by histopathological changes and/or clinical signs of illness to varying degrees. New findings are reported on SARS-CoV replication and associated pathology in two additional strains (C57BL/6 and 129S6) of aged mice. We also provide new comparative data on viral replication and associated pathology following infection of golden Syrian hamsters with various SARS-CoV strains and report the levels of neutralizing antibody titers following these infections and the cross-protective efficacy of infection with these strains in protecting against heterologous challenge. Finally, we summarize findings of a variety of vaccine approaches and discuss the available in vitro and in vivo data addressing the potential for disease enhancement following re-infection in animals previously vaccinated against or infected with SARS-CoV.
Collapse
Affiliation(s)
- Anjeanette Roberts
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, United States
| | | | - Leatrice Vogel
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, United States
| | - Jadon P. Jackson
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, United States
| | - Christopher D. Paddock
- Infectious Disease Pathology Activity, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - Jeannette Guarner
- Infectious Disease Pathology Activity, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - Sherif R. Zaki
- Infectious Disease Pathology Activity, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - Timothy Sheahan
- Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Ralph Baric
- Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, United States
- Corresponding author. Tel.: +1 301 451 3839; fax: +1 301 496 8312.
| |
Collapse
|
119
|
Zhao G, Ni B, Jiang H, Luo D, Pacal M, Zhou L, Zhang L, Xing L, Zhang L, Jia Z, Lin Z, Wang L, Li J, Liang Y, Shi X, Zhao T, Zhou L, Wu Y, Wang X. Inhibition of severe acute respiratory syndrome-associated coronavirus infection by equine neutralizing antibody in golden Syrian hamsters. Viral Immunol 2007; 20:197-205. [PMID: 17425434 DOI: 10.1089/vim.2006.0064] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Equine anti-severe acute respiratory syndrome-associated coronavirus F(ab')(2) has been verified to protect mice from infection with severe acute respiratory syndrome-associated coronavirus (SARS-CoV). However, before potential clinical application, the antibody needs to be tested in as many animal models as possible to ensure its safety and efficiency. In this study, after verification by various methods that the golden Syrian hamster constitutes a model susceptible to SARS-CoV infection, we confirmed that the antibody could protect animals completely from SARS-CoV infection in the preventive setting. More importantly, the antibody could reduce viral titers or copies by approximately 10(3)- to 10(4)-fold in animal lung after virus exposure, compared with negative control. These data provide further evidence to warrant clinical studies of this antibody in the treatment and prevention of SARS.
Collapse
Affiliation(s)
- Guangyu Zhao
- Department of Immunology, Institute of Microbiology Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
TOC Summary: The discovery of SARS-like coronaviruses in horseshoe bats highlights the possibility of future outbreaks caused by different coronaviruses of bat origin. Bats have been identified as a natural reservoir for an increasing number of emerging zoonotic viruses, including henipaviruses and variants of rabies viruses. Recently, we and another group independently identified several horseshoe bat species (genus Rhinolophus) as the reservoir host for a large number of viruses that have a close genetic relationship with the coronavirus associated with severe acute respiratory syndrome (SARS). Our current research focused on the identification of the reservoir species for the progenitor virus of the SARS coronaviruses responsible for outbreaks during 2002–2003 and 2003–2004. In addition to SARS-like coronaviruses, many other novel bat coronaviruses, which belong to groups 1 and 2 of the 3 existing coronavirus groups, have been detected by PCR. The discovery of bat SARS-like coronaviruses and the great genetic diversity of coronaviruses in bats have shed new light on the origin and transmission of SARS coronaviruses.
Collapse
Affiliation(s)
- Lin-Fa Wang
- Australian Animal Health Laboratory, Geelong, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
121
|
Callendret B, Lorin V, Charneau P, Marianneau P, Contamin H, Betton JM, van der Werf S, Escriou N. Heterologous viral RNA export elements improve expression of severe acute respiratory syndrome (SARS) coronavirus spike protein and protective efficacy of DNA vaccines against SARS. Virology 2007; 363:288-302. [PMID: 17331558 PMCID: PMC7103356 DOI: 10.1016/j.virol.2007.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 12/19/2006] [Accepted: 01/15/2007] [Indexed: 01/19/2023]
Abstract
The SARS-CoV spike glycoprotein (S) is the main target of the protective immune response in humans and animal models of SARS. Here, we demonstrated that efficient expression of S from the wild-type spike gene in cultured cells required the use of improved plasmid vectors containing donor and acceptor splice sites, as well as heterologous viral RNA export elements, such as the CTE of Mazon-Pfizer monkey virus or the PRE of Woodchuck hepatitis virus (WPRE). The presence of both splice sites and WPRE markedly improved the immunogenicity of S-based DNA vaccines against SARS. Upon immunization of mice with low doses (2 microg) of naked DNA, only intron and WPRE-containing vectors could induce neutralizing anti-S antibodies and provide protection against challenge with SARS-CoV. Our observations are likely to be useful for the construction of plasmid and viral vectors designed for optimal expression of intronless genes derived from cytoplasmic RNA viruses.
Collapse
Affiliation(s)
- Benoît Callendret
- Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, EA 302 Université Paris 7, France
| | - Valérie Lorin
- Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, EA 302 Université Paris 7, France
| | - Pierre Charneau
- Groupe à 5 ans de Virologie Moléculaire et de Vectorologie, France
| | - Philippe Marianneau
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Hugues Contamin
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Jean-Michel Betton
- Unité de Biochimie Structurale, URA CNRS 2185, Institut Pasteur, 25 rue du Dr. Roux, 75724 PARIS Cedex 15, France
| | - Sylvie van der Werf
- Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, EA 302 Université Paris 7, France
| | - Nicolas Escriou
- Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, EA 302 Université Paris 7, France
- Corresponding author. Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France. Fax: +33 140613241.
| |
Collapse
|
122
|
Community-acquired pneumonia: paving the way towards new vaccination concepts. COMMUNITY-ACQUIRED PNEUMONIA 2007. [PMCID: PMC7123104 DOI: 10.1007/978-3-7643-7563-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite the availability of antimicrobial agents and vaccines, community-acquired pneumonia remains a serious problem. Severe forms tend to occur in very young children and among the elderly, since their immune competence is eroded by immaturity and immune senescence, respectively. The main etiologic agents differ according to patient age and geographic area. Streptococcus pneumoniae, Haemophilus influenzae, respiratory syncytial virus (RSV) and parainfluenza virus type 3 (PIV-3) are the most important pathogens in children, whereas influenza viruses are the leading cause of fatal pneumonia in the elderly. Effective vaccines are available against some of these organisms. However, there are still many agents against which vaccines are not available or the existent ones are suboptimal. To tackle this problem, empiric approaches are now being systematically replaced by rational vaccine design. This is facilitated by the growing knowledge in the fields of immunology, microbial pathogenesis and host response to infection, as well as by the availability of sophisticated strategies for antigen selection, potent immune modulators and efficient antigen delivery systems. Thus, a new generation of vaccines with improved safety and efficacy profiles compared to old and new agents is emerging. In this chapter, an overview is provided about currently available and new vaccination concepts.
Collapse
|
123
|
Warris A, de Groot R. Human metapneumovirus infection. PEDIATRIC INFECTIOUS DISEASES REVISITED 2007. [PMCID: PMC7123282 DOI: 10.1007/978-3-7643-8099-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Initially, human metapneumovirus (hMPV) was isolated from children with clinical symptoms of respiratory syncytial virus (RSV) infection in whom RSV could not be detected. Since then, numerous reports have described the detection of hMPV in clinical specimens from children, adults and the elderly (both immunocompetent and immunocompromised patients), diagnosed with an acute respiratory illness all over the world. hMPV is associated with a substantial number of respiratory tract infections in otherwise healthy children, with clinical illnesses similar to those associated with other common respiratory viruses. Serological surveys have shown that hMPV is a ubiquitous virus that infects all children by the age of 5–10 years and has been circulating in humans for at least 50 years. hMPV is a member of the Metapneumovirus genus of the Paramyxoviridae family, a group of negative-stranded RNA viruses. Genetic studies on hMPV have demonstrated the presence of two distinct hMPV serotypes each divided in two subgroups. Diagnosis is made by RT-PCR assays on respiratory secretions. Rapid antigen detection tests are not yet available and its growth in cell cultures is fastidious. No vaccines, antibodies (monoclonal or polyclonal), or chemotherapeutic agents are currently licensed for use to prevent or treat hMPV infections. The contribution of hMPV to pediatric respiratory tract infections suggests that it will be important to develop a vaccine against this virus in combination with those being developed for RSV and parainfluenza viruses. Reverse genetics technology is currently used to develop multivalent vaccines against hMPV and a variety of other important respiratory viruses such as RSV. Additional research to define the pathogenesis of this viral infection and the host’ specific immune response will enhance our knowledge to guide the search for preventive and therapeutical strategies.
Collapse
|
124
|
Nagata N, Iwata N, Hasegawa H, Fukushi S, Yokoyama M, Harashima A, Sato Y, Saijo M, Morikawa S, Sata T. Participation of both host and virus factors in induction of severe acute respiratory syndrome (SARS) in F344 rats infected with SARS coronavirus. J Virol 2006; 81:1848-57. [PMID: 17151094 PMCID: PMC1797583 DOI: 10.1128/jvi.01967-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To understand the pathogenesis and develop an animal model of severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV), the Frankfurt 1 SARS-CoV isolate was passaged serially in young F344 rats. Young rats were susceptible to SARS-CoV but cleared the virus rapidly within 3 to 5 days of intranasal inoculation. After 10 serial passages, replication and virulence of SARS-CoV were increased in the respiratory tract of young rats without clinical signs. By contrast, adult rats infected with the passaged virus showed respiratory symptoms and severe pathological lesions in the lung. Levels of inflammatory cytokines in sera and lung tissues were significantly higher in adult F344 rats than in young rats. During in vivo passage of SARS-CoV, a single amino acid substitution was introduced within the binding domain of the viral spike protein recognizing angiotensin-converting enzyme 2 (ACE2), which is known as a SARS-CoV receptor. The rat-passaged virus more efficiently infected CHO cells expressing rat ACE2 than did the original isolate. These results strongly indicate that host and virus factors such as advanced age and virus adaptation are critical for the development of SARS in rats.
Collapse
Affiliation(s)
- Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Bukreyev A, Skiadopoulos MH, Murphy BR, Collins PL. Nonsegmented negative-strand viruses as vaccine vectors. J Virol 2006; 80:10293-306. [PMID: 17041210 PMCID: PMC1641758 DOI: 10.1128/jvi.00919-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Alexander Bukreyev
- Building 50, Room 6505, NIAID, NIH, 50 South Dr., MSC 8007, Bethesda, MD 20892-8007, USA.
| | | | | | | |
Collapse
|
126
|
Deming D, Sheahan T, Heise M, Yount B, Davis N, Sims A, Suthar M, Harkema J, Whitmore A, Pickles R, West A, Donaldson E, Curtis K, Johnston R, Baric R. Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med 2006; 3:e525. [PMID: 17194199 PMCID: PMC1716185 DOI: 10.1371/journal.pmed.0030525] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 10/31/2006] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) was identified as the etiological agent of severe acute respiratory syndrome, a disease characterized by severe pneumonia that sometimes results in death. SARS-CoV is a zoonotic virus that crossed the species barrier, most likely originating from bats or from other species including civets, raccoon dogs, domestic cats, swine, and rodents. A SARS-CoV vaccine should confer long-term protection, especially in vulnerable senescent populations, against both the 2003 epidemic strains and zoonotic strains that may yet emerge from animal reservoirs. We report the comprehensive investigation of SARS vaccine efficacy in young and senescent mice following homologous and heterologous challenge. METHODS AND FINDINGS Using Venezuelan equine encephalitis virus replicon particles (VRP) expressing the 2003 epidemic Urbani SARS-CoV strain spike (S) glycoprotein (VRP-S) or the nucleocapsid (N) protein from the same strain (VRP-N), we demonstrate that VRP-S, but not VRP-N vaccines provide complete short- and long-term protection against homologous strain challenge in young and senescent mice. To test VRP vaccine efficacy against a heterologous SARS-CoV, we used phylogenetic analyses, synthetic biology, and reverse genetics to construct a chimeric virus (icGDO3-S) encoding a synthetic S glycoprotein gene of the most genetically divergent human strain, GDO3, which clusters among the zoonotic SARS-CoV. icGD03-S replicated efficiently in human airway epithelial cells and in the lungs of young and senescent mice, and was highly resistant to neutralization with antisera directed against the Urbani strain. Although VRP-S vaccines provided complete short-term protection against heterologous icGD03-S challenge in young mice, only limited protection was seen in vaccinated senescent animals. VRP-N vaccines not only failed to protect from homologous or heterologous challenge, but resulted in enhanced immunopathology with eosinophilic infiltrates within the lungs of SARS-CoV-challenged mice. VRP-N-induced pathology presented at day 4, peaked around day 7, and persisted through day 14, and was likely mediated by cellular immune responses. CONCLUSIONS This study identifies gaps and challenges in vaccine design for controlling future SARS-CoV zoonosis, especially in vulnerable elderly populations. The availability of a SARS-CoV virus bearing heterologous S glycoproteins provides a robust challenge inoculum for evaluating vaccine efficacy against zoonotic strains, the most likely source of future outbreaks.
Collapse
Affiliation(s)
- Damon Deming
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Timothy Sheahan
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nancy Davis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Amy Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mehul Suthar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jack Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Alan Whitmore
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Raymond Pickles
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ande West
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Eric Donaldson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kristopher Curtis
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Robert Johnston
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ralph Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
127
|
Abstract
Severe acute respiratory syndrome (SARS) is caused by a coronavirus (CoV), SARSCoV. SARS-CoV belongs to the family Coronaviridae, which are enveloped RNA viruses in the order Nidovirales. Global research efforts are continuing to increase the understanding of the virus, the pathogenesis of the disease it causes (SARS), and the “heterogeneity of individual infectiousness” as well as shedding light on how to prepare for other emerging viral diseases. Promising drugs and vaccines have been identified. The milestones achieved have resulted from a truly international effort. Molecular studies dissected the adaptation of this virus as it jumped from an intermediary animal, the civet, to humans, thus providing valuable insights into processes of molecular emergence.
Collapse
Affiliation(s)
- Tommy R Tong
- Department of Pathology, Princess Margaret Hospital, Laichikok, Kowloon, Hong Kong, China
| |
Collapse
|
128
|
Du L, Zhao G, He Y, Guo Y, Zheng BJ, Jiang S, Zhou Y. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine 2006; 25:2832-8. [PMID: 17092615 PMCID: PMC7115660 DOI: 10.1016/j.vaccine.2006.10.031] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2006] [Revised: 09/10/2006] [Accepted: 10/17/2006] [Indexed: 12/16/2022]
Abstract
Development of effective vaccines against severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is still a priority in prevention of re-emergence of SARS. Our previous studies have shown that the receptor-binding domain (RBD) of SARS-CoV spike (S) protein elicits highly potent neutralizing antibody responses in the immunized animals. But it is unknown whether RBD can also induce protective immunity in an animal model, a key aspect for vaccine development. In this study, BALB/c mice were vaccinated intramuscularly (i.m.) with 10 μg of RBD-Fc (RBD fused with human IgG1 Fc) and boosted twice at 3-week intervals and one more time at 12th month. Humoral immune responses of vaccinated mice were investigated for up to 12 months at a 1-month interval and the neutralizing titers of produced antibodies were reported at months 0, 3, 6 and 12 post-vaccination. Mice were challenged with the homologous strain of SARS-CoV 5 days after the last boost, and sacrificed 5 days after the challenge. Mouse lung tissues were collected for detection of viral load, virus replication and histopathological effects. Our results showed that RBD-Fc vaccination induced high titer of S-specific antibodies with long-term and potent SARS-CoV neutralizing activity. Four of five vaccinated mice were protected from subsequent SARS-CoV challenge because no significant virus replication, and no obvious histopathological changes were found in the lung tissues of the vaccinated mice challenged with SARS-CoV. Only one vaccinated mouse had mild alveolar damage in the lung tissues. In contrast, high copies of SARS-CoV RNA and virus replication were detected, and pathological changes were observed in the lung tissues of the control mice. In conclusion, our findings suggest that RBD, which can induce protective antibodies to SARS-CoV, may be further developed as a safe and effective SARS subunit vaccine.
Collapse
Affiliation(s)
- Lanying Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | | | | | | | | | | | | |
Collapse
|
129
|
Yu H, Jiang LF, Fang DY, Yan HJ, Zhou JJ, Zhou JM, Liang Y, Gao Y, Zhao W, Long BG. Selection of SARS-coronavirus-specific B cell epitopes by phage peptide library screening and evaluation of the immunological effect of epitope-based peptides on mice. Virology 2006; 359:264-74. [PMID: 17055022 PMCID: PMC7103350 DOI: 10.1016/j.virol.2006.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 09/13/2006] [Accepted: 09/18/2006] [Indexed: 11/25/2022]
Abstract
Antibodies to SARS-Coronavirus (SARS-CoV)-specific B cell epitopes might recognize the pathogen and interrupt its adherence to and penetration of host cells. Hence, these epitopes could be useful for diagnosis and as vaccine constituents. Using the phage-displayed peptide library screening method and purified Fab fragments of immunoglobulin G (IgG Fab) from normal human sera and convalescent sera from SARS-CoV-infected patients as targets, 11 B cell epitopes of SARS-CoV spike glycoprotein (S protein) and membrane protein (M protein) were screened. After a bioinformatics tool was used to analyze these epitopes, four epitope-based S protein dodecapeptides corresponding to the predominant epitopes were chosen for synthesis. Their antigenic specificities and immunogenicities were studied in vitro and in vivo. Flow cytometry and ELISPOT analysis of lymphocytes as well as a serologic analysis of antibody showed that these peptides could trigger a rapid, highly effective, and relatively safe immune response in BALB/c mice. These findings might aid development of SARS diagnostics and vaccines. Moreover, the role of S and M proteins as important surface antigens is confirmed.
Collapse
Affiliation(s)
- Hua Yu
- Department of Microbiology, Zhongshan Medical School, Sun Yat-sen University, 74 Zhong-shan 2-Road, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
Respiratory syncytial virus (RSV), the recently identified human metapneumovirus (HMPV), and the human parainfluenza viruses (HPIVs), cause most cases of childhood croup, bronchiolitis, and pneumonia. Influenza virus also causes a significant burden of disease in young children, although its significance in children was not fully recognized until recently. This article discusses pathogens that have been studied for several decades, including RSV and HPIVs, and also explores the newly identified viral pathogens HMPV and human coronavirus NL63. The escalating rate of emergence of new infectious agents, fortunately meeting with equally rapid advancements in molecular methods of surveillance and pathogen discovery, means that new organisms will soon be added to the list. A section on therapies for bronchiolitis addresses the final common pathways that can result from infection with diverse pathogens, highlighting the mechanisms that may be amenable to therapeutic approaches. The article concludes with a discussion of the overarching impact of new diagnostic strategies.
Collapse
|
131
|
Gillim-Ross L, Subbarao K. Emerging respiratory viruses: challenges and vaccine strategies. Clin Microbiol Rev 2006; 19:614-36. [PMID: 17041137 PMCID: PMC1592697 DOI: 10.1128/cmr.00005-06] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The current threat of avian influenza to the human population, the potential for the reemergence of severe acute respiratory syndrome (SARS)-associated coronavirus, and the identification of multiple novel respiratory viruses underline the necessity for the development of therapeutic and preventive strategies to combat viral infection. Vaccine development is a key component in the prevention of widespread viral infection and in the reduction of morbidity and mortality associated with many viral infections. In this review we describe the different approaches currently being evaluated in the development of vaccines against SARS-associated coronavirus and avian influenza viruses and also highlight the many obstacles encountered in the development of these vaccines. Lessons learned from current vaccine studies, coupled with our increasing knowledge of the host and viral factors involved in viral pathogenesis, will help to increase the speed with which efficacious vaccines targeting newly emerging viral pathogens can be developed.
Collapse
Affiliation(s)
- Laura Gillim-Ross
- Laboratory of Infectious Diseases, National Insitute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
132
|
Qi C, Duan JZ, Wang ZH, Chen YY, Zhang PH, Zhan L, Yan XY, Cao WC, Jin G. Investigation of interaction between two neutralizing monoclonal antibodies and SARS virus using biosensor based on imaging ellipsometry. Biomed Microdevices 2006; 8:247-53. [PMID: 16718402 PMCID: PMC7087585 DOI: 10.1007/s10544-006-8305-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Two neutralizing human scFv, b1 and h12 were identified initially using ELISA,employing highly purified virus as the coating antigen. The biosensor technique based on imaging ellipsometry was employed directly to detect two neutralizing monoclonal antibodies and serial serum samples from 10 SARS patients and 12 volunteers who had not SARS. Further, the kinetic process of interaction between the antibodies and SARS-CoV was studied using the real-time function of the biosensor. The biosensor is consistent with ELISA that the antibody h12 showed a higher affinity in encountering the virus than antibody b1. The affinity of antibody b1 and antibody h12 was 9.5 x 10(6) M(-1) and 1.36 x 10(7) M(- 1), respectively. As a label free method, the biosensor based on imaging ellipsometry proved to be a more competent mechanism for measuring serum samples from SARS patients and the affinity between these antibodies and the SARS coronavirus.
Collapse
Affiliation(s)
- Cai Qi
- Institute of Mechanics, Chinese Academy of Sciences, #15, Bei-si-huan West Rd., Beijing, 100080 China
- Graduate School of the Chinese Academy of Sciences, 19, Yu-quan Rd, Shi-jing-shan District, Beijing, 100049 P.R. China
| | - Jin-Zhu Duan
- Institute of Biophysics, Chinese Academy of Sciences, #15, Da-tun Rd., Beijing, 100101 China
| | - Zhan-Hui Wang
- Institute of Mechanics, Chinese Academy of Sciences, #15, Bei-si-huan West Rd., Beijing, 100080 China
| | - Yan-Yan Chen
- Institute of Mechanics, Chinese Academy of Sciences, #15, Bei-si-huan West Rd., Beijing, 100080 China
- Graduate School of the Chinese Academy of Sciences, 19, Yu-quan Rd, Shi-jing-shan District, Beijing, 100049 P.R. China
| | - Pan-He Zhang
- Institute of Microbiology and Epidemiology, The Academy of Military Medical Sciences, #27 Taiping Rd., Beijing, 10085 China
| | - Lin Zhan
- Institute of Microbiology and Epidemiology, The Academy of Military Medical Sciences, #27 Taiping Rd., Beijing, 10085 China
| | - Xi-Yun Yan
- Institute of Biophysics, Chinese Academy of Sciences, #15, Da-tun Rd., Beijing, 100101 China
| | - Wu-Chun Cao
- Institute of Microbiology and Epidemiology, The Academy of Military Medical Sciences, #27 Taiping Rd., Beijing, 10085 China
| | - Gang Jin
- Institute of Mechanics, Chinese Academy of Sciences, #15, Bei-si-huan West Rd., Beijing, 100080 China
- Institute of Biophysics, Chinese Academy of Sciences, #15, Da-tun Rd., Beijing, 100101 China
| |
Collapse
|
133
|
He Y, Li J, Heck S, Lustigman S, Jiang S. Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: implication for vaccine design. J Virol 2006; 80:5757-67. [PMID: 16731915 PMCID: PMC1472569 DOI: 10.1128/jvi.00083-06] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The spike (S) glycoprotein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates the receptor interaction and immune recognition and is considered a major target for vaccine design. However, its antigenic and immunogenic properties remain to be elucidated. In this study, we immunized mice with full-length S protein (FL-S) or its extracellular domain (EC-S) expressed by recombinant baculoviruses in insect cells. We found that the immunized mice developed high titers of anti-S antibodies with potent neutralizing activities against SARS pseudoviruses constructed with the S proteins of Tor2, GD03T13, and SZ3, the representative strains of 2002 to 2003 and 2003 to 2004 human SARS-CoV and palm civet SARS-CoV, respectively. These data suggest that the recombinant baculovirus-expressed S protein vaccines possess excellent immunogenicity, thereby inducing highly potent neutralizing responses against human and animal SARS-CoV variants. The antigenic structure of the S protein was characterized by a panel of 38 monoclonal antibodies (MAbs) isolated from the immunized mice. The epitopes of most anti-S MAbs (32 of 38) were localized within the S1 domain, and those of the remaining 6 MAbs were mapped to the S2 domain. Among the anti-S1 MAbs, 17 MAbs targeted the N-terminal region (amino acids [aa] 12 to 327), 9 MAbs recognized the receptor-binding domain (RBD; aa 318 to 510), and 6 MAbs reacted with the C-terminal region of S1 domain that contains the major immunodominant site (aa 528 to 635). Strikingly, all of the RBD-specific MAbs had potent neutralizing activity, 6 of which efficiently blocked the receptor binding, confirming that the RBD contains the main neutralizing epitopes and that blockage of the receptor association is the major mechanism of SARS-CoV neutralization. Five MAbs specific for the S1 N-terminal region exhibited moderate neutralizing activity, but none of the MAbs reacting with the S2 domain and the major immunodominant site in S1 showed neutralizing activity. All of the neutralizing MAbs recognize conformational epitopes. These data provide important information for understanding the antigenicity and immunogenicity of S protein and for designing SARS vaccines. This panel of anti-S MAbs can be used as tools for studying the structure and function of the SARS-CoV S protein.
Collapse
Affiliation(s)
- Yuxian He
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
134
|
Zakhartchouk AN, Sharon C, Satkunarajah M, Auperin T, Viswanathan S, Mutwiri G, Petric M, See RH, Brunham RC, Finlay BB, Cameron C, Kelvin DJ, Cochrane A, Rini JM, Babiuk LA. Immunogenicity of a receptor-binding domain of SARS coronavirus spike protein in mice: implications for a subunit vaccine. Vaccine 2006; 25:136-43. [PMID: 16919855 PMCID: PMC7115608 DOI: 10.1016/j.vaccine.2006.06.084] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 06/05/2006] [Accepted: 06/20/2006] [Indexed: 02/07/2023]
Abstract
We studied the immunogenicity of an anti-SARS subunit vaccine comprised of the fragment of the SARS coronavirus (SARS-CoV) spike protein amino acids 318-510 (S318-510) containing the receptor-binding domain. The S protein fragment was purified from the culture supernatant of stably transformed HEK293T cells secreting a tagged version of the protein. The vaccine was given subcutaneously to 129S6/SvEv mice in saline, with alum adjuvant or with alum plus CpG oligodeoxynucleotides (ODN). Mice immunized with the adjuvanted antigen elicited strong antibody and cellular immune responses; furthermore, adding the CpG ODN to the alum resulted in increased IgG2a antibody titers and a higher number of INF-gamma-secreting murine splenocytes. Mice vaccinated with S318-510 deglycosylated by PNGase F (dgS318-510) showed a lower neutralizing antibody response but had similar numbers of INF-gamma-producing cells in the spleen. This finding suggests that carbohydrate is important for the immunogenicity of the S318-510 protein fragment and provide useful information for designing an effective and safe SARS subunit vaccine.
Collapse
Affiliation(s)
- Alexander N Zakhartchouk
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, Sask., Canada S7N 5E3.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Roberts A, Wood J, Subbarao K, Ferguson M, Wood D, Cherian T. Animal models and antibody assays for evaluating candidate SARS vaccines: summary of a technical meeting 25-26 August 2005, London, UK. Vaccine 2006; 24:7056-65. [PMID: 16930781 PMCID: PMC7130694 DOI: 10.1016/j.vaccine.2006.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 07/05/2006] [Indexed: 12/28/2022]
Abstract
Severe acute respiratory syndrome (SARS) emerged in the Guangdong province of China in late 2002 and spread to 29 countries. By the end of the outbreak in July 2003, the CDC and WHO reported 8437 cases with a 9.6% case fatality rate. The disease was caused by a previously unrecognized coronavirus, SARS-CoV. Drawing on experience with animal coronavirus vaccines, several vaccine candidates have been developed and evaluated in pre-clinical trials. Available data suggest that vaccines should be based on the the 180kDa viral spike protein, S, the only significant neutralization antigen capable of inducing protective immune responses in animals. In the absence of clinical cases of SARS, candidate vaccines should be evaluated for efficacy in animal models, and although it is uncertain whether the United States Food and Drug Administration's "animal rule" would apply to licensure of a SARS vaccine, it is important to develop standardized animal models and immunological assays in preparation for this eventuality. This report summarizes the recommendations from a WHO Technical Meeting on Animal Models and Antibody Assays for Evaluating Candidate SARS Vaccines held on 25-26 August 2005 in South Mimms, UK, provides guidance on the use of animal models, and outlines the steps to develop standard reagents and assays for immunological evaluation of candidate SARS vaccines.
Collapse
Affiliation(s)
- Anjeanette Roberts
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
136
|
ter Meulen J, van den Brink EN, Poon LLM, Marissen WE, Leung CSW, Cox F, Cheung CY, Bakker AQ, Bogaards JA, van Deventer E, Preiser W, Doerr HW, Chow VT, de Kruif J, Peiris JSM, Goudsmit J. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med 2006; 3:e237. [PMID: 16796401 PMCID: PMC1483912 DOI: 10.1371/journal.pmed.0030237] [Citation(s) in RCA: 508] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 04/03/2006] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Experimental animal data show that protection against severe acute respiratory syndrome coronavirus (SARS-CoV) infection with human monoclonal antibodies (mAbs) is feasible. For an effective immune prophylaxis in humans, broad coverage of different strains of SARS-CoV and control of potential neutralization escape variants will be required. Combinations of virus-neutralizing, noncompeting mAbs may have these properties. METHODS AND FINDINGS Human mAb CR3014 has been shown to completely prevent lung pathology and abolish pharyngeal shedding of SARS-CoV in infected ferrets. We generated in vitro SARS-CoV variants escaping neutralization by CR3014, which all had a single P462L mutation in the glycoprotein spike (S) of the escape virus. In vitro experiments confirmed that binding of CR3014 to a recombinant S fragment (amino acid residues 318-510) harboring this mutation was abolished. We therefore screened an antibody-phage library derived from blood of a convalescent SARS patient for antibodies complementary to CR3014. A novel mAb, CR3022, was identified that neutralized CR3014 escape viruses, did not compete with CR3014 for binding to recombinant S1 fragments, and bound to S1 fragments derived from the civet cat SARS-CoV-like strain SZ3. No escape variants could be generated with CR3022. The mixture of both mAbs showed neutralization of SARS-CoV in a synergistic fashion by recognizing different epitopes on the receptor-binding domain. Dose reduction indices of 4.5 and 20.5 were observed for CR3014 and CR3022, respectively, at 100% neutralization. Because enhancement of SARS-CoV infection by subneutralizing antibody concentrations is of concern, we show here that anti-SARS-CoV antibodies do not convert the abortive infection of primary human macrophages by SARS-CoV into a productive one. CONCLUSIONS The combination of two noncompeting human mAbs CR3014 and CR3022 potentially controls immune escape and extends the breadth of protection. At the same time, synergy between CR3014 and CR3022 may allow for a lower total antibody dose to be administered for passive immune prophylaxis of SARS-CoV infection.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibody Affinity
- Antibody Specificity
- Antigen-Antibody Reactions
- Antigenic Variation
- Antigens, Viral/immunology
- Base Sequence
- Binding Sites
- Cells, Cultured/virology
- Chlorocebus aethiops
- Disease Outbreaks
- Dose-Response Relationship, Immunologic
- Drug Synergism
- Epitopes/immunology
- Humans
- Immune Sera
- Immunization, Passive
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Light Chains/genetics
- Immunoglobulin Light Chains/immunology
- Immunoglobulin Variable Region/chemistry
- Immunoglobulin Variable Region/immunology
- Macrophages/virology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/physiology
- Molecular Sequence Data
- Mutation, Missense
- Nandiniidae/virology
- Neutralization Tests
- Point Mutation
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/immunology
- Severe acute respiratory syndrome-related coronavirus/genetics
- Severe acute respiratory syndrome-related coronavirus/immunology
- Severe Acute Respiratory Syndrome/drug therapy
- Severe Acute Respiratory Syndrome/epidemiology
- Severe Acute Respiratory Syndrome/prevention & control
- Severe Acute Respiratory Syndrome/therapy
- Severe Acute Respiratory Syndrome/virology
- Spike Glycoprotein, Coronavirus
- Surface Plasmon Resonance
- Vero Cells
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/physiology
- Virus Replication
Collapse
|
137
|
Chunling M, Kun Y, Jian X, Jian Q, Hua S, Minsheng Z. Enhanced induction of SARS-CoV nucleocapsid protein-specific immune response using DNA vaccination followed by adenovirus boosting in BALB/c mice. Intervirology 2006; 49:307-18. [PMID: 16809936 PMCID: PMC7179534 DOI: 10.1159/000094247] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 02/14/2006] [Indexed: 12/18/2022] Open
Abstract
Objective To investigate immunogenicity in the induction of humoral and cellular immune responses to genetic vaccines of the recombinant severe acute respiratory syndrome-associated coronavirus (SARS-CoV)-N gene expressing the same protein plasmid, pcDNA3.1-N, and replication-defective adenoviral vector, rAd-N, in a pcDNA3.1-N prime-rAd-N boost regimen and the reverse sequence in a rAd-N prime-pcDNA3.1-N boost regimen. Method After the mice had been immunized intramuscularly and/or intraperitoneally with pcDNA3.1-N and rAd-N in prime-triple boost immunization, humoral and cellular immune responses were detected. Results After detection, different levels of anti-N humoral and cellular responses are shown compared to controls. The humoral immune response was induced more effectively by the DNA priming and recombinant adenovirus boosting regimen and the reverse sequence of heterogeneous combinations. There is a significant difference between heterogeneous and homologous vaccinations. However, the cytotoxic T lymphocyte (CTL) response was not significantly altered by the different prime-boost immunizations or the recombinant adenovirus of pcDNA3.1-N prime-rAd-N boost regimen alone, but lymphoproliferation and interferon-γ (IFN-γ) secretion were all enhanced by heterologous combination immunizations compared to homologous combinations. For the reverse sequence immunization regimen, lymphoproliferation, IFN-γ and CTL responses were all significantly weaker compared with pcDNA3.1-N prime-rAd-N boost regimen. Conclusion Taken together, of all the combinations, the prime-triple boost immunization of pcDNA3.1-N/pcDNA3.1-N/pcDNA3.1-N/rAd-N can effectively induce SARS-CoV-N-specific and strong humoral and cellular immune responses in mice. The present results suggest that DNA immunization followed by recombinant adenovirus boosting could be used as a potential SARS-CoV vaccine in the induction of an enhanced humoral and cellular immune response.
Collapse
Affiliation(s)
- Ma Chunling
- Department of Microbiology and Immunology, Nanjing Medical University
| | - Yao Kun
- Department of Microbiology and Immunology, Nanjing Medical University
| | - Xu Jian
- Department of Microbiology and Immunology, Nanjing Medical University
| | - Qin Jian
- College of English, Hehai University
| | - Sun Hua
- Nanjing Center for Disease Prevention and Control
| | - Zhu Minsheng
- Model Animal Research Institute, Nanjing University, Nanjing, PR China
| |
Collapse
|
138
|
Chan PKS, Tang JW, Hui DSC. SARS: clinical presentation, transmission, pathogenesis and treatment options. Clin Sci (Lond) 2006; 110:193-204. [PMID: 16411895 DOI: 10.1042/cs20050188] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SARS (severe acute respiratory syndrome) appeared as the first emerging infectious disease of this century. It is fortunate that the culprit virus can be grown without much difficulty from a commonly used cell line, allowing an unlimited supply of isolates for further molecular studies and leading to the development of sensitive diagnostic assays. How the virus has successfully jumped the species barrier is still a mystery. The superspreading events that occurred within hospital, hotel and high-density housing estate opens a new chapter in the mechanisms and routes of virus transmission. The old practice of quarantine proved to be still useful in controlling the global outbreak. Despite all the available sophisticated tests, alertness with early recognition by healthcare workers and prompt isolation of suspected cases is still the most important step for containing the spread of the infection. Although the rapidly evolving outbreak did not allow the conducting of systematic clinical trails to evaluate treatment options, the accumulated experience on managing SARS patients will improve the clinical outcome should SARS return. Although SARS led to more than 700 deaths worldwide, the lessons learnt have prepared healthcare systems worldwide to face future emerging and re-emerging infections.
Collapse
Affiliation(s)
- Paul K S Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.
| | | | | |
Collapse
|
139
|
He Y, Li J, Li W, Lustigman S, Farzan M, Jiang S. Cross-neutralization of human and palm civet severe acute respiratory syndrome coronaviruses by antibodies targeting the receptor-binding domain of spike protein. THE JOURNAL OF IMMUNOLOGY 2006; 176:6085-92. [PMID: 16670317 DOI: 10.4049/jimmunol.176.10.6085] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is considered as a protective Ag for vaccine design. We previously demonstrated that the receptor-binding domain (RBD) of S protein contains multiple conformational epitopes (Conf I-VI) that confer the major target of neutralizing Abs. Here we show that the recombinant RBDs derived from the S protein sequences of Tor2, GD03, and SZ3, the representative strains of human 2002-2003 and 2003-2004 SARS-CoV and palm civet SARS-CoV, respectively, induce in the immunized mice and rabbits high titers of cross-neutralizing Abs against pseudoviruses expressing S proteins of Tor2, GD03, and SZ3. We also demonstrate that the Tor2-RBD induced-Conf I-VI mAbs can potently neutralize both human SARS-CoV strains, Tor2 and GD03. However, only the Conf IV-VI, but not Conf I-III mAbs, neutralize civet SARS-CoV strain SZ3. All these mAbs reacted significantly with each of the three RBD variants (Tor2-RBD, GD03-RBD, and SZ3-RBD) that differ at several amino acids. Regardless, the Conf I-IV and VI epitopes were completely disrupted by single-point mutation of the conserved residues in the RBD (e.g., D429A, R441A, or D454A) and the Conf III epitope was significantly affected by E452A or D463A substitution. Interestingly, the Conf V epitope, which may overlap the receptor-binding motif and induce most potent neutralizing Abs, was conserved in these mutants. These data suggest that the major neutralizing epitopes of SARS-CoV have been apparently maintained during cross-species transmission, and that RBD-based vaccines may induce broad protection against both human and animal SARS-CoV variants.
Collapse
Affiliation(s)
- Yuxian He
- Lindsley F. Kimball Research Institute, New York Blood Center, 310 East 67th Street, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
140
|
Du L, He Y, Wang Y, Zhang H, Ma S, Wong CK, Wu SH, Ng F, Huang JD, Yuen KY, Jiang S, Zhou Y, Zheng BJ. Recombinant adeno-associated virus expressing the receptor-binding domain of severe acute respiratory syndrome coronavirus S protein elicits neutralizing antibodies: Implication for developing SARS vaccines. Virology 2006; 353:6-16. [PMID: 16793110 PMCID: PMC7111904 DOI: 10.1016/j.virol.2006.03.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 01/27/2006] [Accepted: 03/31/2006] [Indexed: 12/31/2022]
Abstract
Development of an effective vaccine for severe acute respiratory syndrome (SARS) remains to be a priority to prevent possible re-emergence of SARS coronavirus (SARS-CoV). We previously demonstrated that the receptor-binding domain (RBD) of SARS-CoV S protein is a major target of neutralizing antibodies. This suggests that the RBD may serve as an ideal vaccine candidate. Recombinant adeno-associated virus (rAAV) has been proven to be an effective system for gene delivery and vaccine development. In this study, a novel vaccine against SARS-CoV was developed based on the rAAV delivery system. The gene encoding RBD was cloned into a pAAV-IRES-hrGFP plasmid. The immunogenicity induced by the resulting recombinant RBD-rAAV was evaluated in BALB/c mice. The results demonstrated that (1) a single dose of RBD-rAAV vaccination could induce sufficient neutralizing antibody against SARS-CoV infection; (2) two more repeated doses of the vaccination boosted the neutralizing antibody to about 5 times of the level achieved by a single dose of the immunization and (3) the level of the antibody continued to increase for the entire duration of the experiment of 5.5 months. These results suggested that RBD-rAAV is a promising SARS candidate vaccine.
Collapse
Affiliation(s)
- Lanying Du
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yuxian He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- Lindsley F. Kimball Research Institute, The New York Blood Center, New York, NY10021, USA
| | - Yijia Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Haojie Zhang
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Selene Ma
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Charlotte K.L. Wong
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sharon H.W. Wu
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Fai Ng
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jian-Dong Huang
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, The New York Blood Center, New York, NY10021, USA
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- Corresponding authors. Y. Zhou is to be contacted at fax: +86 10 6381 5259. B.-J. Zheng, fax: +8 52 2855 1241.
| | - Bo-Jian Zheng
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Corresponding authors. Y. Zhou is to be contacted at fax: +86 10 6381 5259. B.-J. Zheng, fax: +8 52 2855 1241.
| |
Collapse
|
141
|
Yang LT, Peng H, Zhu ZL, Li G, Huang ZT, Zhao ZX, Koup RA, Bailer RT, Wu CY. Long-lived effector/central memory T-cell responses to severe acute respiratory syndrome coronavirus (SARS-CoV) S antigen in recovered SARS patients. Clin Immunol 2006; 120:171-8. [PMID: 16781892 PMCID: PMC7106132 DOI: 10.1016/j.clim.2006.05.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 04/21/2006] [Accepted: 05/01/2006] [Indexed: 12/14/2022]
Abstract
The role of cell-mediated immunity in human SARS-CoV infection is still not well understood. In this study, we found that memory T-cell responses against the spike (S) protein were persistent for more than 1 year after SARS-CoV infection by detecting the production of IFN-γ using ELISA and ELISpot assays. Flow cytometric analysis showed that both CD4+ and CD8+ T cells were involved in cellular responses against SARS-CoV infection. Interestingly, most of SARS-CoV S-specific memory CD4+ T cells were central memory cells expressing CD45RO+ CCR7+ CD62L−. However, the majority of memory CD8+ T cells revealed effector memory phenotype expressing CD45RO− CCR7− CD62L−. Thus, our study provides the evidence that SARS-CoV infection in humans can induce cellular immune response that is persistent for a long period of time. These data may have an important implication in the possibility of designing effective vaccine against SARS-CoV infection, specifically in defining T-cell populations that are implicated in protective immunity.
Collapse
Affiliation(s)
- Li-Tao Yang
- Department of Immunology, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Hui Peng
- Department of Immunology, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Zhao-Ling Zhu
- Department of Immunology, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Gang Li
- Third affiliated hospital of the Sun Yat-sen University, Guangzhou 510630, China
| | - Zi-Tong Huang
- Second affiliated hospital of the Sun Yat-sen University, Guangzhou 510120, China
| | - Zhi-Xin Zhao
- Third affiliated hospital of the Sun Yat-sen University, Guangzhou 510630, China
| | | | | | - Chang-You Wu
- Department of Immunology, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
- Corresponding author. Fax: +86 20 87331552.
| |
Collapse
|
142
|
Abstract
The outbreak of severe acute respiratory syndrome (SARS) in 2003 was controlled by public health measures at a time when specific interventions such as antiviral drugs, vaccines and immunotherapy were not available. Since then, several animal models have been developed for the study of SARS and, although no model replicates the human disease in all aspects, the use of animal models for SARS has led to the establishment of several important principles for vaccine and immunotherapy. Consistency and reproducibility of findings in a given model must be demonstrated to establish the superiority of one model over others. Here, we suggest aspects of an ideal animal model for studies of SARS pathogenesis and vaccine development and present our assessment of the strengths and limitations of the current animal models for SARS.
Collapse
Affiliation(s)
- Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, MSC 8007, Bethesda, MD 20892, USA.
| | | |
Collapse
|
143
|
He Y, Li J, Du L, Yan X, Hu G, Zhou Y, Jiang S. Identification and characterization of novel neutralizing epitopes in the receptor-binding domain of SARS-CoV spike protein: revealing the critical antigenic determinants in inactivated SARS-CoV vaccine. Vaccine 2006; 24:5498-508. [PMID: 16725238 PMCID: PMC7115380 DOI: 10.1016/j.vaccine.2006.04.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/09/2006] [Accepted: 04/17/2006] [Indexed: 01/01/2023]
Abstract
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is considered as a major antigen for vaccine design. We previously demonstrated that the receptor-binding domain (RBD: residues 318-510) of S protein contains multiple conformation-dependent neutralizing epitopes (Conf I to VI) and serves as a major target of SARS-CoV neutralization. Here, we further characterized the antigenic structure in the RBD by a panel of novel mAbs isolated from the mice immunized with an inactivated SARS-CoV vaccine. Ten of the RBD-specific mAbs were mapped to four distinct groups of conformational epitopes (designated Group A to D), and all of which had potent neutralizing activity against S protein-pseudotyped SARS viruses. Group A, B, C mAbs target the epitopes that may overlap with the previously characterized Conf I, III, and VI respectively, but they display different capacity to block the receptor binding. Group D mAb (S25) was directed against a unique epitope by its competitive binding. Two anti-RBD mAbs recognizing the linear epitopes (Group E) were mapped to the RBD residues 335-352 and 442-458, respectively, and none of them inhibited the receptor binding and virus entry. Surprisingly, most neutralizing epitopes (Groups A to C) could be completely disrupted by single amino acid substitutions (e.g., D429A, R441A or D454A) or by deletions of several amino acids at the N-terminal or C-terminal region of the RBD; however, the Group D epitope was not sensitive to the mutations, highlighting its importance for vaccine development. These data provide important information for understanding the antigenicity and immunogenicity of SARS-CoV, and this panel of novel mAbs can be used as tools for studying the structure of S protein and for guiding SARS vaccine design.
Collapse
Affiliation(s)
- Yuxian He
- Lindsley F. Kimball Research Institute, New York Blood Center, 310 East 67th Street, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
144
|
Ishii K, Hasegawa H, Nagata N, Mizutani T, Morikawa S, Suzuki T, Taguchi F, Tashiro M, Takemori T, Miyamura T, Tsunetsugu-Yokota Y. Induction of protective immunity against severe acute respiratory syndrome coronavirus (SARS-CoV) infection using highly attenuated recombinant vaccinia virus DIs. Virology 2006; 351:368-80. [PMID: 16678878 PMCID: PMC7111839 DOI: 10.1016/j.virol.2006.03.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 03/10/2006] [Accepted: 03/10/2006] [Indexed: 01/08/2023]
Abstract
SARS-coronavirus (SARS-CoV) has recently been identified as the causative agent of SARS. We constructed a series of recombinant DIs (rDIs), a highly attenuated vaccinia strain, expressing a gene encoding four structural proteins (E, M, N and S) of SARS-CoV individually or simultaneously. These rDIs elicited SARS-CoV-specific serum IgG antibody and T-cell responses in vaccinated mice following intranasal or subcutaneous administration. Mice that were subcutaneously vaccinated with rDIs expressing S protein with or without other structural proteins induced a high level of serum neutralizing IgG antibodies and demonstrated marked protective immunity against SARS-CoV challenge in the absence of a mucosal IgA response. These results indicate that the potent immune response elicited by subcutaneous injection of rDIs containing S is able to control mucosal infection by SARS-CoV. Thus, replication-deficient DIs constructs hold promise for the development of a safe and potent SARS vaccine.
Collapse
Affiliation(s)
- Koji Ishii
- Department of Virology II, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Gakuen, Musashimurayama-shi, Tokyo 208-001, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Gakuen, Musashimurayama-shi, Tokyo 208-001, Japan
| | - Tetsuya Mizutani
- Department of Virology I, National Institute of Infectious Diseases, Gakuen, Musashimurayama-shi, Tokyo 208-001, Japan
| | - Shigeru Morikawa
- Department of Virology I, National Institute of Infectious Diseases, Gakuen, Musashimurayama-shi, Tokyo 208-001, Japan
| | - Tetsuro Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Fumihiro Taguchi
- Department of Virology III, National Institute of Infectious Diseases, Gakuen, Musashimurayama-shi, Tokyo 208-001, Japan
| | - Masato Tashiro
- Department of Virology III, National Institute of Infectious Diseases, Gakuen, Musashimurayama-shi, Tokyo 208-001, Japan
| | - Toshitada Takemori
- Department of Immunology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tatsuo Miyamura
- Department of Virology II, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yasuko Tsunetsugu-Yokota
- Department of Immunology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Corresponding author. Fax: +81 3 5285 1150.
| |
Collapse
|
145
|
Lawler JV, Endy TP, Hensley LE, Garrison A, Fritz EA, Lesar M, Baric RS, Kulesh DA, Norwood DA, Wasieloski LP, Ulrich MP, Slezak TR, Vitalis E, Huggins JW, Jahrling PB, Paragas J. Cynomolgus macaque as an animal model for severe acute respiratory syndrome. PLoS Med 2006; 3:e149. [PMID: 16605302 PMCID: PMC1435788 DOI: 10.1371/journal.pmed.0030149] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 01/10/2006] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The emergence of severe acute respiratory syndrome (SARS) in 2002 and 2003 affected global health and caused major economic disruption. Adequate animal models are required to study the underlying pathogenesis of SARS-associated coronavirus (SARS-CoV) infection and to develop effective vaccines and therapeutics. We report the first findings of measurable clinical disease in nonhuman primates (NHPs) infected with SARS-CoV. METHODS AND FINDINGS In order to characterize clinically relevant parameters of SARS-CoV infection in NHPs, we infected cynomolgus macaques with SARS-CoV in three groups: Group I was infected in the nares and bronchus, group II in the nares and conjunctiva, and group III intravenously. Nonhuman primates in groups I and II developed mild to moderate symptomatic illness. All NHPs demonstrated evidence of viral replication and developed neutralizing antibodies. Chest radiographs from several animals in groups I and II revealed unifocal or multifocal pneumonia that peaked between days 8 and 10 postinfection. Clinical laboratory tests were not significantly changed. Overall, inoculation by a mucosal route produced more prominent disease than did intravenous inoculation. Half of the group I animals were infected with a recombinant infectious clone SARS-CoV derived from the SARS-CoV Urbani strain. This infectious clone produced disease indistinguishable from wild-type Urbani strain. CONCLUSIONS SARS-CoV infection of cynomolgus macaques did not reproduce the severe illness seen in the majority of adult human cases of SARS; however, our results suggest similarities to the milder syndrome of SARS-CoV infection characteristically seen in young children.
Collapse
Affiliation(s)
- James V Lawler
- 1Infectious Diseases Department, National Naval Medical Center (NNMC), Bethesda, Maryland, United States of America
| | - Timothy P Endy
- 2Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, United States of America
| | - Lisa E Hensley
- 2Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, United States of America
| | - Aura Garrison
- 2Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, United States of America
| | - Elizabeth A Fritz
- 2Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, United States of America
| | - May Lesar
- 3Radiology Division, National Naval Medical Center (NNMC); Bethesda, Maryland, United States of America
| | - Ralph S Baric
- 4Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David A Kulesh
- 5Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, United States of America
| | - David A Norwood
- 5Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, United States of America
| | - Leonard P Wasieloski
- 5Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, United States of America
| | - Melanie P Ulrich
- 5Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, United States of America
| | - Tom R Slezak
- 6Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Elizabeth Vitalis
- 6Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - John W Huggins
- 2Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, United States of America
| | - Peter B Jahrling
- 7Headquarters Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, United States of America
| | - Jason Paragas
- 2Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
146
|
Abstract
Osterhaus and Haagmans discuss a new study in PLoS Medicine that supports the use of the cynomolgus macaque model to study SARS pathogenesis and to test intervention strategies.
Collapse
Affiliation(s)
- Bart L Haagmans
- Department of Virology, Erasmus Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
147
|
Tripet B, Kao DJ, Jeffers SA, Holmes KV, Hodges RS. Template-based coiled-coil antigens elicit neutralizing antibodies to the SARS-coronavirus. J Struct Biol 2006; 155:176-94. [PMID: 16697221 PMCID: PMC7129695 DOI: 10.1016/j.jsb.2006.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 03/09/2006] [Indexed: 11/30/2022]
Abstract
The Spike (S) glycoprotein of coronaviruses (CoV) mediates viral entry into host cells. It contains two hydrophobic heptad repeat (HR) regions, denoted HRN and HRC, which oligomerize the S glycoprotein into a trimer in the native state and when activated collapse into a six-helix bundle structure driving fusion of the host and viral membranes. Previous studies have shown that peptides of the HR regions can inhibit viral infectivity. These studies imply that the HR regions are accessible and that agents which can interact with them may prevent viral entry. In the present study, we have investigated an approach to generate antibodies that specifically recognize the HRN and HRC regions of the SARS-CoV spike (S) glycoprotein in order to evaluate whether these antibodies can inhibit viral infectivity and thus neutralize the SARS-CoV. In this regard, we incorporated HRN and HRC coiled-coil surface residues into a de novo designed two-stranded α-helical coiled-coil template for generating conformation-specific antibodies that recognize α-helices in proteins (Lu, S.M., Hodges, R.S., 2002. J. Biol. Chem. 277, 23515–23524). Eighteen surface residues from two regions of HRN and HRC were incorporated into the template and used to generate four anti-sera, HRN1, HRN2, HRC1, and HRC2. Our results show that all of the elicited anti-sera can specifically recognize HRN or HRC peptides and the native SARS-CoV S protein in an ELISA format. Flow cytometry (FACS) analysis, however, showed only HRC1 and HRC2 anti-sera could bind to native S protein expressed on the cell surface of Chinese hamster ovary cells, i.e., the cell surface structure of the S glycoprotein precluded the ability of the HRN1 or HRN2 anti-sera to see their respective epitope sites. In in vitro viral infectivity assays, no inhibition was observed for either HRN1 or HRN2 anti-serum, whereas both HRC1 and HRC2 anti-sera could inhibit SARS-CoV infection in a dose-dependent manner. Interestingly, the HRC1 anti-serum, which was a more effective inhibitor of viral infectivity compared to HRC2 anti-serum, could only bind the pre-fusogenic state of HRC, i.e., the HRC1 anti-serum did not recognize the six-helix bundle conformation (fusion state) whereas HRC2 anti-serum did. These results suggest that antibodies that are more specific for the pre-fusogenic state of HRC may be better neutralizing antibodies. Overall, these results clearly demonstrate that the two-stranded coiled-coil template acts as an excellent presentation system for eliciting helix-specific antibodies against highly conserved viral antigens and HRC1 and HRC2 peptides may represent potential candidates for use in a peptide vaccine against the SARS-CoV.
Collapse
Affiliation(s)
- Brian Tripet
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Daniel J. Kao
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Scott A. Jeffers
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Robert S. Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
- Corresponding author. Fax: +1 303 724 3249.
| |
Collapse
|
148
|
Lee JS, Poo H, Han DP, Hong SP, Kim K, Cho MW, Kim E, Sung MH, Kim CJ. Mucosal immunization with surface-displayed severe acute respiratory syndrome coronavirus spike protein on Lactobacillus casei induces neutralizing antibodies in mice. J Virol 2006; 80:4079-87. [PMID: 16571824 PMCID: PMC1440448 DOI: 10.1128/jvi.80.8.4079-4087.2006] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Induction of mucosal immunity may be important for preventing SARS-CoV infections. For safe and effective delivery of viral antigens to the mucosal immune system, we have developed a novel surface antigen display system for lactic acid bacteria using the poly-gamma-glutamic acid synthetase A protein (PgsA) of Bacillus subtilis as an anchoring matrix. Recombinant fusion proteins comprised of PgsA and the Spike (S) protein segments SA (residues 2 to 114) and SB (residues 264 to 596) were stably expressed in Lactobacillus casei. Surface localization of the fusion protein was verified by cellular fractionation analyses, immunofluorescence microscopy, and flow cytometry. Oral and nasal inoculations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and mucosal IgA, as demonstrated by enzyme-linked immunosorbent assays using S protein peptides. More importantly, these antibodies exhibited potent neutralizing activities against severe acute respiratory syndrome (SARS) pseudoviruses. Orally immunized mice mounted a greater neutralizing-antibody response than those immunized intranasally. Three new neutralizing epitopes were identified on the S protein using a peptide neutralization interference assay (residues 291 to 308, 520 to 529, and 564 to 581). These results indicate that mucosal immunization with recombinant L. casei expressing SARS-associated coronavirus S protein on its surface provides an effective means for eliciting protective immune response against the virus.
Collapse
|
149
|
Huang J, Ma R, Wu CY. Immunization with SARS-CoV S DNA vaccine generates memory CD4+ and CD8+ T cell immune responses. Vaccine 2006; 24:4905-13. [PMID: 16621188 PMCID: PMC7115633 DOI: 10.1016/j.vaccine.2006.03.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 03/19/2006] [Accepted: 03/20/2006] [Indexed: 12/28/2022]
Abstract
An effective vaccine for severe acute respiratory syndrome (SARS) will probably require the generation and maintenance of both humoral and cellular immune responses. It has been reported that after natural infection in humans and immunization in animals with SARS-CoV vaccine, antibody is produced and persistent for a long period of time. In the present study, mice were immunized i.m. with SARS-CoV S DNA vaccine, and three different methods (ELISA, ELISPOT and FACS) were used to evaluate the immune responses when the cells were stimulated in vitro with a pool of peptides overlapping entire SARS spike protein. The results show that prime-immunization with SARS-CoV S DNA vaccine can induce both CD4+ and CD8+ T cell responses. Boosting with the same vaccine enhances CD4+ and CD8+ T cell responses in both lymphoid and nonlymphoid organs and were persistent over two months. The SARS-CoV S-specific CD4+ and CD8+ T cells were CD62L−, a marker for memory cells, and −30 to 50% of the cells expressed IL-7Rα (CD127), a marker for the capacity of effector cells to develop into memory cells. In addition, immunization with the DNA vaccine elicited high levels of antibody production. Taken together, these data demonstrate that immunization with SARS-CoV S DNA vaccine can generate antigen-specific humoral and cellular immune responses that may contribute to long-term protection.
Collapse
Affiliation(s)
| | | | - Chang-you Wu
- Corresponding author. Tel.: +86 20 87331552; fax: +86 20 87331552.
| |
Collapse
|
150
|
See RH, Zakhartchouk AN, Petric M, Lawrence DJ, Mok CPY, Hogan RJ, Rowe T, Zitzow LA, Karunakaran KP, Hitt MM, Graham FL, Prevec L, Mahony JB, Sharon C, Auperin TC, Rini JM, Tingle AJ, Scheifele DW, Skowronski DM, Patrick DM, Voss TG, Babiuk LA, Gauldie J, Roper RL, Brunham RC, Finlay BB. Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. J Gen Virol 2006; 87:641-650. [PMID: 16476986 DOI: 10.1099/vir.0.81579-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Two different severe acute respiratory syndrome (SARS) vaccine strategies were evaluated for their ability to protect against live SARS coronavirus (CoV) challenge in a murine model of infection. A whole killed (inactivated by beta-propiolactone) SARS-CoV vaccine and a combination of two adenovirus-based vectors, one expressing the nucleocapsid (N) and the other expressing the spike (S) protein (collectively designated Ad S/N), were evaluated for the induction of serum neutralizing antibodies and cellular immune responses and their ability to protect against pulmonary SARS-CoV replication. The whole killed virus (WKV) vaccine given subcutaneously to 129S6/SvEv mice was more effective than the Ad S/N vaccine administered either intranasally or intramuscularly in inhibiting SARS-CoV replication in the murine respiratory tract. This protective ability of the WKV vaccine correlated with the induction of high serum neutralizing-antibody titres, but not with cellular immune responses as measured by gamma interferon secretion by mouse splenocytes. Titres of serum neutralizing antibodies induced by the Ad S/N vaccine administered intranasally or intramuscularly were significantly lower than those induced by the WKV vaccine. However, Ad S/N administered intranasally, but not intramuscularly, significantly limited SARS-CoV replication in the lungs. Among the vaccine groups, SARS-CoV-specific IgA was found only in the sera of mice immunized intranasally with Ad S/N, suggesting that mucosal immunity may play a role in protection for the intranasal Ad S/N delivery system. Finally, the sera of vaccinated mice contained antibodies to S, further suggesting a role for this protein in conferring protective immunity against SARS-CoV infection.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibody Specificity
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Female
- Immunoglobulin A/blood
- Immunoglobulin A/immunology
- Injections, Intramuscular
- Injections, Subcutaneous
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Neutralization Tests
- Nucleocapsid Proteins/genetics
- Severe acute respiratory syndrome-related coronavirus/chemistry
- Severe acute respiratory syndrome-related coronavirus/immunology
- Severe Acute Respiratory Syndrome/immunology
- Severe Acute Respiratory Syndrome/prevention & control
- Spike Glycoprotein, Coronavirus
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Vaccines/administration & dosage
Collapse
Affiliation(s)
- Raymond H See
- University of British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - Alexander N Zakhartchouk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Martin Petric
- University of British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - David J Lawrence
- University of British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - Catherine P Y Mok
- University of British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - Robert J Hogan
- Emerging Pathogens Department, Southern Research Institute, Birmingham, AL 35205, USA
| | - Thomas Rowe
- Emerging Pathogens Department, Southern Research Institute, Birmingham, AL 35205, USA
| | - Lois A Zitzow
- Emerging Pathogens Department, Southern Research Institute, Birmingham, AL 35205, USA
| | - Karuna P Karunakaran
- University of British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - Mary M Hitt
- Departments of Pathology and Molecular Medicine and Biology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Frank L Graham
- Departments of Pathology and Molecular Medicine and Biology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Ludvik Prevec
- Departments of Pathology and Molecular Medicine and Biology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - James B Mahony
- Departments of Pathology and Molecular Medicine and Biology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Chetna Sharon
- Departments of Molecular and Medical Genetics and Microbiology and Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thierry C Auperin
- Departments of Molecular and Medical Genetics and Microbiology and Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - James M Rini
- Departments of Molecular and Medical Genetics and Microbiology and Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aubrey J Tingle
- Michael Smith Foundation for Health Research, Vancouver, BC V6H 3X8, Canada
| | - David W Scheifele
- Vaccine Evaluation Centre, British Columbia Institute for Children's and Women's Health, BC Children's Hospital, Vancouver, BC V6H 3V4, Canada
| | - Danuta M Skowronski
- University of British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - David M Patrick
- University of British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - Thomas G Voss
- Emerging Pathogens Department, Southern Research Institute, Birmingham, AL 35205, USA
| | - Lorne A Babiuk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Jack Gauldie
- Departments of Pathology and Molecular Medicine and Biology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Rachel L Roper
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC 27834, USA
| | - Robert C Brunham
- University of British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - B Brett Finlay
- Michael Smith Laboratories and Departments of Biochemistry and Molecular Biology and Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|