101
|
Hendriksen H, Olivier B, Oosting RS. From non-pharmacological treatments for post-traumatic stress disorder to novel therapeutic targets. Eur J Pharmacol 2014; 732:139-58. [DOI: 10.1016/j.ejphar.2014.03.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
|
102
|
Galanin receptor 2-neuropeptide Y Y1 receptor interactions in the amygdala lead to increased anxiolytic actions. Brain Struct Funct 2014; 220:2289-301. [DOI: 10.1007/s00429-014-0788-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/25/2014] [Indexed: 02/06/2023]
|
103
|
Dyrvig M, Christiansen SH, Woldbye DPD, Lichota J. Temporal gene expression profile after acute electroconvulsive stimulation in the rat. Gene 2014; 539:8-14. [PMID: 24518690 DOI: 10.1016/j.gene.2014.01.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 01/17/2014] [Accepted: 01/25/2014] [Indexed: 01/20/2023]
Abstract
Electroconvulsive therapy (ECT) remains one of the most effective treatments of major depression. It has been suggested that the mechanisms of action involve gene expression. In recent decades there have been several investigations of gene expression following both acute and chronic electroconvulsive stimulation (ECS). These studies have focused on several distinct gene targets but have generally included only few time points after ECS for measuring gene expression. Here we measured gene expression of three types of genes: Immediate early genes, synaptic proteins, and neuropeptides at six time points following an acute ECS. We find significant increases for c-Fos, Egr1, Neuritin 1 (Nrn 1), Bdnf, Snap29, Synaptotagmin III (Syt 3), Synapsin I (Syn 1), and Psd95 at differing time points after ECS. For some genes these changes are prolonged whereas for others they are transient. Npy expression significantly increases whereas the gene expression of its receptors Npy1r, Npy2r, and Npy5r initially decreases. These decreases are followed by a significant increase for Npy2r, suggesting anticonvulsive adaptations following seizures. In summary, we find distinct changes in mRNA quantities that are characteristic for each gene. Considering the observed transitory and inverse changes in expression patterns, these data underline the importance of conducting measurements at several time points post-ECS.
Collapse
Affiliation(s)
- Mads Dyrvig
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Søren H Christiansen
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David P D Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jacek Lichota
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
104
|
Sah R, Ekhator NN, Jefferson-Wilson L, Horn PS, Geracioti TD. Cerebrospinal fluid neuropeptide Y in combat veterans with and without posttraumatic stress disorder. Psychoneuroendocrinology 2014; 40:277-83. [PMID: 24485499 PMCID: PMC4749916 DOI: 10.1016/j.psyneuen.2013.10.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/15/2013] [Accepted: 10/28/2013] [Indexed: 11/19/2022]
Abstract
Accruing evidence indicates that neuropeptide Y (NPY), a peptide neurotransmitter, is a resilience-to-stress factor in humans. We previously reported reduced cerebrospinal fluid (CSF) NPY concentrations in combat-related posttraumatic stress disorder (PTSD) subjects as compared with healthy, non-combat-exposed volunteers. Here we report CSF NPY in combat-exposed veterans with and without PTSD. We quantified NPY concentrations in morning CSF from 11 male subjects with PTSD from combat in Iraq and/or Afghanistan and from 14 combat-exposed subjects without PTSD. NPY-like immunoreactivity (NPY-LI) was measured by EIA. The relationship between CSF NPY and clinical symptoms, as measured by the Clinician-Administered PTSD Scale (CAPS) and Beck Depression Inventory (BDI), was assessed, as was the relationship between combat exposure scale (CES) scores and CSF NPY. As compared with the combat-exposed comparison subjects without PTSD, individuals with PTSD had significantly lower concentrations of CSF NPY [mean CSF NPY was 258. 6 ± 21.64 pg/mL in the combat trauma-no PTSD group but only 180.5 ± 12.62 pg/mL in PTSD patients (p=0.008)]. After adjusting for CES and BDI scores the two groups were still significantly different with respect to NPY. Importantly, CSF NPY was negatively correlated with composite CAPS score and intrusive (re-experiencing) subscale scores, but did not significantly correlate with CES or BDI scores. Our current findings further suggest that NPY may regulate the manifestation of PTSD symptomatology, and extend previous observations of low CSF NPY concentrations in the disorder. Central nervous system NPY may be a clinically important pharmacotherapeutic target, and/or diagnostic measure, for PTSD.
Collapse
Affiliation(s)
- Renu Sah
- Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Research Service, Veterans Affairs Medical Center, Cincinnati, OH, USA.
| | - Nosakhare N Ekhator
- Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Research Service, Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Lena Jefferson-Wilson
- Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Research Service, Veterans Affairs Medical Center, Cincinnati, OH, USA; Psychiatry Service, Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Paul S Horn
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, USA; Research Service, Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Thomas D Geracioti
- Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Research Service, Veterans Affairs Medical Center, Cincinnati, OH, USA; Psychiatry Service, Veterans Affairs Medical Center, Cincinnati, OH, USA
| |
Collapse
|
105
|
Serova LI, Laukova M, Alaluf LG, Pucillo L, Sabban EL. Intranasal neuropeptide Y reverses anxiety and depressive-like behavior impaired by single prolonged stress PTSD model. Eur Neuropsychopharmacol 2014; 24:142-7. [PMID: 24326087 DOI: 10.1016/j.euroneuro.2013.11.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/07/2013] [Accepted: 11/17/2013] [Indexed: 01/06/2023]
Abstract
PTSD is a debilitating neuropsychiatric disorder and many patients do not respond sufficiently to current treatments. Neuropeptide Y (NPY) is suggested to provide resilience to the development of PTSD and co-morbid depression. Injections of NPY to the rodent brain are anxiolytic. Recently we showed that intranasal delivery of NPY to rats before or immediately after exposure to single prolonged stress (SPS) animal model of PTSD prevented development of many biochemical and behavioral symptoms of PTSD, indicating its prophylactic potential. Here, we investigated whether intranasal NPY might provide benefits once symptoms have already developed. One week after exposure to SPS stressors, animals were given intranasal NPY or vehicle and tested on elevated plus maze 2h or 2 days later. The NPY treated rats had lower anxiety-like behavior than vehicle treated rats as indicated by more entries into open arms and fewer into closed arms, lower anxiety index, higher risk assessment and unprotected head dips and reduced grooming time. Their anxiety index was similar to that of unstressed controls. On most of these variables there was no effect of time interval and rats displayed similar overall changes 2h or 2 days after the infusion. Moreover, intranasal NPY led to reduced depressive-like behavior, assessed by forced swim test. Thus, intranasal NPY reversed several behavioral impairments triggered by the traumatic stress of SPS and has potential for non-invasive PTSD therapeutic intervention.
Collapse
Affiliation(s)
- L I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - M Laukova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - L G Alaluf
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - L Pucillo
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - E L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
106
|
Neuropeptides and the microbiota-gut-brain axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:195-219. [PMID: 24997035 DOI: 10.1007/978-1-4939-0897-4_9] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuropeptides are important mediators both within the nervous system and between neurons and other cell types. Neuropeptides such as substance P, calcitonin gene-related peptide and neuropeptide Y (NPY), vasoactive intestinal polypeptide, somatostatin and corticotropin-releasing factor are also likely to play a role in the bidirectional gut-brain communication. In this capacity they may influence the activity of the gastrointestinal microbiota and its interaction with the gut-brain axis. Current efforts in elucidating the implication of neuropeptides in the microbiota-gut-brain axis address four information carriers from the gut to the brain (vagal and spinal afferent neurons; immune mediators such as cytokines; gut hormones; gut microbiota-derived signalling molecules) and four information carriers from the central nervous system to the gut (sympathetic efferent neurons; parasympathetic efferent neurons; neuroendocrine factors involving the adrenal medulla; neuroendocrine factors involving the adrenal cortex). Apart from operating as neurotransmitters, many biologically active peptides also function as gut hormones. Given that neuropeptides and gut hormones target the same cell membrane receptors (typically G protein-coupled receptors), the two messenger roles often converge in the same or similar biological implications. This is exemplified by NPY and peptide YY (PYY), two members of the PP-fold peptide family. While PYY is almost exclusively expressed by enteroendocrine cells, NPY is found at all levels of the gut-brain and brain-gut axis. The function of PYY-releasing enteroendocrine cells is directly influenced by short chain fatty acids generated by the intestinal microbiota from indigestible fibre, while NPY may control the impact of the gut microbiota on inflammatory processes, pain, brain function and behaviour. Although the impact of neuropeptides on the interaction between the gut microbiota and brain awaits to be analysed, biologically active peptides are likely to emerge as neural and endocrine messengers in orchestrating the microbiota-gut-brain axis in health and disease.
Collapse
|
107
|
Hupa KL, Schmiedl A, Pabst R, Von Hörsten S, Stephan M. Maternal Deprivation Decelerates Postnatal Morphological Lung Development of F344 Rats. Anat Rec (Hoboken) 2013; 297:317-26. [DOI: 10.1002/ar.22848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 11/07/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Katharina Luise Hupa
- Institute of Functional and Applied Anatomy; Hannover Medical School; Hannover Germany
| | - Andreas Schmiedl
- Institute of Functional and Applied Anatomy; Hannover Medical School; Hannover Germany
| | - Reinhard Pabst
- Institute of Immunomorphology; Hannover Medical School; Hannover Germany
| | - Stephan Von Hörsten
- Department for Experimental Therapy; Franz-Penzoldt-Center, Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - Michael Stephan
- Clinic for Psychosomatics and Psychotherapy; Hannover Medical School; Hannover Germany
| |
Collapse
|
108
|
Serafini G, Pompili M, Lindqvist D, Dwivedi Y, Girardi P. The role of neuropeptides in suicidal behavior: a systematic review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:687575. [PMID: 23986909 PMCID: PMC3748411 DOI: 10.1155/2013/687575] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 12/18/2022]
Abstract
There is a growing evidence that neuropeptides may be involved in the pathophysiology of suicidal behavior. A critical review of the literature was conducted to investigate the association between neuropeptides and suicidal behavior. Only articles from peer-reviewed journals were selected for the inclusion in the present review. Twenty-six articles were assessed for eligibility but only 22 studies were included. Most studies have documented an association between suicidality and some neuropeptides such as corticotropin-releasing factor (CRF), VGF, cholecystokinin, substance P, and neuropeptide Y (NPY), which have been demonstrated to act as key neuromodulators of emotional processing. Significant differences in neuropeptides levels have been found in those who have attempted or completed suicide compared with healthy controls or those dying from other causes. Despite cross-sectional associations between neuropeptides levels and suicidal behavior, causality may not be inferred. The implications of the mentioned studies were discussed in this review paper.
Collapse
Affiliation(s)
- Gianluca Serafini
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
109
|
Abstract
Resiliency to the adverse effects of extraordinary emotional trauma on the brain varies within the human population. Accordingly, some people cope better than others with traumatic stress. Neuropeptide Y (NPY) is a 36-amino-acid peptide transmitter abundantly expressed in forebrain limbic and brain stem areas that regulate stress and emotional behaviors. Studies largely in rodents demonstrate a role for NPY in promoting coping with stress. Moreover, accruing data from the genetic to the physiological implicate NPY as a potential 'resilience-to-stress' factor in humans. Here, we consolidate findings from preclinical and clinical studies of NPY that are of relevance to stress-associated syndromes, most prototypically posttraumatic stress disorder (PTSD). Collectively, these data suggest that reduced central nervous system (CNS) NPY concentrations or function may be associated with PTSD. We also link specific symptoms of human PTSD with extant findings in the NPY field to reveal potential physiological contributions of the neuropeptide to the disorder. In pursuit of understanding the physiological basis and treatment of PTSD, the NPY system is an attractive target.
Collapse
Affiliation(s)
- R Sah
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, USA.
| | - TD Geracioti
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA,Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| |
Collapse
|
110
|
NPY Y1 receptors differentially modulate GABAA and NMDA receptors via divergent signal-transduction pathways to reduce excitability of amygdala neurons. Neuropsychopharmacology 2013; 38:1352-64. [PMID: 23358240 PMCID: PMC3656378 DOI: 10.1038/npp.2013.33] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuropeptide Y (NPY) administration into the basolateral amygdala (BLA) decreases anxiety-like behavior, mediated in part through the Y1 receptor (Y1R) isoform. Activation of Y1Rs results in G-protein-mediated reduction of cAMP levels, which results in reduced excitability of amygdala projection neurons. Understanding the mechanisms linking decreased cAMP levels to reduced excitability in amygdala neurons is important for identifying novel anxiolytic targets. We studied the intracellular mechanisms of activation of Y1Rs on synaptic transmission in the BLA. Activating Y1Rs by [Leu(31),Pro(34)]-NPY (L-P NPY) reduced the amplitude of evoked NMDA-mediated excitatory postsynaptic currents (eEPSCs), without affecting AMPA-mediated eEPSCs, but conversely increased the amplitude of GABAA-mediated evoked inhibitory postsynaptic currents (eIPSCs). Both effects were abolished by the Y1R antagonist, PD160170. Intracellular GDP-β-S, or pre-treatment with either forskolin or 8Br-cAMP, eliminated the effects of L-P NPY on both NMDA- and GABAA-mediated currents. Thus, both the NMDA and GABAA effects of Y1R activation in the BLA are G-protein-mediated and cAMP-dependent. Pipette inclusion of protein kinase A (PKA) catalytic subunit blocked the effect of L-P NPY on GABAA-mediated eIPSCs, but not on NMDA-mediated eEPSCs. Conversely, activating the exchange protein activated by cAMP (Epac) with 8CPT-2Me-cAMP blocked the effect of L-P NPY on NMDA-mediated eEPSCs, but not on GABAA-mediated eIPSCs. Thus, NPY regulates amygdala excitability via two signal-transduction events, with reduced PKA activity enhancing GABAA-mediated eIPSCs and Epac deactivation reducing NMDA-mediated eEPSCs. This multipathway regulation of NMDA- and GABAA-mediated currents may be important for NPY plasticity and stress resilience in the amygdala.
Collapse
|
111
|
Wong RY, Oxendine SE, Godwin J. Behavioral and neurogenomic transcriptome changes in wild-derived zebrafish with fluoxetine treatment. BMC Genomics 2013; 14:348. [PMID: 23706039 PMCID: PMC3667115 DOI: 10.1186/1471-2164-14-348] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/16/2013] [Indexed: 11/10/2022] Open
Abstract
Background Stress and anxiety-related behaviors are seen in many organisms. Studies have shown that in humans and other animals, treatment with selective serotonin reuptake inhibitors (e.g. fluoxetine) can reduce anxiety and anxiety-related behaviors. The efficacies and side effects, however, can vary between individuals. Fluoxetine can modulate anxiety in a stereospecific manner or with equal efficacy regardless of stereoisomer depending on the mechanism of action (e.g. serotonergic or GABAergic effects). Zebrafish are an emerging and valuable translational model for understanding human health related issues such as anxiety. In this study we present data showing the behavioral and whole brain transcriptome changes with fluoxetine treatment in wild-derived zebrafish and suggest additional molecular mechanisms of this widely-prescribed drug. Results We used automated behavioral analyses to assess the effects of racemic and stereoisomeric fluoxetine on male wild-derived zebrafish. Both racemic and the individual isomers of fluoxetine reduced anxiety-related behaviors relative to controls and we did not observe stereospecific fluoxetine effects. Using RNA-sequencing of the whole brain, we identified 411 genes showing differential expression with racemic fluoxetine treatment. Several neuropeptides (neuropeptide Y, isotocin, urocortin 3, prolactin) showed consistent expression patterns with the alleviation of stress and anxiety when anxiety-related behavior was reduced with fluoxetine treatment. With gene ontology and KEGG pathway analyses, we identified lipid and amino acid metabolic processes, and steroid biosynthesis among other terms to be over-enriched. Conclusion Our results demonstrate that fluoxetine reduces anxiety-related behaviors in wild-derived zebrafish and alters their neurogenomic state. We identify two biological processes, lipid and amino acid metabolic synthesis that characterize differences in the fluoxetine treated fish. Fluoxetine may be acting on several different molecular pathways to reduce anxiety-related behaviors in wild-derived zebrafish. This study provides data that could help identify common molecular mechanisms of fluoxetine action across animal taxa.
Collapse
Affiliation(s)
- Ryan Y Wong
- Department of Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617, USA.
| | | | | |
Collapse
|
112
|
Lach G, de Lima TCM. Role of NPY Y1 receptor on acquisition, consolidation and extinction on contextual fear conditioning: dissociation between anxiety, locomotion and non-emotional memory behavior. Neurobiol Learn Mem 2013; 103:26-33. [PMID: 23603424 DOI: 10.1016/j.nlm.2013.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/27/2013] [Accepted: 04/11/2013] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) is the most abundant peptide in the central nervous system (CNS) and is densely localized in the brain regions involved in stress, memory, fear and anxiety. Although previous research supports a role for NPY in the mediation of rodent and human emotional behavior, there is currently a lack of information on the effects of low doses of NPY that could have a potential therapeutic advantage, minimizing side-effects such as cognition impairment or sedation. Herein, we assessed the effects of intracerebroventricular (i.c.v.) administration of low doses of NPY, and of the Y1-agonist Leu31Pro34-NPY (LP-NPY) on contextual fear conditioning (CFC), as they have no effect on unconditioned anxiety-like, locomotor activity and non-emotional memory. NPY (3 pmol) and LP-NPY (1 pmol) inhibited freezing behavior when administered in the acquisition or consolidation stages, indicating a reduction of fear. When injected in the extinction phase, only NPY inhibited freezing behavior on CFC. Pre-treatment with the Y1-antagonist BIBO3304 before NPY and LP-NPY was able to prevent the inhibition of fear responses induced by both NPY agonists. Taken together, our results demonstrate robust fear-inhibiting effects of i.c.v. injection of NPY on contextual fear conditioning in rats, a response that is mediated, at least in part, by the Y1 receptor. Moreover, these treatments were unable to change locomotor activity or to show an anxiolytic-like effect, as evaluated in an open-field and an elevated plus-maze. This specific fear reduction effect may underlie resilience systems in the CNS and has potential therapeutic relevance in PTSD.
Collapse
Affiliation(s)
- Gilliard Lach
- Laboratory of Neuropharmacology, Department of Pharmacology, CCB, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88049-970, Brazil
| | | |
Collapse
|
113
|
Serova L, Tillinger A, Alaluf L, Laukova M, Keegan K, Sabban E. Single intranasal neuropeptide Y infusion attenuates development of PTSD-like symptoms to traumatic stress in rats. Neuroscience 2013; 236:298-312. [DOI: 10.1016/j.neuroscience.2013.01.040] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/19/2012] [Accepted: 01/21/2013] [Indexed: 11/29/2022]
|
114
|
Ito M, Dumont Y, Quirion R. Mood and memory-associated behaviors in neuropeptide Y5 knockout mice. Neuropeptides 2013; 47:75-84. [PMID: 23218957 DOI: 10.1016/j.npep.2012.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/12/2012] [Accepted: 10/25/2012] [Indexed: 12/15/2022]
Abstract
Recent data led to suggest that in addition to Y1 and Y2 subtypes, Y5 receptors may be involved in mood-related behaviors (Morales-Medina et al., 2010). In the present study, using a battery of behavioral tests to assess anxiety and depression-like paradigms, as well as memory function, we evaluated the potential behavioral changes induced in mice devoid of Y5 receptors. Those paradigms were assessed using the open field (OF), elevated plus maze (EPM), forced swim test (FST), social interaction test (SI), object recognition test (ORT) and Morris water maze (MWM) in Y5 knockout (KO) mice and wild type (WT) animals. In the tests associated to anxiety related behaviors (OF, EPM and SI), no difference for locomotion and time spent in the lateral area of open field were observed between Y5 KO and WT mice. Similar results were observed for time and number of entries in open arms in EPM. Additionally, in SI test, Y5 KO mice spent same amount of time and number of entries in the stranger chamber as compared to WT animals. In the FST, as compared to WT mice, Y5 KO mice had similar immobility time on day 1. No memory dysfunction was observed in the MWM and ORT in Y5 KO mice, as compared to WT. Altogether these data suggest that under basal conditions Y5 KO and WT mice display similar mood behaviors and memory functions. However, as compared to WT, Y5 KO mice display increased grooming and rearing in the OF, lower ratio entries in open arms in the EPM and increased immobility time on the second day of the FST.
Collapse
Affiliation(s)
- Masanobu Ito
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.
| | | | | |
Collapse
|
115
|
Cheng PW, Wu ATH, Lu PJ, Yang YC, Ho WY, Lin HC, Hsiao M, Tseng CJ. Central hypotensive effects of neuropeptide Y are modulated by endothelial nitric oxide synthase after activation by ribosomal protein S6 kinase. Br J Pharmacol 2013; 167:1148-60. [PMID: 22708658 DOI: 10.1111/j.1476-5381.2012.02077.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Neuropeptide Y (NPY) is a 36-amino acid polypeptide found abundantly in the central and peripheral nervous systems. NPY exerts a potent depressor effect via the activation of both Y(1) and Y(2) receptors in the nucleus tractus solitarii (NTS) of rats. However, the precise mechanisms involved in this NPY-mediated action remained unclear. EXPERIMENTAL APPROACH Effects of a selective antagonist of Y(1) receptors, a PKC inhibitor, a PI3 kinase inhibitor, a NOS inhibitor, an endothelial NOS (eNOS)-selective inhibitor, a neuronal NOS (nNOS)-specific inhibitor or a MAPK inhibitor, on responses to microinjection of NPY into the NTS of Wistar-Kyoto rats were studied to determine the underlying mechanisms. Blood pressure and heart rate were measured and, in NTS, protein phosphorylation assessed by immunohistochemical techniques. KEY RESULTS Unilateral microinjection of exogenous NPY (4.65pmol/60nL) into the NTS of urethane-anesthetized Wistar-Kyoto rats markedly decreased blood pressure and heart rate. Microinjection of the Y(1) receptor antagonist BIBP3226 or the G(i) /G(o) -protein inhibitor, Pertussis toxin, into the NTS attenuated these NPY-induced hypotensive effects. A selective Y(1) receptor agonist increased expression of ERK1/2, ribosomal protein S6 kinase (RSK) and the phosphorylation of eNOS. RSK also bound directly to eNOS and induced its phosphorylation at Ser(1177) . Pretreatment of the NTS with an eNOS inhibitor, but not a nNOS inhibitor, attenuated the NPY-induced hypotensive effects. CONCLUSIONS AND IMPLICATIONS Together, these results suggested that NPY-induced depressor effects were mediated by activating NPY Y(1) receptor-PKC-ERK-RSK-eNOS and Ca(2+) -eNOS signalling pathways, which are involved in regulation of blood pressure in the NTS.
Collapse
Affiliation(s)
- Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Hostetler CM, Hitchcock LN, Anacker AMJ, Young LJ, Ryabinin AE. Comparative distribution of central neuropeptide Y (NPY) in the prairie (Microtus ochrogaster) and meadow (M. pennsylvanicus) vole. Peptides 2013; 40:22-9. [PMID: 23262357 PMCID: PMC3625676 DOI: 10.1016/j.peptides.2012.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/06/2012] [Accepted: 12/06/2012] [Indexed: 12/20/2022]
Abstract
Neuropeptide Y (NPY) has been implicated as a modulator of social behavior, often in a species-specific manner. Comparative studies of closely related vole species are particularly useful for identifying neural systems involved in social behaviors in both voles and humans. In the present study, immunohistochemistry was performed to compare NPY-like immunoreactivity (-ir) in brain tissue of the socially monogamous prairie vole and non-monogamous meadow vole. Species differences in NPY-ir were observed in a number of regions including the cortex, extended amygdala, septal area, suprachiasmatic nucleus, and intergeniculate leaf. Meadow voles had higher NPY-ir in all these regions as compared to prairie voles. No differences were observed in the striatum or hippocampus. The extended amygdala and lateral septum are regions that play a key role in regulation of monogamous behaviors such as pair bonding and paternal care. The present study suggests NPY in these regions may be an additional modulator of these species-specific social behaviors. Meadow voles had moderately higher NPY-ir in a number of hypothalamic regions, especially in the suprachiasmatic nucleus. Meadow voles also had much higher levels of NPY-ir in the intergeniculate leaflet, another key region in the regulation of circadian rhythms. Overall, species differences in NPY-ir were observed in a number of brain regions implicated in emotion, stress, circadian, and social behaviors. These findings provide additional support for a role for the NPY system in species-typical social behaviors.
Collapse
Affiliation(s)
- Caroline M Hostetler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
117
|
Trent NL, Menard JL. Lateral septal infusions of the neuropeptide Y Y2 receptor agonist, NPY(13-36) differentially affect different defensive behaviors in male, Long Evans rats. Physiol Behav 2012; 110-111:20-9. [PMID: 23274501 DOI: 10.1016/j.physbeh.2012.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/25/2012] [Accepted: 12/20/2012] [Indexed: 11/18/2022]
Abstract
The lateral septum has been extensively implicated in regulating anxiety-related defensive behaviors in the rat. Neuropeptide Y (NPY) contributes to anxiety, likely through activity at the NPY Y1 and/or Y2 receptor binding sites. Although the lateral septum contains the highest density of Y2 receptors in brain, the involvement of this receptor in anxiety-related defensive behaviors is not clear. Thus, the purpose of the current study was to characterize lateral septal Y2 receptor contributions to rats' defensive responses to threat and/or potentially threatening environments. We investigated this by infusing the NPY Y2 agonist NPY13-36 into the lateral septum and testing rats across a battery of animal models of anxiety (Experiment 1). To verify the role of Y2 in mediating the observed effects, rats were pre-infused with the potent and highly selective Y2 antagonist BIIE 0246 prior to infusion with NPY13-36 (Experiment 2). Infusions of NPY13-36 into the lateral septum increased rats' open-arm exploration in the elevated plus-maze test (p<0.01) and decreased the proportion of rats' that buried (p<0.05) as well as their latency to initiate burying in the shock-probe burying test (p<0.01). By contrast, NPY13-36 did not affect either anxiety- or appetite-related responses in the novelty-induced suppression of feeding test (all ps>0.3; Experiment 1). Pre-treatment with the Y2 antagonist BIIE 0246 prevented the anxiolytic-like actions of NPY13-36 in the plus-maze but not in the shock-probe test (Experiment 2). Thus, it appears that the anxiolytic-like actions of lateral septal NPY13-36 are mediated by the Y2 receptor in a test-specific manner.
Collapse
Affiliation(s)
- Natalie L Trent
- Centre for Neuroscience Studies, Queen's University, 62 Arch Street, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
118
|
Morales-Medina JC, Dumont Y, Bonaventure P, Quirion R. Chronic administration of the Y2 receptor antagonist, JNJ-31020028, induced anti-depressant like-behaviors in olfactory bulbectomized rat. Neuropeptides 2012; 46:329-34. [PMID: 23103057 DOI: 10.1016/j.npep.2012.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/06/2012] [Accepted: 09/17/2012] [Indexed: 11/24/2022]
Abstract
Recent studies from our groups have shown that BIIE0246, a Y2 receptor antagonist, has antidepressant effect in olfactory bulbectomized (OBX) rat. However, its complex structure and high molecular weight limit its usefulness as an in vivo pharmacological tool. Alternatively, the novel and brain penetrant Y2 receptor antagonist, JNJ-31020028 is a useful tool to investigate the in vivo function of the Y2 receptor. In the present study, we evaluated the effect of chronic intracerebroventricular (icv) administration of JNJ-31020028 in a battery of behavioral tests in an animal model that mimics several deficits observed in the human depression, the OBX rat. Chronic administration of JNJ-31020028 induced a decrease in immobility time in the forced swim test in OBX while had no effect in control animals. Additionally, it decreased number of grooming events in OBX animals, but had no effects on some other behavioral deficits observed such as rearing and hyperlocomotion. Furthermore, JNJ-31020028 had no effect on behavior tests that are commonly used to evaluate anxiety, namely the social interaction test in both OBX and control animals. These data indicate that similar to BIIE0246, JNJ-31020028 also has antidepressant like effects in the OBX model.
Collapse
Affiliation(s)
- J C Morales-Medina
- Dept. of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| | | | | | | |
Collapse
|
119
|
Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 2012; 46:261-74. [PMID: 22979996 PMCID: PMC3516703 DOI: 10.1016/j.npep.2012.08.005] [Citation(s) in RCA: 330] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/04/2012] [Accepted: 08/09/2012] [Indexed: 02/06/2023]
Abstract
The gut-brain axis refers to the bidirectional communication between the gut and the brain. Four information carriers (vagal and spinal afferent neurons, immune mediators such as cytokines, gut hormones and gut microbiota-derived signalling molecules) transmit information from the gut to the brain, while autonomic neurons and neuroendocrine factors carry outputs from the brain to the gut. The members of the neuropeptide Y (NPY) family of biologically active peptides, NPY, peptide YY (PYY) and pancreatic polypeptide (PP), are expressed by cell systems at distinct levels of the gut-brain axis. PYY and PP are exclusively expressed by endocrine cells of the digestive system, whereas NPY is found at all levels of the gut-brain and brain-gut axis. The major systems expressing NPY comprise enteric neurons, primary afferent neurons, several neuronal pathways throughout the brain and sympathetic neurons. In the digestive tract, NPY and PYY inhibit gastrointestinal motility and electrolyte secretion and in this way modify the input to the brain. PYY is also influenced by the intestinal microbiota, and NPY exerts, via stimulation of Y1 receptors, a proinflammatory action. Furthermore, the NPY system protects against distinct behavioural disturbances caused by peripheral immune challenge, ameliorating the acute sickness response and preventing long-term depression. At the level of the afferent system, NPY inhibits nociceptive input from the periphery to the spinal cord and brainstem. In the brain, NPY and its receptors (Y1, Y2, Y4, Y5) play important roles in regulating food intake, energy homeostasis, anxiety, mood and stress resilience. In addition, PP and PYY signal to the brain to attenuate food intake, anxiety and depression-related behaviour. These findings underscore the important role of the NPY-Y receptor system at several levels of the gut-brain axis in which NPY, PYY and PP operate both as neural and endocrine messengers.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| | | | | |
Collapse
|
120
|
Abstract
Ethanol (EtOH) has effects on numerous cellular molecular targets, and alterations in synaptic function are prominent among these effects. Acute exposure to EtOH activates or inhibits the function of proteins involved in synaptic transmission, while chronic exposure often produces opposing and/or compensatory/homeostatic effects on the expression, localization, and function of these proteins. Interactions between different neurotransmitters (e.g., neuropeptide effects on release of small molecule transmitters) can also influence both acute and chronic EtOH actions. Studies in intact animals indicate that the proteins affected by EtOH also play roles in the neural actions of the drug, including acute intoxication, tolerance, dependence, and the seeking and drinking of EtOH. This chapter reviews the literature describing these acute and chronic synaptic effects of EtOH and their relevance for synaptic transmission, plasticity, and behavior.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, NIAAA, 5625 Fishers Lane, Room TS-13A, Rockville, MD 20852, USA.
| | | |
Collapse
|
121
|
Verma D, Tasan RO, Herzog H, Sperk G. NPY controls fear conditioning and fear extinction by combined action on Y₁ and Y₂ receptors. Br J Pharmacol 2012; 166:1461-73. [PMID: 22289084 PMCID: PMC3401902 DOI: 10.1111/j.1476-5381.2012.01872.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuropeptide Y (NPY) and its receptors have been implicated in the control of emotional-affective processing, but the mechanism is unclear. While it is increasingly evident that stimulation of Y₁ and inhibition of Y₂ receptors produce prominent anxiolytic and antidepressant effects, the contribution of the individual NPY receptor subtypes in the acquisition and extinction of learned fear are unknown. EXPERIMENTAL APPROACH Here we performed Pavlovian fear conditioning and extinction in NPY knockout (KO) and in NPY receptor KO mice. KEY RESULTS NPY KO mice display a dramatically accelerated acquisition of conditioned fear. Deletion of Y₁ receptors revealed only a moderately accelerated acquisition of conditioned fear, while lack of Y₂ receptors was without any effect on fear learning. However, the strong phenotype seen in NPY KO mice was reproduced in mice lacking both Y₁ and Y₂ receptors. In addition, NPY KO mice showed excessive recall of conditioned fear and impaired fear extinction. This behaviour was replicated only after deletion of both Y₁ and Y₂ receptors. In Y₁ receptor single KO mice, fear extinction was delayed and was unchanged in Y₂ receptor KO mice. Deletion of NPY and particularly Y₂ receptors resulted in a generalization of conditioned fear. CONCLUSIONS AND IMPLICATIONS Our data demonstrate that NPY delays the acquisition, reduces the expression of conditioned fear while promoting fear extinction. Although these effects appear to be primarily mediated by Y₁ receptors, the pronounced phenotype of Y₁Y₂ receptor double KO mice suggests a synergistic role of Y₂ receptors in fear acquisition and in fear extinction.
Collapse
Affiliation(s)
- D Verma
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
122
|
Yarosh HL, Angulo JA. Modulation of methamphetamine-induced nitric oxide production by neuropeptide Y in the murine striatum. Brain Res 2012; 1483:31-8. [PMID: 22982589 DOI: 10.1016/j.brainres.2012.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/02/2012] [Accepted: 09/07/2012] [Indexed: 01/22/2023]
Abstract
Methamphetamine (METH) is a potent stimulant that induces both acute and long-lasting neurochemical changes in the brain including neuronal cell loss. Our laboratory demonstrated that the neuropeptide substance P enhances the striatal METH-induced production of nitric oxide (NO). In order to better understand the role of the striatal neuropeptides on the METH-induced production of NO, we used agonists and antagonists of the NPY (Y1R and Y2R) receptors infused via intrastriatal microinjection followed by a bolus of METH (30 mg/kg, ip) and measured 3-NT immunofluorescence, an indirect index of NO production. One striatum received pharmacological agent while the contralateral striatum received aCSF and served as control. NPY receptor agonists dose dependently attenuated the METH-induced production of striatal 3-NT. Conversely, NPY receptor antagonists had the opposite effect. Moreover, METH induced the accumulation of cyclic GMP and activated caspase-3 in approximately 18% of striatal neurons, a phenomenon that was attenuated by pre-treatment with NPY2 receptor agonist. Lastly, METH increased the levels of striatal preproneuropeptide Y mRNA nearly five-fold 16 h after injection as determined by RT-PCR, suggesting increased utilization of the neuropeptide. In conclusion, NPY inhibits the METH-induced production of NO in striatal tissue. Consequently, production of this second messenger induces the accumulation of cyclic GMP and activated caspase-3 in some striatal neurons, an event that may precede the apoptosis of some striatal neurons.
Collapse
Affiliation(s)
- Haley L Yarosh
- Hunter College of the City University of New York, Department of Biological Sciences, 695 Park Avenue, 10021 New York, NY, USA
| | | |
Collapse
|
123
|
Charney DS. The psychobiology of resilience and vulnerability to anxiety disorders: implications for prevention and treatment. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22034473 PMCID: PMC3181630 DOI: 10.31887/dcns.2003.5.3/dcharney] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Much of the research on the neurobiology of human anxiety disorders has focused on psychopaihological abnormalities in patients with anxiety disorders. While this line of research is obviously important, more investigation is needed to elucidate the psychobiology of resilience to extreme stress. Study of the psychobiology of resilience has the potential to identify neurochemical, neuropeptide, and hormonal mediators of vulnerability and resilience to severe stress. In addition, the relevance of neural mechanisms of reward and motivation, fear responsiveness, and social behavior to character traits associated with risk and resistance to anxiety disorders may be clarified. These areas of investigation should lead to improved methods of diagnosis, novel approaches to prevention, and new targets for antianxiety drug discovery.
Collapse
Affiliation(s)
- Dennis S Charney
- Chief, Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, Md, USA
| |
Collapse
|
124
|
Garcia FD, Coquerel Q, do Rego JC, Cravezic A, Bole-Feysot C, Kiive E, Déchelotte P, Harro J, Fetissov SO. Anti-neuropeptide Y plasma immunoglobulins in relation to mood and appetite in depressive disorder. Psychoneuroendocrinology 2012; 37:1457-67. [PMID: 22365482 DOI: 10.1016/j.psyneuen.2012.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 12/27/2022]
Abstract
Depression and eating disorders are frequently associated, but the molecular pathways responsible for co-occurrence of altered mood, appetite and body weight are not yet fully understood. Neuropeptide Y (NPY) has potent antidepressant and orexigenic properties and low central NPY levels have been reported in major depression. In the present study, we hypothesized that in patients with major depression alteration of mood, appetite and body weight may be related to NPY-reactive autoantibodies (autoAbs). To test this hypothesis, we compared plasma levels and affinities of NPY-reactive autoAbs between patients with major depression and healthy controls. Then, to evaluate if changes of NPY autoAb properties can be causally related to altered mood and appetite, we developed central and peripheral passive transfer models of human autoAbs in mice and studied depressive-like behavior in forced-swim test and food intake. We found that plasma levels of NPY IgG autoAbs were lower in patients with moderate but not with mild depression correlating negatively with the Montgomery-Åsberg Depression Rating Scale scores and with immobility time of the forced-swim test in mice after peripheral injection of autoAbs. No significant differences in NPY IgG autoAb affinities between patients with depression and controls were found, but higher affinity of IgG autoAbs for NPY was associated with lower body mass index and prevented NPY-induced orexigenic response in mice after their central injection. These data suggest that changes of plasma levels of anti-NPY autoAbs are relevant to altered mood, while changes of their affinity may participate in altered appetite and body weight in patients with depressive disorder.
Collapse
Affiliation(s)
- Frederico D Garcia
- Nutrition, Gut and Brain Laboratory, Inserm U1073, Institute for Research and Innovation in Biomedicine-IRIB, Rouen University, Normandy 76183, France
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Hendriksen H, Bink DI, Daniels EG, Pandit R, Piriou C, Slieker R, Westphal KG, Olivier B, Oosting RS. Re-exposure and environmental enrichment reveal NPY-Y1 as a possible target for post-traumatic stress disorder. Neuropharmacology 2012; 63:733-42. [DOI: 10.1016/j.neuropharm.2012.05.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
|
126
|
Butler RK, White LC, Frederick-Duus D, Kaigler KF, Fadel JR, Wilson MA. Comparison of the activation of somatostatin- and neuropeptide Y-containing neuronal populations of the rat amygdala following two different anxiogenic stressors. Exp Neurol 2012; 238:52-63. [PMID: 22917777 DOI: 10.1016/j.expneurol.2012.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 07/02/2012] [Accepted: 08/01/2012] [Indexed: 01/29/2023]
Abstract
Rats exposed to the odor of a predator or to the elevated plus maze express fear behaviors without a prior exposure to either stimulus. The expression of innate fear provides for an ideal model of anxiety which can aid in the elucidation of brain circuits involved in anxiety-related behaviors. The current experiments compared activation of neuropeptide-containing neuronal populations in the amygdala of rats exposed to either the elevated plus maze (EPM; 5 min) versus home cage controls, or predator ferret odor versus butyric acid, or no odor (30 min). Sections of the brains were prepared for dual-labeled immunohistochemistry and counts of c-Fos co-localized with somatostatin (SOM) or neuropeptide Y (NPY) were made in the basolateral (BLA), central (CEA), medial (MEA) nuclei of the amygdala. Ferret odor and butyric acid exposure significantly decreased the percentage of SOM-positive neurons also immunoreactive for c-Fos in the anterior BLA compared to controls, whereas EPM exposure yielded a significant increase in the activation of SOM-positive neurons versus home cage controls. In the CEA, ferret odor and butyric exposure significantly decreased the percentage of SOM-positive neurons also immunoreactive for c-Fos compared to no-odor controls whereas EPM exposure yielded no change versus controls. In the MEA, both ferret odor exposure and EPM exposure resulted in increased SOM co-localized with c-Fos compared to control groups whereas NPY co-localized with c-Fos occurred following ferret odor exposure, but not EPM exposure. These results indicate that phenotypically distinct neuronal populations of the amygdala are differentially activated following exposure to different anxiogenic stimuli. These studies further elucidate the fundamental neurocircuitry of anxiety and could possibly explain the differential behavioral effects of predator versus novelty-induced stress.
Collapse
Affiliation(s)
- Ryan K Butler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | | | | | | | | | |
Collapse
|
127
|
Bruijnzeel AW. Tobacco addiction and the dysregulation of brain stress systems. Neurosci Biobehav Rev 2012; 36:1418-41. [PMID: 22405889 PMCID: PMC3340450 DOI: 10.1016/j.neubiorev.2012.02.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/01/2012] [Accepted: 02/23/2012] [Indexed: 11/15/2022]
Abstract
Tobacco is a highly addictive drug and is one of the most widely abused drugs in the world. The first part of this review explores the role of stressors and stress-associated psychiatric disorders in the initiation of smoking, the maintenance of smoking, and relapse after a period of abstinence. The reviewed studies indicate that stressors facilitate the initiation of smoking, decrease the motivation to quit, and increase the risk for relapse. Furthermore, people with depression or an anxiety disorder are more likely to smoke than people without these disorders. The second part of this review describes animal studies that investigated the role of brain stress systems in nicotine addiction. These studies indicate that corticotropin-releasing factor, Neuropeptide Y, the hypocretins, and norepinephrine play a pivotal role in nicotine addiction. In conclusion, the reviewed studies indicate that smoking briefly decreases subjective stress levels but also leads to a further dysregulation of brain stress systems. Drugs that decrease the activity of brain stress systems may diminish nicotine withdrawal and improve smoking cessation rates.
Collapse
Affiliation(s)
- Adrie W Bruijnzeel
- Department of Psychiatry, McKnight Brain Institute, University of Florida, 1149 S. Newell Dr., Gainesville, FL 32611, USA.
| |
Collapse
|
128
|
Maniam J, Morris MJ. The link between stress and feeding behaviour. Neuropharmacology 2012; 63:97-110. [PMID: 22710442 DOI: 10.1016/j.neuropharm.2012.04.017] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 04/11/2012] [Accepted: 04/20/2012] [Indexed: 02/06/2023]
Abstract
Exposure to stress is inevitable, and it may occur, to varying degrees, at different phases throughout the lifespan. The impact of stress experienced in later life has been well documented as many populations in modern society experience increasing socio-economic demands. The effects of stress early in life are less well known, partly as the impact of an early exposure may be difficult to quantify, however emerging evidence shows it can impact later in life. One of the major impacts of stress besides changes in psychosocial behaviour is altered feeding responses. The system that regulates stress responses, the hypothalamo-pituitary-adrenal axis, also regulates feeding responses because the neural circuits that regulate food intake converge on the paraventricular nucleus, which contains corticotrophin releasing hormone (CRH), and urocortin containing neurons. In other words the systems that control food intake and stress responses share the same anatomy and thus each system can influence each other in eliciting a response. Stress is known to alter feeding responses in a bidirectional pattern, with both increases and decreases in intake observed. Stress-induced bidirectional feeding responses underline the complex mechanisms and multiple contributing factors, including the levels of glucocorticoids (dependent on the severity of a stressor), the interaction between glucocorticoids and feeding related neuropeptides such as neuropeptide Y (NPY), alpha-melanocyte stimulating hormone (α-MSH), agouti-related protein (AgRP), melanocortins and their receptors, CRH, urocortin and peripheral signals (leptin, insulin and ghrelin). This review discusses the neuropeptides that regulate feeding behaviour and how their function can be altered through cross-talk with hormones and neuropeptides that also regulate the hypothalamo-pituitary-adrenal axis. In addition, long-term stress induced alterations in feeding behaviour, and changes in gene expression of neuropeptides regulating stress and food intake through epigenetic modifications will be discussed. This article is part of a Special Issue entitled 'SI: Central Control of Food Intake'.
Collapse
Affiliation(s)
- Jayanthi Maniam
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | | |
Collapse
|
129
|
Olesen MV, Christiansen SH, Gøtzsche CR, Holst B, Kokaia M, Woldbye DPD. Y5 neuropeptide Y receptor overexpression in mice neither affects anxiety- and depression-like behaviours nor seizures but confers moderate hyperactivity. Neuropeptides 2012; 46:71-9. [PMID: 22342800 DOI: 10.1016/j.npep.2012.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 01/11/2012] [Accepted: 01/27/2012] [Indexed: 02/07/2023]
Abstract
Neuropeptide Y (NPY) has been implicated in anxiolytic- and antidepressant-like behaviour as well as seizure-suppressant effects in rodents. Although these effects appear to be predominantly mediated via other NPY receptors (Y1 and/or Y2), several studies have also indicated a role for Y5 receptors. Gene therapy using recombinant viral vectors to induce overexpression of NPY, Y1 or Y2 receptors in the hippocampus or amygdala has previously been shown to modulate emotional behaviour and seizures in rodents. The present study explored the potential effects of gene therapy with the Y5 receptor, by testing effects of recombinant adeno-associated viral vector (rAAV) encoding Y5 (rAAV-Y5) in anxiety- and depression-like behaviour as well as in kainate-induced seizures in adult mice. The rAAV-Y5 vector injected into the hippocampus and amygdala induced a pronounced and sustained increase in Y5 receptor mRNA expression and functional Y5 receptor binding, but no significant effects were found with regard to anxiety- and depression-like behaviours or seizure susceptibility. Instead, rAAV-mediated Y5 receptor transgene overexpression resulted in moderate hyperactivity in the open field test. These results do not support a potential role for single transgene overexpression of Y5 receptors for modulating anxiety-/depression-like behaviours or seizures in adult mice. Whether the induction of hyperactivity by rAAV-Y5 could be relevant for other conditions remains to be studied.
Collapse
Affiliation(s)
- M V Olesen
- Protein Laboratory & Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
130
|
Morales-Medina JC, Dumont Y, Benoit CE, Bastianetto S, Flores G, Fournier A, Quirion R. Role of neuropeptide Y Y1 and Y2 receptors on behavioral despair in a rat model of depression with co-morbid anxiety. Neuropharmacology 2012; 62:200-8. [DOI: 10.1016/j.neuropharm.2011.06.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 02/08/2023]
|
131
|
Cohen H, Liu T, Kozlovsky N, Kaplan Z, Zohar J, Mathé AA. The neuropeptide Y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of post-traumatic stress disorder. Neuropsychopharmacology 2012; 37:350-63. [PMID: 21976046 PMCID: PMC3242318 DOI: 10.1038/npp.2011.230] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Converging evidence implicates the regulatory neuropeptide Y (NPY) in anxiety- and depression-related behaviors. The present study sought to assess whether there is an association between the magnitude of behavioral responses to stress and patterns of NPY in selected brain areas, and subsequently, whether pharmacological manipulations of NPY levels affect behavior in an animal model of PTSD. Animals were exposed to predator-scent stress for 15 min. Behaviors were assessed with the elevated plus maze and acoustic startle response tests 7 days later. Preset cutoff criteria classified exposed animals according to their individual behavioral responses. NPY protein levels were assessed in specific brain regions 8 days after the exposure. The behavioral effects of NPY agonist, NPY-Y1-receptor antagonist, or placebo administered centrally 1 h post-exposure were evaluated in the same manner. Immunohistochemical technique was used to detect the expression of the NPY, NPY-Y1 receptor, brain-derived neurotrophic factor, and GR 1 day after the behavioral tests. Animals whose behavior was extremely disrupted (EBR) selectively displayed significant downregulation of NPY in the hippocampus, periaqueductal gray, and amygdala, compared with animals whose behavior was minimally (MBR) or partially (PBR) disrupted, and with unexposed controls. One-hour post-exposure treatment with NPY significantly reduced prevalence rates of EBR and reduced trauma-cue freezing responses, compared with vehicle controls. The distinctive pattern of NPY downregulation that correlated with EBR as well as the resounding behavioral effects of pharmacological manipulation of NPY indicates an intimate association between NPY and behavioral responses to stress, and potentially between molecular and psychopathological processes, which underlie the observed changes in behavior. The protective qualities attributed to NPY are supported by the extreme reduction of its expression in animals severely affected by the stressor and imply a role in promoting resilience and/or recovery.
Collapse
Affiliation(s)
- Hagit Cohen
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, The State of Israel Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Tianmin Liu
- Karolinska Institutet-Clinical Neuroscience, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Nitsan Kozlovsky
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, The State of Israel Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zeev Kaplan
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, The State of Israel Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Joseph Zohar
- Division of Psychiatry, The State of Israel Ministry of Health, The Chaim Sheba Medical Center, Ramat-Gan, Israel,Sackler Medical School, Tel-Aviv University, Tel-Aviv, Israel
| | - Aleksander A Mathé
- Karolinska Institutet-Clinical Neuroscience, Karolinska University Hospital Huddinge, Stockholm, Sweden,Karolinska Institutet-Clinical Neuroscience, Karolinska University Hospital Huddinge, Stockholm SE-14186, Sweden, Tel: +46 70 4840743, Fax: +46 8 300972, E-mail:
| |
Collapse
|
132
|
5-(2′-Pyridyl)-2-aminothiazoles: Alkyl amino sulfonamides and sulfamides as potent NPY5 antagonists. Bioorg Med Chem Lett 2011; 21:6500-4. [DOI: 10.1016/j.bmcl.2011.08.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 11/17/2022]
|
133
|
McGonigle P. Peptide therapeutics for CNS indications. Biochem Pharmacol 2011; 83:559-66. [PMID: 22051078 DOI: 10.1016/j.bcp.2011.10.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/13/2011] [Accepted: 10/17/2011] [Indexed: 01/17/2023]
Abstract
Neuropeptides play a crucial role in the normal function of the central nervous system and peptide receptors hold great promise as therapeutic targets for the treatment of several CNS disorders. In general, the development of peptide therapeutics has been limited by the lack of drug-like properties of peptides and this has made it very difficult to transform them into marketable therapeutic molecules. Some of these challenges include poor in vivo stability, poor solubility, incompatibility with oral administration, shelf stability, cost of manufacture. Recent technical advances have overcome many of these limitations and have led to rapid growth in the development of peptides for a wide range of therapeutic indications such as diabetes, cancer and pain. This review examines the therapeutic potential of peptide agonists for the treatment of major CNS disorders such as schizophrenia, anxiety, depression and autism. Both clinical and preclinical data has been accumulated supporting the potential utility of agonists at central neurotensin, cholecystokinin, neuropeptide Y and oxytocin receptors. Some of the successful approaches that have been developed to increase the stability and longevity of peptides in vivo and improve their delivery are also described and potential strategies for overcoming the major challenge that is unique to CNS therapeutics, penetration of the blood-brain barrier, are discussed.
Collapse
Affiliation(s)
- Paul McGonigle
- PsychoGenics Inc., 765 Old Saw Mill River Road, Tarrytown, NY 10591, USA.
| |
Collapse
|
134
|
Olesen MV, Christiansen SH, Gøtzsche CR, Nikitidou L, Kokaia M, Woldbye DPD. Neuropeptide Y Y1 receptor hippocampal overexpression via viral vectors is associated with modest anxiolytic-like and proconvulsant effects in mice. J Neurosci Res 2011; 90:498-507. [PMID: 21971867 DOI: 10.1002/jnr.22770] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/15/2011] [Accepted: 07/24/2011] [Indexed: 02/06/2023]
Abstract
Neuropeptide Y (NPY) exerts anxiolytic- and antidepressant-like effects in rodents that appear to be mediated via Y1 receptors. Gene therapy using recombinant viral vectors to induce overexpression of NPY in the hippocampus or amygdala has previously been shown to confer anxiolytic-like effect in rodents. The present study explored an alternative and more specific approach: overexpression of Y1 receptors. Using a recombinant adeno-associated viral vector (rAAV) encoding the Y1 gene (rAAV-Y1), we, for the first time, induced overexpression of functional transgene Y1 receptors in the hippocampus of adult mice and tested the animals in anxiety- and depression-like behavior. Hippocampal Y1 receptors have been suggested to mediate seizure-promoting effect, so the effects of rAAV-induced Y1 receptor overexpression were also tested in kainate-induced seizures. Y1 receptor transgene overexpression was found to be associated with modest anxiolytic-like effect in the open field and elevated plus maze tests, but no effect was seen on depression-like behavior using the tail suspension and forced swim tests. However, the rAAV-Y1 vector modestly aggravated kainate-induced seizures. These data indicate that rAAV-induced overexpression of Y1 receptors in the hippocampus could confer anxiolytic-like effect accompanied by a moderate proconvulsant adverse effect. Further studies are clearly needed to determine whether Y1 gene therapy might have a future role in the treatment of anxiety disorders.
Collapse
Affiliation(s)
- M V Olesen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen and Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
135
|
Mapping patterns of depression-related brain regions with cytochrome oxidase histochemistry: Relevance of animal affective systems to human disorders, with a focus on resilience to adverse events. Neurosci Biobehav Rev 2011; 35:1876-89. [DOI: 10.1016/j.neubiorev.2011.02.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 12/28/2022]
|
136
|
Packiarajan M, Marzabadi MR, Desai M, Lu Y, Noble SA, Wong WC, Jubian V, Chandrasena G, Wolinsky TD, Zhong H, Walker MW, Wiborg O, Andersen K. Discovery of Lu AA33810: A highly selective and potent NPY5 antagonist with in vivo efficacy in a model of mood disorder. Bioorg Med Chem Lett 2011; 21:5436-41. [DOI: 10.1016/j.bmcl.2011.06.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 10/18/2022]
|
137
|
Trent NL, Menard JL. Infusions of neuropeptide Y into the lateral septum reduce anxiety-related behaviors in the rat. Pharmacol Biochem Behav 2011; 99:580-90. [PMID: 21693128 DOI: 10.1016/j.pbb.2011.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/23/2011] [Accepted: 06/06/2011] [Indexed: 11/24/2022]
Abstract
Neuropeptide Y (NPY) is one of the most abundant peptides in mammalian brain and NPY-like-immunoreactivity is highly expressed in the lateral septum, an area extensively involved in anxiety regulation. NPY counteracts the neurochemical and behavioral responses to acute threat in animal models, and intracerebroventricular (i.c.v.) administration of NPY at low doses is anxiolytic. Less is known about the specific contributions of the lateral septum to NPY-mediated anxiety regulation. In Experiment 1, the effects of infusions of NPY (1.5 μg) into the lateral septum were investigated in three animal models of anxiety: the elevated plus-maze, novelty-induced suppression of feeding, and shock-probe burying tests. Experiment 2 examined the role of the NPY Y1 receptor in these models by co-infusing the Y1 antagonist BIBO 3304 (0.15 μg, 0.30 μg) with NPY into the lateral septum. In the elevated plus-maze, there were no changes in rats' open arm exploration, the index of anxiety reduction in this test. In the novelty-induced suppression of feeding test, rats infused with NPY showed decreases in the latency to consume a palatable snack in a novel (but not familiar) environment, suggesting a reduction in anxiety independent of increases in appetite. This anxiolysis was attenuated by co-infusion with BIBO 3304 (0.30 μg) in Experiment 2. Lastly, rats infused with NPY showed decreases in the duration of burying behavior in the shock-probe burying test, also indicative of anxiety reduction. However, unlike in the feeding test, BIBO 3304 did not attenuate the NPY-induced anxiolysis in the shock-probe test. It is concluded that NPY produces anxiolytic-like actions in the lateral septum in two animal models of anxiety: the novelty-induced suppression of feeding, and shock-probe burying tests, and that this anxiolysis is dependent on Y1 receptor activation in the feeding test.
Collapse
Affiliation(s)
- Natalie L Trent
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
138
|
Effects of a selective Y2R antagonist, JNJ-31020028, on nicotine abstinence-related social anxiety-like behavior, neuropeptide Y and corticotropin releasing factor mRNA levels in the novelty-seeking phenotype. Behav Brain Res 2011; 222:332-41. [PMID: 21497168 DOI: 10.1016/j.bbr.2011.03.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/25/2011] [Accepted: 03/30/2011] [Indexed: 11/21/2022]
Abstract
An outbred rat model of novelty-seeking phenotype has predictive value for the expression of locomotor sensitization to nicotine. When experimentally naïve rats are exposed to a novel environment, some display high rates of locomotor reactivity (HRs, scores ranking at top 1/3rd of the population), whereas some display low rates (LRs, scores ranking at bottom 1/3rd of the population). Basally, HRs display lower anxiety-like behavior compared to LRs along with higher neuropeptide Y (NPY) mRNA in the amygdala and the hippocampus. Following an intermittent behavioral sensitization to nicotine regimen and 1 wk of abstinence, HRs show increased social anxiety-like behavior in the social interaction test and robust expression of locomotor sensitization to a low dose nicotine challenge. These effects are accompanied by a deficit in NPY mRNA levels in the medial nucleus of the amygdala and the CA3 field of the hippocampus, and increases in Y2R mRNA levels in the CA3 field and corticotropin releasing factor (CRF) mRNA levels in the central nucleus of the amygdala. Systemic and daily injections of a Y2R antagonist, JNJ-31020028, during abstinence fully reverse nicotine-induced social anxiety-like behavior, the expression of locomotor sensitization to nicotine challenge, the deficit in the NPY mRNA levels in the amygdala and the hippocampus, as well as result an increase in Y2R mRNA levels in the hippocampus and the CRF mRNA levels in the amygdala in HRs. These findings implicate central Y2R in neuropeptidergic regulation of social anxiety in a behavioral sensitization to nicotine regimen in the LRHR rats.
Collapse
|
139
|
Mickey BJ, Zhou Z, Heitzeg MM, Heinz E, Hodgkinson CA, Hsu DT, Langenecker SA, Love TM, Peciña M, Shafir T, Stohler CS, Goldman D, Zubieta JK. Emotion processing, major depression, and functional genetic variation of neuropeptide Y. ACTA ACUST UNITED AC 2011; 68:158-66. [PMID: 21300944 DOI: 10.1001/archgenpsychiatry.2010.197] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT Despite recent progress in describing the common neural circuitry of emotion and stress processing, the bases of individual variation are less well understood. Genetic variants that underlie psychiatric disease have proven particularly difficult to elucidate. Functional genetic variation of neuropeptide Y (NPY) was recently identified as a source of individual differences in emotion. Low NPY levels have been reported in major depressive disorder (MDD). OBJECTIVE To determine whether low-expression NPY genotypes are associated with negative emotional processing at 3 levels of analysis. DESIGN Cross-sectional, case-control study. SETTING Academic medical center. PARTICIPANTS Among 44 individuals with MDD and 137 healthy controls, 152 (84%) had an NPY genotype classified as low, intermediate, or high expression according to previously established haplotype-based expression data. MAIN OUTCOME MEASURES Healthy subjects participated in functional magnetic resonance imaging while viewing negative (vs neutral) words (n = 58) and rated positive and negative affect during a pain-stress challenge (n = 78). Genotype distribution was compared between 113 control subjects and 39 subjects with MDD. RESULTS Among healthy individuals, negatively valenced words activated the medial prefrontal cortex. Activation within this region was inversely related to genotype-predicted NPY expression (P = .03). Whole-brain regression of responses to negative words showed that the rostral anterior cingulate cortex activated in the low-expression group and deactivated in the high-expression group (P < .05). During the stress challenge, individuals with low-expression NPY genotypes reported more negative affective experience before and after pain (P = .002). Low-expression NPY genotypes were overrepresented in subjects with MDD after controlling for age and sex (P = .004). Population stratification did not account for the results. CONCLUSIONS These findings support a model in which NPY genetic variation predisposes certain individuals to low NPY expression, thereby increasing neural responsivity to negative stimuli within key affective circuit elements, including the medial prefrontal and anterior cingulate cortices. These genetically influenced neural response patterns appear to mediate risk for some forms of MDD.
Collapse
Affiliation(s)
- Brian J Mickey
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI 48109-5720, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Panzica GC, Bo E, Martini MA, Miceli D, Mura E, Viglietti-Panzica C, Gotti S. Neuropeptides and enzymes are targets for the action of endocrine disrupting chemicals in the vertebrate brain. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:449-72. [PMID: 21790321 DOI: 10.1080/10937404.2011.578562] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Endocrine-disrupting chemicals (EDC) are molecules that interfere with endocrine signaling pathways and produce adverse consequences on animal and human physiology, such as infertility or behavioral alterations. Some EDC act through binding to androgen or/and estrogen receptors primarily operating through a genomic mechanism regulating gene expression. This mechanism of action may induce profound developmental adverse effects, and the major targets of the EDC action are the gene products, i.e., mRNAs inducing the synthesis of various peptidic molecules, which include neuropeptides and enzymes related to neurotransmitters syntheses. Available immunohistochemical data on some of the systems that are affected by EDC in lower and higher vertebrates are detailed in this review.
Collapse
Affiliation(s)
- G C Panzica
- Laboratory of Neuroendocrinology, Department of Anatomy, Pharmacology, and Forensic Medicine, Neuroscience Institute of Turin (NIT), University of Torino, Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
141
|
Adamec R, Toth M, Haller J, Halasz J, Blundell J. Activation patterns of cells in selected brain stem nuclei of more and less stress responsive rats in two animal models of PTSD - predator exposure and submersion stress. Neuropharmacology 2010; 62:725-36. [PMID: 21112345 DOI: 10.1016/j.neuropharm.2010.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/14/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
This study had two purposes. First: compare predator and water submersion stress cFos activation patterns in dorsal raphe (DR), locus coeruleus (LC) and periaqueductal gray (PAG). Second: identify markers of vulnerability to stressors within these areas. Rats were either predator or submersion stressed and tested 1.75 h later for anxiety-like behavior. Immediately thereafter, rats were sacrificed and cFos expression examined. In DR, serotonergic cells expressing or not expressing cFos were also counted. Predator and submersion stress increased anxiety-like behavior (in the elevated plus maze- EPM) equally over controls. Moreover, stressed rats spent equally less time in the center of the hole board than handled controls, another indication of increased anxiety-like behavior. To examine vulnerability, rats which were less anxious (LA) and more (highly) anxious (MA) in the EPM were selected from among handled control and stressed animals. LA rats in the stressed groups were considered stress non-responsive and MA stressed rats were considered stress responsive. LA and MA rats did not differ in cFos expression in any brain area, though stressors did increase cFos cell counts in all areas over controls. Intriguingly, the number of serotonergic DR neurons not activated by stress predicted degree of anxiety response to submersion stress only. LA submersion stressed rats had more serotonergic cells than all other groups, and MA submersion stressed rats had fewer serotonergic cells than all other groups, which did not differ. Moreover, these cell counts correlated with EPM anxiety. We conclude that a surplus of such cells protects against anxiogenic effects of submersion, while a paucity of such cells enhances vulnerability to submersion stress. Other data suggest serotonergic cells may exert their effects via inhibition of dorsolateral PAG cells during submersion stress. Findings are discussed with respect to serotonergic transmission in vulnerability to predator stress and relevance of findings for post traumatic stress disorder (PTSD). This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Robert Adamec
- Dept. of Psychology, Memorial University, St. John's, Newfoundland, Canada.
| | | | | | | | | |
Collapse
|
142
|
Roubos EW, Jenks BG, Xu L, Kuribara M, Scheenen WJJM, Kozicz T. About a snail, a toad, and rodents: animal models for adaptation research. Front Endocrinol (Lausanne) 2010; 1:4. [PMID: 22649351 PMCID: PMC3355873 DOI: 10.3389/fendo.2010.00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 09/29/2010] [Indexed: 12/28/2022] Open
Abstract
Neural adaptation mechanisms have many similarities throughout the animal kingdom, enabling to study fundamentals of human adaptation in selected animal models with experimental approaches that are impossible to apply in man. This will be illustrated by reviewing research on three of such animal models, viz. (1) the egg-laying behavior of a snail, Lymnaea stagnalis: how one neuron type controls behavior, (2) adaptation to the ambient light condition by a toad, Xenopus laevis: how a neuroendocrine cell integrates complex external and neural inputs, and (3) stress, feeding, and depression in rodents: how a neuronal network co-ordinates different but related complex behaviors. Special attention is being paid to the actions of neurochemical messengers, such as neuropeptide Y, urocortin 1, and brain-derived neurotrophic factor. While awaiting new technological developments to study the living human brain at the cellular and molecular levels, continuing progress in the insight in the functioning of human adaptation mechanisms may be expected from neuroendocrine research using invertebrate and vertebrate animal models.
Collapse
Affiliation(s)
- Eric W. Roubos
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Bruce G. Jenks
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Lu Xu
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Miyuki Kuribara
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Wim J. J. M. Scheenen
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Tamás Kozicz
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| |
Collapse
|
143
|
Painsipp E, Sperk G, Herzog H, Holzer P. Delayed stress-induced differences in locomotor and depression-related behaviour in female neuropeptide-Y Y1 receptor knockout mice. J Psychopharmacol 2010; 24:1541-9. [PMID: 19351805 PMCID: PMC4359898 DOI: 10.1177/0269881109104851] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neuropeptide-Y acting through Y1 receptors reduces anxiety and stress sensitivity in rodents. In Y1 receptor knockout (Y1⁻/⁻) mice, however, anxiety-related behaviour is altered only in a context-dependent manner. Here, we investigated whether stress causes a delayed change in the emotional-affective behaviour of female Y1⁻/⁻ mice. Locomotor and anxiety-related behaviour was assessed with the elevated plus-maze (EPM) test and depression-like behaviour with the forced swim test (FST). These behavioural tests were also used as experimental stress paradigms. Locomotion and anxiety-like behaviour did not differ between naïve control and Y1⁻/⁻ mice. One week after the FST, locomotion was reduced in control animals but unchanged in Y1⁻/⁻ mice, whereas anxiety-like behaviour remained unaltered in both genotypes. Depression-like behaviour (immobility) was identical in naïve control and Y1⁻/⁻ mice but, 1 week after the EPM test, was attenuated in Y1⁻/⁻ mice relative to control animals. Our data show that naïve female Y1⁻/⁻ mice do not grossly differ from female control animals in their locomotor and depression-like behaviour. Exposure to the stress associated with behavioural testing, however, leads to delayed genotype-dependent differences in locomotion and depression-like behaviour. These findings attest to a role of Y1 receptor signalling in the control of stress coping and/or adaptation.
Collapse
Affiliation(s)
- Evelin Painsipp
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Günther Sperk
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Herzog
- Neurobiology Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
144
|
Painsipp E, Herzog H, Holzer P. Evidence from knockout mice that neuropeptide-Y Y2 and Y4 receptor signalling prevents long-term depression-like behaviour caused by immune challenge. J Psychopharmacol 2010; 24:1551-60. [PMID: 19939871 PMCID: PMC4359896 DOI: 10.1177/0269881109348171] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neuropeptide Y participates in the acute behavioural responses to immune challenge, since Y2 receptor knockout (Y2⁻/⁻) mice are particularly sensitive to the short-term anxiogenic-like effect of bacterial lipopolysaccharide. The present exploratory study addressed the involvement of Y2 and Y4 receptors in the long-term behavioural responses to immune challenge. A single intraperitoneal injection of lipopolysaccharide (0.83 mg/kg) to control mice did not affect open field behaviour 3 h post-treatment but enhanced anxiety-like behaviour in Y2⁻/⁻ as well as Y4⁻/⁻ mice. Four weeks post-treatment this behavioural effect of lipopolysaccharide persisted in Y4⁻/⁻ mice but had gone in Y2⁻/⁻ mice. Depression-related behaviour in the forced swim test was enhanced 1 day post-lipopolysaccharide in control and Y2⁻/⁻ mice, but not in Y4⁻/⁻ mice. Four weeks post-treatment, the depressogenic-like effect of lipopolysaccharide had waned in control mice, persisted in Y2⁻/⁻ mice and was first observed in Y4⁻/⁻ mice. In summary, knockout of Y2 and/or Y4 receptors unmasks the ability of a single lipopolysaccharide injection to cause a delayed and prolonged increase in anxiety- and/or depression-like behaviour. These findings suggest that neuropeptide Y acting via Y2 and Y4 receptors prevents the development of long-term anxiety- and depression-like behaviour caused by acute immune challenge.
Collapse
Affiliation(s)
- Evelin Painsipp
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Herbert Herzog
- Neurobiology Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
145
|
Molina-Hernández M, Téllez-Alcántara NP, Olivera-Lopez JI, Jaramillo MT. Antidepressant-like or anxiolytic-like actions of topiramate alone or co-administered with intra-lateral septal infusions of neuropeptide Y in male Wistar rats. Peptides 2010; 31:1184-9. [PMID: 20307610 DOI: 10.1016/j.peptides.2010.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/12/2010] [Accepted: 03/12/2010] [Indexed: 11/20/2022]
Abstract
We tested the effects of intra-lateral septal infusions of neuropeptide Y (NPY) combined with systemic injections of topiramate in the DRL-72s paradigm and the elevated plus-maze test in male Wistar rats. Intra-lateral septal infusions of desipramine (5.0 microg/microl; P<0.05) or intra-lateral septal infusions of NPY (3.0 microg/microl, P<0.05; 3.5 microg/microl, P<0.05) or systemic injections of topiramate (20.0mg/kg, P<0.05; 30.0mg/kg, P<0.05) or subthreshold doses of topiramate (10.0mg/kg) combined with intra-lateral septal infusions of subthreshold doses of NPY (2.5 microg/microl; P<0.05) induced a dose-dependent increase in reinforced lever presses and a cohesive rightward shift of the inter-response time distribution in the DRL 72s task. In the elevated plus-maze test, intra-lateral septal infusions of NPY (3.0 microg/microl, P<0.05; 3.5 microg/microl, P<0.05) or midazolam (10.0 microg/microl; P<0.05) or systemic injections of topiramate (20.0mg/kg, P<0.05; 30.0mg/kg, P<0.05) or subthreshold doses of systemic injections of topiramate (10.0mg/kg) combined with intra-lateral septal infusions of subthreshold doses of NPY (2.5 microg/microl; P<0.05) increased the exploration of the open arms without affecting locomotion. In conclusion, intra-septal NPY has anxiolytic effects in the EPM, and antidepressant effects in the DRL 72s test. Similarly, systemic topiramate has anxiolytic effects in the EPM, and antidepressant effects in the DRL 72s test. Finally, a combination of subthreshold doses of NPY and topiramate together also have anxiolytic and antidepressant effects, suggesting a synergistic effect.
Collapse
Affiliation(s)
- Miguel Molina-Hernández
- Laboratorio de Psicobiología y Etología, Instituto de Investigaciones Psicológicas, Universidad Veracruzana, Jalapa, Veracruz, Mexico.
| | | | | | | |
Collapse
|
146
|
Alldredge B. Pathogenic involvement of neuropeptides in anxiety and depression. Neuropeptides 2010; 44:215-24. [PMID: 20096456 DOI: 10.1016/j.npep.2009.12.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/15/2009] [Accepted: 12/15/2009] [Indexed: 12/11/2022]
Abstract
Anxiety and depression are highly prevalent disorders of mood posing significant challenges to individuals and society. Current evidence indicates no single neurobiological determinant underpins these conditions and an integrated approach in both research and treatment is expedient. Basic, behavioral, and clinical science indicates various stress-responsive neuropeptides in the neuroendocrine, autonomic, and behavioral pathophysiology of stress-related disorders including anxiety and depression. This review draws on recent research to capture the consensus and implications of neuropeptide research concerning the pathogenesis of anxiety and depression.
Collapse
Affiliation(s)
- Brett Alldredge
- Kansas City University of Medicine and Bioscience, College of Medicine, 1705 Independence Ave., Kansas City, United States.
| |
Collapse
|
147
|
Hawley DF, Bardi M, Everette AM, Higgins TJ, Tu KM, Kinsley CH, Lambert KG. Neurobiological constituents of active, passive, and variable coping strategies in rats: integration of regional brain neuropeptide Y levels and cardiovascular responses. Stress 2010; 13:172-83. [PMID: 20214438 DOI: 10.3109/10253890903144621] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Effective coping strategies build resilience against stress-induced pathology. In the current study, young male rats were categorized as active, passive, or variable copers by observing their responses to being gently restrained on their backs (i.e., the back-test). The rats were subsequently exposed to chronic unpredictable stress, which included several ethologically relevant stressors such as predator odors and calls, for approximately three weeks. During this time, the variable copers, defined as rats that demonstrated a variable as opposed to a rigid response to stress, exhibited more seemingly adaptive responsiveness in three successive forced swim tests than the more consistently responding passive and active copers. This behavioral flexibility was accompanied by increased neuropeptide Y-immunoreactivity in the bed nucleus of the stria terminalis (BNST) and the amygdala and increased fos-immunoreactivity in the BNST. Additionally, the alterations in fecal corticosteroid levels and cardiovascular measures (systolic blood pressure and tail blood volume) between baseline and stress conditions differed according to coping strategy. Factor analysis indicates that variable copers were characterized by a distinct cardiovascular and neural response to the stress exposure. These results suggest that this animal coping model may be useful in discerning the adaptive nature of particular response strategies in the face of environmental exigencies.
Collapse
Affiliation(s)
- Darby F Hawley
- Department of Psychology, Randolph-Macon College, Ashland, Virginia 23005, USA
| | | | | | | | | | | | | |
Collapse
|
148
|
Lin EJD, Lin S, Aljanova A, During MJ, Herzog H. Adult-onset hippocampal-specific neuropeptide Y overexpression confers mild anxiolytic effect in mice. Eur Neuropsychopharmacol 2010; 20:164-75. [PMID: 19781916 DOI: 10.1016/j.euroneuro.2009.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/09/2009] [Accepted: 08/18/2009] [Indexed: 01/29/2023]
Abstract
The anticonvulsive properties of neuropeptide Y (NPY) are opening up opportunity for the development of NPY gene transfer as a therapy for epilepsy. In order to pursue the potential clinical translation of this approach, the effects of somatic NPY gene transfer on other hippocampal functions need to be assessed. The present study characterized the behavioral effects of recombinant adeno-associated viral vector (rAAV)-mediated hippocampal NPY overexpression in adult male mice and also Y1 receptor knockout mice. In wild-type mice, there were no obvious adverse effects on the general health, motor function and cognition following rAAV-NPY treatment. Moreover, hippocampal NPY overexpression induced a moderate anxiolytic effect in the open field test and elevated plus maze. Intriguingly, the treatment also increased depressive-like behavior in the tail suspension test. Elevated hippocampal NPY levels in the absence of Y1 signalling had no effects on anxiety or cognition and actually improved the depressive-like phenotype observed in the wild-type mice treated with rAAV-NPY.
Collapse
Affiliation(s)
- En-Ju Deborah Lin
- Neurobiology Program, Garvan Institute of Medical Research, Sydney, Australia.
| | | | | | | | | |
Collapse
|
149
|
Neuropeptide Y Y1 receptors in the central nucleus of amygdala mediate the anxiolytic-like effect of allopregnanolone in mice: Behavioral and immunocytochemical evidences. Brain Res 2010; 1318:77-86. [DOI: 10.1016/j.brainres.2009.12.088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 12/26/2009] [Accepted: 12/29/2009] [Indexed: 11/18/2022]
|
150
|
Shalev U, Erb S, Shaham Y. Role of CRF and other neuropeptides in stress-induced reinstatement of drug seeking. Brain Res 2010; 1314:15-28. [PMID: 19631614 PMCID: PMC2819550 DOI: 10.1016/j.brainres.2009.07.028] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/03/2009] [Accepted: 07/11/2009] [Indexed: 11/17/2022]
Abstract
A central problem in the treatment of drug addiction is high rates of relapse to drug use after periods of forced or self-imposed abstinence. This relapse is often provoked by exposure to stress. Stress-induced relapse to drug seeking can be modeled in laboratory animals using a reinstatement procedure. In this procedure, drug-taking behaviors are extinguished and then reinstated by acute exposure to stressors like intermittent unpredictable footshock, restraint, food deprivation, and systemic injections of yohimbine, an alpha-2 adrenoceptor antagonist that induces stress-like responses in humans and nonhumans. For this special issue entitled "The role of neuropeptides in stress and addiction", we review results from studies on the role of corticotropin-releasing factor (CRF) and several other peptides in stress-induced reinstatement of drug seeking in laboratory animals. The results of the studies reviewed indicate that extrahypothalamic CRF plays a critical role in stress-induced reinstatement of drug seeking; this role is largely independent of drug class, experimental procedure, and type of stressor. There is also limited evidence for the role of dynorphins, hypocretins (orexins), nociceptin (orphanin FQ), and leptin in stress-induced reinstatement of drug seeking.
Collapse
Affiliation(s)
- Uri Shalev
- Department of Psychology, Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, Quebec, Canada
| | - Suzanne Erb
- Center for Neurobiology of Stress, Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Yavin Shaham
- Behavioral Neuroscience Branch, NIDA/IRP, NIH, Baltimore, MD, USA
| |
Collapse
|