101
|
Yamamoto T, Yoshida Y, Nakajima K, Tominaga M, Gyohda A, Suzuki H, Okamoto T, Nishimura T, Yokotani N, Minami E, Nishizawa Y, Miyamoto K, Yamane H, Okada K, Koshiba T. Expression of RSOsPR10 in rice roots is antagonistically regulated by jasmonate/ethylene and salicylic acid via the activator OsERF87 and the repressor OsWRKY76, respectively. PLANT DIRECT 2018; 2:e00049. [PMID: 31245715 PMCID: PMC6508531 DOI: 10.1002/pld3.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/29/2018] [Accepted: 02/28/2018] [Indexed: 05/08/2023]
Abstract
Plant roots play important roles in absorbing water and nutrients, and in tolerance against environmental stresses. Previously, we identified a rice root-specific pathogenesis-related protein (RSOsPR10) induced by drought, salt, and wounding. RSOsPR10 expression is strongly induced by jasmonate (JA)/ethylene (ET), but suppressed by salicylic acid (SA). Here, we analyzed the promoter activity of RSOsPR10. Analyses of transgenic rice lines harboring different-length promoter::β-glucuronidase (GUS) constructs showed that the 3-kb promoter region is indispensable for JA/ET induction, SA repression, and root-specific expression. In the JA-treated 3K-promoter::GUS line, GUS activity was mainly observed at lateral root primordia. Transient expression in roots using a dual luciferase (LUC) assay with different-length promoter::LUC constructs demonstrated that the novel transcription factor OsERF87 induced 3K-promoter::LUC expression through binding to GCC-cis elements. In contrast, the SA-inducible OsWRKY76 transcription factor strongly repressed the JA-inducible and OsERF87-dependent expression of RSOsPR10. RSOsPR10 was expressed at lower levels in OsWRKY76-overexpressing rice, but at higher levels in OsWRKY76-knockout rice, compared with wild type. These results show that two transcription factors, OsERF87 and OsWRKY76, antagonistically regulate RSOsPR10 expression through binding to the same promoter. This mechanism represents a fine-tuning system to sense the balance between JA/ET and SA signaling in plants under environmental stress.
Collapse
Affiliation(s)
- Takahiro Yamamoto
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Yuri Yoshida
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
- Biotechnology Research CenterThe University of TokyoBunkyo‐kuTokyoJapan
| | - Kazunari Nakajima
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Makiko Tominaga
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Atsuko Gyohda
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Hiromi Suzuki
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Takashi Okamoto
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Takeshi Nishimura
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
- Bioagric SciNagoya UniversityNagoyaAichiJapan
| | - Naoki Yokotani
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
- Kazusa DNA Research InstituteKisarazuChibaJapan
| | - Eiichi Minami
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
| | - Yoko Nishizawa
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
| | - Koji Miyamoto
- Biotechnology Research CenterThe University of TokyoBunkyo‐kuTokyoJapan
- Department of BiosciencesTeikyo UniversityUtsunomiyaTochigiJapan
| | - Hisakazu Yamane
- Biotechnology Research CenterThe University of TokyoBunkyo‐kuTokyoJapan
- Department of BiosciencesTeikyo UniversityUtsunomiyaTochigiJapan
| | - Kazunori Okada
- Biotechnology Research CenterThe University of TokyoBunkyo‐kuTokyoJapan
| | - Tomokazu Koshiba
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| |
Collapse
|
102
|
Ono S, Liu H, Tsuda K, Fukai E, Tanaka K, Sasaki T, Nonomura KI. EAT1 transcription factor, a non-cell-autonomous regulator of pollen production, activates meiotic small RNA biogenesis in rice anther tapetum. PLoS Genet 2018; 14:e1007238. [PMID: 29432414 PMCID: PMC5825165 DOI: 10.1371/journal.pgen.1007238] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 02/23/2018] [Accepted: 02/01/2018] [Indexed: 11/18/2022] Open
Abstract
The 24-nucleotides (nt) phased secondary small interfering RNA (phasiRNA) is a unique class of plant small RNAs abundantly expressed in monocot anthers at early meiosis. Previously, 44 intergenic regions were identified as the loci for longer precursor RNAs of 24-nt phasiRNAs (24-PHASs) in the rice genome. However, the regulatory mechanism that determines spatiotemporal expression of these RNAs has remained elusive. ETERNAL TAPETUM1 (EAT1) is a basic-helix-loop-helix (bHLH) transcription factor indispensable for induction of programmed cell death (PCD) in postmeiotic anther tapetum, the somatic nursery for pollen production. In this study, EAT1-dependent non-cell-autonomous regulation of male meiosis was evidenced from microscopic observation of the eat1 mutant, in which meiosis with aberrantly decondensed chromosomes was retarded but accomplished somehow, eventually resulting in abortive microspores due to an aberrant tapetal PCD. EAT1 protein accumulated in tapetal-cell nuclei at early meiosis and postmeiotic microspore stages. Meiotic EAT1 promoted transcription of 24-PHAS RNAs at 101 loci, and importantly, also activated DICER-LIKE5 (DCL5, previous DCL3b in rice) mRNA transcription that is required for processing of double-stranded 24-PHASs into 24-nt lengths. From the results of the chromatin-immunoprecipitation and transient expression analyses, another tapetum-expressing bHLH protein, TDR INTERACTING PROTEIN2 (TIP2), was suggested to be involved in meiotic small-RNA biogenesis. The transient assay also demonstrated that UNDEVELOPED TAPETUM1 (UDT1)/bHLH164 is a potential interacting partner of both EAT1 and TIP2 during early meiosis. This study indicates that EAT1 is one of key regulators triggering meiotic phasiRNA biogenesis in anther tapetum, and that other bHLH proteins, TIP2 and UDT1, also play some important roles in this process. Spatiotemporal expression control of these bHLH proteins is a clue to orchestrate precise meiosis progression and subsequent pollen production non-cell-autonomously.
Collapse
Affiliation(s)
- Seijiro Ono
- Experimental Farm, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Hua Liu
- Experimental Farm, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Katsutoshi Tsuda
- Experimental Farm, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Yata, Mishima, Shizuoka, Japan
| | - Eigo Fukai
- Graduate School of Science and Technology, Niigata University, Ikarashi, Nishi-ku, Niigata, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Takuji Sasaki
- NODAI Research Institute, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Ken-Ichi Nonomura
- Experimental Farm, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Yata, Mishima, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
103
|
Yi Y, Frenzel E, Spoelder J, Elzenga JTM, van Elsas JD, Kuipers OP. Optimized fluorescent proteins for the rhizosphere-associated bacterium Bacillus mycoides with endophytic and biocontrol agent potential. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:57-74. [PMID: 29195004 DOI: 10.1111/1758-2229.12607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/23/2017] [Indexed: 06/07/2023]
Abstract
Tracking of fluorescent protein (FP)-labelled rhizobacteria is a key prerequisite to gain insights into plant-bacteria interaction mechanisms. However, the performance of FPs mostly has to be optimized for the bacterial host and for the environment of intended application. We report on the construction of mutational libraries of the superfolder green fluorescent protein sfGFP and the red fluorescent protein mKate2 in the bacterium B. mycoides, which next to its potential as plant-biocontrol agent occasionally enters an endophytic lifestyle. By fluorescence-activated cell sorting and comparison of signal intensities at the colony and single-cell level, the variants sfGFP(SPS6) and mKate (KPS12) with significantly increased brightness were isolated. Their high applicability for plant-bacteria interaction studies was shown by confocal laser scanning microscopy tracking of FP-tagged B. mycoides strains after inoculation to Chinese cabbage plants in a hydroponic system. During the process of colonization, strain EC18 rapidly attached to plant roots and formed a multicellular matrix, especially at the branching regions of the root hair, which probably constitute entrance sites to establish an endophytic lifestyle. The universal applicability of the novels FPs was proven by expression from a weak promoter, dual-labelling of B. mycoides, and by excellent expression and detectability in additional soil- and rhizosphere-associated Bacillus species.
Collapse
Affiliation(s)
- Yanglei Yi
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Elrike Frenzel
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Jan Spoelder
- Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - J Theo M Elzenga
- Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
104
|
Blaby-Haas CE, Page MD, Merchant SS. Using YFP as a Reporter of Gene Expression in the Green Alga Chlamydomonas reinhardtii. Methods Mol Biol 2018; 1755:135-148. [PMID: 29671268 PMCID: PMC6448394 DOI: 10.1007/978-1-4939-7724-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a valuable experimental system in plant biology for studying metal homeostasis. Analyzing transcriptional regulation with promoter-fusion constructs in C. reinhardtii is a powerful method for connecting metal-responsive regulation with cis-regulatory elements, but overcoming expression-level variability between transformants and optimizing experimental conditions can be laborious. Here, we provide detailed protocols for the high-throughput cultivation of C. reinhardtii and assaying Venus fluorescence as a reporter for promoter activity. We also describe procedural considerations for relating metal supply to transcriptional activity.
Collapse
Affiliation(s)
| | - M Dudley Page
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
105
|
Sharma M, Bennewitz B, Klösgen RB. Dual or Not Dual?-Comparative Analysis of Fluorescence Microscopy-Based Approaches to Study Organelle Targeting Specificity of Nuclear-Encoded Plant Proteins. FRONTIERS IN PLANT SCIENCE 2018; 9:1350. [PMID: 30298079 PMCID: PMC6160753 DOI: 10.3389/fpls.2018.01350] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/27/2018] [Indexed: 05/20/2023]
Abstract
Plant cells are unique as they carry two organelles of endosymbiotic origin, namely mitochondria and chloroplasts (plastids) which have specific but partially overlapping functions, e. g., in energy and redox metabolism. Despite housing residual genomes of limited coding capacity, most of their proteins are encoded in the nucleus, synthesized by cytosolic ribosomes and need to be transported "back" into the respective target organelle. While transport is in most instances strictly monospecific, a group of proteins carries "ambiguous" transit peptides mediating transport into both, mitochondria and plastids. However, such dual targeting is often disputed due to variability in the results obtained from different experimental approaches. We have therefore compared and evaluated the most common methods established to study protein targeting into organelles within intact plant cells. All methods are based on fluorescent protein technology and live cell imaging. For our studies, we have selected four candidate proteins with proven dual targeting properties and analyzed their subcellular localization in vivo utilizing four different methods (particle bombardment, protoplast transformation, Agrobacterium infiltration, and transgenic plants). Though using identical expression constructs in all instances, a given candidate protein does not always show the same targeting specificity in all approaches, demonstrating that the choice of method is important, and depends very much on the question to be addressed.
Collapse
|
106
|
Sasaki N, Takashima E, Nyunoya H. Altered Subcellular Localization of a Tobacco Membrane Raft-Associated Remorin Protein by Tobamovirus Infection and Transient Expression of Viral Replication and Movement Proteins. FRONTIERS IN PLANT SCIENCE 2018; 9:619. [PMID: 29868075 PMCID: PMC5962775 DOI: 10.3389/fpls.2018.00619] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 04/18/2018] [Indexed: 05/20/2023]
Abstract
Remorins are plant specific proteins found in plasma membrane microdomains (termed lipid or membrane rafts) and plasmodesmata. A potato remorin is reported to be involved in negatively regulating potexvirus movement and plasmodesmal permeability. In this study, we isolated cDNAs of tobacco remorins (NtREMs) and examined roles of an NtREM in infection by tomato mosaic virus (ToMV). Subcellular localization analysis using fluorescently tagged NtREM, ToMV, and viral replication and movement proteins (MPs) indicated that virus infection and transient expression of the viral proteins promoted the formation of NtREM aggregates by altering the subcellular distribution of NtREM, which was localized uniformly on the plasma membrane under normal conditions. NtREM aggregates were often observed associated closely with endoplasmic reticulum networks and bodies of the 126K replication and MPs. The bimolecular fluorescence complementation assay indicated that NtREM might interact directly with the MP on the plasma membrane and around plasmodesmata. In addition, transient overexpression of NtREM facilitated ToMV cell-to-cell movement. Based on these results, we discuss possible roles of the tobacco remorin in tobamovirus movement.
Collapse
Affiliation(s)
- Nobumitsu Sasaki
- Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Japan
- *Correspondence: Nobumitsu Sasaki,
| | - Eita Takashima
- Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Hiroshi Nyunoya
- Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
107
|
Wu W, Zhang Y, Zhang M, Zhan X, Shen X, Yu P, Chen D, Liu Q, Sinumporn S, Hussain K, Cheng S, Cao L. The rice CONSTANS-like protein OsCOL15 suppresses flowering by promoting Ghd7 and repressing RID1. Biochem Biophys Res Commun 2017; 495:1349-1355. [PMID: 29154991 DOI: 10.1016/j.bbrc.2017.11.095] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 10/25/2022]
Abstract
The photoperiodic flowering pathway is one of the most important regulatory networks controlling flowering time in rice (Oryza sativa L.). Rice is a facultative short-day (SD) plant; flowering is promoted under inductive SD conditions and delayed under non-inductive long-day (LD) conditions. In rice, flowering inhibitor genes play an important role in maintaining the trade-off between reproduction and yield. In this study, we identified a novel floral inhibitor, OsCOL15, which encodes a CONSTANS-like transcription factor. Consistent with a function in transcriptional regulation, OsCOL15 localized to the nucleus. Moreover, OsCOL15 had transcriptional activation activity, and the central region of the protein between the B-box and CCT domains was required for this activity. We determined that OsCOL15 is most highly expressed in young organs and exhibits a diurnal expression pattern typical of other floral regulators. Overexpression of OsCOL15 resulted in a delayed flowering phenotype under both SD and LD conditions. Real-time quantitative RT-PCR analysis of flowering regulator gene expression suggested that OsCOL15 suppresses flowering by up-regulating the flowering repressor Grain number, plant height and heading date 7 (Ghd7) and down-regulating the flowering activator Rice Indeterminate 1 (RID1), thus leading to the down-regulation of the flowering activators Early heading date 1, Heading date 3a, and RICE FLOWERING LOCUS T1. These results demonstrate that OsCOL15 is an important floral regulator acting upstream of Ghd7 and RID1 in the rice photoperiodic flowering-time regulatory network.
Collapse
Affiliation(s)
- Weixun Wu
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Yingxin Zhang
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Miao Zhang
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xiaodeng Zhan
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xihong Shen
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Ping Yu
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Daibo Chen
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Qunen Liu
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Sittipun Sinumporn
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Kashif Hussain
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Shihua Cheng
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China.
| | - Liyong Cao
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China.
| |
Collapse
|
108
|
The rice TRIANGULAR HULL1 protein acts as a transcriptional repressor in regulating lateral development of spikelet. Sci Rep 2017; 7:13712. [PMID: 29057928 PMCID: PMC5651839 DOI: 10.1038/s41598-017-14146-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/06/2017] [Indexed: 11/08/2022] Open
Abstract
As a basic unit of rice inflorescence, spikelet has profound influence on grain size, weight and yield. The molecular mechanism underlying spikelet development has not been fully elucidated. Here, we identified four allelic rice mutants, s2-89, xd151, xd281 and xd425, which exhibited reduced width of spikelet, especially in the apical region. Map-based cloning revealed that all these mutants had missense mutation in the TRIANGULAR HULL1 (TH1) gene, encoding an ALOG family protein. TH1 has been shown to regulate the lateral development of spikelet, but its mode of action remains unclear. Microscopic analysis revealed that the reduction in spikelet width was caused by decreased cell size rather than cell division. The TH1 protein was shown to localize in the nucleus and possess transcriptional repression activity. TH1 could form a homodimer and point mutation in the s2-89, xd281 and xd425 mutant inhibited homodimerization. The transcriptional repression activity of TH1 was partially relieved by the His129Tyr substitution in the s2-89 mutant. Fusion of an exogenous EAR transcription suppression domain to the mutant protein TH1s2-89 could largely complemented the narrow spikelet phenotype. These results indicate that TH1 functions as a transcription repressor and regulates cell expansion during the lateral development of spikelet.
Collapse
|
109
|
An in planta biolistic method for stable wheat transformation. Sci Rep 2017; 7:11443. [PMID: 28904403 PMCID: PMC5597576 DOI: 10.1038/s41598-017-11936-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/31/2017] [Indexed: 11/23/2022] Open
Abstract
The currently favoured method for wheat (Triticum aestivum L.) transformation is inapplicable to many elite cultivars because it requires callus culture and regeneration. Here, we developed a simple, reproducible, in planta wheat transformation method using biolistic DNA delivery without callus culture or regeneration. Shoot apical meristems (SAMs) grown from dry imbibed seeds were exposed under a microscope and subjected to bombardment with different-sized gold particles coated with the GFP gene construct, introducing DNA into the L2 cell layer. Bombarded embryos were grown to mature, stably transformed T0 plants and integration of the GFP gene into the genome was determined at the fifth leaf. Use of 0.6-µm particles and 1350-psi pressure resulted in dramatically increased maximum ratios of transient GFP expression in SAMs and transgene integration in the fifth leaf. The transgene was integrated into the germ cells of 62% of transformants, and was therefore inherited in the next generation. We successfully transformed the model wheat cultivar ‘Fielder’, as well as the recalcitrant Japanese elite cultivar ‘Haruyokoi’. Our method could potentially be used to generate stable transgenic lines for a wide range of commercial wheat cultivars.
Collapse
|
110
|
Koiso N, Toda E, Ichikawa M, Kato N, Okamoto T. Development of gene expression system in egg cells and zygotes isolated from rice and maize. PLANT DIRECT 2017; 1:e00010. [PMID: 31245659 PMCID: PMC6508540 DOI: 10.1002/pld3.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/10/2017] [Accepted: 07/28/2017] [Indexed: 05/25/2023]
Abstract
Polyethylene glycol calcium (PEG-Ca2+) transfection-mediated analysis allows rapid and efficient examination of gene function. To investigate the diverse cellular functions of genes of interest in plant cells, macromolecules, such as DNA, RNA, and proteins, are delivered into protoplasts prepared from somatic tissues or calli using a PEG-Ca2+ transfection procedure. To take advantage of this macromolecule delivery system in the reproductive and developmental biology of angiosperms, this study established a PEG-Ca2+ transfection system with isolated egg cells and zygotes. The conditions for PEG and plasmid DNA concentrations for transfection of rice egg cells were first addressed, and ~30% of PEG-Ca2+-transfected egg cells showed exogenous and transient expressions of fluorescent proteins from plasmid DNA delivered into the cells. Interestingly, a dual expression of two different fluorescent proteins in the same egg cell using two kinds of plasmid DNAs was also observed. For PEG-Ca2+ transfection with maize zygotes, ~80% of zygotes showed expression of GFP proteins from plasmid DNA. Importantly, PEG-transfected zygotes developed normally into cell masses and mature plants. These results suggest that the present PEG-Ca2+-mediated transient expression system provides a novel and effective platform for expressing and analyzing genes of interest in egg cells and zygotes. Moreover, combined with the CRISPR/Cas9 approach, the present transient expression system in zygotes will become a powerful and alternative tool for the preparation of gene-edited plants.
Collapse
Affiliation(s)
- Narumi Koiso
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiTokyoJapan
| | - Erika Toda
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiTokyoJapan
- Plant Breeding Innovation LaboratoryRIKEN Innovation CenterTsurumiYokohamaJapan
| | | | - Norio Kato
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiTokyoJapan
- Plant Breeding Innovation LaboratoryRIKEN Innovation CenterTsurumiYokohamaJapan
- Plant Innovation CenterJapan Tobacco Inc.IwataShizuokaJapan
| | - Takashi Okamoto
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiTokyoJapan
- Plant Breeding Innovation LaboratoryRIKEN Innovation CenterTsurumiYokohamaJapan
| |
Collapse
|
111
|
Zhou K, Xia J, Wang Y, Ma T, Li Z. A Young Seedling Stripe2 phenotype in rice is caused by mutation of a chloroplast-localized nucleoside diphosphate kinase 2 required for chloroplast biogenesis. Genet Mol Biol 2017; 40:630-642. [PMID: 28863212 PMCID: PMC5596372 DOI: 10.1590/1678-4685-gmb-2016-0267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/30/2017] [Indexed: 01/08/2023] Open
Abstract
Chloroplast development and chlorophyll (Chl) biosynthesis in plants are regulated by many genes, but the underlying molecular mechanisms remain largely elusive. We isolated a rice mutant named yss2 (young seedling stripe2) with a striated seedling phenotype beginning from leaf 2 of delayed plant growth. The mutant developed normal green leaves from leaf 5, but reduced tillering and chlorotic leaves and panicles appeared later. Chlorotic yss2 seedlings have decreased pigment contents and impaired chloroplast development. Genetic analysis showed that the mutant phenotype was due to a single recessive gene. Positional cloning and sequence analysis identified a single nucleotide substitution in YSS2 gene causing an amino acid change from Gly to Asp. The YSS2 allele encodes a NDPK2 (nucleoside diphosphate kinase 2) protein showing high similarity to other types of NDPKs. Real-time RT-PCR analysis demonstrated that YSS2 transcripts accumulated highly in L4 sections at the early leaf development stage. Expression levels of genes associated with Chl biosynthesis and photosynthesis in yss2 were mostly decreased, but genes involved in chloroplast biogenesis were up-regulated compared to the wild type. The YSS2 protein was associated with punctate structures in the chloroplasts of rice protoplasts. Our overall data suggest that YSS2 has important roles in chloroplast biogenesis.
Collapse
Affiliation(s)
- Kunneng Zhou
- Key laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, P.R. China
| | - Jiafa Xia
- Key laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, P.R. China
| | - Yuanlei Wang
- Key laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, P.R. China
| | - Tingchen Ma
- Key laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, P.R. China
| | - Zefu Li
- Key laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, P.R. China
| |
Collapse
|
112
|
Zhang YY, Hao YY, Wang YH, Wang CM, Wang YL, Long WH, Wang D, Liu X, Jiang L, Wan JM. Lethal albinic seedling, encoding a threonyl-tRNA synthetase, is involved in development of plastid protein synthesis system in rice. PLANT CELL REPORTS 2017; 36:1053-1064. [PMID: 28405745 DOI: 10.1007/s00299-017-2136-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/27/2017] [Indexed: 05/26/2023]
Abstract
An albinic rice is caused by mutation of threonyl-tRNA synthetase, which is essential for plant development by stabilizing of NEP and PEP gene expressions and chloroplast protein synthesis. Chloroplast biogenesis and development depend on complex genetic mechanisms. Apart from their function in translation, aminoacyl-tRNA synthetases (aaRSs) play additional role in gene expression regulation, RNA splicing, and cytokine activity. However, their detailed functions in plant development are still poorly understood. We isolated a lethal albinic seedling (las) mutant in rice. Physiological and ultrastructural analysis of las mutant plants revealed weak chlorophyll fluorescence, negligible chlorophyll accumulation, and defective thylakoid membrane development. By map based cloning we determined that the LAS allele gene encodes threonyl-tRNA synthetase (ThrRS). LAS was constitutively expressed with relatively high level in leaves. NEP-dependent gene transcripts accumulated in the developing chloroplasts, while PEP-dependent transcripts were reduced in the las mutant. This result indicated that PEP activity was impaired. Chloroplast-encoded protein levels were sharply reduced in the las mutant. Biogenesis of chloroplast rRNAs (16S and 23S rRNA) was arrested, leading to impaired translation and protein synthesis. Together, our findings indicated that LAS is essential not only for chloroplast development by stabilizing the NEP and PEP gene expression, but also for protein synthesis and construction of the ribosome system in rice chloroplasts.
Collapse
Affiliation(s)
- Yuan-Yan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan-Yuan Hao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi-Hua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun-Ming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yun-Long Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wu-Hua Long
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian-Min Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
113
|
Wu W, Zheng XM, Chen D, Zhang Y, Ma W, Zhang H, Sun L, Yang Z, Zhao C, Zhan X, Shen X, Yu P, Fu Y, Zhu S, Cao L, Cheng S. OsCOL16, encoding a CONSTANS-like protein, represses flowering by up-regulating Ghd7 expression in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 260:60-69. [PMID: 28554475 DOI: 10.1016/j.plantsci.2017.04.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 05/22/2023]
Abstract
Flowering time is an important agronomic trait that coordinates the plant life cycle with regional adaptability and thereby impacts yield potentials for cereal crops. The CONSTANS (CO)-like gene family plays vital roles in the regulation of flowering time. CO-like proteins are typically divided into four phylogenetic groups in rice. Several genes from groups I, III, and IV have been functionally characterized, though little is known about the genes of group II in rice. We report the functional characterization in rice of a constitutive floral inhibitor, OsCOL16, encoding a group-II CO-like protein that delays flowering time and increases plant height and grain yield. Overexpression of OsCOL16 resulted in late heading under both long-day and short-day conditions. OsCOL16 expression exhibits a diurnal oscillation and serves as a transcription factor with transcriptional activation activity. We determined that OsCOL16 up-regulates the expression of the floral repressor Ghd7, leading to down-regulation of the expression of Ehd1, Hd3a, and RFT1. Moreover, genetic diversity and evolutionary analyses suggest that remarkable differences in flowering times correlate with two major alleles of OsCOL16. Our combined molecular biology and phylogeographic analyses revealed that OsCOL16 plays an important role in regulating rice photoperiodic flowering, allowing for environmental adaptation of rice.
Collapse
Affiliation(s)
- Weixun Wu
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xiao-Ming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Daibo Chen
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Yingxin Zhang
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Huan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lianping Sun
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Zhengfu Yang
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Chunde Zhao
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xiaodeng Zhan
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xihong Shen
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Ping Yu
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Yaping Fu
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Liyong Cao
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China.
| | - Shihua Cheng
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China.
| |
Collapse
|
114
|
Kaštier P, Martinčová M, Fiala R, Blehová A. Transient expression of green fluorescent protein in parasitic dodder as a tool for studying of cytoskeleton. NOVA BIOTECHNOLOGICA ET CHIMICA 2017. [DOI: 10.1515/nbec-2017-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractDodder (Cuscuta) species cause severe agricultural damage in many countries throughout the world. To establish strategies for control of its growth and spreading it is important to study its life cycle and survival strategies. For these efforts genetic modification would represent a powerful tool. Here we report on Agrobacteriummediated transformation of dodder using green fluorescent protein (GFP) fused to actin-binding protein as a vital marker. Since the shoot of germinating C. europaea contains a functional apical meristem and grows quickly comparing to the root-like structure, the shoot apex was used here as explant. The transgene expression was only transient, nevertheless it enabled to detect allocation of actin filaments and studying the cytoskeleton organization in dodder shoot apex. Transient expression of GFP appears to be a suitable method for studying Cuscuta development through cytoskeleton organisation that is presently largely unexplored.
Collapse
|
115
|
Sheng Z, Lv Y, Li W, Luo R, Wei X, Xie L, Jiao G, Shao G, Wang J, Tang S, Hu P. Yellow-Leaf 1 encodes a magnesium-protoporphyrin IX monomethyl ester cyclase, involved in chlorophyll biosynthesis in rice (Oryza sativa L.). PLoS One 2017; 12:e0177989. [PMID: 28558018 PMCID: PMC5448749 DOI: 10.1371/journal.pone.0177989] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/06/2017] [Indexed: 01/09/2023] Open
Abstract
Magnesium-protoporphyrin IX monomethyl ester cyclase (MPEC) catalyzes the conversion of MPME to divinyl protochlorophyllide (DVpchlide). This is an essential enzyme during chlorophyll (Chl) biosynthesis but details of its function in rice are still lacking. Here, we identified a novel rice mutant yellow-leaf 1 (yl-1), which showed decreased Chl accumulation, abnormal chloroplast ultrastructure and attenuated photosynthetic activity. Map-based cloning and over-expression analysis suggested that YL-1 encodes a subunit of MPEC. The YL-1 protein localizes in chloroplasts, and it is mainly expressed in green tissues, with greatest abundance in leaves and young panicles. Results of qRT-PCR showed that Chl biosynthesis upstream genes were highly expressed in the yl-1 mutant, while downstream genes were compromised, indicating that YL-1 plays a pivotal role in the Chl biosynthesis. Furthermore, the expression levels of photosynthesis and chloroplast development genes were also affected. RNA-seq results futher proved that numerous membrane-associated genes, including many plastid membrane-associated genes, have altered expression pattern in the yl-1 mutant, implying that YL-1 is required for plastid membrane stability. Thus, our study confirms a putative MPME cyclase as a novel key enzyme essential for Chl biosynthesis and chloroplast membrane stability in rice.
Collapse
Affiliation(s)
- Zhonghua Sheng
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Yusong Lv
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wei Li
- Agricultural College of Hunan Agricultural University, Changsha, China
| | - Rongjian Luo
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Jianlong Wang
- Agricultural College of Hunan Agricultural University, Changsha, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
- * E-mail: (PH); (ST)
| | - Peisong Hu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
- * E-mail: (PH); (ST)
| |
Collapse
|
116
|
Aboulela M, Tanaka Y, Nishimura K, Mano S, Nishimura M, Ishiguro S, Kimura T, Nakagawa T. Development of an R4 dual-site (R4DS) gateway cloning system enabling the efficient simultaneous cloning of two desired sets of promoters and open reading frames in a binary vector for plant research. PLoS One 2017; 12:e0177889. [PMID: 28520787 PMCID: PMC5433782 DOI: 10.1371/journal.pone.0177889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
Vast numbers of proteins work cooperatively to exert their functions in various cells. In order to understand the functions and molecular mechanisms of these proteins in plants, analyses of transgenic plants that concomitantly express two protein-coding genes are often required. We developed a novel Gateway cloning technology-compatible binary vector system, the R4 dual-site (R4DS) Gateway cloning system, which enables the easy and efficient cloning of two desired sets of promoters and open reading frames (ORFs) into a binary vector using promoter and ORF entry clones. In this system, C-terminal fusions with 17 kinds of tags including visible reporters and epitope tags are available for each ORF, and selection by four kinds of resistance markers is possible. We verified that the R4DS Gateway cloning system functioned well in Arabidopsis thaliana by observing the expression and localization patterns of fluorescent proteins fused with organelle-targeting signals and driven by stomatal-lineage specific promoters. We also confirmed that the two cloning sites in the R4DS Gateway cloning system were equivalent and independently regulated. The results obtained indicate that the R4DS Gateway cloning system facilitates detailed comparisons of the expression patterns of two promoters as well as co-localization and interaction analyses of two proteins in specific cells in plants.
Collapse
Affiliation(s)
- Mostafa Aboulela
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, Matsue, Japan
- Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Yuji Tanaka
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, Matsue, Japan
| | - Kohji Nishimura
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, Matsue, Japan
- Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Shoji Mano
- Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Sumie Ishiguro
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tetsuya Kimura
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, Matsue, Japan
- Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- * E-mail:
| |
Collapse
|
117
|
Aboulela M, Tanaka Y, Nishimura K, Mano S, Kimura T, Nakagawa T. A dual-site gateway cloning system for simultaneous cloning of two genes for plant transformation. Plasmid 2017; 92:1-11. [PMID: 28499723 DOI: 10.1016/j.plasmid.2017.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023]
Abstract
Analyses of the subcellular localization of proteins and protein-protein interaction networks are essential to uncover the molecular basis of diverse biological processes in plants. To this end, we have created a Gateway cloning-compatible vector system, named dual-site (DS) Gateway cloning system to allow simple cloning of two expression cassettes in a binary vector and to express them simultaneously in plant cells. In the DS Gateway cloning system, (i) a moderate constitutive nopaline synthase promoter (Pnos), which is much suitable for localization analysis, is used to guide each expression cassette, (ii) four series of vectors with different plant resistance markers are established, (iii) N-terminal fusion with 6 fluorescent proteins and 7 epitope tags is available, (iv) both N- and C-terminal fusions with split enhanced yellow fluorescent protein (EYFP) are possible for efficient detection of protein-protein interactions using a bimolecular fluorescence complementation (BiFC) assay. The usefulness of the DS Gateway cloning system has been demonstrated by the analysis of the expression and the subcellular localization patterns of two Golgi proteins in stable expression system using A. thaliana, and by the analyses of interactions between subunits of coat protein complex II (COPII) both in transient and stable expression systems using Japanese leek and A. thaliana, respectively. The DS Gateway cloning system provides a multipurpose, efficient expression tool in gene function analyses and especially suitable for investigating interactions and subcellular localization of two proteins in living plant cells.
Collapse
Affiliation(s)
- Mostafa Aboulela
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, Matsue, Japan; Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan; Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Yuji Tanaka
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, Matsue, Japan
| | - Kohji Nishimura
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, Matsue, Japan; Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Shoji Mano
- Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Tetsuya Kimura
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, Matsue, Japan; Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan.
| |
Collapse
|
118
|
A new fluorescence-based method to monitor the pH in the thylakoid lumen using GFP variants. Biochem Biophys Res Commun 2017; 486:1-5. [DOI: 10.1016/j.bbrc.2016.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 01/13/2023]
|
119
|
Transformation of pomegranate ( Punica granatum l.) a difficult-to-transform tree. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
120
|
Grant TNL, De La Torre CM, Zhang N, Finer JJ. Synthetic introns help identify sequences in the 5' UTR intron of the Glycine max polyubiquitin (Gmubi) promoter that give increased promoter activity. PLANTA 2017; 245:849-860. [PMID: 28070655 DOI: 10.1007/s00425-016-2646-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/26/2016] [Indexed: 05/03/2023]
Abstract
MAIN CONCLUSION Specific sequences within the leader intron of a soybean polyubiquitin gene stimulated gene expression when placed either within a synthetic intron or upstream of a core promoter. The intron in the 5' untranslated region of the soybean polyubiquitin promoter, Gmubi, seems to contribute to the high activity of this promoter. To identify the stimulatory sequences within the intron, ten different sequential intronic sequences of 40 nt were isolated, cloned as tetrameric repeats and placed upstream of a minimal cauliflower mosaic virus 35S (35S) core promoter, which was used to control expression of the green fluorescent protein. Intron fragment tetramers were also cloned within a modified, native intron, creating a Synthetic INtron Cassette (SINC), which was then placed downstream of Gmubi and 35S core promoters. Intron fragment tetramers and SINC constructs were evaluated using transient expression in lima bean cotyledons and stable expression in soybean hairy roots. Intron fragments, used as tetramers upstream of the 35S core promoter, yielded up to 80 times higher expression than the core promoter in transient expression analyses and ten times higher expression in stably transformed hairy roots. Tetrameric intronic fragments, cloned downstream of the Gmubi and 35S core promoters and within the synthetic intron, also yielded increased transient and stable GFP expression that was up to 4 times higher than Gmubi alone and up to 40 times higher than the 35S core promoter alone. These intron fragments contain sequences that seem to act as promoter regulatory elements and may contribute to the increased expression observed with this native strong promoter. Intron regulatory elements and synthetic introns may provide additional tools for increasing transgene expression in plants.
Collapse
Affiliation(s)
- Trudi N L Grant
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA
- Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 2725 Binion Road, Apopka, FL, 32703-8504, USA
| | - Carola M De La Torre
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA
- Division of Plant Sciences, 315 Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Ning Zhang
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA
- Boyce Thompson Institute for Plant Research, Cornell University, 533 Tower Rd, Ithaca, NY, 14853, USA
| | - John J Finer
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA.
| |
Collapse
|
121
|
P gas, a Low-pH-Induced Promoter, as a Tool for Dynamic Control of Gene Expression for Metabolic Engineering of Aspergillus niger. Appl Environ Microbiol 2017; 83:AEM.03222-16. [PMID: 28087530 DOI: 10.1128/aem.03222-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/30/2016] [Indexed: 11/20/2022] Open
Abstract
The dynamic control of gene expression is important for adjusting fluxes in order to obtain desired products and achieve appropriate cell growth, particularly when the synthesis of a desired product drains metabolites required for cell growth. For dynamic gene expression, a promoter responsive to a particular environmental stressor is vital. Here, we report a low-pH-inducible promoter, Pgas, which promotes minimal gene expression at pH values above 5.0 but functions efficiently at low pHs, such as pH 2.0. First, we performed a transcriptional analysis of Aspergillus niger, an excellent platform for the production of organic acids, and we found that the promoter Pgas may act efficiently at low pH. Then, a gene for synthetic green fluorescent protein (sGFP) was successfully expressed by Pgas at pH 2.0, verifying the results of the transcriptional analysis. Next, Pgas was used to express the cis-aconitate decarboxylase (cad) gene of Aspergillus terreus in A. niger, allowing the production of itaconic acid at a titer of 4.92 g/liter. Finally, we found that Pgas strength was independent of acid type and acid ion concentration, showing dependence on pH only.IMPORTANCE The promoter Pgas can be used for the dynamic control of gene expression in A. niger for metabolic engineering to produce organic acids. This promoter may also be a candidate tool for genetic engineering.
Collapse
|
122
|
Isolation and characterization of a spotted leaf 32 mutant with early leaf senescence and enhanced defense response in rice. Sci Rep 2017; 7:41846. [PMID: 28139777 PMCID: PMC5282590 DOI: 10.1038/srep41846] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/29/2016] [Indexed: 12/20/2022] Open
Abstract
Leaf senescence is a complex biological process and defense responses play vital role for rice development, their molecular mechanisms, however, remain elusive in rice. We herein reported a rice mutant spotted leaf 32 (spl32) derived from a rice cultivar 9311 by radiation. The spl32 plants displayed early leaf senescence, identified by disintegration of chloroplasts as cellular evidence, dramatically decreased contents of chlorophyll, up-regulation of superoxide dismutase enzyme activity and malondialdehyde, as physiological characteristic, and both up-regulation of senescence-induced STAY GREEN gene and senescence-associated transcription factors, and down-regulation of photosynthesis-associated genes, as molecular indicators. Positional cloning revealed that SPL32 encodes a ferredoxin-dependent glutamate synthase (Fd-GOGAT). Compared to wild type, enzyme activity of GOGAT was significantly decreased, and free amino acid contents, particularly for glutamate and glutamine, were altered in spl32 leaves. Moreover, the mutant was subjected to uncontrolled oxidative stress due to over-produced reactive oxygen species and damaged scavenging pathways, in accordance with decreased photorespiration rate. Besides, the mutant showed higher resistance to Xanthomonas oryzae pv. Oryzae than its wild type, coupled with up-regulation of four pathogenesis-related marker genes. Taken together, our results highlight Fd-GOGAT is associated with the regulation of leaf senescence and defense responses in rice.
Collapse
|
123
|
Andrie RM, Martinez JP, Ciuffetti LM. Development ofToxAandToxBpromoter-driven fluorescent protein expression vectors for use in filamentous ascomycetes. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Lynda M. Ciuffetti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
124
|
Li C, Sako Y, Imai A, Nishiyama T, Thompson K, Kubo M, Hiwatashi Y, Kabeya Y, Karlson D, Wu SH, Ishikawa M, Murata T, Benfey PN, Sato Y, Tamada Y, Hasebe M. A Lin28 homologue reprograms differentiated cells to stem cells in the moss Physcomitrella patens. Nat Commun 2017; 8:14242. [PMID: 28128346 PMCID: PMC5290140 DOI: 10.1038/ncomms14242] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Both land plants and metazoa have the capacity to reprogram differentiated cells to stem cells. Here we show that the moss Physcomitrella patens Cold-Shock Domain Protein 1 (PpCSP1) regulates reprogramming of differentiated leaf cells to chloronema apical stem cells and shares conserved domains with the induced pluripotent stem cell factor Lin28 in mammals. PpCSP1 accumulates in the reprogramming cells and is maintained throughout the reprogramming process and in the resultant stem cells. Expression of PpCSP1 is negatively regulated by its 3′-untranslated region (3′-UTR). Removal of the 3′-UTR stabilizes PpCSP1 transcripts, results in accumulation of PpCSP1 protein and enhances reprogramming. A quadruple deletion mutant of PpCSP1 and three closely related PpCSP genes exhibits attenuated reprogramming indicating that the PpCSP genes function redundantly in cellular reprogramming. Taken together, these data demonstrate a positive role of PpCSP1 in reprogramming, which is similar to the function of mammalian Lin28. Land plants and metazoans are both able to reprogram differentiated cells to stem cells under certain circumstances. Here the authors show that the moss CSP1 protein, which shares conserved domains with the mammalian pluripotent stem cell factor Lin28, promotes reprogramming of leaf cells to apical stem cells.
Collapse
Affiliation(s)
- Chen Li
- National Institute for Basic Biology, Division of Evolutionary Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - Yusuke Sako
- National Institute for Basic Biology, Division of Evolutionary Biology, Okazaki 444-8585, Japan.,ERATO, Hasebe Reprogramming Evolution Project, Japan Science and Technology Agency, Okazaki 444-8585, Japan
| | - Akihiro Imai
- National Institute for Basic Biology, Division of Evolutionary Biology, Okazaki 444-8585, Japan.,ERATO, Hasebe Reprogramming Evolution Project, Japan Science and Technology Agency, Okazaki 444-8585, Japan
| | - Tomoaki Nishiyama
- ERATO, Hasebe Reprogramming Evolution Project, Japan Science and Technology Agency, Okazaki 444-8585, Japan.,Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Kanazawa 920-0934, Japan
| | - Kari Thompson
- National Institute for Basic Biology, Division of Evolutionary Biology, Okazaki 444-8585, Japan.,ERATO, Hasebe Reprogramming Evolution Project, Japan Science and Technology Agency, Okazaki 444-8585, Japan.,Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Minoru Kubo
- National Institute for Basic Biology, Division of Evolutionary Biology, Okazaki 444-8585, Japan.,ERATO, Hasebe Reprogramming Evolution Project, Japan Science and Technology Agency, Okazaki 444-8585, Japan
| | - Yuji Hiwatashi
- National Institute for Basic Biology, Division of Evolutionary Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - Yukiko Kabeya
- National Institute for Basic Biology, Division of Evolutionary Biology, Okazaki 444-8585, Japan
| | - Dale Karlson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Masaki Ishikawa
- National Institute for Basic Biology, Division of Evolutionary Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - Takashi Murata
- National Institute for Basic Biology, Division of Evolutionary Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - Philip N Benfey
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, USA
| | - Yoshikatsu Sato
- National Institute for Basic Biology, Division of Evolutionary Biology, Okazaki 444-8585, Japan.,ERATO, Hasebe Reprogramming Evolution Project, Japan Science and Technology Agency, Okazaki 444-8585, Japan
| | - Yosuke Tamada
- National Institute for Basic Biology, Division of Evolutionary Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Division of Evolutionary Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan.,ERATO, Hasebe Reprogramming Evolution Project, Japan Science and Technology Agency, Okazaki 444-8585, Japan
| |
Collapse
|
125
|
Zheng N, Song Z, Liu Y, Yin L, Cheng J. Gene delivery into isolated Arabidopsis thaliana protoplasts and intact leaves using cationic, α-helical polypeptide. Front Chem Sci Eng 2017. [DOI: 10.1007/s11705-017-1612-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
126
|
Liu W, Zhou Y, Li X, Wang X, Dong Y, Wang N, Liu X, Chen H, Yao N, Cui X, Jameel A, Wang F, Li H. Tissue-Specific Regulation of Gma-miR396 Family on Coordinating Development and Low Water Availability Responses. FRONTIERS IN PLANT SCIENCE 2017; 8:1112. [PMID: 28694817 PMCID: PMC5483475 DOI: 10.3389/fpls.2017.01112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/08/2017] [Indexed: 05/18/2023]
Abstract
Previously, it was reported that miR396s interact with growth-regulating factors (GRFs) to modulate plant growth, development, and stress resistance. In soybean, 11 gma-miR396 precursors (Pre-miR396a-k) were found, and 24 GmGRFs were predicted as targets of seven mature gma-miR396s (gma-miR396a/b/c/e/h/i/k). To explore the roles of the miR396-GRF module in low water availability response of soybean, we analyzed the expression of Pre-miR396a-k, and found that Pre-miR396a/i/bdgk/e/h were up-regulated in leaves and down-regulated in roots; on the contrary, GmGRF5/6/7/8/15/17/21 were down-regulated in leaves and GmGRF1/2/17/18/19/20/21/22/23/24 were up-regulated in roots of low water potential stressed soybean. Any one of gma-miR396a/b/c/e/h/i/k was able to interact with 20 GmGRFs (GmGRF1/2/6-11/13-24), confirming that this module represents a multi-to-multi network interaction. We generated Arabidopsis plants over-expressing each of the 11 gma-miR396 precursors (Pre-miR396a-k), and seven of them (miR396a/b/c/e/h/i/k-OE transgenic Arabidopsis) showed altered development. The low water availability of miR396a/b/c/e/h/i/k-OE was enhanced in leaves but reduced in seeds and roots. Contrary to previous reports, miR396a/b/c/i-OE seedlings showed lower survival rate than WT when recovering after rewatering under soil drying. In general, we believe our findings are valuable to understand the role of gma-miR396 family in coordinating development and low water availability responses, and can provide potential strategies and directions for soybean breeding programs to improve seed yield and plant drought tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Haiyan Li
- *Correspondence: Fawei Wang, Haiyan Li,
| |
Collapse
|
127
|
Wang Y, Ren Y, Zhou K, Liu L, Wang J, Xu Y, Zhang H, Zhang L, Feng Z, Wang L, Ma W, Wang Y, Guo X, Zhang X, Lei C, Cheng Z, Wan J. WHITE STRIPE LEAF4 Encodes a Novel P-Type PPR Protein Required for Chloroplast Biogenesis during Early Leaf Development. FRONTIERS IN PLANT SCIENCE 2017; 8:1116. [PMID: 28694820 PMCID: PMC5483476 DOI: 10.3389/fpls.2017.01116] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/09/2017] [Indexed: 05/18/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins comprise a large family in higher plants and perform diverse functions in organellar RNA metabolism. Despite the rice genome encodes 477 PRR proteins, the regulatory effects of PRR proteins on chloroplast development remains unknown. In this study, we report the functional characterization of the rice white stripe leaf4 (wsl4) mutant. The wsl4 mutant develops white-striped leaves during early leaf development, characterized by decreased chlorophyll content and malformed chloroplasts. Positional cloning of the WSL4 gene, together with complementation and RNA-interference tests, reveal that it encodes a novel P-family PPR protein with 12 PPR motifs, and is localized to chloroplast nucleoids. Quantitative RT-PCR analyses demonstrate that WSL4 is a low temperature response gene abundantly expressed in young leaves. Further expression analyses show that many nuclear- and plastid-encoded genes in the wsl4 mutant are significantly affected at the RNA and protein levels. Notably, the wsl4 mutant causes defects in the splicing of atpF, ndhA, rpl2, and rps12. Our findings identify WSL4 as a novel P-family PPR protein essential for chloroplast RNA group II intron splicing during early leaf development in rice.
Collapse
Affiliation(s)
- Ying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Kunneng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Linglong Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yang Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Long Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhiming Feng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Liwei Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yunlong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Jianmin Wan, ;,
| |
Collapse
|
128
|
Hiss M, Schneider L, Grosche C, Barth MA, Neu C, Symeonidi A, Ullrich KK, Perroud PF, Schallenberg-Rüdinger M, Rensing SA. Combination of the Endogenous lhcsr1 Promoter and Codon Usage Optimization Boosts Protein Expression in the Moss Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2017; 8:1842. [PMID: 29163577 PMCID: PMC5671511 DOI: 10.3389/fpls.2017.01842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/10/2017] [Indexed: 05/13/2023]
Abstract
The moss Physcomitrella patens is used both as an evo-devo model and biotechnological production system for metabolites and pharmaceuticals. Strong in vivo expression of genes of interest is important for production of recombinant proteins, e.g., selectable markers, fluorescent proteins, or enzymes. In this regard, the choice of the promoter sequence as well as codon usage optimization are two important inside factors to consider in order to obtain optimum protein accumulation level. To reliably quantify fluorescence, we transfected protoplasts with promoter:GFP fusion constructs and measured fluorescence intensity of living protoplasts in a plate reader system. We used the red fluorescent protein mCherry under 2x 35S promoter control as second reporter to normalize for different transfection efficiencies. We derived a novel endogenous promoter and compared deletion variants with exogenous promoters. We used different codon-adapted green fluorescent protein (GFP) genes to evaluate the influence of promoter choice and codon optimization on protein accumulation in P. patens, and show that the promoter of the gene of P. patens chlorophyll a/b binding protein lhcsr1 drives expression of GFP in protoplasts significantly (more than twofold) better than the commonly used 2x 35S promoter or the rice actin1 promoter. We identified a shortened 677 bp version of the lhcsr1 promoter that retains full activity in protoplasts. The codon optimized GFP yields significantly (more than twofold) stronger fluorescence signals and thus demonstrates that adjusting codon usage in P. patens can increase expression strength. In combination, new promotor and codon optimized GFP conveyed sixfold increased fluorescence signal.
Collapse
Affiliation(s)
- Manuel Hiss
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Lucas Schneider
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Christopher Grosche
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Melanie A. Barth
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Christina Neu
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | | | - Kristian K. Ullrich
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | | | | | - Stefan A. Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany
- *Correspondence: Stefan A. Rensing,
| |
Collapse
|
129
|
Lee JH, Jin S, Kim SY, Kim W, Ahn JH. A fast, efficient chromatin immunoprecipitation method for studying protein-DNA binding in Arabidopsis mesophyll protoplasts. PLANT METHODS 2017; 13:42. [PMID: 28539971 PMCID: PMC5441002 DOI: 10.1186/s13007-017-0192-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 05/16/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Binding of transcription factors to their target sequences is a primary step in the regulation of gene expression and largely determines gene regulatory networks. Chromatin immunoprecipitation (ChIP) is an indispensable tool used to investigate the binding of DNA-binding proteins (e.g., transcription factors) to their target sequences in vivo. ChIP assays require specific antibodies that recognize endogenous target transcription factors; however, in most cases, such specific antibodies are unavailable. To overcome this problem, many ChIP assays use transgenic plants that express epitope-tagged transcription factors and immunoprecipitate the protein with a tag-specific antibody. However, generating transgenic plants that stably express epitope-tagged proteins is difficult and time-consuming. RESULTS Here, we present a rapid, efficient ChIP protocol using transient expression in Arabidopsis mesophyll protoplasts that can be completed in 4 days. We provide optimized experimental conditions, including the amount of transfected DNA and the number of protoplasts. We also show that the efficiency of our ChIP protocol using protoplasts is comparable to that obtained using transgenic Arabidopsis plants. We propose that our ChIP method can be used to analyze in vivo interactions between tissue-specific transcription factors and their target sequences, to test the effect of genotype on the binding of a transcription factor within a protein complex to its target sequences, and to measure temperature-dependent binding of a transcription factor to its target sequence. CONCLUSIONS The rapid and simple nature of our ChIP assay using Arabidopsis mesophyll protoplasts facilitates the investigation of in vivo interactions between transcription factors and their target genes.
Collapse
Affiliation(s)
- Jeong Hwan Lee
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
- Department of Life Sciences, Chonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju, Jeollabuk-do 54896 Republic of Korea
| | - Suhyun Jin
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Sun Young Kim
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Wanhui Kim
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| |
Collapse
|
130
|
CHEN LJ, ZHANG L, QI WK, IRFAN M, LIN JW, MA H, GUO ZF, ZHONG M, LI TL. Characterization of the promoter region of the glycerol-3-phosphate-O-acyltransferase gene in Lilium pensylvanicum. Turk J Biol 2017. [DOI: 10.3906/biy-1611-56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
131
|
Bioengineering of the Plant Culture of Capsicum frutescens with Vanillin Synthase Gene for the Production of Vanillin. Mol Biotechnol 2016; 59:1-8. [DOI: 10.1007/s12033-016-9986-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
132
|
Zhang N, McHale LK, Finer JJ. A Leader Intron of a Soybean Elongation Factor 1A (eEF1A) Gene Interacts with Proximal Promoter Elements to Regulate Gene Expression in Synthetic Promoters. PLoS One 2016; 11:e0166074. [PMID: 27806110 PMCID: PMC5091777 DOI: 10.1371/journal.pone.0166074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022] Open
Abstract
Introns, especially the first intron in the 5' untranslated region (5'UTR), can significantly impact gene expression via intron-mediated enhancement (IME). In this study, we demonstrate the leader intron of a soybean elongation factor 1A (eEF1A) gene (GmScreamM8) was essential for the high activity of the native promoter. Furthermore, the interaction of the GmScreamM8 leader intron with regulatory element sequences from several soybean eEF1A promoters was studied using synthetic promoters, which consisted of element tetramers upstream of a core promoter used to regulate a green fluorescent protein (gfp) reporter gene. Element tetramers, placed upstream of a GmScreamM8 core promoter, showed very high activity using both transient expression in lima bean cotyledons and stable expression in soybean hairy roots, only if the native leader intron was included, suggesting an interaction between intronic sequences and promoter elements. Partial deletions of the leader intron showed that a 222 bp intronic sequence significantly contributed to very high levels of GFP expression. Generation of synthetic intron variants with a monomeric or trimeric repeat of the 222 bp intronic sequence, yielded almost two-fold higher expression compared to the original intron, while partial deletion of the 222 bp intronic repeated sequence significantly decreased gene expression, indicating that this intronic sequence was essential for the intron-element interaction enhancement.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, Ohio, United States of America
| | - Leah K. McHale
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - John J. Finer
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, Ohio, United States of America
| |
Collapse
|
133
|
Hashimoto M, Neriya Y, Keima T, Iwabuchi N, Koinuma H, Hagiwara-Komoda Y, Ishikawa K, Himeno M, Maejima K, Yamaji Y, Namba S. EXA1, a GYF domain protein, is responsible for loss-of-susceptibility to plantago asiatica mosaic virus in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:120-131. [PMID: 27402258 DOI: 10.1111/tpj.13265] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
One of the plant host resistance machineries to viruses is attributed to recessive alleles of genes encoding critical host factors for virus infection. This type of resistance, also referred to as recessive resistance, is useful for revealing plant-virus interactions and for breeding antivirus resistance in crop plants. Therefore, it is important to identify a novel host factor responsible for robust recessive resistance to plant viruses. Here, we identified a mutant from an ethylmethane sulfonate (EMS)-mutagenized Arabidopsis population which confers resistance to plantago asiatica mosaic virus (PlAMV, genus Potexvirus). Based on map-based cloning and single nucleotide polymorphism analysis, we identified a premature termination codon in a functionally unknown gene containing a GYF domain, which binds to proline-rich sequences in eukaryotes. Complementation analyses and robust resistance to PlAMV in a T-DNA mutant demonstrated that this gene, named Essential for poteXvirus Accumulation 1 (EXA1), is indispensable for PlAMV infection. EXA1 contains a GYF domain and a conserved motif for interaction with eukaryotic translation initiation factor 4E (eIF4E), and is highly conserved among monocot and dicot species. Analysis using qRT-PCR and immunoblotting revealed that EXA1 was expressed in all tissues, and was not transcriptionally responsive to PlAMV infection in Arabidopsis plants. Moreover, accumulation of PlAMV and a PlAMV-derived replicon was drastically diminished in the initially infected cells by the EXA1 deficiency. Accumulation of two other potexviruses also decreased in exa1-1 mutant plants. Our results provided a functional annotation to GYF domain-containing proteins by revealing the function of the highly conserved EXA1 gene in plant-virus interactions.
Collapse
Affiliation(s)
- Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takuya Keima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nozomu Iwabuchi
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroaki Koinuma
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuka Hagiwara-Komoda
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuya Ishikawa
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Misako Himeno
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kensaku Maejima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
134
|
Bencivenga S, Serrano-Mislata A, Bush M, Fox S, Sablowski R. Control of Oriented Tissue Growth through Repression of Organ Boundary Genes Promotes Stem Morphogenesis. Dev Cell 2016; 39:198-208. [PMID: 27666746 PMCID: PMC5084710 DOI: 10.1016/j.devcel.2016.08.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/14/2016] [Accepted: 08/24/2016] [Indexed: 12/16/2022]
Abstract
The origin of the stem is a major but poorly understood aspect of plant development, partly because the stem initiates in a relatively inaccessible region of the shoot apical meristem called the rib zone (RZ). We developed quantitative 3D image analysis and clonal analysis tools, which revealed that the Arabidopsis homeodomain protein REPLUMLESS (RPL) establishes distinct patterns of oriented cell division and growth in the central and peripheral regions of the RZ. A genome-wide screen for target genes connected RPL directly to many of the key shoot development pathways, including the development of organ boundaries; accordingly, mutation of the organ boundary gene LIGHT-SENSITIVE HYPOCOTYL 4 restored RZ function and stem growth in the rpl mutant. Our work opens the way to study a developmental process of importance to crop improvement and highlights how apparently simple changes in 3D organ growth can reflect more complex internal changes in oriented cell activities. Image and sector analysis revealed 3D growth patterns in early stem development Arabidopsis RPL controls oriented cell division and growth in the rib meristem RPL interacts with many of the key genes that regulate shoot organogenesis RPL controls oriented growth by directly repressing organ boundary genes
Collapse
Affiliation(s)
- Stefano Bencivenga
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Antonio Serrano-Mislata
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Max Bush
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Samantha Fox
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Robert Sablowski
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
135
|
Phan TT, Sun B, Niu JQ, Tan QL, Li J, Yang LT, Li YR. Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco. PLANT CELL REPORTS 2016; 35:1891-905. [PMID: 27316630 DOI: 10.1007/s00299-016-2004-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/25/2016] [Indexed: 06/06/2023]
Abstract
KEY MESSAGE Overexpression of SoSnRK2.1 improved drought tolerance and growth of tobacco plants. Sucrose non-fermenting1-related protein kinase 2 (SnRK2) is a key enzyme in regulating ABA signal transduction in plants, and it plays a significant role in response to multiple abiotic stresses. In this research, SoSnRK2.1 gene was cloned from sugarcane variety GT21 and characterized under various stresses. The cloned SoSnRK2.1 gene has a complete open reading frame of 1002 bp, encoding a peptide of 333 amino acids. The amino acid sequence of SoSnRK2.1 has high homology with those of Zea mays and Oryza sativa, which belongs to SnRK2 s families. The expression of SoSnRK2.1 under stresses of drought, PEG, and ABA indicated that this gene is involved in stress responses in sugarcane. To investigate the gene function, fusional SoSnRK2.1-GFP-pBI121 under control of CaMV 35S was transformed into tobacco plants. Growth and morphology of transgenic plants demonstrated that overexpression of SoSnRK2.1 enhanced drought tolerance in tobacco. Transgenic tobacco plants had lower levels of ion leakage (IL), and contents of maleic dialdehyde (MDA) and H2O2, with higher activities of three antioxidant enzymes, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and chlorophyll and relative water content (RWC) than those in wide type (WT) tobacco. SoSnRK2.1 was stably transmitted to the next generation via sexual reproduction. Though the data presented here are from a heterologous system, it is highly likely that SoSnRK2.1 is involved in the abiotic stress response in sugarcane and may be playing an important role in regulation of its growth.
Collapse
Affiliation(s)
- Thi-Thu Phan
- Agricultural College, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China
| | - Bo Sun
- Agricultural College, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China
| | - Jun-Qi Niu
- Agricultural College, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China
| | - Qin-Liang Tan
- Agricultural College, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China
| | - Jian Li
- Agricultural College, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China
| | - Li-Tao Yang
- Agricultural College, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China.
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Yang-Rui Li
- Agricultural College, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China.
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| |
Collapse
|
136
|
Kim CM, Dolan L. ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon. PLoS Genet 2016; 12:e1006211. [PMID: 27494519 PMCID: PMC4975483 DOI: 10.1371/journal.pgen.1006211] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 07/05/2016] [Indexed: 11/18/2022] Open
Abstract
Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6) Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms-monocots and eudicots-despite the dramatically different patterns of root hair cell development.
Collapse
Affiliation(s)
- Chul Min Kim
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Oxford Martin School, University of Oxford, Oxford, United Kingdom
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Oxford Martin School, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
137
|
Chen Y, Ma J, Miller AJ, Luo B, Wang M, Zhu Z, Ouwerkerk PBF. OsCHX14 is Involved in the K+ Homeostasis in Rice (Oryza sativa) Flowers. PLANT & CELL PHYSIOLOGY 2016; 57:1530-1543. [PMID: 27903806 DOI: 10.1093/pcp/pcw088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/26/2016] [Indexed: 05/22/2023]
Abstract
Previously we showed in the osjar1 mutants that the lodicule senescence which controls the closing of rice flowers was delayed. This resulted in florets staying open longer when compared with the wild type. The gene OsJAR1 is silenced in osjar1 mutants and is a key member of the jasmonic acid (JA) signaling pathway. We found that K concentrations in lodicules and flowers of osjar1-2 were significantly elevated compared with the wild type, indicating that K+ homeostasis may play a role in regulating the closure of rice flowers. The cation/H+ exchanger (CHX) family from rice was screened for potential K+ transporters involved as many members of this family in Arabidopsis were exclusively or preferentially expressed in flowers. Expression profiling confirmed that among 17 CHX genes in rice, OsCHX14 was the only member that showed an expression polymorphism, not only in osjar1 mutants but also in RNAi (RNA interference) lines of OsCOI1, another key member of the JA signaling pathway. This suggests that the expression of OsCHX14 is regulated by the JA signaling pathway. Green fluorescent protein (GFP)-tagged OsCHX14 protein was preferentially localized to the endoplasmic reticulum. Promoter-β-glucuronidase (GUS) analysis of transgenic rice revealed that OsCHX14 is mainly expressed in lodicules and the region close by throughout the flowering process. Characterization in yeast and Xenopus laevis oocytes verified that OsCHX14 is able to transport K+, Rb+ and Cs+ in vivo. Our data suggest that OsCHX14 may play an important role in K+ homeostasis during flowering in rice.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
- Department of Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Jingkun Ma
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Anthony J Miller
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Bingbing Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 219500, China
| | - Mei Wang
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
- TNO Quality of Life, Zernikedreef 9, 2333 CK Leiden, PO Box 2215, 2301 CE Leiden, The Netherlands
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Pieter B F Ouwerkerk
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
138
|
Hirano T, Tanidokoro K, Shimizu Y, Kawarabayasi Y, Ohshima T, Sato M, Tadano S, Ishikawa H, Takio S, Takechi K, Takano H. Moss Chloroplasts Are Surrounded by a Peptidoglycan Wall Containing D-Amino Acids. THE PLANT CELL 2016; 28:1521-32. [PMID: 27325639 PMCID: PMC4981129 DOI: 10.1105/tpc.16.00104] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/11/2016] [Indexed: 05/08/2023]
Abstract
It is believed that the plastids in green plants lost peptidoglycan (i.e., a bacterial cell wall-containing d-amino acids) during their evolution from an endosymbiotic cyanobacterium. Although wall-like structures could not be detected in the plastids of green plants, the moss Physcomitrella patens has the genes required to generate peptidoglycan (Mur genes), and knocking out these genes causes defects in chloroplast division. Here, we generated P patens knockout lines (∆Pp-ddl) for a homolog of the bacterial peptidoglycan-synthetic gene encoding d-Ala:d-Ala ligase. ∆Pp-ddl had a macrochloroplast phenotype, similar to other Mur knockout lines. The addition of d-Ala-d-Ala (DA-DA) to the medium suppressed the appearance of giant chloroplasts in ∆Pp-ddl, but the addition of l-Ala-l-Ala (LA-LA), DA-LA, LA-DA, or d-Ala did not. Recently, a metabolic method for labeling bacterial peptidoglycan was established using ethynyl-DA-DA (EDA-DA) and click chemistry to attach an azide-modified fluorophore to the ethynyl group. The ∆Pp-ddl line complemented with EDA-DA showed that moss chloroplasts are completely surrounded by peptidoglycan. Our findings strongly suggest that the moss plastids have a peptidoglycan wall containing d-amino acids. By contrast, no plastid phenotypes were observed in the T-DNA tagged ddl mutant lines of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Takayuki Hirano
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Koji Tanidokoro
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Yasuhiro Shimizu
- Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yutaka Kawarabayasi
- Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Toshihisa Ohshima
- Faculty of Engineering, Osaka Institute of Technology, Asahi-ku, Osaka 535-8585, Japan
| | - Momo Sato
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Shinji Tadano
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Hayato Ishikawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Susumu Takio
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan Center for Marine Environment Studies, Kumamoto University, Kumamoto 860-8555, Japan
| | - Katsuaki Takechi
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Hiroyoshi Takano
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
139
|
Zheng W, Zheng H, Zhao X, Zhang Y, Xie Q, Lin X, Chen A, Yu W, Lu G, Shim WB, Zhou J, Wang Z. Retrograde trafficking from the endosome to the trans-Golgi network mediated by the retromer is required for fungal development and pathogenicity in Fusarium graminearum. THE NEW PHYTOLOGIST 2016; 210:1327-1343. [PMID: 26875543 DOI: 10.1111/nph.13867] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
In eukaryotes, the retromer is an endosome-localized complex involved in protein retrograde transport. However, the role of such intracellular trafficking events in pathogenic fungal development and pathogenicity remains unclear. The role of the retromer complex in Fusarium graminearum was investigated using cell biological and genetic methods. We observed the retromer core component FgVps35 (Vacuolar Protein Sorting 35) in the cytoplasm as fast-moving puncta. FgVps35-GFP co-localized with both early and late endosomes, and associated with the trans-Golgi network (TGN), suggesting that FgVps35 functions at the donor endosome membrane to mediate TGN trafficking. Disruption of microtubules with nocodazole significantly restricted the transportation of FgVps35-GFP and resulted in severe germination and growth defects. Mutation of FgVPS35 not only mimicked growth defects induced by pharmacological treatment, but also affected conidiation, ascospore formation and pathogenicity. Using yeast two-hybrid assays, we determined the interactions among FgVps35, FgVps26, FgVps29, FgVps17 and FgVps5 which are analogous to the yeast retromer complex components. Deletion of any one of these genes resulted in similar phenotypic defects to those of the ΔFgvps35 mutant and disrupted the stability of the complex. Overall, our results provide the first clear evidence of linkage between the retrograde transport mediated by the retromer complex and virulence in F. graminearum.
Collapse
Affiliation(s)
- Wenhui Zheng
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huawei Zheng
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu Zhao
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Zhang
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiurong Xie
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolian Lin
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahai Chen
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenying Yu
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guodong Lu
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA
| | - Jie Zhou
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zonghua Wang
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
140
|
Zhao DS, Zhang CQ, Li QF, Yang QQ, Gu MH, Liu QQ. A residue substitution in the plastid ribosomal protein L12/AL1 produces defective plastid ribosome and causes early seedling lethality in rice. PLANT MOLECULAR BIOLOGY 2016; 91:161-77. [PMID: 26873698 DOI: 10.1007/s11103-016-0453-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/08/2016] [Indexed: 05/25/2023]
Abstract
The plastid ribosome is essential for chloroplast biogenesis as well as seedling formation. As the plastid ribosome closely resembles the prokaryotic 70S ribosome, many plastid ribosomal proteins (PRPs) have been identified in higher plants. However, their assembly in the chloroplast ribosome in rice remains unclear. In the present study, we identified a novel rice mutant, albino lethal 1 (al1), from a chromosome segment substitution line population. The al1 mutant displayed an albino phenotype at the seedling stage and did not survive past the three-leaf stage. No other apparent differences in plant morphology were observed in the al1 mutant. The albino phenotype of the al1 mutant was associated with decreased chlorophyll content and abnormal chloroplast morphology. Using fine mapping, AL1 was shown to encode the PRPL12, a protein localized in the chloroplasts of rice, and a spontaneous single-nucleotide mutation (C/T), resulting in a residue substitution from leucine in AL1 to phenylalanine in al1, was found to be responsible for the early seedling lethality. This point mutation is located at the L10 interface feature of the L12/AL1 protein. Yeast two-hybrid analysis showed that there was no physical interaction between al1 and PRPL10. In addition, the mutation had little effect on the transcript abundance of al1, but had a remarkable effect on the protein abundance of al1 and transcript abundance of chloroplast biogenesis-related and photosynthesis-related genes. These results provide a first glimpse into the molecular details of L12's function in rice.
Collapse
Affiliation(s)
- Dong-Sheng Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Chang-Quan Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qian-Feng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qing-Qing Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Ming-Hong Gu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qiao-Quan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
141
|
Ding B, Yuan YW. Testing the utility of fluorescent proteins in Mimulus lewisii by an Agrobacterium-mediated transient assay. PLANT CELL REPORTS 2016; 35:771-777. [PMID: 26795141 DOI: 10.1007/s00299-015-1919-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/16/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
The Agrobacterium -mediated transient expression assay by leaf infiltration in Mimulus lewisii is robust. Fluorescent proteins EGFP, EYFP and DsRed give bright fluorescence signals in the infiltrated tissue. Mimulus lewisii is an emerging developmental genetic model system. Recently developed genomic and genetic resources and a stable transformation protocol have greatly facilitated the identification and functional characterization of genes controlling the development of ecologically important floral traits using this species. To further expedite gene and protein function analyses in M. lewisii, we adopted and simplified the Agrobacterium-mediated transient gene expression method routinely used in tobacco plants. With the validated transient assay, we examined the performance of fluorescent proteins EGFP, EYFP and DsRed in M. lewisii. All three proteins gave bright fluorescence signals when transiently expressed in agroinfiltrated leaves. Furthermore, we demonstrated the utility of fluorescent proteins in M. lewisii by showing the nuclear localization of Reduced Carotenoid Pigmentation 1 (RCP1), a recently discovered R2R3-MYB transcription factor that regulates carotenoid pigmentation during flower development. Both the transient assay and the fluorescent proteins are valuable additions to the M. lewisii toolbox, making this emerging genetic and developmental model system even more powerful.
Collapse
Affiliation(s)
- Baoqing Ding
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, 06269, USA.
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, 06269, USA
| |
Collapse
|
142
|
Wang X, Cheng Z, Zhao Z, Gan L, Qin R, Zhou K, Ma W, Zhang B, Wang J, Zhai H, Wan J. BRITTLE SHEATH1 encoding OsCYP96B4 is involved in secondary cell wall formation in rice. PLANT CELL REPORTS 2016; 35:745-55. [PMID: 26685666 DOI: 10.1007/s00299-015-1916-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE Mutation of BSH1 leads to brittle sheath phenotype and reduction of very-long-chain fatty acids and their derivatives in wax. The cell wall plays an important role in plant mechanical strength. Several brittle culm mutants have been identified and characterized in rice. Here, we characterized an anther culture-derived rice brittle sheath mutant, named bsh1 and isolated BSH1 via map-based strategy. BSH1 encodes OsCYP96B4 protein, which was localized on ER membrane in the protoplast transient assay. BSH1 is mainly expressed in developing vascular tissues and the cells in which cell wall secondary thickening is occurring. Mutation in bsh1 causes changes in cell wall composition by affecting the expression of cell wall-related genes. Moreover, bsh1 shows reduced amounts of very-long-chain fatty acids and their derivatives in wax rather than the medium-chain fatty acids. In summary, BSH1 functions mainly in secondary cell wall formation, and probably in wax biosynthesis in an unidentified mechanism.
Collapse
Affiliation(s)
- Xiaole Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lu Gan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruizhen Qin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kunneng Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huqu Zhai
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
143
|
Nakatsuka T, Saito M, Nishihara M. Functional characterization of duplicated B-class MADS-box genes in Japanese gentian. PLANT CELL REPORTS 2016; 35:895-904. [PMID: 26769577 DOI: 10.1007/s00299-015-1930-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
The heterodimer formation between B-class MADS-box proteins of GsAP3a and GsPI2 proteins plays a core role for petal formation in Japanese gentian plants. We previously isolated six B-class MADS-box genes (GsAP3a, GsAP3b, GsTM6, GsPI1, GsPI2, and GsPI3) from Japanese gentian (Gentiana scabra). To study the roles of these MADS-box genes in determining floral organ identities, we investigated protein-protein interactions among them and produced transgenic Arabidopsis and gentian plants overexpressing GsPI2 alone or in combination with GsAP3a or GsTM6. Yeast two-hybrid and bimolecular fluorescence complementation analyses revealed that among the GsPI proteins, GsPI2 interacted with both GsAP3a and GsTM6, and that these heterodimers were localized to the nuclei. The heterologous expression of GsPI2 partially converted sepals into petaloid organs in transgenic Arabidopsis, and this petaloid conversion phenomenon was accelerated by combined expression with GsAP3a but not with GsTM6. In contrast, there were no differences in morphology between vector-control plants and transgenic Arabidopsis plants expressing GsAP3a or GsTM6 alone. Transgenic gentian ectopically expressing GsPI2 produced an elongated tubular structure that consisted of an elongated petaloid organ in the first whorl and stunted inner floral organs. These results imply that the heterodimer formation between GsPI2 and GsAP3a plays a core role in determining petal and stamen identities in Japanese gentian, but other B-function genes might be important for the complete development of petal organs.
Collapse
Affiliation(s)
- Takashi Nakatsuka
- Graduated School of Agriculture, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan
| | - Misa Saito
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan
| | - Masahiro Nishihara
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan.
| |
Collapse
|
144
|
Ishishita K, Suetsugu N, Hirose Y, Higa T, Doi M, Wada M, Matsushita T, Gotoh E. Functional characterization of blue-light-induced responses and PHOTOTROPIN 1 gene in Welwitschia mirabilis. JOURNAL OF PLANT RESEARCH 2016; 129:175-87. [PMID: 26858202 DOI: 10.1007/s10265-016-0790-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/04/2016] [Indexed: 05/05/2023]
Abstract
The blue light (BL) receptor phototropin (phot) is specifically found in green plants; it regulates various BL-induced responses such as phototropism, chloroplast movement, stomatal opening, and leaf flattening. In Arabidopsis thaliana, two phototropins--phot1 and phot2--respond to blue light in overlapping but distinct ways. These BL-receptor-mediated responses enhance the photosynthetic activity of plants under weak light and minimize photodamage under strong light conditions. Welwitschia mirabilis Hook.f. found in the Namib Desert, and it has adapted to severe environmental stresses such as limiting water and strong sunlight. Although the plant has physiologically and ecologically unique features, it is unknown whether phototropin is functional in this plant. In this study, we assessed the functioning of phot-mediated BL responses in W. mirabilis. BL-dependent phototropism and stomatal opening was observed but light-dependent chloroplast movement was not detected. We performed a functional analysis of the PHOT1 gene of W. mirabilis, WmPHOT1, in Arabidopsis thaliana. We generated transgenic A. thaliana lines expressing WmPHOT1 in a phot1 phot2 double mutant background. Several Wmphot1 transgenic plants showed normal growth, although phot1 phot2 double mutant plants showed stunted growth. Furthermore, Wmphot1 transgenic plants showed normal phot1-mediated responses including phototropism, chloroplast accumulation, stomatal opening, and leaf flattening, but lacked the chloroplast avoidance response that is specifically mediated by phot2. Thus, our findings indicate that W. mirabilis possesses typical phot-mediated BL responses that were at least partially mediated by functional phototropin 1, an ortholog of Atphot1.
Collapse
Affiliation(s)
- Kazuhiro Ishishita
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka, 812-8581, Japan
| | - Noriyuki Suetsugu
- Department of Biology, Faculty of Science, Kyushu University, Hakozaki, Fukuoka, 812-8581, Japan
- Department of Plant Gene and Totipotency, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Yuki Hirose
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka, 812-8581, Japan
| | - Takeshi Higa
- Department of Biology, Faculty of Science, Kyushu University, Hakozaki, Fukuoka, 812-8581, Japan
- Department of Plant Gene and Totipotency, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Michio Doi
- Faculty of Art and Science, Kyushu University, Motooka, Fukuoka, 819-0395, Japan
| | - Masamitsu Wada
- Department of Biology, Faculty of Science, Kyushu University, Hakozaki, Fukuoka, 812-8581, Japan
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Tomonao Matsushita
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka, 812-8581, Japan
- PRESTO, JST, Saitama, 332-0012, Japan
| | - Eiji Gotoh
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka, 812-8581, Japan.
| |
Collapse
|
145
|
Seok HY, Woo DH, Park HY, Lee SY, Tran HT, Lee EH, Vu Nguyen L, Moon YH. AtC3H17, a Non-Tandem CCCH Zinc Finger Protein, Functions as a Nuclear Transcriptional Activator and Has Pleiotropic Effects on Vegetative Development, Flowering and Seed Development in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:603-15. [PMID: 26858286 DOI: 10.1093/pcp/pcw013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/13/2016] [Indexed: 05/21/2023]
Abstract
Despite increasing reports that CCCH zinc finger proteins function in plant development and stress responses, the functions and molecular aspects of many CCCH zinc finger proteins remain uncharacterized. Here, we characterized the biological and molecular functions of AtC3H17, a unique Arabidopsis gene encoding a non-tandem CCCH zinc finger protein. AtC3H17 was ubiquitously expressed throughout the life cycle of Arabidopsis plants and their organs. The rate and ratio of seed germination of atc3h17 mutants were slightly slower and lower, respectively, than those of the wild type (WT), whereas AtC3H17-overexpressing transgenic plants (OXs) showed an enhanced germination rate. atc3h17 mutant seedlings were smaller and lighter than WT seedlings while AtC3H17 OX seedlings were larger and heavier. In regulation of flowering time, atc3h17 mutants showed delayed flowering, whereas AtC3H17 OXs showed early flowering compared with the WT. In addition, overexpression of AtC3H17 affected seed development, displaying abnormalities compared with the WT. AtC3H17 protein was localized to the nucleus and showed transcriptional activation activity in yeast and Arabidopsis protoplasts. The N-terminal region of AtC3H17, containing a conserved EELR-like motif, was necessary for transcriptional activation activity, and the two conserved glutamate residues in the EELR-like motif played an important role in transcriptional activation activity. Real-time PCR and transactivation analyses showed that AtC3H17 might be involved in seed development via transcriptional activation of OLEO1, OLEO2 and CRU3. Our results suggest that AtC3H17 has pleiotropic effects on vegetative development such as seed germination and seedling growth, flowering and seed development, and functions as a nuclear transcriptional activator in Arabidopsis.
Collapse
Affiliation(s)
- Hye-Yeon Seok
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Korea These authors contributed equally to this work
| | - Dong-Hyuk Woo
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Korea These authors contributed equally to this work
| | - Hee-Yeon Park
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Korea
| | - Sun-Young Lee
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Korea
| | - Huong T Tran
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Korea
| | - Eun-Hye Lee
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Korea
| | - Linh Vu Nguyen
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Korea
| | - Yong-Hwan Moon
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Korea
| |
Collapse
|
146
|
Bodnar AL, Schroder MN, Scott MP. Recurrent Selection for Transgene Activity Levels in Maize Results in Proxy Selection for a Native Gene with the Same Promoter. PLoS One 2016; 11:e0148587. [PMID: 26895451 PMCID: PMC4760676 DOI: 10.1371/journal.pone.0148587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/19/2016] [Indexed: 11/28/2022] Open
Abstract
High activity levels of a transgene can be very useful, making a transgene easier to evaluate for safety and efficacy. High activity levels can also increase the economic benefit of the production of high value proteins in transgenic plants. The goal of this research is to determine if recurrent selection for activity of a transgene will result in higher activity, and if selection for activity of a transgene controlled by a native promoter will also increase protein levels of the native gene with the same promoter. To accomplish this goal we used transgenic maize containing a construct encoding green fluorescent protein controlled by the promoter for the maize endosperm-specific 27 kDa gamma zein seed storage protein. We carried out recurrent selection for fluorescence intensity in two breeding populations. After three generations of selection, both selected populations were significantly more fluorescent and had significantly higher levels of 27 kDa gamma zein than the unselected control populations. These higher levels of the 27 kDa gamma zein occurred independently of the presence of the transgene. The results show that recurrent selection can be used to increase activity of a transgene and that selection for a transgene controlled by a native promoter can increase protein levels of the native gene with the same promoter via proxy selection. Moreover, the increase in native gene protein level is maintained in the absence of the transgene, demonstrating that proxy selection can be used to produce non-transgenic plants with desired changes in gene expression.
Collapse
Affiliation(s)
- Anastasia L. Bodnar
- Iowa State University Interdepartmental Genetics Program, Ames, Iowa, United States of America
| | - Megan N. Schroder
- Iowa State University Interdepartmental Genetics Program, Ames, Iowa, United States of America
| | - M. Paul Scott
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, Iowa, United States of America
| |
Collapse
|
147
|
Binkert M, Crocco CD, Ekundayo B, Lau K, Raffelberg S, Tilbrook K, Yin R, Chappuis R, Schalch T, Ulm R. Revisiting chromatin binding of the Arabidopsis UV-B photoreceptor UVR8. BMC PLANT BIOLOGY 2016; 16:42. [PMID: 26864020 PMCID: PMC4750278 DOI: 10.1186/s12870-016-0732-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/06/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plants perceive UV-B through the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor and UVR8 activation leads to changes in gene expression such as those associated with UV-B acclimation and stress tolerance. Albeit functionally unrelated, UVR8 shows some homology with RCC1 (Regulator of Chromatin Condensation 1) proteins from non-plant organisms at the sequence level. These proteins act as guanine nucleotide exchange factors for Ran GTPases and bind chromatin via histones. Subsequent to the revelation of this sequence homology, evidence was presented showing that UVR8 activity involves interaction with chromatin at the loci of some target genes through histone binding. This suggested a UVR8 mode-of-action intimately and directly linked with gene transcription. However, several aspects of UVR8 chromatin association remained undefined, namely the impact of UV-B on the process and how UVR8 chromatin association related to the transcription factor ELONGATED HYPOCOTYL 5 (HY5), which is important for UV-B signalling and has overlapping chromatin targets. Therefore, we have investigated UVR8 chromatin association in further detail. RESULTS Unlike the claims of previous studies, our chromatin immunoprecipitation (ChIP) experiments do not confirm UVR8 chromatin association. In contrast to human RCC1, recombinant UVR8 also does not bind nucleosomes in vitro. Moreover, fusion of a VP16 activation domain to UVR8 did not alter expression of proposed UVR8 target genes in transient gene expression assays. Finally, comparison of the Drosophila DmRCC1 and the Arabidopsis UVR8 crystal structures revealed that critical histone- and DNA-interaction residues apparent in DmRCC1 are not conserved in UVR8. CONCLUSION This has led us to conclude that the cellular activity of UVR8 likely does not involve its specific binding to chromatin at target genes.
Collapse
Affiliation(s)
- Melanie Binkert
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Carlos D Crocco
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Babatunde Ekundayo
- Department of Molecular Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Kelvin Lau
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Sarah Raffelberg
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Kimberley Tilbrook
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
- Present Address: CSIRO Agriculture, Canberra, Australia.
| | - Ruohe Yin
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Richard Chappuis
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Thomas Schalch
- Department of Molecular Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.
| | - Roman Ulm
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
148
|
Boehm CR, Ueda M, Nishimura Y, Shikanai T, Haseloff J. A Cyan Fluorescent Reporter Expressed from the Chloroplast Genome of Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2016; 57:291-9. [PMID: 26634291 PMCID: PMC4788411 DOI: 10.1093/pcp/pcv160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/21/2015] [Indexed: 05/10/2023]
Abstract
Recently, the liverwort Marchantia polymorpha has received increasing attention as a basal plant model for multicellular studies. Its ease of handling, well-characterized plastome and proven protocols for biolistic plastid transformation qualify M. polymorpha as an attractive platform to study the evolution of chloroplasts during the transition from water to land. In addition, chloroplasts of M. polymorpha provide a convenient test-bed for the characterization of genetic elements involved in plastid gene expression due to the absence of mechanisms for RNA editing. While reporter genes have proven valuable to the qualitative and quantitative study of gene expression in chloroplasts, expression of green fluorescent protein (GFP) in chloroplasts of M. polymorpha has proven problematic. We report the design of a codon-optimized gfp varian, mturq2cp, which allowed successful expression of a cyan fluorescent protein under control of the tobacco psbA promoter from the chloroplast genome of M. polymorpha. We demonstrate the utility of mturq2cp in (i) early screening for transplastomic events following biolistic transformation of M. polymorpha spores; (ii) visualization of stromules as elements of plastid structure in Marchantia; and (iii) quantitative microscopy for the analysis of promoter activity.
Collapse
Affiliation(s)
- Christian R Boehm
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Minoru Ueda
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan Present address: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045 Japan
| | - Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, 102-0076 Japan
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
149
|
Zhang L, Ren Y, Lu B, Yang C, Feng Z, Liu Z, Chen J, Ma W, Wang Y, Yu X, Wang Y, Zhang W, Wang Y, Liu S, Wu F, Zhang X, Guo X, Bao Y, Jiang L, Wan J. FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:633-47. [PMID: 26608643 PMCID: PMC4737065 DOI: 10.1093/jxb/erv469] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In cereal crops, starch synthesis and storage depend mainly on a specialized class of plastids, termed amyloplasts. Despite the importance of starch, the molecular machinery regulating starch synthesis and amyloplast development remains largely unknown. Here, we report the characterization of the rice (Oryza sativa) floury endosperm7 (flo7) mutant, which develops a floury-white endosperm only in the periphery and not in the inner portion. Consistent with the phenotypic alternation in flo7 endosperm, the flo7 mutant had reduced amylose content and seriously disrupted amylopectin structure only in the peripheral endosperm. Notably, flo7 peripheral endosperm cells showed obvious defects in compound starch grain development. Map-based cloning of FLO7 revealed that it encodes a protein of unknown function. FLO7 harbors an N-terminal transit peptide capable of targeting functional FLO7 fused to green fluorescent protein to amyloplast stroma in developing endosperm cells, and a domain of unknown function 1338 (DUF1338) that is highly conserved in green plants. Furthermore, our combined β-glucuronidase activity and RNA in situ hybridization assays showed that the FLO7 gene was expressed ubiquitously but exhibited a specific expression in the endosperm periphery. Moreover, a set of in vivo experiments demonstrated that the missing 32 aa in the flo7 mutant protein are essential for the stable accumulation of FLO7 in the endosperm. Together, our findings identify FLO7 as a unique plant regulator required for starch synthesis and amyloplast development within the peripheral endosperm and provide new insights into the spatial regulation of endosperm development in rice.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Bingyue Lu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunyan Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhiming Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhou Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jun Chen
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Weiwei Ma
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Ying Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiaowen Yu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenwei Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fuqing Wu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xin Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
150
|
Fernández-Calvino L, Guzmán-Benito I, Del Toro FJ, Donaire L, Castro-Sanz AB, Ruíz-Ferrer V, Llave C. Activation of senescence-associated Dark-inducible (DIN) genes during infection contributes to enhanced susceptibility to plant viruses. MOLECULAR PLANT PATHOLOGY 2016; 17:3-15. [PMID: 25787925 PMCID: PMC6638341 DOI: 10.1111/mpp.12257] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Virus infections in plants cause changes in host gene expression that are common to other environmental stresses. In this work, we found extensive overlap in the transcriptional responses between Arabidopsis thaliana plants infected with Tobacco rattle virus (TRV) and plants undergoing senescence. This is exemplified by the up-regulation during infection of several senescence-associated Dark-inducible (DIN) genes, including AtDIN1 (Senescence 1, SEN1), AtDIN6 (Asparagine synthetase 1, AtASN1) and AtDIN11. DIN1, DIN6 and DIN11 homologues were also activated in Nicotiana benthamiana in response to TRV and Potato virus X (PVX) infection. Reduced TRV levels in RNA interference (RNAi) lines targeting AtDIN11 indicate that DIN11 is an important modulator of susceptibility to TRV in Arabidopsis. Furthermore, low accumulation of TRV in Arabidopsis protoplasts from RNAi lines suggests that AtDIN11 supports virus multiplication in this species. The effect of DIN6 on virus accumulation was negligible in Arabidopsis, perhaps as a result of gene or functional redundancy. However, TRV-induced silencing of NbASN, the DIN6 homologue in N. benthamiana, compromises TRV and PVX accumulation in systemically infected leaves. Interestingly, NbASN inactivation correlates with the appearance of morphological defects in infected leaves. We found that DIN6 and DIN11 regulate virus multiplication in a step prior to the activation of plant defence responses. We hypothesize on the possible roles of DIN6 and DIN11 during virus infection.
Collapse
Affiliation(s)
- Lourdes Fernández-Calvino
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Irene Guzmán-Benito
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Francisco J Del Toro
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Livia Donaire
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana B Castro-Sanz
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Virginia Ruíz-Ferrer
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - César Llave
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| |
Collapse
|