101
|
Adachi T, Tomita M, Shimizu K, Ogawa S, Yoshizato K. Generation of hybrid transgenic silkworms that express Bombyx mori prolyl-hydroxylase alpha-subunits and human collagens in posterior silk glands: Production of cocoons that contained collagens with hydroxylated proline residues. J Biotechnol 2006; 126:205-19. [PMID: 16766075 DOI: 10.1016/j.jbiotec.2006.04.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/16/2006] [Accepted: 04/07/2006] [Indexed: 11/16/2022]
Abstract
Prolyl 4-hydroxylase (P4H) is a heterotetramer enzyme consisting of alpha-subunits (P4Halpha) and beta-subunits (P4Hbeta), and is required for collagen biosynthesis. Previously, we generated transgenic silkworms that produced human type III collagen fragments (mini-collagens) in the posterior silk gland (PSG). However, prolyl 4-hydroxylation did not occur on the mini-collagens, because in spite of an abundant expression of P4Hbeta in PSGs, P4Halpha expression was quite low there, thus resulting in an insufficient activity of P4H. In this study we aimed at generating hybrid transgenic silkworms whose PSGs are capable of producing mini-collagens and enough P4H for their prolyl 4-hydroxylation. Isolated PSGs were bombarded with fibroin L-chain gene promoter-driven vectors containing Bombyx mori P4Halpha (BmP4Halpha) cDNAs and were transplanted into the hemolymphatic cavity. The P4H activity in the PSG cells significantly increased, indicating that the expressed BmP4Halpha formed active tetramers with endogenous BmP4Hbeta. Using germ-line transgenesis technology, silkworms were generated that synthesized BmP4Halpha in PSG cells. The P4H activity in the transgenic silkworms was 130-fold higher than that of wild-type counterparts. Finally, we generated hybrid transgenic silkworms that expressed cDNAs of both BmP4Halpha and mini-collagen in PSG cells. They spun cocoons that contained mini-collagens whose appropriate proline residues had been adequately hydroxylated.
Collapse
Affiliation(s)
- Takahiro Adachi
- Yoshizato Project, Cooperative Link of Unique Science and Technology for Economy Revitalization, Hiroshima Prefectural Institute of Industrial Science and Technology, 3-10-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | | | | | | | | |
Collapse
|
102
|
Heinitz K, Beck M, Schliebs R, Perez-Polo JR. Toxicity mediated by soluble oligomers of beta-amyloid(1-42) on cholinergic SN56.B5.G4 cells. J Neurochem 2006; 98:1930-45. [PMID: 16945109 DOI: 10.1111/j.1471-4159.2006.04015.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized by cholinergic dysfunction and progressive basal forebrain cell loss which has been assumed to be as a result of the extensive accumulation of beta-amyloid (Abeta). In addition to Abeta fibrillar assemblies, there are pre-fibrillar forms that have been shown to be neurotoxic, although their role in cholinergic degeneration is still not known. Using the cholinergic cell line SN56.B5.G4, we investigated the effect of different Abeta(1-42) aggregates on cell viability. In our model, only soluble oligomeric but not fibrillar Abeta(1-42) forms induced toxicity in cholinergic cells. To determine whether the neurotoxicity of oligomeric Abeta(1-42) was caused by its oxidative potential, we performed microarray analysis of SN56.B5.G4 cells treated either with oligomeric Abeta(1-42) or H(2)O(2). We showed that genes affected by Abeta(1-42) differed from those affected by non-specific oxidative stress. Many of the genes affected by Abeta(1-42) were present in the endoplasmic reticulum (ER), Golgi apparatus and/or otherwise involved in protein modification and degradation (chaperones, ATF6), indicating a possible role for ER-mediated stress in Abeta-mediated toxicity. Moreover, a number of genes, which are known to be involved in AD (clusterin, Slc18a3), were identified. This study provides important leads for the understanding of oligomeric Abeta(1-42) toxicity in cholinergic cells, which may account in part for cholinergic degeneration in AD.
Collapse
Affiliation(s)
- Katrin Heinitz
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Leipzig, Germany
| | | | | | | |
Collapse
|
103
|
Hoffart LM, Barr EW, Guyer RB, Bollinger JM, Krebs C. Direct spectroscopic detection of a C-H-cleaving high-spin Fe(IV) complex in a prolyl-4-hydroxylase. Proc Natl Acad Sci U S A 2006; 103:14738-43. [PMID: 17003127 PMCID: PMC1578498 DOI: 10.1073/pnas.0604005103] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Fe(II)- and alpha-ketoglutarate (alphaKG)-dependent dioxygenases use mononuclear nonheme iron centers to effect hydroxylation of their substrates and decarboxylation of their cosubstrate, alphaKG, to CO(2) and succinate. Our recent dissection of the mechanism of taurine:alphaKG dioxygenase (TauD), a member of this enzyme family, revealed that two transient complexes accumulate during catalysis in the presence of saturating substrates. The first complex contains the long-postulated C-H-cleaving Fe(IV)-oxo intermediate, J, and the second is an enzyme.product(s) complex. Here, we demonstrate the accumulation of two transient complexes in the reaction of a prolyl-4-hydroxylase (P4H), a functional homologue of human alphaKG-dependent dioxygenases with essential roles in collagen biosynthesis and oxygen sensing. The kinetic and spectroscopic properties of these two P4H complexes suggest that they are homologues of the TauD intermediates. Most notably, the first exhibits optical absorption and Mössbauer spectra similar to those of J and, like J, a large substrate deuterium kinetic isotope on its decay. The close correspondence of the accumulating states in the P4H and TauD reactions supports the hypothesis of a conserved mechanism for substrate hydroxylation by enzymes in this family.
Collapse
Affiliation(s)
| | - Eric W. Barr
- Departments of *Biochemistry and Molecular Biology and
| | | | - J. Martin Bollinger
- Departments of *Biochemistry and Molecular Biology and
- Chemistry, Pennsylvania State University, University Park, PA 16802
- To whom correspondence may be addressed. E-mail:
or
| | - Carsten Krebs
- Departments of *Biochemistry and Molecular Biology and
- Chemistry, Pennsylvania State University, University Park, PA 16802
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
104
|
Schumacher MA, Mizuno K, Bächinger HP. The crystal structure of a collagen-like polypeptide with 3(S)-hydroxyproline residues in the Xaa position forms a standard 7/2 collagen triple helix. J Biol Chem 2006; 281:27566-74. [PMID: 16798737 DOI: 10.1074/jbc.m602797200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen has a triple helical structure comprising strands with a repeating Xaa-Yaa-Gly sequence. L-Proline (Pro) and 4(R)-hydroxyl-L-proline (4(R)Hyp) residues are found most frequently in the Xaa and Yaa positions. However, in natural collagen, 3(S)-hydroxyl-L-proline (3(S)Hyp) occurs in the Xaa positions to varying extents and is most common in collagen types IV and V. Although 4(R)Hyp residues in the Yaa positions have been shown to be critical for the formation of a stable triple helix, the role of 3(S)Hyp residues in the Xaa position is not well understood. Indeed, recent studies have demonstrated that the presence of 3(S)Hyp in the Xaa positions of collagen-like peptides actually has a destabilizing effect relative to peptides with Pro in these locations. Whether this destabilization is reflected in a local unfolding or in other structural alterations of the collagen triple helix is unknown. Thus, to determine what effect the presence of 3(S)Hyp residues in the Xaa positions has on the overall conformation of the collagen triple helix, we determined the crystal structure of the polypeptide H-(Gly-Pro-4(R)Hyp)3-(Gly-3(S)Hyp-4(R)Hyp)2-(Gly-Pro-4(R)Hyp)4-OH to 1.80 A resolution. The structure shows that, despite the presence of the 3(S)Hyp residues, the peptide still adopts a typical 7/2 superhelical symmetry similar to that observed in other collagen structures. The puckering of the Xaa position 3(S)Hyp residues, which are all down (Cgamma-endo), and the varphi/psi dihedral angles of the Xaa 3(S)Hyp residues are also similar to those of typical collagen Pro Xaa residues. Thus, the presence of 3(S)Hyp in the Xaa positions does not lead to large structural alterations in the collagen triple helix.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry and Molecular Biology, Unit 1000, MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, and Research Department, Shriners Hospital for Children, Portland, OR 97239, USA
| | | | | |
Collapse
|
105
|
Cloos PAC, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T, Hansen KH, Helin K. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 2006; 442:307-11. [PMID: 16732293 DOI: 10.1038/nature04837] [Citation(s) in RCA: 564] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 04/27/2006] [Indexed: 12/25/2022]
Abstract
Methylation of lysine and arginine residues on histone tails affects chromatin structure and gene transcription. Tri- and dimethylation of lysine 9 on histone H3 (H3K9me3/me2) is required for the binding of the repressive protein HP1 and is associated with heterochromatin formation and transcriptional repression in a variety of species. H3K9me3 has long been regarded as a 'permanent' epigenetic mark. In a search for proteins and complexes interacting with H3K9me3, we identified the protein GASC1 (gene amplified in squamous cell carcinoma 1), which belongs to the JMJD2 (jumonji domain containing 2) subfamily of the jumonji family, and is also known as JMJD2C. Here we show that three members of this subfamily of proteins demethylate H3K9me3/me2 in vitro through a hydroxylation reaction requiring iron and alpha-ketoglutarate as cofactors. Furthermore, we demonstrate that ectopic expression of GASC1 or other JMJD2 members markedly decreases H3K9me3/me2 levels, increases H3K9me1 levels, delocalizes HP1 and reduces heterochromatin in vivo. Previously, GASC1 was found to be amplified in several cell lines derived from oesophageal squamous carcinomas, and in agreement with a contribution of GASC1 to tumour development, inhibition of GASC1 expression decreases cell proliferation. Thus, in addition to identifying GASC1 as a histone trimethyl demethylase, we suggest a model for how this enzyme might be involved in cancer development, and propose it as a target for anti-cancer therapy.
Collapse
Affiliation(s)
- Paul A C Cloos
- Biotech Research & Innovation Centre, Fruebjergvej 3, 2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Chen L, Shen YH, Wang X, Wang J, Gan Y, Chen N, Wang J, LeMaire SA, Coselli JS, Wang XL. Human prolyl-4-hydroxylase alpha(I) transcription is mediated by upstream stimulatory factors. J Biol Chem 2006; 281:10849-55. [PMID: 16488890 PMCID: PMC2819823 DOI: 10.1074/jbc.m511237200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolyl-4-hydroxylase alpha(I) (P4Halpha(I)) is the rate-limiting subunit for P4H enzyme activity, which is essential for procollagen hydroxylation and secretion. In the current study, we have characterized the human P4Halpha(I) promoter for transcription factors and DNA elements regulating P4Halpha(I) expression. Using a progressive deletion cloning approach, we have constructed pGL3-P4Halpha(I) recombinant plasmids. We have identified a positive regulatory region at the positions of bp -184 to -97 responsible for approximately 80% of the P4Halpha(I) promoter efficiency. Three E-boxes were located within this region, and the E-box at position bp -135 explains most of the regulatory capacity. Upstream stimulatory factors (USF1/USF2) were shown to bind on the E-box using chromatin immunoprecipitation assay. Suppression of USF1 and/or USF2 using specific short interference RNA resulted in a significant reduction in P4Halpha(I) promoter activity, and overexpressed USF1 or USF2 increased P4Halpha(I) promoter activity significantly. Although transforming growth factor beta1 increased the USF1/USF2-E-box binding and P4Halpha(I) promoter activity, this up-regulatory effect can be largely prevented by USF1/USF2-specific short interference RNA. On the other hand, cigarette smoking extracts, which have been shown to suppress P4Halpha(I) expression, inhibited the binding between the USF1/USF2 and E-box, resulting in a reduced P4Halpha(I) promoter activity. Furthermore, the E-box on the P4Halpha(I) promoter appeared to indiscriminately bind with either USF1 or USF2, with a similar outcome on the promoter efficiency. In conclusion, our study shows that USF1/USF2 plays a critical role in basal P4Halpha(I) expression, and both positive (transforming growth factor beta1) and negative (cigarette smoking extract) regulators appear to influence the USF-E-box interaction and affect P4Halpha(I) expression.
Collapse
Affiliation(s)
- Li Chen
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Ying H. Shen
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Xinwen Wang
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Jing Wang
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Yehua Gan
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Nanyue Chen
- Department of Molecular Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jian Wang
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Scott A. LeMaire
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Joseph S. Coselli
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Xing Li Wang
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
- To whom correspondence should be addressed: NAB 2010, One Baylor Plaza, Baylor College of Medicine, Houston, TX 77030. Tel.: 713-798-5485; Fax: 713-798-1705;
| |
Collapse
|
107
|
Higami Y, Barger JL, Page GP, Allison DB, Smith SR, Prolla TA, Weindruch R. Energy restriction lowers the expression of genes linked to inflammation, the cytoskeleton, the extracellular matrix, and angiogenesis in mouse adipose tissue. J Nutr 2006; 136:343-52. [PMID: 16424110 DOI: 10.1093/jn/136.2.343] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Using high-density oligonucleotide microarrays, we examined the actions of energy restriction (ER) on the expression of >11,000 genes in epididymal white adipose tissue (WAT) of 10- to 11-mo-old male C57Bl6 mice. Four groups were studied: controls not subjected to food restriction (CO), food-restricted 18 h before being killed (FR), short-term ER for 23 d (SER), and long-term ER for 9 mo (LER). As we reported previously, compared with CO mice, FR and SER minimally influenced the gene expression profiles; however, 345 transcripts of 6,266 genes determined to be expressed in WAT were significantly altered by LER. We focus here on the 109 (31%) of these genes that were involved in either inflammation (56 genes), cytoskeleton (16 genes), extracellular matrix (23 genes), or angiogenesis (14 genes). Among these 109 genes, 104 transcripts (95%) were down regulated by LER. Western blotting for heat shock protein 47 and osteonectin, and immunohistochemical staining for hypoxia inducible factor (HIF)-1alpha), supported the microarray data that LER down regulated the expressions of these genes. Additionally, a 75% reduction in adipocyte size with LER reflected the change in the expression of genes involved in cell morphology. Our findings provide evidence that LER suppresses the expression of genes encoding inflammatory molecules in WAT while promoting structural remodeling of the cytoskeleton, extracellular matrix, and vasculature. These alterations may play an important role in the protection against WAT-derived inflammation and in lifespan extension by LER.
Collapse
Affiliation(s)
- Yoshikazu Higami
- Department of Pathology and Gerontology, Nagasaki University Graduate School of Biomedical Science, Nagasaki 852-8523, Japan
| | | | | | | | | | | | | |
Collapse
|
108
|
Davidson TL, Chen H, Di Toro DM, D'Angelo G, Costa M. Soluble nickel inhibits HIF-prolyl-hydroxylases creating persistent hypoxic signaling in A549 cells. Mol Carcinog 2006; 45:479-89. [PMID: 16649251 DOI: 10.1002/mc.20176] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Soluble nickel compounds are carcinogenic to humans although the mechanism by which they cause cancer remains unclear. One major consequence of exposure to nickel is the stabilization of hypoxia inducible factor-1alpha (HIF-1alpha), a protein known to be overexpressed in a variety of cancers. In this study, we report a persistent stabilization of HIF-1alpha by nickel chloride up to 72 h after the removal of nickel from the culture media. In addition, we show that the HIF-prolyl hydroxylases (PHD's) are inhibited when cells are exposed to nickel and that they remain repressed for up to 72 h after nickel is removed. We then show that nickel can inhibit purified HIF-PHD's 2 in vitro, through direct interference with the enzyme. Through theoretical calculations, we also demonstrate that nickel may be able to replace the iron in the active site of this enzyme, providing a plausible mechanism for the persistent inhibition of HIF-PHD's by nickel. The data presented suggest that nickel can interfere with HIF-PHD directly and does not inhibit the enzyme by simply depleting cellular factors, such as iron or ascorbic acid. Understanding the mechanisms by which nickel can inhibit HIF-PHD's and stabilize HIF-1alpha may be important in the treatment of cancer and ischemic diseases.
Collapse
Affiliation(s)
- Todd L Davidson
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | |
Collapse
|
109
|
Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int 2006; 17:319-36. [PMID: 16341622 DOI: 10.1007/s00198-005-2035-9] [Citation(s) in RCA: 599] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 09/15/2005] [Indexed: 01/04/2023]
Abstract
Bone is a complex tissue of which the principal function is to resist mechanical forces and fractures. Bone strength depends not only on the quantity of bone tissue but also on the quality, which is characterized by the geometry and the shape of bones, the microarchitecture of the trabecular bones, the turnover, the mineral, and the collagen. Different determinants of bone quality are interrelated, especially the mineral and collagen, and analysis of their specific roles in bone strength is difficult. This review describes the interactions of type I collagen with the mineral and the contribution of the orientations of the collagen fibers when the bone is submitted to mechanical forces. Different processes of maturation of collagen occur in bone, which can result either from enzymatic or nonenzymatic processes. The enzymatic process involves activation of lysyl oxidase, which leads to the formation of immature and mature crosslinks that stabilize the collagen fibrils. Two type of nonenzymatic process are described in type I collagen: the formation of advanced glycation end products due to the accumulation of reducible sugars in bone tissue, and the process of racemization and isomerization in the telopeptide of the collagen. These modifications of collagen are age-related and may impair the mechanical properties of bone. To illustrate the role of the crosslinking process of collagen in bone strength, clinical disorders associated with bone collagen abnormalities and bone fragility, such as osteogenesis imperfecta and osteoporosis, are described.
Collapse
Affiliation(s)
- S Viguet-Carrin
- INSERM Research Unit 403 and Claude Bernard University, Lyon, France
| | | | | |
Collapse
|
110
|
Cho H, Park H, Yang EG. A fluorescence polarization-based interaction assay for hypoxia-inducible factor prolyl hydroxylases. Biochem Biophys Res Commun 2005; 337:275-80. [PMID: 16182243 DOI: 10.1016/j.bbrc.2005.09.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 09/07/2005] [Indexed: 11/28/2022]
Abstract
Oxygen-dependent ubiquitination and degradation of hypoxia-inducible factor 1alpha (HIF-1alpha) plays a central role in regulating transcriptional responses to hypoxia. This process requires hydroxylation of specific prolines in HIF-1alpha by HIF prolyl hydroxylase domain (PHD)-containing enzymes, leading to its specific interactions with von Hippel-Lindau protein-Elongin B-Elongin C (VBC). Here we describe a straightforward approach to apply these interactions to measure PHD activities. Employing fluorescently labeled HIF-1alpha peptides containing hydroxyproline, we developed a quantitative method based on fluorescence polarization for a systematic evaluation of binding of hydroxylated HIF-1alpha to recombinant VBC. The method was then successfully utilized for measuring the activity of the truncated, purified PHD2. The applicability of the assay was further demonstrated by examining effects of various cofactors and inhibitors for PHD2. The developed homogeneous assay would provide a convenient way of probing the biochemical properties of the HIF-1alpha-VBC interaction and PHDs, and of screening modulators for the interaction as well as the enzyme.
Collapse
Affiliation(s)
- Hyunju Cho
- Life Sciences Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | | | | |
Collapse
|
111
|
Abstract
Hypoxia-inducible factor (HIF) is a master transcriptional regulator of hypoxia-inducible genes and consists of a labile alpha subunit (such as HIF1alpha) and a stable beta subunit (such as HIF1beta or ARNT). In the presence of oxygen, HIFalpha family members are hydroxylated on one of two conserved prolyl residues by members of the egg-laying-defective nine (EGLN) family. Prolyl hydroxylation generates a binding site for a ubiquitin ligase complex containing the von Hippel-Lindau (VHL) tumor suppressor protein, which results in HIFalpha destruction. In addition, the HIFalpha transcriptional activation function is modulated further by asparagine hydroxylation by FIH (factor-inhibiting HIF), which affects recruitment of the coactivators p300 and CBP. These findings provide new mechanistic insights into oxygen sensing by metazoans and are the first examples of protein hydroxylation being used in intracellular signaling. The existence of three human EGLN family members, as well as other putative hydroxylases, raises the possibility that this signal is used in other contexts by other proteins.
Collapse
Affiliation(s)
- William G Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
112
|
Schofield CJ, Ratcliffe PJ. Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun 2005; 338:617-26. [PMID: 16139242 DOI: 10.1016/j.bbrc.2005.08.111] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 08/15/2005] [Indexed: 11/28/2022]
Abstract
Analysis of oxygen sensitive pathways that regulate the hypoxia inducible factor (HIF) transcriptional system has revealed a novel role for oxygenases in signalling hypoxia. The enzymes, which catalyse hydroxylation of specific prolyl and asparaginyl residues in the regulatory HIF-alpha subunits, belong to the superfamily of non-haem Fe(II)-dependent oxygenases that use the citric acid cycle intermediate 2-oxoglutarate (2OG) as a co-substrate. We review biochemical and physiological data that demonstrate a central role for these oxygenases in integrating multiple signals that coordinate cellular responses to hypoxia.
Collapse
Affiliation(s)
- Christopher J Schofield
- Oxford Centre for Molecular Sciences, Department of Chemistry, Mansfield Road, Oxford OX1 3TA, UK
| | | |
Collapse
|
113
|
Hirsilä M, Koivunen P, Xu L, Seeley T, Kivirikko KI, Myllyharju J. Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J 2005; 19:1308-10. [PMID: 15941769 DOI: 10.1096/fj.04-3399fje] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypoxia-inducible transcription factor (HIF) is regulated by two oxygen-dependent events that are catalyzed by the HIF prolyl 4-hydroxylases (HIF-P4Hs) and HIF asparaginyl hydroxylase (FIH). We have purified the three recombinant human HIF-P4Hs to near homogeneity and characterized their catalytic properties and inhibition and those of FIH. The specific activities of the HIF-P4Hs were at least 40-50 mol/mol/min, and they and FIH catalyzed an uncoupled decarboxylation of 2-oxoglutarate in the absence of any peptide substrate. The purified HIF-P4Hs showed considerable activities even without added Fe2+, their apparent Km values for iron being markedly lower than that of FIH. Desferrioxamine and several metals were effective inhibitors of FIH, but surprisingly, ineffective inhibitors of the HIF-P4Hs in vitro, especially of HIF-P4H-2. Desferrioxamine and cobalt were more effective in cultured insect cells synthesizing recombinant HIF-P4H-2, but complete inhibition was not achieved and most of the enzyme was inactivated irreversibly. Cobalt also rapidly inactivated HIF-P4Hs during storage at 4 degrees C. The well-known stabilization of HIF-alpha by cobalt and nickel is thus not due to a simple competitive inhibition of HIF-P4Hs. The effective inhibition of FIH by these metals and zinc probably leads to full transcriptional activity of HIF-alpha even in concentrations that produce no stabilization of HIF-alpha.
Collapse
Affiliation(s)
- Maija Hirsilä
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, Oulu, Finland
| | | | | | | | | | | |
Collapse
|
114
|
Buczek P, Buczek O, Bulaj G. Total chemical synthesis and oxidative folding of delta-conotoxin PVIA containing an N-terminal propeptide. Biopolymers 2005; 80:50-7. [PMID: 15641120 DOI: 10.1002/bip.20211] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Small disulfide-rich peptides are translated as larger precursors typically containing an N-terminal prepro sequence. In this study, we investigated the role of a propeptide in the oxidative folding of an extremely hydrophobic delta-conotoxin, PVIA. delta-Conotoxin PVIA (delta-PVIA) is a 29-amino acid neurotoxin stabilized by three disulfide bridges. Previous folding studies on delta-conotoxins revealed that their poor folding properties resulted from their hydrophobicity. However, low folding yields of delta-PVIA could be improved by the presence of a nonionic detergent, which acted as a chemical chaperone. delta-PVIA provided an attractive model to investigate whether the hydrophilic propeptide region could function as an intramolecular chaperone. A 58-amino acid precursor for delta-PVIA (pro-PVIA), containing the N-terminal propeptide covalently attached to the mature conotoxin, was synthesized using native chemical ligation. Oxidative folding of pro-PVIA resulted in a very low accumulation of the correctly folded form, comparable to that for the mature conotoxin delta-PVIA. Our results are in accord with the relevant data previously observed for alpha- and omega-conotoxins, indicating that conotoxin prepro sequences are so-called class II propeptides, which are not directly involved in the oxidative folding. We hypothesize that these propeptide regions may be important for interactions with protein folding catalysts and sorting receptors during the secretory process.
Collapse
Affiliation(s)
- Pawel Buczek
- Cognetix, Inc., 421 Wakara Way Suite 201, Salt Lake City, Utah 84108, USA
| | | | | |
Collapse
|
115
|
Kersteen EA, Higgin JJ, Raines RT. Production of human prolyl 4-hydroxylase in Escherichia coli. Protein Expr Purif 2005; 38:279-91. [PMID: 15555944 DOI: 10.1016/j.pep.2004.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/07/2004] [Indexed: 11/28/2022]
Abstract
Prolyl 4-hydroxylase (P4H) catalyzes the post-translational hydroxylation of proline residues in collagen strands. The enzyme is an alpha2beta2 tetramer in which the alpha subunits contain the catalytic active sites and the beta subunits (protein disulfide isomerase) maintain the alpha subunits in a soluble and active conformation. Heterologous production of the native alpha2beta2 tetramer is challenging and had not been reported previously in a prokaryotic system. Here, we describe the production of active human P4H tetramer in Escherichia coli from a single bicistronic vector. P4H production requires the relatively oxidizing cytosol of Origami B(DE3) cells. Induction of the wild-type alpha(I) cDNA in these cells leads to the production of a truncated alpha subunit (residues 235-534), which assembles with the beta subunit. This truncated P4H is an active enzyme, but has a high Km value for long substrates. Replacing the Met235 codon with one for leucine removes an alternative start codon and enables production of full-length alpha subunit and assembly of the native alpha2beta2 tetramer in E. coli cells to yield 2 mg of purified P4H per liter of culture (0.2 mg/g of cell paste). We also report a direct, automated assay of proline hydroxylation using high-performance liquid chromatography. We anticipate that these advances will facilitate structure-function analyses of P4H.
Collapse
Affiliation(s)
- Elizabeth A Kersteen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
116
|
Adachi T, Tomita M, Yoshizato K. Synthesis of prolyl 4-hydroxylase alpha subunit and type IV collagen in hemocytic granular cells of silkworm, Bombyx mori: Involvement of type IV collagen in self-defense reaction and metamorphosis. Matrix Biol 2005; 24:136-54. [PMID: 15890264 DOI: 10.1016/j.matbio.2005.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 12/13/2004] [Accepted: 01/24/2005] [Indexed: 11/28/2022]
Abstract
The present study shows that hemocytic granular cells synthesize and secrete type IV collagen (ColIV) in the silkworm Bombyx mori (B. mori) and suggests that these cells play roles in the formation of basement membrane, the encapsulation of foreign bodies, and the metamorphic remodeling of the gut. The full- and partial-length cDNA of B. mori prolyl 4-hydroxylase alpha subunit (BmP4Halpha) and B. mori ColIV (BmColIV) were cloned, respectively. In situ hybridization and immunocytochemistry on larval tissues and cells identified hemocytic granular cells as the cells that express mRNAs and proteins of both BmP4Halpha and BmColIV. Immunohistochemistry and immunocytochemistry demonstrated that BmColIV was present in the basement membrane and in the secretory granules of granular cells, respectively. Granular cells in culture secreted BmColIV without accompanying the degranulation and discharged it from the granules when the cells were degranulated. Nylon threads were inserted into the hemocoel of larvae. Granular cells concentrated around the nylon threads and encapsulated them as a self-defense reaction. BmColIV was found to be a component of the capsules. Furthermore, the present study showed that actively BmColIV-expressing granular cells accumulated around the midgut epithelium and formed BmColIV-rich thick basal lamina-like structures there in larval to pupal metamorphosis.
Collapse
Affiliation(s)
- Takahiro Adachi
- Yoshizato Project, Cooperative Link of Unique Science and Technology for Economy Revitalization, Hiroshima Prefectural Institute of Industrial Science and Technology, 3-10-32, Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | | | | |
Collapse
|
117
|
Abstract
Collagen fibrils in the extracellular matrix allow connective tissues such as tendon, skin and bone to withstand tensile forces. The fibrils are indeterminate in length, insoluble and form elaborate three-dimensional arrays that extend over numerous cell lengths. Studies of the molecular basis of collagen fibrillogenesis have provided insight into the trafficking of procollagen (the precursor of collagen) through the cellular secretory pathway, the conversion of procollagen to collagen by the procollagen metalloproteinases, and the directional deposition of fibrils involving the plasma membrane and late secretory pathway. Fibril-associated molecules are targeted to the surface of collagen fibrils, and these molecules play an important role in regulating the diameter and interactions between the fibrils.
Collapse
Affiliation(s)
- Elizabeth G Canty
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | | |
Collapse
|
118
|
Takeuchi K, Saruwatari L, Nakamura HK, Yang JM, Ogawa T. Enhanced intrinsic biomechanical properties of osteoblastic mineralized tissue on roughened titanium surface. J Biomed Mater Res A 2005; 72:296-305. [PMID: 15654712 DOI: 10.1002/jbm.a.30227] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The biological mechanisms underlying bone-titanium integration and biomechanical properties of the integrated bone are poorly understood. This study assesses intrinsic biomechanical properties of mineralized tissue cultured on titanium having different surface topographies. The osteoblastic phenotypes associated with mineral deposition and collagen synthesis underlying the biomechanical modulation are also reported. Rat bone marrow-derived osteoblastic cells were cultured either on the machined titanium disc or acid-etched titanium disc. Nano-indentation study of day 28 culture revealed that the mineralized tissue on the acid-etched surface shows 3-3.5 times greater hardness than that on the machined surface (p < 0.01). Elastic modulus of the mineralized tissue was also 2.5-3 times greater on the acid-etched surface than on the machined surface (p < 0.01). After 28 days of culture, mineralized nodule area was significantly lower on the acid-etched surface than on the machined surface (p = 0.0105), while total calcium deposition did not differ between the two surfaces, indicating denser mineral deposition on the acid-etched surface. Osteopontin and osteocalcin gene expressions assayed by the reverse transcriptase-polymerase chain reaction were upregulated in the acid-etched titanium culture. Collagen synthesis measured by Sirius red stain-based colorimetry was 1.5-10 times higher on the acid-etched surface than on the machined surface in the initial culture period of day 1 to day 14 (p < 0.0001). The amount of collagen synthesis corresponded with the enhanced gene expression of prolyl 4-hydroxylase, a key enzyme for post-translational modification of collagen chains. Scanning electron microscopic images revealed that tissue cultured on the acid-etched titanium exhibited plate-like, compact surface morphology, while the tissue on the machined titanium appeared porous and was covered by fibrous and punctate structures. We conclude that culturing osteoblasts on rougher titanium surfaces enhances hardness and elastic modulus of the mineralized tissue, associated with condensed mineralization, accelerated collagen synthesis, and upregulated expression of selected bone-related genes.
Collapse
Affiliation(s)
- Kazuo Takeuchi
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
119
|
Abstract
Hypoxia-inducible factor (HIF) is an alpha,beta-heterodimeric transcription factor that mediates cellular responses to low oxygen concentration via the transcriptional activation of specific genes involved in both tumorogenesis and angiogenesis. Manipulation of the HIF pathway has potential use for the treatment of ischemic disease and cancer. Unlike HIF-beta, which is constitutively expressed, the levels and activity of the HIF-alpha subunit are regulated by processes involving posttranslational hydroxylation, catalyzed by Fe(II)- and 2-oxoglutarate-dependent oxygenases. This review focuses on the HIF pathway as a therapeutic target.
Collapse
Affiliation(s)
- Kirsty S Hewitson
- Oxford Centre for Molecular Sciences and the Department of Chemistry, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | | |
Collapse
|
120
|
Nissi R, Böhling T, Autio-Harmainen H. Immunofluorescence localization of prolyl 4-hydroxylase isoenzymes and type I and II collagens in bone tumours: type I enzyme predominates in osteosarcomas and chondrosarcomas, whereas type II enzyme predominates in their benign counterparts. Acta Histochem 2005; 106:111-21. [PMID: 15147632 DOI: 10.1016/j.acthis.2003.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2003] [Revised: 11/24/2003] [Accepted: 12/05/2003] [Indexed: 10/26/2022]
Abstract
Prolyl 4-hydroxylase is the key enzyme of synthesis of collagens. Hydroxylation of a sufficient number of proline residues to hydroxyproline is necessary for the stability of triple helices in collagenous proteins, because non-hydroxylated non-triple-helical collagen polypeptide chains are degraded intracellularly. We studied 15 primary chondrosarcomas and osteosarcomas, 17 benign bone tumours and one case of fibrous dysplasia and chordoma using immunofluorescence staining with antibodies against the alpha(I) and alpha(II) subunits of type I and II prolyl 4-hydroxylases, and with antibodies against collagen types I and II. Type I prolyl 4-hydroxylase was found to be the predominant isoenzyme in both types of bone sarcoma, whereas the type II enzyme was more readily expressed by benign tumours. A feature of collagen staining, that was common to both sarcoma types, was that collagen types I and II were mainly found within cancer cells and were rarely present extracellularly. Extracellular collagen staining was more obvious in benign tumours. The results show that expression of prolyl 4-hydroxylase isoenzymes is altered in bone sarcomas as compared with normal bone tissue. Chondrous cells, which normally express mainly the type II isoenzyme, switch their expression pattern to that of type I. The findings provide evidence that type I is the major isoenzyme in malignant bone tumours, and probably in malignant neoplasms in general. The pattern of enzyme expression is considered to be associated with dedifferentiation of cancer cells.
Collapse
Affiliation(s)
- Ritva Nissi
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, P.O. Box 5000, Oulu FIN 90014, Finland.
| | | | | |
Collapse
|
121
|
Yuasa K, Toyooka K, Fukuda H, Matsuoka K. Membrane-anchored prolyl hydroxylase with an export signal from the endoplasmic reticulum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:81-94. [PMID: 15610351 DOI: 10.1111/j.1365-313x.2004.02279.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We cloned a novel prolyl 4-hydroxylase (PH; EC 1.14.11.2) homolog cDNA from tobacco (Nicotiana tabacum) BY-2 cells based on expression sequence tag information. Like other PHs, this tobacco PH polypeptide has two conserved histidine residues, and it comprises 286 amino acids with a calculated molecular mass of 32 kDa. Interestingly, this protein and homologs in Arabidopsis and rice have predicted transmembrane sequences in their N-terminal regions. This PH homolog was expressed in BY-2 cells as a His-tagged protein, and the expressed protein showed PH activity. Incubation of membranes with high salt, urea, and protease with or without detergents indicated that this protein is an integral membrane protein with a type II configuration. Its membrane-anchored nature is specific for plants because no integral membrane PH has been found in animals. A membrane fractionation study and immunocytochemical studies indicate that this protein localizes in both the endoplasmic reticulum (ER) and Golgi apparatus. Analysis of this protein fused to green fluorescent protein indicated that basic amino acids in the cytoplasmic, N-terminal region of the PH play a role in its export from the ER.
Collapse
Affiliation(s)
- Koji Yuasa
- Plant Science Center, RIKEN (The Institute of Physical and Chemical Research), Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
122
|
Brahimi-Horn C, Mazure N, Pouysségur J. Signalling via the hypoxia-inducible factor-1α requires multiple posttranslational modifications. Cell Signal 2005; 17:1-9. [PMID: 15451019 DOI: 10.1016/j.cellsig.2004.04.010] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 04/24/2004] [Indexed: 11/15/2022]
Abstract
Cellular hypoxia, a local decrease in the oxygen concentration below normal (21%) atmospheric concentrations, occurs in both physiological and pathological situations. The transcriptional complex Hypoxia-Inducible Factor-1 (HIF-1) is the key player in the signalling pathway that controls the hypoxic response of mammalian cells. Tight regulation of this response involves posttranslational modification of the alpha subunit of HIF-1. Hydroxylation, ubiquitination, acetylation, S-nitrosation and phosphorylation have been shown to determine its half-life and/or transcriptional activity. The precise spatio-temporal occurrence of these multiple modifications is still not fully understood but is dependent on the microenvironment and determines the driving force of variable cellular responses.
Collapse
Affiliation(s)
- Christiane Brahimi-Horn
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, Centre A. Lacassagne, 33 Avenue de Valombrose, 06189 Nice, France.
| | | | | |
Collapse
|
123
|
Neubauer A, Neubauer P, Myllyharju J. High-level production of human collagen prolyl 4-hydroxylase in Escherichia coli. Matrix Biol 2004; 24:59-68. [PMID: 15749002 DOI: 10.1016/j.matbio.2004.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 11/23/2004] [Accepted: 11/23/2004] [Indexed: 11/29/2022]
Abstract
The collagen prolyl 4-hydroxylases (C-P4Hs), enzymes residing within the lumen of the endoplasmic reticulum, play a central role in the synthesis of all collagens. The vertebrate enzymes are alpha(2)beta(2) tetramers in which the two catalytic sites are located in the alpha subunits, and protein disulfide isomerase serves as the beta subunit. All attempts to assemble an active C-P4H tetramer from its subunits in in vitro cell-free systems have been unsuccessful, but assembly of a recombinant enzyme has been reported in several cell types by coexpression of the two types of subunit. An active type I C-P4H tetramer was obtained here by periplasmic expression in Escherichia coli strains BL21 and RB791. Further optimization for production by stepwise regulated coexpression of its subunits in the cytoplasm of a thioredoxin reductase and glutathione reductase mutant E. coli strain resulted in large amounts of human type I C-P4H tetramer. The specific activity of the C-P4H tetramer purified from the cytoplasmic expression was within the range of values reported for human type I C-P4H isolated as a nonrecombinant enzyme or produced in the endoplasmic reticulum of insect cells, but the expression level, about 25 mg/l in a fermenter, is about 5-10 times that obtained in insect cells. The enzyme expressed in E. coli differed from those present in vivo and those produced in other hosts in that it lacked the N glycosylation of its alpha subunits, which may be advantageous in crystallization experiments.
Collapse
Affiliation(s)
- Antje Neubauer
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, P. O. Box 5000, University of Oulu, FIN-90014 Oulu, Finland
| | | | | |
Collapse
|
124
|
Li D, Hirsilä M, Koivunen P, Brenner MC, Xu L, Yang C, Kivirikko KI, Myllyharju J. Many Amino Acid Substitutions in a Hypoxia-inducible Transcription Factor (HIF)-1α-like Peptide Cause Only Minor Changes in Its Hydroxylation by the HIF Prolyl 4-Hydroxylases. J Biol Chem 2004; 279:55051-9. [PMID: 15485863 DOI: 10.1074/jbc.m410287200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Three human prolyl 4-hydroxylases (P4Hs) regulate the hypoxia-inducible transcription factors (HIFs) by hydroxylating a Leu-Xaa-Xaa-Leu-Ala-Pro motif. We report here that the two leucines in the Leu-Glu-Met-Leu-Ala-Pro core motif of a 20-residue peptide corresponding to the sequence around Pro(564) in HIF-1alpha can be replaced by many residues with no or only a modest decrease in its substrate properties or in some cases even a slight increase. The glutamate and methionine could be substituted by almost any residue, eight amino acids in the former position and four in the latter being even better for HIF-P4H-3 than the wild-type residues. Alanine was by far the strictest requirement, because no residue could fully substitute for it in the case of HIF-P4H-1, and only serine or isoleucine, valine, and serine did this in the cases of HIF-P4Hs 2 and 3. Peptides with more than one substitution, having the core sequences Trp-Glu-Met-Val-Ala-Pro, Tyr-Glu-Met-Ile-Ala-Pro, Ile-Glu-Met-Ile-Ala-Pro, Trp-Glu-Met-Val-Ser-Pro, and Trp-Glu-Ala-Val-Ser-Pro were in most cases equally as good or almost as good substrates as the wild-type peptide. The acidic residues present in the 20-residue peptide also played a distinct role, but alanine substitution for any six of them, and in some combinations even three of them, had no negative effects. Substitution of the proline by 3,4-dehydroproline or l-azetidine-2-carboxylic acid, but not any other residue, led to a high rate of uncoupled 2-oxoglutarate decarboxylation with no hydroxylation. The data obtained for the three HIF-P4Hs in various experiments were in most cases similar, but in some cases HIF-P4H-3 showed distinctly different properties.
Collapse
Affiliation(s)
- Dongxia Li
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, FIN-90014, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Kamino H, Hiratsuka M, Toda T, Nishigaki R, Osaki M, Ito H, Inoue T, Oshimura M. Searching for genes involved in arteriosclerosis: proteomic analysis of cultured human umbilical vein endothelial cells undergoing replicative senescence. Cell Struct Funct 2004; 28:495-503. [PMID: 15004419 DOI: 10.1247/csf.28.495] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
It is known that replicative senescence of endothelium in vivo contributes at least partially to age-related vascular disorders such as arteriosclerosis. However, the genes involved in this process remain to be identified. In this study, we employed a proteomics-based approach to identify candidate genes using in vitro cultured human umbilical vein endothelial cells (HUVECs) as an experimental model for replicative senescence. By comparing protein spots from young and senescent HUVECs using two-dimensional electrophoresis, we identified three up-regulated proteins and five down-regulated proteins in senescent HUVECs as compared to young HUVECs, whose alteration was not observed during replicative senescence of primary human fibroblasts. Consistent results were obtained in Western blotting analysis using specific antibodies raised against some of these proteins, whereas there were no significant changes in the mRNA levels of these genes during senescence of HUVECs. Among them, cathepsin B, a protease participating in both intracellular proteolysis and extracellular matrix remodeling was observed to be dramatically up-regulated in senescent HUVECs and whose activity is known to be up-regulated in atherosclerotic lesions with senescence-associated phenotypes in vivo. Additional proteins, including cytoskeletal proteins and proteins involved in the processes of synthesis, turnover and modification of protein, were identified, whose function in endothelium was previously unsuspected. These proteins identified by a proteomics-based approach using cultured HUVECs may be involved not only in replicative senescence but also in functional alterations in vascular endothelial cells with senescence-associated phenotypes and may serve as molecular markers for these processes.
Collapse
Affiliation(s)
- Hiroki Kamino
- Department of Molecular and Cell Genetics, Graduate School of Medical Science, Tottori University, Tottori, Japan
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Raveendran M, Senthil D, Utama B, Shen Y, Dudley D, Wang J, Zhang Y, Wang XL. Cigarette suppresses the expression of P4Halpha and vascular collagen production. Biochem Biophys Res Commun 2004; 323:592-8. [PMID: 15369792 DOI: 10.1016/j.bbrc.2004.08.129] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Collagen plays a major role in arterial wall remodeling, aneurysm formation, and atherosclerotic cap stability. Smokers often have weakened arterial walls associating with aneurysm and thinned atherosclerotic plaque caps leading to rupture and acute coronary syndromes. We hypothesize that these detrimental effects on arterial wall by tobacco are partially mediated by disturbed collagen metabolism. METHODS AND RESULTS We first investigated the effect of cigarette smoke extracts (CSE) on prolyl-4-hydroxylase (P4H) expression and collagen production in human aortic endothelial cells (HAECs) and human coronary artery smooth muscle cells (HCSMCs). After exposure to 0.01-U CSE for 24 h, expression of P4Halpha-a rate limiting subunit of P4H enzyme responsible for the formation of 4-hydroxyproline in mature functional collagen, was significantly down-regulated according to Western blotting and quantitative RT-PCR (HAEC p < 0.01 and HCSMC p < 0.001) when treated by CSE. The decreased P4Halpha expression was corresponded with reduced cellular collagen levels (HAEC p < 0.001 and HCSMC p < 0.001). We also found that one of the cigarette components benzo(a)pyrene exerted similar effect as CSE, but not nicotine or acrolein. We further examined P4H expression in a few human atherosclerotic abdominal aortas. These in vivo data demonstrated that smokers had thinner atherosclerotic cap thickness and lower levels of P4Halpha and collagen. CONCLUSIONS Our study suggests that cigarette may interfere with one of the key enzymes in arterial wall collagen metabolism, which may be responsible for thin fibrous cap in atherosclerotic lesion, impaired arterial wall extensibility, and increased likelihood of aneurysm in smokers.
Collapse
Affiliation(s)
- Muthuswamy Raveendran
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Pekkala M, Hieta R, Bergmann U, Kivirikko KI, Wierenga RK, Myllyharju J. The peptide-substrate-binding domain of collagen prolyl 4-hydroxylases is a tetratricopeptide repeat domain with functional aromatic residues. J Biol Chem 2004; 279:52255-61. [PMID: 15456751 DOI: 10.1074/jbc.m410007200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen prolyl 4-hydroxylases catalyze the formation of 4-hydroxyproline in -X-Pro-Gly-sequences and have an essential role in collagen synthesis. The vertebrate enzymes are alpha2beta2 tetramers in which the catalytic alpha-subunits contain separate peptide-substrate-binding and catalytic domains. We report on the crystal structure of the peptide-substrate-binding domain of the human type I enzyme refined at 2.3 A resolution. It was found to belong to a family of tetratricopeptide repeat domains that are involved in many protein-protein interactions and consist of five alpha-helices forming two tetratricopeptide repeat motifs plus the solvating helix. A prominent feature of its concave surface is a deep groove lined by tyrosines, a putative binding site for proline-rich Tripeptides. Solvent-exposed side chains of three of the tyrosines have a repeat distance similar to that of a poly-L-proline type II helix. The aromatic surface ends at one of the tyrosines, where the groove curves almost 90 degrees away from the linear arrangement of the three tyrosine side chains, possibly inducing a bent conformation in the bound peptide. This finding is consistent with previous suggestions by others that a minimal structural requirement for proline 4-hydroxylation may be a sequence in the poly-L-proline type II conformation followed by a beta-turn in the Pro-Gly segment. Site-directed mutagenesis indicated that none of the tyrosines was critical for tetramer assembly, whereas most of them were critical for the binding of a peptide substrate and inhibitor both to the domain and the alpha2beta2 enzyme tetramer.
Collapse
Affiliation(s)
- Mira Pekkala
- Department of Biochemistry and Biocenter Oulu and Collagen Research Unit, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | | | | | |
Collapse
|
128
|
Kunisch E, Fuhrmann R, Roth A, Winter R, Lungershausen W, Kinne RW. Macrophage specificity of three anti-CD68 monoclonal antibodies (KP1, EBM11, and PGM1) widely used for immunohistochemistry and flow cytometry. Ann Rheum Dis 2004; 63:774-84. [PMID: 15194571 PMCID: PMC1755048 DOI: 10.1136/ard.2003.013029] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To investigate the specificity of three anti-CD68 monoclonal antibodies (mAbs) for macrophages (Mphi) in immunohistochemistry (IHC) and flow cytometry (FACS). METHODS IHC was performed on cryostat sections of rheumatoid arthritis (RA) and osteoarthritis (OA) synovial membranes using the anti-CD68 mAbs KP1, EBM11, and PGM1, and the fibroblast (FB) markers CD90 and prolyl 4-hydroxylase. Expression of CD68 was also analysed by FACS on the monocytic cell lines THP-1 and U937, as well as on synovial fibroblasts (SFB), skin FB, and gingival FB (both surface and intracellular staining). RESULTS In IHC, there was an overlap between CD68 (mAbs KP1 and EBM11) and the FB markers CD90/prolyl 4-hydroxylase in the lining layer, diffuse infiltrates, and stroma of RA and OA synovial membranes. In FACS analysis of THP-1 and U937 cells, the percentage of cells positive for the anti-CD68 mAbs KP1 and EBM11 progressively increased from surface staining of unfixed cells, to surface staining of pre-fixed cells, to intracellular staining of the cells. Upon intracellular FACS of different FB, nearly all cells were positive for KP1 and EBM11, but only a small percentage for PGM1. In surface staining FACS, a small percentage of FB were positive for all three anti-CD68 mAbs. CONCLUSION An overlap between CD68 (mAbs KP1 or EBM11) and the FB markers CD90 or prolyl 4-hydroxylase may prevent unequivocal identification of Mphi in synovial tissue by IHC or in monocytic cells and FB upon intracellular FACS. This may be due to sharing of common markers by completely different cell lineages.
Collapse
Affiliation(s)
- E Kunisch
- Experimental Rheumatology Unit, Friedrich Schiller University Jena, Hans-Knoll-Str 2, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
129
|
Chanut-Delalande H, Bonod-Bidaud C, Cogne S, Malbouyres M, Ramirez F, Fichard A, Ruggiero F. Development of a functional skin matrix requires deposition of collagen V heterotrimers. Mol Cell Biol 2004; 24:6049-57. [PMID: 15199158 PMCID: PMC480903 DOI: 10.1128/mcb.24.13.6049-6057.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Collagen V is a minor component of the heterotypic I/III/V collagen fibrils and the defective product in most cases of classical Ehlers Danlos syndrome (EDS). The present study was undertaken to elucidate the impact of collagen V mutations on skin development, the most severely affected EDS tissues, using mice harboring a targeted deletion of the alpha2(V) collagen gene (Col5a2). Contrary to the original report, our studies indicate that the Col5a2 deletion (a.k.a. the pN allele) represents a functionally null mutation that affects matrix assembly through a complex sequence of events. First the mutation impairs assembly and/or secretion of the alpha1(V)(2)alpha2(V) heterotrimer with the result that the alpha1(V) homotrimer is the predominant species deposited into the matrix. Second, the alpha1(V) homotrimer is excluded from incorporation into the heterotypic collagen fibrils and this in turn severely impairs matrix organization. Third, the mutant matrix stimulates a compensatory loop by the alpha1(V) collagen gene that leads to additional deposition of alpha1(V) homotrimers. These data therefore underscore the importance of the collagen V heterotrimer in dermal fibrillogenesis. Furthermore, reduced thickness of the basement membranes underlying the epidermis and increased apoptosis of the stromal fibroblasts in pN/pN skin strongly indicate additional roles of collagen V in the development of a functional skin matrix.
Collapse
Affiliation(s)
- Hélène Chanut-Delalande
- Institut de Biologie et Chimie des Proteines, UMR CNRS 5086, IFR128 BioSciences Lyon-Gerland, France
| | | | | | | | | | | | | |
Collapse
|
130
|
Mizuno K, Hayashi T, Peyton DH, Bächinger HP. Hydroxylation-induced stabilization of the collagen triple helix. Acetyl-(glycyl-4(R)-hydroxyprolyl-4(R)-hydroxyprolyl)(10)-NH(2) forms a highly stable triple helix. J Biol Chem 2004; 279:38072-8. [PMID: 15231845 DOI: 10.1074/jbc.m402953200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The collagen triple helix is one of the most abundant protein motifs in animals. The structural motif of collagen is the triple helix formed by the repeated sequence of -Gly-Xaa-Yaa-. Previous reports showed that H-(Pro-4(R)Hyp-Gly)(10)-OH (where '4(R)Hyp' is (2S,4R)-4-hydroxyproline) forms a trimeric structure, whereas H-(4(R)Hyp-Pro-Gly)(10)-OH does not form a triple helix. Compared with H-(Pro-Pro-Gly)(10)-OH, the melting temperature of H-(Pro-4(R)Hyp-Gly)(10)-OH is higher, suggesting that 4(R)Hyp in the Yaa position has a stabilizing effect. The inability of triple helix formation of H-(4(R)Hyp-Pro-Gly)(10)-OH has been explained by a stereoelectronic effect, but the details are unknown. In this study, we synthesized a peptide that contains 4(R)Hyp in both the Xaa and the Yaa positions, that is, Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) and compared it to Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2), and Ac-(Gly-4(R)Hyp-Pro)(10)-NH(2). Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) showed a polyproline II-like circular dichroic spectrum in water. The thermal transition temperatures measured by circular dichroism and differential scanning calorimetry were slightly higher than the values measured for Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2) under the same conditions. For Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), the calorimetric and the van't Hoff transition enthalpy DeltaH were significantly smaller than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). We postulate that the denatured states of the two peptides are significantly different, with Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) forming a more polyproline II-like structure instead of a random coil. Two-dimensional nuclear Overhauser effect spectroscopy suggests that the triple helical structure of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) is more flexible than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). This is confirmed by the kinetics of amide (1)H exchange with solvent deuterium of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), which is faster than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). The higher transition temperature of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), can be explained by the higher trans/cis ratio of the Gly-4(R)Hyp peptide bonds than that of the Gly-Pro bonds, and this ratio compensates for the weaker interchain hydrogen bonds.
Collapse
Affiliation(s)
- Kazunori Mizuno
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, and Shriners Hospital for Children, Research Department, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
131
|
Wystub S, Ebner B, Fuchs C, Weich B, Burmester T, Hankeln T. Interspecies comparison of neuroglobin, cytoglobin and myoglobin: Sequence evolution and candidate regulatory elements. Cytogenet Genome Res 2004; 105:65-78. [PMID: 15218260 DOI: 10.1159/000078011] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 12/08/2003] [Indexed: 11/19/2022] Open
Abstract
Neuroglobin and cytoglobin are two novel members of the vertebrate globin family. Their physiological role is poorly understood, although both proteins bind oxygen reversibly and may be involved in cellular oxygen homeostasis. Here we investigate the selective constraints on coding and non-coding sequences of the neuroglobin and cytoglobin genes in human, mouse, rat and fish. Neuroglobin and cytoglobin are highly conserved, displaying very low levels of non-synonymous nucleotide substitutions. An oxygen supply function predicts distinct modes of gene regulation, involving hypoxia-responsive transcription factors. To detect conserved candidate regulatory elements, we compared the neuroglobin and cytoglobin genes in mammals and fish. The myoglobin gene was included to test if it also contains hypoxia-responsive regulatory elements. Long conserved non-coding sequences, indicative of gene-regulatory elements, were found in the cytoglobin and myoglobin, but not in the neuroglobin gene. Sequence comparison and experimental data allowed us to delimit upstream regions of the neuroglobin and cytoglobin genes that contain the putative promoters, defining candidate regulatory regions for functional tests. The neuroglobin and the myoglobin genes both lack conserved hypoxia-responsive elements (HREs) for transcriptional activation, but contain conserved hypoxia-inducible mRNA stabilization signals in their 3' untranslated regions. The cytoglobin gene, in contrast, harbors both conserved HREs and mRNA stabilization sites, strongly suggestive of an oxygen-dependent regulation.
Collapse
Affiliation(s)
- S Wystub
- Institute of Molecular Genetics and Institute of Zoology, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
132
|
Abstract
Stroke is the third leading cause of death and the leading cause of long-term disability in the United States. Approximately 80% of all strokes are ischemic and there are limited therapies approved for the treatment of acute ischemic stroke. Understanding the mechanisms of ischemic brain damage is necessary for the development of innovative treatment strategies. In this review, we discuss the hemodynamic and molecular mechanisms of ischemic brain damage and the potential therapeutic strategies, including reperfusion and primary and secondary neuroprotection, and strategies for recovery of function, such as neural plasticity and stem cell transplantation. The effective treatment of ischemic stroke is likely to result from a combination of therapeutic modalities aimed at different mechanisms of ischemic brain damage and delivered at specific times after acute cerebral ischemia.
Collapse
Affiliation(s)
- Vallabh Janardhan
- Cerebrovascular Program, Department of Neurology and Neurosciences, University of Medicine and Dentistry of New Jersey, H 506, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | |
Collapse
|
133
|
Affiliation(s)
- Christopher J Schofield
- The Oxford Centre for Molecular Sciences and The Dyson Perrins Laboratory, Department of Chemistry, South Parks Road, Oxford OX1 3QY, UK
| | | |
Collapse
|
134
|
Vranka JA, Sakai LY, Bächinger HP. Prolyl 3-Hydroxylase 1, Enzyme Characterization and Identification of a Novel Family of Enzymes. J Biol Chem 2004; 279:23615-21. [PMID: 15044469 DOI: 10.1074/jbc.m312807200] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The collagen prolyl hydroxylases are enzymes that are required for proper collagen biosynthesis, folding, and assembly. They reside within the endoplasmic reticulum and belong to the group of 2-oxoglutarate and iron-dependent dioxygenases. Although prolyl 4-hydroxylase has been characterized as an alpha2beta2 tetramer in which protein disulfide isomerase is the beta subunit with two different alpha subunit isoforms, little is known about the enzyme prolyl 3-hydroxylase (P3H). It was initially characterized and shown to have an enzymatic activity distinct from that of prolyl 4-hydroxylase, but no amino acid sequences or genes were ever reported for the mammalian enzyme. Here we report the characterization of a novel prolyl 3-hydroxylase enzyme isolated from embryonic chicks. The primary structure of the enzyme, which we now call P3H1, demonstrates that P3H1 is a member of a family of prolyl 3-hydroxylases, which share the conserved residues present in the active site of prolyl 4-hydroxylase and lysyl hydroxylase. P3H1 is the chick homologue of mammalian leprecan or growth suppressor 1. Two other P3H family members are the genes previously called MLAT4 and GRCB. In this study we demonstrate prolyl 3-hydroxylase activity of the purified enzyme P3H1 on a full-length procollagen substrate. We also show it to specifically interact with denatured collagen and to exist in a tight complex with other endoplasmic reticulum-resident proteins. Immunohistochemistry with a monoclonal antibody specific for chick P3H1 localizes P3H1 specifically to tissues that express fibrillar collagens, suggesting that other P3H family members may be responsible for modifying basement membrane collagens.
Collapse
Affiliation(s)
- Janice A Vranka
- Research Department, Shriners Hospital for Children, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
135
|
Silvennoinen L, Myllyharju J, Ruoppolo M, Orrù S, Caterino M, Kivirikko KI, Koivunen P. Identification and Characterization of Structural Domains of Human ERp57. J Biol Chem 2004; 279:13607-15. [PMID: 14732712 DOI: 10.1074/jbc.m313054200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amino acid sequence of ERp57, which functions in the endoplasmic reticulum together with the lectins calreticulin and calnexin to achieve folding of newly synthesized glycoproteins, is highly similar to that of protein disulfide isomerase (PDI), but they have their own distinct roles in protein folding. We have characterized the domain structure of ERp57 by limited proteolysis and N-terminal sequencing and have found it to be similar but not identical to that of PDI. ERp57 had three major protease-sensitive regions, the first of which was located between residues 120 and 150, the second between 201 and 215, and the third between 313 and 341, the data thus being consistent with a four-domain structure abb'a'. Recombinant expression in Escherichia coli was used to verify the domain boundaries. Each single domain and a b'a' double domain could be produced in the form of soluble, folded polypeptides, as verified by circular dichroism spectra and urea gradient gel electrophoresis. When the ability of ERp57 and its a and a' domains to fold denatured RNase A was studied by electrospray mass analyses, ERp57 markedly enhanced the folding rate at early time points, although less effectively than PDI, but was an ineffective catalyst of the overall process. The a and a' domains produced only minor, if any, increases in the folding rate at the early stages and no increase at the late stages. Interaction of the soluble ERp57 domains with the P domain of calreticulin was studied by chemical cross-linking in vitro. None of the single ERp57 domains nor the b'a' double domain could be cross-linked to the P domain, whereas cross-linking was obtained with a hybrid ERpabb'PDIa'c polypeptide but not with ERpabPDIb'a'c, indicating that multiple domains are involved in this protein-protein interaction and that the b' domain of ERp57 cannot be replaced by that of PDI.
Collapse
Affiliation(s)
- Laura Silvennoinen
- Department of Medical Biochemistry and Molecular Biology, University of Oulu, PO Box 5000, FIN-90014 Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
136
|
Kukkola L, Koivunen P, Pakkanen O, Page AP, Myllyharju J. Collagen Prolyl 4-Hydroxylase Tetramers and Dimers Show Identical Decreases in K Values for Peptide Substrates with Increasing Chain Length. J Biol Chem 2004; 279:18656-61. [PMID: 14985345 DOI: 10.1074/jbc.m401514200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The collagen prolyl 4-hydroxylases (collagen P4Hs, EC 1.14.11.2) play a key role in the synthesis of the extracellular matrix. The vertebrate enzymes are alpha(2)beta(2) tetramers, the beta subunit being identical to protein disulfide isomerase (PDI). The main Caenorhabditis elegans collagen P4H form is an unusual PHY-1/PHY-2/(PDI)(2) mixed tetramer consisting of two types of catalytic alpha subunit, but the PHY-1 and PHY-2 polypeptides also form active PHY/PDI dimers. The lengths of peptide substrates have a major effect on their interaction with the P4H tetramers, the K(m) values decreasing markedly with increasing chain length. This phenomenon has been explained in terms of processive binding of the two catalytic subunits to long peptides. We determined here the K(m) values of a collagen P4H having two catalytic sites, the C. elegans mixed tetramer, and a form having only one such site, the PHY-1/PDI dimer, for peptides of varying lengths. All the K(m) values of the PHY-1/PDI dimer were found to be about 1.5-2.5 times those of the tetramer, but increasing peptide length led to identical decreases in the values of both enzyme forms. The K(m) for a nonhydroxylated collagen fragment with 33 -X-Y-Gly-triplets but only 11 -X-Pro-Gly-triplets was found to correspond to the number of the former rather than the latter. To study the individual roles of the two catalytic sites in a tetramer, we produced mutant PHY-1/PHY-2/(PDI)(2) tetramers in which binding of the Fe(2+) ion or 2-oxoglutarate to one of the two catalytic sites was prevented. The activities of the mutant tetramers decreased to markedly less than 50% of that of the wild type, being about 5-10% and 20-30% with the enzymes having one of the two Fe(2+)-binding sites or 2-oxoglutarate-binding sites inactivated, respectively, while the K(m) values for these cosubstrates or peptide substrates were not affected. Our data thus indicate that although collagen P4Hs do not act on peptide substrates by a processive mechanism, prevention of hydroxylation at one of the two catalytic sites in the tetramer impairs the function of the other catalytic site.
Collapse
Affiliation(s)
- Liisa Kukkola
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | | | |
Collapse
|
137
|
Koivunen P, Hirsilä M, Günzler V, Kivirikko KI, Myllyharju J. Catalytic Properties of the Asparaginyl Hydroxylase (FIH) in the Oxygen Sensing Pathway Are Distinct from Those of Its Prolyl 4-Hydroxylases. J Biol Chem 2004; 279:9899-904. [PMID: 14701857 DOI: 10.1074/jbc.m312254200] [Citation(s) in RCA: 327] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of hypoxia-inducible transcription factor HIF, an alphabeta heterodimer that has an essential role in adaptation to low oxygen availability, is regulated by two oxygen-dependent hydroxylation events. Hydroxylation of specific proline residues by HIF prolyl 4-hydroxylases targets the HIF-alpha subunit for proteasomal destruction, whereas hydroxylation of an asparagine in the C-terminal transactivation domain prevents its interaction with the transcriptional coactivator p300. The HIF asparaginyl hydroxylase is identical to a previously known factor inhibiting HIF (FIH). We report here that recombinant FIH has unique catalytic and inhibitory properties when compared with those of the HIF prolyl 4-hydroxylases. FIH was found to require particularly long peptide substrates so that omission of only a few residues from the N or C terminus of a 35-residue HIF-1alpha sequence markedly reduced its substrate activity. Hydroxylation of two HIF-2alpha peptides was far less efficient than that of the corresponding HIF-1alpha peptides. The K(m) of FIH for O(2) was about 40% of its atmospheric concentration, being about one-third of those of the HIF prolyl 4-hydroxylases but 2.5 times that of the type I collagen prolyl 4-hydroxylase. Several 2-oxoglutarate analogs were found to inhibit FIH but with distinctly different potencies from the HIF prolyl 4-hydroxylases. For example, the two most potent HIF prolyl 4-hydroxylase inhibitors among the compounds studied were the least effective ones for FIH. It should therefore be possible to develop specific small molecule inhibitors for the two enzyme classes involved in the hypoxia response.
Collapse
Affiliation(s)
- Peppi Koivunen
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, Finland
| | | | | | | | | |
Collapse
|
138
|
Mizuno K, Hayashi T, Peyton DH, Bachinger HP. The Peptides Acetyl-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 and Acetyl-(Gly-Pro-3(S)Hyp)10-NH2 Do Not Form a Collagen Triple Helix. J Biol Chem 2004; 279:282-7. [PMID: 14576161 DOI: 10.1074/jbc.m308181200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydroxylation of proline residues in the Yaa position of the Gly-Xaa-Yaa repeated sequence to 4(R)-hydroxyproline is essential for the formation of the collagen triple helix. A small number of 3(S)-hydroxyproline residues are present in most collagens in the Xaa position. Neither the structural nor a biological role is known for 3(S)-hydroxyproline. To characterize the structural role of 3(S)-hydroxyproline, the peptide Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 was synthesized and analyzed by circular dichroism spectroscopy, analytical ultracentrifugation, and 1H nuclear magnetic resonance spectroscopy. At 4 degrees C in water the circular dichroism spectrum indicates that this peptide was in a polyproline-II-like secondary structure with a positive peak at 225 nm similar to Ac-(Gly-Pro-4(R)Hyp)10-NH2. The positive peak at 225 nm almost linearly decreases with increasing temperature to 95 degrees C without an obvious transition. Although the peptide Ac-(Gly-Pro-4(R)Hyp)10-NH2 forms a trimer at 10 degrees C, sedimentation equilibrium experiments indicate that Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 is a monomer in water at 7 degrees C. To study the role of 3(S)-hydroxyproline in the Yaa position, we synthesized Ac-(Gly-Pro-3(S)Hyp)10-NH2. This peptide also does not form a triple helix in water. 1H Nuclear magnetic resonance spectroscopy data (including line widths and nuclear Overhauser effects) are entirely consistent, with neither Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 nor Ac-(Gly-Pro-3(S)Hyp)10-NH2 forming a triple helix in water. Therefore 3(S)-hydroxyproline destabilizes the collagen triple helix in either position. In contrast, when 3(S)-hydroxyproline is inserted as a guest in the highly stable -Gly-Pro-4(R)Hyperepeated host sequence, Ac-(Gly-Pro-4(R)Hyp)3-Gly-3(S)Hyp-4(R)Hyp-(Gly-Pro-4(R)Hyp)4-Gly-Gly-NH2 forms as stable a trimer (Tm=49.6 degrees C) as Ac-(Gly-Pro-4(R)Hyp)8-Gly-Gly-NH2 (Tm=48.9 degrees C). Given that Ac-(Gly-Pro-4(R)Hyp)3-Gly-4(R)Hyp-Pro-(Gly-Pro-4(R)Hyp)4-Gly-Gly-NH2 forms a triple helix nearly as stable as the above two peptides (Tm=45.0 degrees C) and the knowledge that Ac-(Gly-4(R)Hyp-Pro)10-NH2 does not form a triple helix, we conclude that the host environment dominates the structure of host-guest peptides and that these peptides are not necessarily accurate predictors of triple helical stability.
Collapse
Affiliation(s)
- Kazunori Mizuno
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, and Shriners Hospital for Children, Research Department, Portland, Oregon 97239
| | | | | | | |
Collapse
|
139
|
Page AP, Winter AD. Enzymes involved in the biogenesis of the nematode cuticle. ADVANCES IN PARASITOLOGY 2003; 53:85-148. [PMID: 14587697 DOI: 10.1016/s0065-308x(03)53003-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nematodes include species that are significant parasites of man, his domestic animals and crops, and cause chronic debilitating diseases in the developing world; such as lymphatic filariasis and river blindness caused by filarial species. Around one third of the World's population harbour parasitic nematodes; no vaccines exist for prevention of infection, limited effective drugs are available and drug resistance is an ever-increasing problem. A critical structure of the nematode is the protective cuticle, a collagen-rich extracellular matrix (ECM) that forms the exoskeleton, and is critical for viability. This resilient structure is synthesized sequentially five times during nematode development and offers protection from the environment, including the hosts' immune response. The detailed characterization of this complex structure; it's components, and the means by which they are synthesized, modified, processed and assembled will identify targets that may be exploited in the future control of parasitic nematodes. This review will focus on the nematode cuticle. This structure is predominantly composed of collagens, a class of proteins that are modified by a range of co- and post-translational modifications prior to assembly into higher order complexes or ECMs. The collagens and their associated enzymes have been comprehensively characterized in vertebrate systems and some of these studies will be addressed in this review. Conversely, the biosynthesis of this class of essential structural proteins has not been studied in such detail in the nematodes. As with all morphogenetic, functional and developmental studies in the Nematoda phylum, the free-living species Caenorhabditis elegans has proven to be invaluable in the characterization of the cuticle and the cuticle collagen gene family, and is now proving to be an excellent model in the study of cuticle collagen biosynthetic enzymes. This model system will be the main focus of this review.
Collapse
Affiliation(s)
- Antony P Page
- Wellcome Centre for Molecular Parasitology, The Anderson College, The University of Glasgow, Glasgow G11 6NU, UK
| | | |
Collapse
|
140
|
Schmidt M, Gerlach F, Avivi A, Laufs T, Wystub S, Simpson JC, Nevo E, Saaler-Reinhardt S, Reuss S, Hankeln T, Burmester T. Cytoglobin is a respiratory protein in connective tissue and neurons, which is up-regulated by hypoxia. J Biol Chem 2003; 279:8063-9. [PMID: 14660570 DOI: 10.1074/jbc.m310540200] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoglobin is a recently discovered vertebrate globin distantly related to myoglobin, and its function is unknown. Here we present the first detailed analysis of the distribution and expression of cytoglobin. Northern and Western blotting experiments show the presence of cytoglobin mRNA and protein in a broad range of tissues. Quantitative PCR demonstrates an up-regulation of cytoglobin mRNA levels in rat heart and liver under hypoxic conditions (22 and 44 h of 9% oxygen). Immunofluorescence studies with three antibodies directed against different epitopes of the protein consistently show cytoglobin in connective tissue fibroblasts as well as in hepatic stellate cells. Cytoglobin is also present in chondroblasts and osteoblasts and shows a decreased level of expression upon differentiation to chondrocytes and osteocytes. Cytoglobin is located in the cytoplasm of these cell types. Evidence against an exclusively nuclear localization of cytoglobin, as recently proposed, is also provided by transfection assays with green fluorescent protein fusion constructs, which demonstrates the absence of an active nuclear import. The differential expression of cytoglobin argues against a general respiratory function of this molecule, but rather indicates a connective tissue-specific function. We hypothesize that cytoglobin may be involved in collagen synthesis. Cytoglobin expression was also observed in some neuronal subpopulations of the central and the peripheral nervous systems. Surprisingly, cytoglobin is localized in both the cytoplasm and nucleus of neurons, indicating a possible additional role of this protein in neuronal tissues.
Collapse
Affiliation(s)
- Marc Schmidt
- Institute of Zoology, Johannes Gutenberg-University, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Davidson T, Salnikow K, Costa M. Hypoxia Inducible Factor-1α-Independent Suppression of Aryl Hydrocarbon Receptor-Regulated Genes by Nickel. Mol Pharmacol 2003; 64:1485-93. [PMID: 14645679 DOI: 10.1124/mol.64.6.1485] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR)-dependent enzymes are involved in the biotransformation of harmful xenobiotics into more easily excretable metabolites. Cross-talk between the AhR pathway and the hypoxia inducible factor-1alpha (HIF-1alpha) pathway has been demonstrated previously, although the mechanism remains unclear and quite controversial. Because nickel is known to mimic hypoxia, we investigated the effects of short-term nickel exposure on AhR-dependent gene expression. Gene-chip analysis identified several AhR-dependent genes that are suppressed by exposure to nickel. Using Northern blots, we then confirmed that nickel can down-regulate both the basal and benzo[a]pyrene-inducible expression of AhR-dependent genes in mouse and human cell lines. Using a HIF-1alpha knockout cell line and 3-[2-[4-(bis-(4-fluorophenyl) methylene]-1-piperidinyl)ethyl]-2,3-dihydro-2-thioxo-4(1H)quinazolinone (R59949), which blocks HIF-1alpha protein accumulation, we show HIF-1alpha-independent suppression of AhR-dependent genes by nickel. Desferrioxamine and hypoxia were also able to suppress the basal and inducible expression levels of AhR-regulated genes. Finally, dimethyloxalylglycine, an inhibitor of Fe(II)- and 2-oxoglutarate-dependent dioxygenases also inhibited AhR-dependent expression in a HIF-1alpha-independent manner. Our data suggest that an Fe(II)-, oxoglutarate-, and oxygen-dependent enzyme may directly or indirectly be involved in the regulation of AhR-dependent transcriptional activity by nickel and other hypoxia-mimicking agents.
Collapse
Affiliation(s)
- Todd Davidson
- Nelson Institute of Environmental Medicine, New York University School of Medicine, NewYork, USA.
| | | | | |
Collapse
|
142
|
Kukkola L, Hieta R, Kivirikko KI, Myllyharju J. Identification and characterization of a third human, rat, and mouse collagen prolyl 4-hydroxylase isoenzyme. J Biol Chem 2003; 278:47685-93. [PMID: 14500733 DOI: 10.1074/jbc.m306806200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen prolyl 4-hydroxylases (C-P4Hs) catalyze the formation of 4-hydroxyproline by the hydroxylation of -X-Pro-Gly-triplets. The vertebrate enzymes are alpha 2 beta 2 tetramers, the beta-subunit being identical to protein-disulfide isomerase (PDI). Two isoforms of the catalytic alpha-subunit, which combine with PDI to form [alpha(I)]2 beta 2 and [alpha(II)]2 beta 2 tetramers, have been known up to now. We report here on the cloning and characterization of a third vertebrate C-P4H alpha-subunit isoform, alpha(III). The processed human, rat and mouse alpha(III) polypeptides consist of 520-525 residues, all three having signal peptides of 19-22 additional residues. The sequence of the processed human alpha(III) polypeptide is 35-37% identical to those of human alpha(I) and alpha(II), the highest identity being found within the catalytically important C-terminal region and all five critical residues at the cosubstrate binding sites being conserved. The sequence within a region corresponding to the peptide-substrate binding domain is less conserved, but all five alpha helices constituting this domain can be predicted to be located in identical positions in alpha(I), alpha(II), and alpha(III) and to have essentially identical lengths. The alpha(III) mRNA is expressed in many human tissues, but at much lower levels than the alpha(I) and alpha(II) mRNAs. In contrast to alpha(I) and alpha(II), no evidence was found for alternative splicing of the alpha(III) transcripts. Coexpression of a recombinant human alpha(III) polypeptide with PDI in human embryonic kidney cells led to the formation of an active enzyme that hydroxylated collagen chains and a collagen-like peptide and appeared to be an [alpha(III)]2 beta 2 tetramer. The catalytic properties of the recombinant enzyme were very similar to those of the type I and II C-P4Hs, with the exception that its peptide binding properties were intermediate between those of the type I and type II enzymes.
Collapse
Affiliation(s)
- Liisa Kukkola
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | |
Collapse
|
143
|
Hieta R, Kukkola L, Permi P, Pirilä P, Kivirikko KI, Kilpeläinen I, Myllyharju J. The peptide-substrate-binding domain of human collagen prolyl 4-hydroxylases. Backbone assignments, secondary structure, and binding of proline-rich peptides. J Biol Chem 2003; 278:34966-74. [PMID: 12824157 DOI: 10.1074/jbc.m303624200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The collagen prolyl 4-hydroxylases (C-P4Hs) catalyze the formation of 4-hydroxyproline by the hydroxylation of proline residues in -Xaa-Pro-Gly-sequences. The vertebrate enzymes are alpha 2 beta 2 tetramers in which protein-disulfide isomerase serves as the beta subunit. Two isoforms of the catalytic alpha subunit have been identified and shown to form [alpha(I)]2 beta 2 and [alpha(II)]2 beta 2 tetramers, the type I and type II C-P4Hs, respectively. The peptide-substrate-binding domain of type I C-P4H has been shown to be located between residues 138 and 244 in the 517-residue alpha(I) subunit and to be distinct from the catalytic domain that is located in the C-terminal region. We report here that a recombinant human C-P4H alpha(I) polypeptide Phe144-Ser244 forms a folded domain consisting of five alpha helices and one short beta strand. This structure is quite different from those of other proline-rich peptide-binding modules, which consist mainly of beta strands. Binding of the peptide (Pro-Pro-Gly)2 to this domain caused major chemical shifts in many backbone amide resonances, the residues showing the largest shifts being mainly hydrophobic, including three tyrosines. The Kd values determined by surface plasmon resonance and isothermal titration calorimetry for the binding of several synthetic peptides to the alpha(I) and the corresponding alpha(II) domain were very similar to the Km and Ki values for these peptides as substrates and inhibitors of the type I and type II C-P4H tetramers. The Kd values of the alpha(I) and alpha(II) domains for (Gly-Pro-4Hyp)5 were much higher than those for (Pro-Pro-Gly)5, indicating a marked decrease in the affinity of hydroxylated peptides for the domain. Many characteristic features of the binding of peptides to the type I and type II C-P4H tetramers can thus be explained by the properties of binding to this domain rather than the catalytic domain.
Collapse
Affiliation(s)
- Reija Hieta
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
144
|
Pakkanen O, Hämäläinen ER, Kivirikko KI, Myllyharju J. Assembly of stable human type I and III collagen molecules from hydroxylated recombinant chains in the yeast Pichia pastoris. Effect of an engineered C-terminal oligomerization domain foldon. J Biol Chem 2003; 278:32478-83. [PMID: 12805365 DOI: 10.1074/jbc.m304405200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-propeptides of the pro alpha chains of type I and type III procollagens are believed to be essential for correct chain recognition and chain assembly in these molecules. We studied here whether the 30-kDa C-propeptides of the human pC alpha 1(I), pC alpha 2(I), and pC alpha 1(III) chains, i.e. pro alpha chains lacking their N-propeptides, can be replaced by foldon, a 29-amino acid sequence normally located at the C terminus of the polypeptide chains in the bacteriophage T4 fibritin. The alpha foldon chains were expressed in Pichia pastoris cells that also expressed the two types of subunit of human prolyl 4-hydroxylase; the foldon domain was subsequently removed by pepsin treatment, which also digests non-triple helical collagen chains, whereas triple helical collagen molecules are resistant to it. The foldon domain was found to be very effective in chain assembly, as expression of the alpha 1(I)foldon or alpha 1(III)foldon chains gave about 2.5-3-fold the amount of pepsin-resistant type I or type III collagen homotrimers relative to those obtained using the authentic C-propeptides. In contrast, expression of chains with no oligomerization domain led to very low levels of pepsin-resistant molecules. Expression of alpha 2(I)foldon chains gave no pepsin-resistant molecules at all, indicating that in addition to control at the level of the C-propeptide other restrictions at the level of the collagen domain exist that prevent the formation of stable [alpha 2(I)]3 molecules. Co-expression of alpha 1(I)foldon and alpha 2(I)foldon chains led to an efficient assembly of heterotrimeric molecules, their amounts being about 2-fold those obtained with the authentic C-propeptides and the alpha 1(I) to alpha 2(I) ratio being 1.91 +/- 0.31 (S.D.). As the foldon sequence contains no information for chain recognition, our data indicate that chain assembly is influenced not only by the C-terminal oligomerization domain but also by determinants present in the alpha chain domains.
Collapse
Affiliation(s)
- Outi Pakkanen
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | |
Collapse
|
145
|
Hirsilä M, Koivunen P, Günzler V, Kivirikko KI, Myllyharju J. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem 2003; 278:30772-80. [PMID: 12788921 DOI: 10.1074/jbc.m304982200] [Citation(s) in RCA: 606] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The hypoxia-inducible factors (HIFs) play a central role in oxygen homeostasis. Hydroxylation of one or two critical prolines by specific hydroxylases (P4Hs) targets their HIF-alpha subunits for proteasomal degradation. By studying the three human HIF-P4Hs, we found that the longest and shortest isoenzymes have major transcripts encoding inactive polypeptides, which suggest novel regulation by alternative splicing. Recombinant HIF-P4Hs expressed in insect cells required peptides of more than 8 residues, distinct differences being found between isoenzymes. All the HIF-P4Hs hydroxylated peptides corresponding to Pro564 in HIF-1alpha, whereas a Pro402 peptide had 20-50-fold Km values for two isoenzymes but was not hydroxylated by the shortest isoenzyme at all; this difference was not explained by the two prolines being in a -Pro402-Ala- and -Pro564-Tyr-sequence. All the HIF-P4Hs-hydroxylated peptides corresponding to two of three potential sites in HIF-2alpha and one in HIF-3alpha. The Km values for O2 were slightly above its atmospheric concentration, indicating that the HIF-P4Hs are effective oxygen sensors. Small molecule inhibitors of collagen P4Hs also inhibited the HIF-P4Hs, but with distinctly different Ki values, indicating that it should be possible to develop specific inhibitors for each class of P4Hs and possibly even for the individual HIF-P4Hs.
Collapse
Affiliation(s)
- Maija Hirsilä
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | | | |
Collapse
|
146
|
Van Den Diepstraten C, Papay K, Bolender Z, Brown A, Pickering JG. Cloning of a novel prolyl 4-hydroxylase subunit expressed in the fibrous cap of human atherosclerotic plaque. Circulation 2003; 108:508-11. [PMID: 12874193 DOI: 10.1161/01.cir.0000080883.53863.5c] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The production of collagen is fundamental to atherosclerosis and critically dependent on posttranslational modification by prolyl 4-hydroxylase. METHODS AND RESULTS We report the cloning of a novel prolyl 4-hydroxylase catalytic (alpha) subunit from human vascular smooth muscle cells. The peptide displayed conservation of critical residues for interacting with Fe2+ and 2-oxoglutarate, essential cosubstrates for prolyl 4-hydroxylase activity. Furthermore, when the recombinant protein was expressed in cells, it associated with the beta-subunit of prolyl 4-hydroxylase and could catalyze prolyl 4-hydroxylation of a collagen-like peptide. The tissue distribution was dissimilar from that of the 2 previously cloned alpha-subunits, suggesting a role beyond redundancy. Importantly, the novel gene was expressed in the fibrous cap of human carotid atherosclerotic lesions. CONCLUSIONS The discovery of a novel prolyl 4-hydroxylase alpha-subunit, here termed the alpha(III)-subunit, suggests a new participant in collagen synthesis that, in view of the expression findings, may be relevant to atherosclerotic disease.
Collapse
Affiliation(s)
- Caroline Van Den Diepstraten
- Robarts Research Institute (Vascular Biology Group), London Health Sciences Centre, Department of Medicine (Cardiology), University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|
147
|
Masson N, Ratcliffe PJ. HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O(2) levels. J Cell Sci 2003; 116:3041-9. [PMID: 12829734 DOI: 10.1242/jcs.00655] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hypoxia-inducible factor (HIF) is a heterodimeric transcription factor that plays a crucial role in mediating cellular responses to oxygen. Oxygen availability influences multiple steps in HIF activation and recent studies have indicated that at least two steps in this process are governed by a novel mode of signal transduction involving enzymatic hydroxylation of specific amino acid residues in HIF-alpha subunits by a series of 2-oxoglutarate (2-OG)-dependent oxygenases. These enzymes are non-haem iron enzymes that use dioxygen in the hydroxylation reaction and therefore provide a direct link between the availability of molecular oxygen and regulation of HIF. Prolyl hydroxylation regulates proteolytic destruction of HIF-alpha by the von Hippel-Lindau ubiquitin ligase complex, whereas HIF-alpha asparaginyl hydroxylation regulates recruitment of transcriptional coactivators. The involvement of at least two distinct types of 2-OG-dependent oxygenase in oxygen-regulated transcription suggests that these enzymes may be well suited to a role in cellular oxygen sensing.
Collapse
Affiliation(s)
- Norma Masson
- The Henry Wellcome Building of Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN, UK
| | | |
Collapse
|
148
|
Kubo M, Czuwara-Ladykowska J, Moussa O, Markiewicz M, Smith E, Silver RM, Jablonska S, Blaszczyk M, Watson DK, Trojanowska M. Persistent down-regulation of Fli1, a suppressor of collagen transcription, in fibrotic scleroderma skin. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:571-81. [PMID: 12875977 PMCID: PMC1868228 DOI: 10.1016/s0002-9440(10)63685-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2003] [Indexed: 11/21/2022]
Abstract
The molecular and cellular mechanisms that maintain proper collagen homeostasis in healthy human skin and are responsible for the dysregulated collagen synthesis in scleroderma remain primarily unknown. This study demonstrates that Fli1 is a physiological negative regulator of collagen gene expression in dermal fibroblasts in vitro and in human skin in vivo. This conclusion is supported by the analyses of mouse embryonic fibroblasts from Fli1(-/-), Fli1(+/-), and Fli1(+/+) mice. In cultured human and mouse fibroblasts Fli1 expression levels are inversely correlated with the collagen type I expression levels. These in vitro observations were validated in vivo. In healthy human skin Fli1 protein is expressed in fibroblasts and endothelial cells. Significantly, absence of Fli1 expression in individual fibroblasts correlates with elevated collagen synthesis. In contrast to healthy skin, Fli1 protein is consistently absent from fibroblasts and significantly reduced in endothelial cells in clinically involved scleroderma skin, which correlates with enhanced collagen synthesis in systemic sclerosis skin. This study supports the role of Fli1 as a suppressor of collagen transcription in human skin in vivo. Persistent down-regulation of Fli1 in scleroderma fibroblasts in vivo may directly contribute to uncontrolled matrix deposition in scleroderma skin.
Collapse
Affiliation(s)
- Masahide Kubo
- Division of Rheumatology and Immunology and the Laboratory of Cancer Genomics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Clissold PM, Bicknell R. The thioredoxin-like fold: hidden domains in protein disulfide isomerases and other chaperone proteins. Bioessays 2003; 25:603-11. [PMID: 12766950 DOI: 10.1002/bies.10287] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although protein disulphide isomerase (PDI) has been known for nearly 40 years, several new PDIs have recently been described that reveal a remarkable diversity in both structure and function. This article reviews our current knowledge of the PDI family members and identifies four novel PDIs in the human genome. These include human transmembrane proteins that have C. elegans or Drosophila orthologues for which a developmental role has been proven. Their role in development, together with other functional roles for PDIs such as conferring resistance to apoptosis under hypoxia and a potential role in the oxygen-sensing apparatus are discussed.
Collapse
Affiliation(s)
- Patricia M Clissold
- Molecular Angiogenesis Laboratory, Cancer Research UK, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | |
Collapse
|
150
|
Ruoppolo M, Orrù S, Talamo F, Ljung J, Pirneskoski A, Kivirikko KI, Marino G, Koivunen P. Mutations in domain a' of protein disulfide isomerase affect the folding pathway of bovine pancreatic ribonuclease A. Protein Sci 2003; 12:939-52. [PMID: 12717017 PMCID: PMC2323865 DOI: 10.1110/ps.0242803] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein disulfide isomerase (PDI, EC 5.3.4.1), an enzyme and chaperone, catalyses disulfide bond formation and rearrangements in protein folding. It is also a subunit in two proteins, the enzyme collagen prolyl 4-hydroxylase and the microsomal triglyceride transfer protein. It consists of two catalytically active domains, a and a', and two inactive ones, b and b', all four domains having the thioredoxin fold. Domain b' contains the primary peptide binding site, but a' is also critical for several of the major PDI functions. Mass spectrometry was used here to follow the folding pathway of bovine pancreatic ribonuclease A (RNase A) in the presence of three PDI mutants, F449R, Delta455-457, and abb', and the individual domains a and a'. The first two mutants contained alterations in the last alpha helix of domain a', while the third lacked the entire domain a'. All mutants produced genuine, correctly folded RNase A, but the appearance rate of 50% of the product, as compared to wild-type PDI, was reduced 2.5-fold in the case of PDI Delta455-457, 7.5-fold to eightfold in the cases of PDI F449R and PDI abb', and over 15-fold in the cases of the individual domains a and a'. In addition, PDI F449R and PDI abb' affected the distribution of folding intermediates. Domains a and a' catalyzed the early steps in the folding but no disulfide rearrangements, and therefore the rate observed in the presence of these individual domains was similar to that of the spontaneous process.
Collapse
Affiliation(s)
- Margherita Ruoppolo
- Dipartimento di Biochimica e Biotecnologie Mediche, School of Biotechnological Sciences, Università degli Studi di Napoli Federico II, Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|