101
|
Controlling Wolbachia Transmission and Invasion Dynamics among Aedes Aegypti Population via Impulsive Control Strategy. Symmetry (Basel) 2021. [DOI: 10.3390/sym13030434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work is devoted to analyzing an impulsive control synthesis to maintain the self-sustainability of Wolbachia among Aedes Aegypti mosquitoes. The present paper provides a fractional order Wolbachia invasive model. Through fixed point theory, this work derives the existence and uniqueness results for the proposed model. Also, we performed a global Mittag-Leffler stability analysis via Linear Matrix Inequality theory and Lyapunov theory. As a result of this controller synthesis, the sustainability of Wolbachia is preserved and non-Wolbachia mosquitoes are eradicated. Finally, a numerical simulation is established for the published data to analyze the nature of the proposed Wolbachia invasive model.
Collapse
|
102
|
Meganck RM, Baric RS. Developing therapeutic approaches for twenty-first-century emerging infectious viral diseases. Nat Med 2021; 27:401-410. [PMID: 33723456 DOI: 10.1038/s41591-021-01282-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 01/31/2023]
Abstract
The twenty-first century has already recorded more than ten major epidemic or pandemic virus emergence events, including the ongoing and devastating coronavirus disease 2019 (COVID-19) pandemic. As viral disease emergence is expected to accelerate, these data dictate a need for proactive approaches to develop broadly active family-specific and cross-family therapeutics for use in future disease outbreaks. Emphasis should focus not only on the development of broad-spectrum small-molecule and antibody direct-acting antivirals, but also on host-factor therapeutics, including repurposing previously approved or in-pipeline drugs. Another new class of therapeutics with great antiviral therapeutic potential is RNA-based therapeutics. Rather than only focusing on known risks, dedicated efforts must be made toward pre-emptive research focused on outbreak-prone virus families, ultimately offering a strategy to shorten the gap between outbreak and response. Emphasis should also focus on orally available drugs for outpatient use, if possible, and on identifying combination therapies that combat viral and immune-mediated pathologies, extend the effectiveness of therapeutic windows and reduce drug resistance. While such an undertaking will require new vision, dedicated funding and private, federal and academic partnerships, this approach offers hope that global populations need never experience future pandemics such as COVID-19.
Collapse
Affiliation(s)
- Rita M Meganck
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
103
|
Ribeiro IM, Souto PCS, Borbely AU, Tanabe ELL, Cadavid A, Alvarez AM, Bueno J, Agudelo O, Robles RG, Ayala-Ramírez P, Sacerdoti F, Szasz T, Damiano AE, Ibarra C, Escudero C, Lima VV, Giachini FR. The limited knowledge of placental damage due to neglected infections: ongoing problems in Latin America. Syst Biol Reprod Med 2021; 66:151-169. [PMID: 32482148 DOI: 10.1080/19396368.2020.1753850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The placenta works as a selective barrier, protecting the fetus from potential infections that may affect the maternal organism during pregnancy. In this review, we will discuss several challenging infections that are common within Latin American countries and that may affect the maternal-fetal interface and pose risks to fetal development. Specifically, we will focus on emerging infectious diseases including the arboviruses, malaria, leishmaniasis, and the bacterial foodborne disease caused by Shiga toxin-producing Escherichia coli. We will also highlight some topics of interest currently being studied by research groups that comprise an international effort aimed at filling the knowledge gaps in this field. These topics address the relationship between exposure to microorganisms and placental abnormalities, congenital anomalies, and complications of pregnancy. ABBREVIATIONS ADE: antibody-dependent enhancement; CCL2: monocyte chemoattractant protein-1; CCL3: macrophage inflammatory protein-1 α; CCL5: chemokine (C-C motif) ligand 5; CHIKV: chikungunya virus; DCL: diffuse cutaneous leishmaniasis; DENV: dengue virus; Gb3: glycolipid globotriaosylceramyde; HIF: hypoxia-inducible factor; HUS: hemolytic uremic syndrome; IFN: interferon; Ig: immunoglobulins; IL: interleukin; IUGR: intrauterine growth restriction; LCL: localized cutaneous leishmaniasis; LPS: lipopolysaccharid; MCL: mucocutaneous leishmaniasis; NO: nitric oxide; PCR: polymerase chain reaction; PGF: placental growth factor; PM: placental malaria; RIVATREM: Red Iberoamericana de Alteraciones Vasculares em transtornos del Embarazo; sVEGFR: soluble vascular endothelial growth factor receptor; STEC: shiga toxin-producing Escherichia coli; stx: shiga toxin protein; TNF: tumor necrosis factor; TOAS: T cell original antigenic sin; Var2CSA: variant surface antigen 2-CSA; VEGF: vascular endothelial growth factor; VL: visceral leishmaniasis; WHO: world health organization; YFV: yellow fever virus; ZIKV: Zika virus.
Collapse
Affiliation(s)
- Isabela Moreti Ribeiro
- Laboratory of Vascular Biology and Histopathology, Institute of Health Sciences and Health, Federal University of Mato Grosso , Barra Do Garcas, Brazil
| | - Paula Cristina Souza Souto
- Laboratory of Vascular Biology and Histopathology, Institute of Health Sciences and Health, Federal University of Mato Grosso , Barra Do Garcas, Brazil
| | - Alexandre U Borbely
- Cell Biology Laboratory, Institute of Health and Biological Sciences, Federal University of Alagoas , Alagoas, Brazil
| | - Eloiza Lopes Lira Tanabe
- Cell Biology Laboratory, Institute of Health and Biological Sciences, Federal University of Alagoas , Alagoas, Brazil
| | - Angela Cadavid
- Grupo Reproducción, Facultad De Medicina Universidad De Antioquia , Medellin, Colombia
| | - Angela M Alvarez
- Grupo Reproducción, Facultad De Medicina Universidad De Antioquia , Medellin, Colombia
| | - Julio Bueno
- Grupo Reproducción, Facultad De Medicina Universidad De Antioquia , Medellin, Colombia
| | - Olga Agudelo
- Grupo Salud Y Comunidad, Facultad De Medicina Universidad De Antioquia , Medellin, Colombia
| | - Reggie García Robles
- Physiological Sciences Department, Faculty of Medicine, Pontificia Universidad Javeriana , Bogotá, Colombia
| | - Paola Ayala-Ramírez
- Human Genetics Institute, Facultad De Medicina, Pontificia Universidad Javeriana , Bogotá, Colombia
| | - Flavia Sacerdoti
- Laboratorio De Fisiopatogenia, Instituto De Fisiología Y Biofísica Bernardo Houssay (IFIBIO)- CONICET- Departamento De Fisiología, Facultad De Medicina, Universidad De Buenos Aires . Buenos Aires, Argentina
| | - Theodora Szasz
- Departamento of Physiology, Augusta University , Augusta, USA
| | - Alicia E Damiano
- Cátedra De Biología Celular Y Molecular, Departamento De Ciencias Biológicas, Facultad De Farmacia Y Bioquímica, Universidad De Buenos Aires . Buenos Aires, Argentina.,Laboratorio De Biología De La Reproducción, Instituto De Fisiología Y Biofísica Bernardo Houssay (IFIBIO)- CONICET- Facultad De Medicina, Universidad De Buenos Aires . Buenos Aires, Argentina
| | - Cristina Ibarra
- Cátedra De Biología Celular Y Molecular, Departamento De Ciencias Biológicas, Facultad De Farmacia Y Bioquímica, Universidad De Buenos Aires . Buenos Aires, Argentina
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Research and Innovation in Vascular Health (GRIVAS Health), Basic Sciences Department Faculty of Sciences, Universidad Del Bio-Bio , Chillan, Chile
| | - Victor V Lima
- Laboratory of Vascular Biology and Histopathology, Institute of Health Sciences and Health, Federal University of Mato Grosso , Barra Do Garcas, Brazil
| | - Fernanda R Giachini
- Laboratory of Vascular Biology and Histopathology, Institute of Health Sciences and Health, Federal University of Mato Grosso , Barra Do Garcas, Brazil
| |
Collapse
|
104
|
Affiliation(s)
- Zachary J Madewell
- From the Department of Biostatistics, University of Florida, Gainesville
| |
Collapse
|
105
|
Mariotti Guerra J, Santos da Silva Ferreira C, Rosa Fernandes Beraldo K, Midori Kimura L, Possatto Fernandes Takahashi J, Salas-Gómez D, Sequetin Cunha M, Fletcher Buss L, Silva Nogueira J, Yurika Maeda A, José Tadeu de Araújo L. One-step Multiplex Real-time RT-PCR for Molecular Detection and Typing of Dengue Virus Infection From Paraffin-embedded Tissues During the Brazilian 2019 Outbreak. Appl Immunohistochem Mol Morphol 2021; 29:158-162. [PMID: 32858540 DOI: 10.1097/pai.0000000000000870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/27/2020] [Indexed: 11/25/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are an important source for investigation of dengue virus (DENV) infection, particularly when blood or fresh frozen (FF) samples are unavailable. Histopathologic features and immunohistochemistry may have poor sensitivity and serotype determination is not always possible. Viral RNA genome detection tests are faster and considered the most sensitive technique for this kind of analysis, however, the use of molecular methods applied to FFPE tissues is still limited. The authors applied a single-step multiplex reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for the investigation of DENV infection and typing to FFPE samples of 32 fatal cases received during the 2019 outbreak that occurred in São Paulo state, Brazil. The authors compared the results with those obtained using FF tissues. Of the 24 cases with both FF and FFPE samples, 22 (91.67%) of the FF and 19 (76.20%) of the FFPE specimens were positive. Two cases (8.33%) tested negative in both types of samples. All 8 cases with only FFPE samples available were positive. The accuracy (87.5%) of the RT-qPCR for DENV in FFPE samples were satisfactory. Although the cycle quantification (Cq) values were significantly higher in these materials (P<0.0001, Wilcoxon signed-rank test) when compared with FF tissues, Spearman's rank coefficient indicated a good correlation between the Cq values from both sample types (P=0.0063; rho=0.576). RT-qPCR applied to FFPE samples improved detection of DENV in fatal cases and represents a useful tool for diagnosis and epidemiologic studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lewis Fletcher Buss
- Institute of Tropical Medicine, University of São Paulo Medical School USP, São Paulo, Brazil
| | | | | | | |
Collapse
|
106
|
Karisa J, Muriu S, Omuoyo D, Karia B, Ngari M, Nyamwaya D, Rono M, Warimwe G, Mwangangi J, Mbogo CM. Urban Ecology of Arboviral Mosquito Vectors Along the Kenyan Coast. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:428-438. [PMID: 32623459 PMCID: PMC7613328 DOI: 10.1093/jme/tjaa136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 05/04/2023]
Abstract
The purpose of this study was to determine the ecology of the common arboviral mosquito vectors in Mombasa, Kilifi and Malindi urban areas of coastal Kenya. Mosquito larvae were collected using standard dippers and pipettes. Egg survivorship in dry soil was evaluated by collecting soil samples from dry potential larval developmental sites, re-hydrating them for hatching and rearing of the eventual larvae to adults. Adult mosquitoes were collected with CDC light traps and BG-Sentinel traps. All blood-fed females were tested for bloodmeal origin. Mosquitoes were screened for arboviruses using RT-qPCR. Overall, the predominant species were Culex quinquefasciatus (Say) 72.4% (n = 2,364) and Aedes aegypti (L.), 25.7%, (n = 838). A total of 415 larval developmental sites were identified indoors (n = 317) and outdoors (n = 98). The most productive larval developmental sites, both indoors and outdoors, were assorted small containers, water tanks, drainages, drums, and jerricans. Overall, 62% (n = 18) of the soil samples collected were positive for larvae which were used as a proxy to measure the presence of eggs. The mosquitoes fed on humans (29.8%) and chickens (3.7%). Of 259 mosquitoes tested for viral infection, 11.6% were positive for Flavivirus only. The most productive larval developmental sites for arboviral vectors indoors were small containers, water tanks, jerricans, and drums whereas small containers, water tanks, drainage channels, buckets, tires, and water troughs were the productive larval developmental sites outdoors.
Collapse
Affiliation(s)
- Jonathan Karisa
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
- Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
- Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Simon Muriu
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
- Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Donwilliams Omuoyo
- Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Boniface Karia
- Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Moses Ngari
- Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Doris Nyamwaya
- Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Martin Rono
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
- Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
- Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - George Warimwe
- Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
- Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Joseph Mwangangi
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
- Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
- Public Health Department, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| | - Charles M Mbogo
- Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
- Public Health Department, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| |
Collapse
|
107
|
Interpopulation variations in life history traits and reproductive tactics in Aedes aegypti: A test on populations 50 km apart. Acta Trop 2021; 213:105750. [PMID: 33166516 DOI: 10.1016/j.actatropica.2020.105750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 10/18/2020] [Indexed: 11/21/2022]
Abstract
The interpopulation variation in life history traits of a species reflects evolutionary adaptation in response to a local environment regime. We examined the life history traits of Aedes aegypti populations from 2 cities in southern Taiwan separated by 50 km. Results revealed a high level of trait differentiation in immature developmental time and survival of Ae. aegypti between the 2 cities. The Kaohsiung populations exhibited total pupation of 40%-60% on day 8; this was significantly lower than that of the Tainan populations and laboratory-reared KHsm mosquitos, which exhibited a pupation rate of 70%-90%. The slow immature development of the Kaohsiung populations was reflected in the low percentage of adult emergence (22%-26%) on day 10. The prolonged immature development did not select larger adults with longer life spans because the Kaohsiung populations had a shorter life span (≈37 d) than that of the Tainan populations (≈42 d). By contrast, immature development and longevity did not differ between populations within each region, indicating weak local differentiation. Three field populations exhibited male-bias sex ratio because of differential mortality of female immatures. The effect of female size on adult life history was nonsignificant. Two reproduction tactics were detected, representing the balanced-mortality hypothesis and the bet-hedging hypothesis. Despite their differential life history strategies and reproductive tactics, these mosquito populations apparently counterbalanced any shortcomings in traits to produce similar population growth. Maintaining optimal population density is essential for Aedes mosquitos to increase the probability of encountering mates and reduce the Allee effect.
Collapse
|
108
|
Elaagip A, Alsedig K, Altahir O, Ageep T, Ahmed A, Siam HA, Samy AM, Mohamed W, Khalid F, Gumaa S, Mboera L, Sindato C, Elton L, Zumla A, Haider N, Kock R, Abdel Hamid MM. Seroprevalence and associated risk factors of Dengue fever in Kassala state, eastern Sudan. PLoS Negl Trop Dis 2020; 14:e0008918. [PMID: 33296362 PMCID: PMC7752093 DOI: 10.1371/journal.pntd.0008918] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/21/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022] Open
Abstract
Dengue is a rapidly growing public health threat in Kassala state, eastern Sudan. The objective of this study was to determine the seroprevalence, entomological transmission indices, and socioeconomic risk factors associated with dengue in this region. A cross-sectional community-based study was conducted in four dengue-endemic sites; Khatmia, West Gash, Thoriba, and Shokriya between March 2016 to March 2017. Enzyme-linked immunosorbent assay (ELISA) of immunoglobulin G (IgG) was used to determine the prevalence of dengue virus among the study participants. An entomological survey was conducted using pyrethrum spray catch and dipping for the collection of adults and aquatic stages of Aedes aegypti, respectively. Ribonucleic acid was extracted from the buffy coat of participants as well as from adult female Ae. aegypti to assess the possible circulation of dengue virus using Reverse Transcription Polymerase Chain Reaction (RT-PCR). Multiple logistic regression model was used to estimate the association between potential risk factors and dengue seropositivity. A total of 409 persons were recruited to the study: 45.5% were in the 20–39 years’ age category; 57.9% were living in houses with 6–10 persons; and 29.1% had at most secondary school education. In the majority (65.8%) of the households, the socioeconomic status was low (P<0.001). Long-lasting insecticide-treated bed nets were used in 56.5% of the households. Over three-quarters (77.8%) claimed not to have experienced febrile illness in the last three months. Routine entomological survey across Kassala state identified a total of 3,304 larvae and 390 pupae Ae. aegypti, respectively. The overall house index was 32.8% and Breteau Index was 35.96% (146/406). The overall pupal demographic index was 13.31%, and the pupal children index was 97.26%. Antibodies against IgG were detected from 66 (42.04%) out of a total of 157 sera. Twenty-two positive sera (75.9%) were collected from Khatmia. A total of 329 adults Ae. aegypti were identified but only one (0.3%) was positive for DENV in Khatmia. Finally, four independent risk factors were identified to derive dengue circulation in Kassala: elder age (> 60 years) (OR 6.31, CI 1.09–36.36); type of bathroom (OR 3.52, CI 1.35–9.20); using water-based air conditioner (OR 6.90, CI 1.78–26.85) and previous infection of any household member with dengue (OR 28.73, CI 3.31–249.63). Our findings suggest that Kassala state is facing an increasing occurrence of dengue and emphasizes the need for developing appropriate interventions to address the identified risk factors, and place control programs into actions. Establishment of routine dengue epidemiological and entomological surveillance, and climate warning systems will contribute to early warning and timely detection and response to emerging outbreaks. Dengue is a rapidly growing public health threat in Sudan. Kassala state is facing a major outbreak of the mosquito-borne dengue virus. This recent outbreak alarmed the local health authorities to establish a successful control program. However, lack of data obstructs their roles to achieve this goal. Here, we provided a detailed picture on the seroprevalence of dengue virus, entomological indices, and natural mosquito infection across Kassala state, Sudan. The study also identified key factors associated with the recent dengue outbreaks in Sudan. All these findings marked the importance to establish successful routine vector and dengue surveillance. These active surveillances should consider sensitive early warning systems providing early anticipation and timely detection and response to the future outbreaks in Sudan.
Collapse
Affiliation(s)
- Arwa Elaagip
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- * E-mail: (AE); (MMAH)
| | - Khider Alsedig
- Department of Medical Entomology, National Public Health Laboratory, Federal Ministry of Health, Khartoum, Sudan
| | - Omnia Altahir
- Department of Epidemiology, Tropical Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Tellal Ageep
- Department of Epidemiology, Tropical Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Ayman Ahmed
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Hanaa Adli Siam
- Department of Medical Entomology, National Public Health Laboratory, Federal Ministry of Health, Khartoum, Sudan
| | - Abdallah M. Samy
- Entomology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Waleed Mohamed
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Fatima Khalid
- Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Kassala, Kassala, Sudan
| | - Suhaib Gumaa
- Department of Immunology and Biotechnology, Tropical Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Leonard Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Calvin Sindato
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
- National Institute for Medical Research, Tabora, Tanzania
| | - Linzy Elton
- Centre for Clinical Microbiology, Department of Infection, Division of Infection and Immunity, Royal Free Campus, University College London, London, United Kingdom
| | - Alimuddin Zumla
- Centre for Clinical Microbiology, Department of Infection, Division of Infection and Immunity, Royal Free Campus, University College London, London, United Kingdom
| | - Najmul Haider
- Royal Veterinary College (RVC), London, United Kingdom
| | - Richard Kock
- Royal Veterinary College (RVC), London, United Kingdom
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- * E-mail: (AE); (MMAH)
| |
Collapse
|
109
|
Abstract
BACKGROUND Given the lack of specific antiviral drugs and effective vaccine for dengue infection, factors such as host nutritional status that may alter disease progression require investigation. This study examined the relationship between baseline nutritional status and severity of dengue infection in pediatric patients. METHODS Data from dengue patients 1-14 years of age treated at four hospitals in southern Thailand (2017-2018) were reviewed. Dengue infection was classified as dengue fever, dengue hemorrhagic fever and dengue shock syndrome. Children's nutritional status was assessed based on international and national growth charts. Binary logistic regression was used to identify factors associated with dengue severity and malnutrition. RESULTS Overall, 248, 281 and 43 patients had dengue fever, dengue hemorrhagic fever and dengue shock syndrome, respectively. Overweight was associated with increased risk of dengue severity [odds ratio (OR) = 1.76, 95% confidence interval (CI): 1.13-2.75, P = 0.012; OR = 1.84, 95% CI: 1.09-3.09, P = 0.022, per international and national growth criteria, respectively). Stunting was associated with decreased risk of dengue severity (OR = 0.54, 95% CI: 0.33-0.88, P = 0.013; OR = 0.61, 95% CI: 0.39-0.95, P = 0.030, per international and national growth criteria, respectively). Being overweight was significantly and positively associated with levels of hemoglobin >14 g/dL, hematocrit >42%, hemoconcentration ≥20% and platelet count ≤50,000/mm, whereas being stunted was significantly and negatively associated with levels of hemoglobin >14 g/dL and hematocrit >42%. CONCLUSIONS These findings support a hypothesis that malnutrition might influence the severity of dengue infection through host immune response. Overweight children with dengue infections should be closely observed for early signs of severe dengue infection.
Collapse
|
110
|
de Oliveira Figueiredo P, Stoffella-Dutra AG, Barbosa Costa G, Silva de Oliveira J, Dourado Amaral C, Duarte Santos J, Soares Rocha KL, Araújo Júnior JP, Lacerda Nogueira M, Zazá Borges MA, Pereira Paglia A, Desiree LaBeaud A, Santos Abrahão J, Geessien Kroon E, Bretas de Oliveira D, Paiva Drumond B, de Souza Trindade G. Re-Emergence of Yellow Fever in Brazil during 2016-2019: Challenges, Lessons Learned, and Perspectives. Viruses 2020; 12:E1233. [PMID: 33143114 PMCID: PMC7692154 DOI: 10.3390/v12111233] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Yellow fever (YF) is a re-emerging viral zoonosis caused by the Yellow Fever virus (YFV), affecting humans and non-human primates (NHP). YF is endemic in South America and Africa, being considered a burden for public health worldwide despite the availability of an effective vaccine. Acute infectious disease can progress to severe hemorrhagic conditions and has high rates of morbidity and mortality in endemic countries. In 2016, Brazil started experiencing one of the most significant YF epidemics in its history, with lots of deaths being reported in regions that were previously considered free of the disease. Here, we reviewed the historical aspects of YF in Brazil, the epidemiology of the disease, the challenges that remain in Brazil's public health context, the main lessons learned from the recent outbreaks, and our perspective for facing future YF epidemics.
Collapse
Affiliation(s)
- Poliana de Oliveira Figueiredo
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (P.d.O.F.); (J.S.d.O.); (C.D.A.); (J.S.A.); (E.G.K.); (B.P.D.)
| | - Ana Gabriella Stoffella-Dutra
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (P.d.O.F.); (J.S.d.O.); (C.D.A.); (J.S.A.); (E.G.K.); (B.P.D.)
| | - Galileu Barbosa Costa
- Laboratório de Patologia e Biologia Molecular, Instituto Gonçalo Moniz, Oswaldo Cruz Foundation, Rua Waldemar Falcão, 121, Candeal, Salvador Bahia 40296-710, Brazil
| | - Jaqueline Silva de Oliveira
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (P.d.O.F.); (J.S.d.O.); (C.D.A.); (J.S.A.); (E.G.K.); (B.P.D.)
| | - Carolina Dourado Amaral
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (P.d.O.F.); (J.S.d.O.); (C.D.A.); (J.S.A.); (E.G.K.); (B.P.D.)
| | - Juliane Duarte Santos
- Centro Integrado de Pesquisa em Saúde, Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri Campus JK, Diamantina, Minas Gerais, Rodovia MGT 367, Km 583, nº 5.000 Alto da Jacuba 39100-000, Brazil; (J.D.S.); (K.L.S.R.); (D.B.d.O.)
| | - Kamila Lorene Soares Rocha
- Centro Integrado de Pesquisa em Saúde, Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri Campus JK, Diamantina, Minas Gerais, Rodovia MGT 367, Km 583, nº 5.000 Alto da Jacuba 39100-000, Brazil; (J.D.S.); (K.L.S.R.); (D.B.d.O.)
| | - João Pessoa Araújo Júnior
- Departamento de Microbiologia e Imunologia, Institute of Biotechnology, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo Avenida 24A, 1515, Bela Vista 13506-900, Brazil;
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo 15090-000, Brazil;
| | - Magno Augusto Zazá Borges
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Avenida Prof. Rui Braga, s/n, Vila Mauriceia 39408-354, Brazil;
| | - Adriano Pereira Paglia
- Laboratório de Ecologia e Conservação, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil;
| | - Angelle Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, 300 Pasteur Dr Rm G312 MC 5208, Stanford, CA 94305, USA;
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (P.d.O.F.); (J.S.d.O.); (C.D.A.); (J.S.A.); (E.G.K.); (B.P.D.)
| | - Erna Geessien Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (P.d.O.F.); (J.S.d.O.); (C.D.A.); (J.S.A.); (E.G.K.); (B.P.D.)
| | - Danilo Bretas de Oliveira
- Centro Integrado de Pesquisa em Saúde, Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri Campus JK, Diamantina, Minas Gerais, Rodovia MGT 367, Km 583, nº 5.000 Alto da Jacuba 39100-000, Brazil; (J.D.S.); (K.L.S.R.); (D.B.d.O.)
| | - Betânia Paiva Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (P.d.O.F.); (J.S.d.O.); (C.D.A.); (J.S.A.); (E.G.K.); (B.P.D.)
| | - Giliane de Souza Trindade
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (P.d.O.F.); (J.S.d.O.); (C.D.A.); (J.S.A.); (E.G.K.); (B.P.D.)
| |
Collapse
|
111
|
Knerer G, Currie CSM, Brailsford SC. The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model. PLoS Negl Trop Dis 2020; 14:e0008805. [PMID: 33095791 PMCID: PMC7654761 DOI: 10.1371/journal.pntd.0008805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 11/10/2020] [Accepted: 09/17/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND AIMS Dengue fever is a major public health problem in tropical/subtropical regions. Prior economic analyses have predominantly evaluated either vaccination or vector-control programmes in isolation and do not really consider the incremental benefits and cost-effectiveness of mixed strategies and combination control. We estimated the cost-effectiveness of single and combined approaches in Thailand. METHODS The impacts of different control interventions were analysed using a previously published mathematical model of dengue epidemiology and control incorporating seasonality, age structure, consecutive infection, cross protection, immune enhancement and combined vector-host transmission. An economic model was applied to simulation results to estimate the cost-effectiveness of 4 interventions and their various combinations (6 strategies): i) routine vaccination of 1-year olds; ii) chemical vector control strategies targeting adult and larval stages separately; iii) environmental management/ public health education and awareness [EM/ PHEA]). Payer and societal perspectives were considered. The health burden of dengue fever was assessed using disability-adjusted life-years (DALYs) lost. Costs and effects were assessed for 10 years. Costs were discounted at 3% annually and updated to 2013 United States Dollars. Incremental cost-effectiveness analysis was carried out after strategies were rank-ordered by cost, with results presented in a table of incremental analysis. Sensitivity and scenario analyses were undertaken; and the impact and cost-effectiveness of Wolbachia was evaluated in exploratory scenario analyses. RESULTS From the payer and societal perspectives, 2 combination strategies were considered optimal, as all other control strategies were dominated. Vaccination plus adulticide plus EM/ PHEA was deemed cost-effective according to multiple cost-effectiveness criteria. From the societal perspective, incremental differences vs. adulticide and EM/ PHEA resulted in costs of $157.6 million and DALYs lost of 12,599, giving an expected ICER of $12,508 per DALY averted. Exploratory scenario analyses showed Wolbachia to be highly cost-effective ($343 per DALY averted) vs. other single control measures. CONCLUSIONS Our model shows that individual interventions can be cost-effective, but that important epidemiological reductions and economic impacts are demonstrated when interventions are combined as part of an integrated approach to combating dengue fever. Exploratory scenario analyses demonstrated the potential epidemiological and cost-effective impact of Wolbachia when deployed at scale on a nationwide basis. Our findings were robust in the face of sensitivity analyses.
Collapse
Affiliation(s)
- Gerhart Knerer
- Mathematical Sciences, University of Southampton, Highfield, Southampton, United Kingdom
- * E-mail:
| | - Christine S. M. Currie
- Mathematical Sciences, University of Southampton, Highfield, Southampton, United Kingdom
| | - Sally C. Brailsford
- Southampton Business School, University of Southampton, Highfield, Southampton, United Kingdom
| |
Collapse
|
112
|
Ullah MA, Araf Y, Faruqui NA, Mowna SA, Prium DH, Sarkar B. Dengue Outbreak is a Global Recurrent Crisis: Review of the Literature. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2020. [DOI: 10.29333/ejgm/8948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
113
|
Runtuwene LR, Kawashima S, Pijoh VD, Tuda JSB, Hayashida K, Yamagishi J, Sugimoto C, Nishiyama S, Sasaki M, Orba Y, Sawa H, Takasaki T, James AA, Kobayashi T, Eshita Y. The Lethal(2)-Essential-for-Life [ L(2)EFL] Gene Family Modulates Dengue Virus Infection in Aedes aegypti. Int J Mol Sci 2020; 21:ijms21207520. [PMID: 33053895 PMCID: PMC7593908 DOI: 10.3390/ijms21207520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 12/25/2022] Open
Abstract
Efforts to determine the mosquito genes that affect dengue virus replication have identified a number of candidates that positively or negatively modify amplification in the invertebrate host. We used deep sequencing to compare the differential transcript abundances in Aedes aegypti 14 days post dengue infection to those of uninfected A. aegypti. The gene lethal(2)-essential-for-life [l(2)efl], which encodes a member of the heat shock 20 protein (HSP20) family, was upregulated following dengue virus type 2 (DENV-2) infection in vivo. The transcripts of this gene did not exhibit differential accumulation in mosquitoes exposed to insecticides or pollutants. The induction and overexpression of l(2)efl gene products using poly(I:C) resulted in decreased DENV-2 replication in the cell line. In contrast, the RNAi-mediated suppression of l(2)efl gene products resulted in enhanced DENV-2 replication, but this enhancement occurred only if multiple l(2)efl genes were suppressed. l(2)efl homologs induce the phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the fruit fly Drosophila melanogaster, and we confirmed this finding in the cell line. However, the mechanism by which l(2)efl phosphorylates eIF2α remains unclear. We conclude that l(2)efl encodes a potential anti-dengue protein in the vector mosquito.
Collapse
Affiliation(s)
- Lucky R. Runtuwene
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan;
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- AIDS Research Centre, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Correspondence: (L.R.R.); (Y.E.)
| | - Shuichi Kawashima
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa, Chiba 277-0871, Japan;
| | - Victor D. Pijoh
- Faculty of Medicine, Sam Ratulangi University, Kampus Unsrat, Bahu Manado 95-115, Indonesia; (V.D.P.); (J.S.B.T.)
| | - Josef S. B. Tuda
- Faculty of Medicine, Sam Ratulangi University, Kampus Unsrat, Bahu Manado 95-115, Indonesia; (V.D.P.); (J.S.B.T.)
| | - Kyoko Hayashida
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido 001-0020, Japan; (K.H.); (J.Y.); (C.S.)
| | - Junya Yamagishi
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido 001-0020, Japan; (K.H.); (J.Y.); (C.S.)
- Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido 001-0020, Japan; (K.H.); (J.Y.); (C.S.)
| | - Shoko Nishiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan;
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido 001-0020, Japan; (M.S.); (Y.O.); (H.S.)
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido 001-0020, Japan; (M.S.); (Y.O.); (H.S.)
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido 001-0020, Japan; (M.S.); (Y.O.); (H.S.)
| | - Tomohiko Takasaki
- National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
- Kanagawa Prefectural Institute of Public Health, Kanagawa 253-0087, Japan
| | - Anthony A. James
- Departments of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA;
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan;
| | - Yuki Eshita
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan;
- Departments of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Rajathewi, Bangkok 10400, Thailand
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Hokudai Center for Zoonosis Control in Zambia, Research Center for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- Correspondence: (L.R.R.); (Y.E.)
| |
Collapse
|
114
|
Matangkasombut P, Manopwisedjaroen K, Pitabut N, Thaloengsok S, Suraamornkul S, Yingtaweesak T, Duong V, Sakuntabhai A, Paul R, Singhasivanon P. Dengue viremia kinetics in asymptomatic and symptomatic infection. Int J Infect Dis 2020; 101:90-97. [PMID: 32992011 DOI: 10.1016/j.ijid.2020.09.1446] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dengue infection is a global health threat. While symptomatic cases contribute to morbidity and mortality, the majority of infected people are asymptomatic but serve as an important reservoir. However, the kinetics of viremia in asymptomatic infections remains unknown. METHODS We enrolled 279 hospital-based symptomatic index cases and quantified dengue virus (DENV) RNA at enrollment and at the day of defervescence. To identify asymptomatic cases, 175 household members of index cases were monitored for clinical symptoms during follow-up, and blood was taken twice weekly to test for and quantify DENV RNA until cleared. RESULTS We detected DENV in thirteen asymptomatic household members (7.43%). Their DENV serotypes were primarily the same as those of their family index cases. The median peak DENV viremia in asymptomatic subjects was lower than that of symptomatic individuals during the febrile phase, and the viral decay rate was slower in asymptomatic infections. CONCLUSIONS DENV level and kinetics in asymptomatic individuals differed significantly from those of symptomatic cases. Despite the lower viremia, the slower decay rate in asymptomatic infections could lead to their prolonging the infectious reservoir. The improvement of transmission control to prevent such long-lived asymptomatic infections from transmitting the DENV is needed.
Collapse
Affiliation(s)
- Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | | | - Nada Pitabut
- Office of Research Services, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Sasikanya Thaloengsok
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, PO Box 983, Phnom Penh, Cambodia
| | - Anavaj Sakuntabhai
- Institut Pasteur, Functional Genetics of Infectious Diseases Unit, UMR 2000 (CNRS), Paris 75015, France
| | - Richard Paul
- Institut Pasteur, Functional Genetics of Infectious Diseases Unit, UMR 2000 (CNRS), Paris 75015, France
| | - Pratap Singhasivanon
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
115
|
Bellone R, Failloux AB. The Role of Temperature in Shaping Mosquito-Borne Viruses Transmission. Front Microbiol 2020; 11:584846. [PMID: 33101259 PMCID: PMC7545027 DOI: 10.3389/fmicb.2020.584846] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
Mosquito-borne diseases having the greatest impact on human health are typically prevalent in the tropical belt of the world. However, these diseases are conquering temperate regions, raising the question of the role of temperature on their dynamics and expansion. Temperature is one of the most significant abiotic factors affecting, in many ways, insect vectors and the pathogens they transmit. Here, we debate the veracity of this claim by synthesizing current knowledge on the effects of temperature on arboviruses and their vectors, as well as the outcome of their interactions.
Collapse
Affiliation(s)
- Rachel Bellone
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
116
|
Silva NM, Santos NC, Martins IC. Dengue and Zika Viruses: Epidemiological History, Potential Therapies, and Promising Vaccines. Trop Med Infect Dis 2020; 5:E150. [PMID: 32977703 PMCID: PMC7709709 DOI: 10.3390/tropicalmed5040150] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV), which can lead to fatal hemorrhagic fever, affects 390 million people worldwide. The closely related Zika virus (ZIKV) causes microcephaly in newborns and Guillain-Barré syndrome in adults. Both viruses are mostly transmitted by Aedes albopictus and Aedes aegypti mosquitoes, which, due to globalization of trade and travel alongside climate change, are spreading worldwide, paving the way to DENV and ZIKV transmission and the occurrence of new epidemics. Local outbreaks have already occurred in temperate climates, even in Europe. As there are no specific treatments, these viruses are an international public health concern. Here, we analyze and discuss DENV and ZIKV outbreaks history, clinical and pathogenesis features, and modes of transmission, supplementing with information on advances on potential therapies and restraining measures. Taking advantage of the knowledge of the structure and biological function of the capsid (C) protein, a relatively conserved protein among flaviviruses, within a genus that includes DENV and ZIKV, we designed and patented a new drug lead, pep14-23 (WO2008/028939A1). It was demonstrated that it inhibits the interaction of DENV C protein with the host lipid system, a process essential for viral replication. Such an approach can be used to develop new therapies for related viruses, such as ZIKV.
Collapse
Affiliation(s)
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal;
| | - Ivo C. Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal;
| |
Collapse
|
117
|
Zhang Y, Riera J, Ostrow K, Siddiqui S, de Silva H, Sarkar S, Fernando L, Gardner L. Modeling the relative role of human mobility, land-use and climate factors on dengue outbreak emergence in Sri Lanka. BMC Infect Dis 2020; 20:649. [PMID: 32883213 PMCID: PMC7469426 DOI: 10.1186/s12879-020-05369-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND More than 80,000 dengue cases including 215 deaths were reported nationally in less than 7 months between 2016 and 2017, a fourfold increase in the number of reported cases compared to the average number over 2010-2016. The region of Negombo, located in the Western province, experienced the greatest number of dengue cases in the country and is the focus area of our study, where we aim to capture the spatial-temporal dynamics of dengue transmission. METHODS We present a statistical modeling framework to evaluate the spatial-temporal dynamics of the 2016-2017 dengue outbreak in the Negombo region of Sri Lanka as a function of human mobility, land-use, and climate patterns. The analysis was conducted at a 1 km × 1 km spatial resolution and a weekly temporal resolution. RESULTS Our results indicate human mobility to be a stronger indicator for local outbreak clusters than land-use or climate variables. The minimum daily temperature was identified as the most influential climate variable on dengue cases in the region; while among the set of land-use patterns considered, urban areas were found to be most prone to dengue outbreak, followed by areas with stagnant water and then coastal areas. The results are shown to be robust across spatial resolutions. CONCLUSIONS Our study highlights the potential value of using travel data to target vector control within a region. In addition to illustrating the relative relationship between various potential risk factors for dengue outbreaks, the results of our study can be used to inform where and when new cases of dengue are likely to occur within a region, and thus help more effectively and innovatively, plan for disease surveillance and vector control.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Jefferson Riera
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Kayla Ostrow
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Sauleh Siddiqui
- Department of Environmental Science, American University, Washington, DC 20016 USA
| | - Harendra de Silva
- Department of Pediatrics, University of Colombo, Colombo, 00900 Sri Lanka
| | - Sahotra Sarkar
- Department of Philosophy, Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| | - Lakkumar Fernando
- Centre for Clinical Management of Dengue and Dengue Haemorrhagic Fever, Negombo, 11500 Sri Lanka
| | - Lauren Gardner
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
118
|
Calvez E, Pommelet V, Somlor S, Pompon J, Viengphouthong S, Bounmany P, Chindavong TA, Xaybounsou T, Prasayasith P, Keosenhom S, Brey PT, Telle O, Choisy M, Marcombe S, Grandadam M. Trends of the Dengue Serotype-4 Circulation with Epidemiological, Phylogenetic, and Entomological Insights in Lao PDR between 2015 and 2019. Pathogens 2020; 9:pathogens9090728. [PMID: 32899416 PMCID: PMC7557816 DOI: 10.3390/pathogens9090728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
Dengue outbreaks have regularly been recorded in Lao People's Democratic Republic (PDR) since the first detection of the disease in 1979. In 2012, an integrated arbovirus surveillance network was set up in Lao PDR and an entomological surveillance has been implemented since 2016 in Vientiane Capital. Here, we report a study combining epidemiological, phylogenetic, and entomological analyzes during the largest DENV-4 epidemic ever recorded in Lao PDR (2015-2019). Strikingly, from 2015 to 2019, we reported the DENV-4 emergence and spread at the country level after two large epidemics predominated by DENV-3 and DENV-1, respectively, in 2012-2013 and 2015. Our data revealed a significant difference in the median age of the patient infected by DENV-4 compared to the other serotypes. Phylogenetic analysis demonstrated the circulation of DENV-4 Genotype I at the country level since at least 2013. The entomological surveillance showed a predominance of Aedesaegypti compared to Aedesalbopictus and high abundance of these vectors in dry and rainy seasons between 2016 and 2019, in Vientiane Capital. Overall, these results emphasized the importance of an integrated approach to evaluate factors, which could impact the circulation and the epidemiological profile of dengue viruses, especially in endemic countries like Lao PDR.
Collapse
Affiliation(s)
- Elodie Calvez
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
- Correspondence:
| | - Virginie Pommelet
- Epidemiology Unit, Institut Pasteur du Lao PDR, Vientiane 01030, Laos;
| | - Somphavanh Somlor
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Julien Pompon
- Department of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
- MIVEGEC, University of Montpellier, CNRS, IRD, 34394 Montpellier, France
| | - Souksakhone Viengphouthong
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Phaithong Bounmany
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Thep Aksone Chindavong
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Thonglakhone Xaybounsou
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Phoyphaylinh Prasayasith
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Sitsana Keosenhom
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Paul T. Brey
- Medical Entomology and Vector Borne Disease Unit, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (P.T.B.); (S.M.)
| | - Olivier Telle
- Centre de Sciences Humaines (CHS), Centre National de la Recherche Scientifique (CNRS), Delhi 110001, India;
- Center for Policy Research (CPR), Delhi 110001, India
| | - Marc Choisy
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK;
- Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam
| | - Sébastien Marcombe
- Medical Entomology and Vector Borne Disease Unit, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (P.T.B.); (S.M.)
| | - Marc Grandadam
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
- Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
119
|
Buchwald AG, Hayden MH, Dadzie SK, Paull SH, Carlton EJ. Aedes-borne disease outbreaks in West Africa: A call for enhanced surveillance. Acta Trop 2020; 209:105468. [PMID: 32416077 DOI: 10.1016/j.actatropica.2020.105468] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/29/2020] [Accepted: 03/29/2020] [Indexed: 01/06/2023]
Abstract
Arboviruses transmitted by Aedes mosquitoes are a growing global concern; however, there remain large gaps in surveillance of both arboviruses and their vectors in West Africa. We reviewed over 50 years of data including outbreak reports, peer-reviewed literature, and prior data compilations describing Zika, dengue, and chikungunya, and their vectors in West Africa. Large outbreaks of dengue, Zika, and chikungunya have recently occurred in the region with over 27,000 cases of Aedes-borne disease documented since 2007. Recent arboviral outbreaks have become more concentrated in urban areas, and Aedes albopictus, recently documented in the region, has emerged as an important vector in several areas. Seroprevalence surveys suggest reported cases are a gross underestimate of the underlying arboviral disease burden. These findings indicate a shifting epidemiology of arboviral disease in West Africa and highlight a need for increased research and implementation of vector and disease control. Rapid urbanization and climate change may further alter disease patterns, underscoring the need for improved diagnostic capacity, and vector and disease surveillance to address this evolving health challenge.
Collapse
|
120
|
Khan NU, Danish L, Khan HU, Shah M, Ismail M, Ali I, Petruzziello A, Sabatino R, Guzzo A, Botti G, Iqbal A. Prevalence of dengue virus serotypes in the 2017 outbreak in Peshawar, KP, Pakistan. J Clin Lab Anal 2020; 34:e23371. [PMID: 32697383 PMCID: PMC7521314 DOI: 10.1002/jcla.23371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dengue is a viral disease, transmitted by infected Aedes aegypti and Aedes albopictus female mosquitoes. Worldwide, 96 million infections were estimated in 2010. The dengue virus comprises four distinct serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) which belong to the genus Flavivirus. Determining the serotypes during dengue outbreaks is crucial for its effective management in terms of diagnostics improvement and polyvalent vaccine development. The aim of the present study is to determine the prevalence rate of dengue virus serotypes in the samples collected from patients during the 2017 outbreak in Khyber Pakhtunkhwa, Pakistan. METHODS A total of 800 ELISA-positive samples were collected, of which 513 (290 males, 223 females) samples were confirmed positive by PCR. RESULTS Out of 513, 25 were found serotype 1 (5%), 196 were serotype 2 (38%), 192 were serotype 3 (37%), 56 were serotype 4 (11%), and 44 (8%) were found to have mix serotypes. CONCLUSION We can conclude that serotypes 2 and 3 of dengue virus were the predominated serotypes of dengue virus in the 2017 outbreak in Peshawar, capital city of Khyber Pakhtunkhwa, Pakistan.
Collapse
Affiliation(s)
- Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering (Health Division)University of AgriculturePeshawarPakistan
| | - Lubna Danish
- Sulaiman Bin Abdullah Aba Al‐KhailCentre for Interdisciplinary in Basic Sciences (SA‐CIRBS)International Islamic UniversityIslamabadPakistan
| | | | - Maryam Shah
- Institute of Biotechnology and Genetic Engineering (Health Division)University of AgriculturePeshawarPakistan
| | - Muhammad Ismail
- Department of ZoologyIslamia College UniversityPeshawarPakistan
| | - Ijaz Ali
- Department of BiosciencesCOMSATs University IslamabadIslamabadPakistan
| | | | - Rocco Sabatino
- Unit of Molecular Biology and Viral OncologyIstituto Nazionale Tumori ‐ IRCCS Fondazione “G. Pascale”NaplesItaly
| | - Annunziata Guzzo
- SSD Transfusion MedicineIstituto Nazionale Tumori – IRCCS Fondazione “G. Pascale”NaplesItaly
| | - Gerardo Botti
- Scientific DirectionIstituto Nazionale Tumori ‐ IRCCS Fondazione “G. Pascale”NaplesItaly
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering (Health Division)University of AgriculturePeshawarPakistan
| |
Collapse
|
121
|
Mordecai EA, Ryan SJ, Caldwell JM, Shah MM, LaBeaud AD. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet Health 2020; 4:e416-e423. [PMID: 32918887 PMCID: PMC7490804 DOI: 10.1016/s2542-5196(20)30178-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 05/28/2023]
Abstract
Malaria is a long-standing public health problem in sub-Saharan Africa, whereas arthropod-borne viruses (arboviruses) such as dengue and chikungunya cause an under-recognised burden of disease. Many human and environmental drivers affect the dynamics of vector-borne diseases. In this Personal View, we argue that the direct effects of warming temperatures are likely to promote greater environmental suitability for dengue and other arbovirus transmission by Aedes aegypti and reduce suitability for malaria transmission by Anopheles gambiae. Environmentally driven changes in disease dynamics will be complex and multifaceted, but given that current public efforts are targeted to malaria control, we highlight Ae aegypti and dengue, chikungunya, and other arboviruses as potential emerging public health threats in sub-Saharan Africa.
Collapse
Affiliation(s)
- Erin A. Mordecai
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA, United States
| | - Sadie J. Ryan
- Department of Geography, University of Florida, Gainesville, FL, United States; Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States; School of Life Sciences, College of Agriculture, Engineering, and Science, University of KwaZulu Natal, KwaZulu Natal, South Africa
| | - Jamie M. Caldwell
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA, United States
| | - Melisa M. Shah
- Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - A. Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Disease, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
122
|
Ngwe Tun MM, Nguyen TTT, Ando T, Dumre SP, Soe AM, Buerano CC, Nguyen MT, Le NTN, Pham VQ, Nguyen TH, Le TQM, Morita K, Hasebe F. Clinical, Virological, and Cytokine Profiles of Children Infected with Dengue Virus during the Outbreak in Southern Vietnam in 2017. Am J Trop Med Hyg 2020; 102:1217-1225. [PMID: 32189614 DOI: 10.4269/ajtmh.19-0607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dengue virus (DENV) infection is a major cause of morbidity and mortality in Vietnam, and the incidence is higher and more consistent in the southern part of the country. This study investigated the circulation of DENV serotypes, viremia levels, immunological status, and cytokine levels, with disease severities among children infected in 2017 in Ho Chi Minh City, Southern Vietnam. Acute and convalescent serum samples were collected from clinically diagnosed dengue children. They were confirmed to have DENV infection by NS1 antigen, IgM and IgG ELISAs, virus isolation, and conventional and real-time RT-PCR. Measurement of 10 cytokine levels was performed in the serum samples. All the children were dengue IgM positive; 28% and 72% of them had primary and secondary DENV infections, respectively, whereas 54% of those with secondary infection were children with dengue with warning signs and with severe dengue. Any or mixed infection of the four serotypes of DENV RNA was detected in 58 children. Twenty DENV strains (DENV-1 = 16 and DENV-4 = 4) were isolated. Levels of IFN-γ, TNF-α, MCP-1, IL-10, and IL-6 were significantly higher in severe dengue cases. We report the predominance of DENV-1 over other serotypes in the 2017 dengue outbreak in Southern Vietnam. Our data showed that cytokine expressions were correlated with dengue pathogenesis and may help in identifying an effective therapeutic strategy.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Thi Thu Thuy Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Tsuyoshi Ando
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Shyam Prakash Dumre
- Department of Immunogenetics, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Aung Min Soe
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Corazon C Buerano
- Research and Biotechnology, St Luke's Medical Center, Quezon City, Philippines
| | - Minh Tuan Nguyen
- Dengue Department, Children Hospital No. (1), Ho Chi Minh, Vietnam
| | | | - Van Quang Pham
- ICU Department, Children Hospital No. (1), Ho Chi Minh, Vietnam
| | | | - Thi Quynh Mai Le
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Futoshi Hasebe
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,Center of International Collaboration Research, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
123
|
Ong J, Chong CS, Yap G, Lee C, Abdul Razak MA, Chiang S, Ng LC. Gravitrap deployment for adult Aedes aegypti surveillance and its impact on dengue cases. PLoS Negl Trop Dis 2020; 14:e0008528. [PMID: 32764763 PMCID: PMC7439811 DOI: 10.1371/journal.pntd.0008528] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 08/19/2020] [Accepted: 06/26/2020] [Indexed: 01/13/2023] Open
Abstract
House Index, Container Index, and Breteau Index are the most commonly used indices for dengue vector surveillance. However, these larval indices are a poor proxy for measuring the adult population—which is responsible for disease transmission. Information on the adult distribution and density are important for assessing transmission risk as well as for developing effective control strategies. This study introduces a new entomological index, Gravitrap aegypti index (GAI), which estimates the adult female Aedes aegypti population in the community and presents its association with dengue cases. Gravitraps were deployed across 34 treatment sites in Singapore from September 2013 to September 2016. The GAI, derived from the Gravitrap surveillance data, was analysed to investigate the spatio-temporal patterns of the Ae. aegypti population in Singapore. The index was further categorised into low, moderate, and high-risk groups and its association with dengue cases were examined. A Before-After Control Impact analysis was performed to evaluate the epidemiology impact of Gravitrap system on dengue transmission. The Ae. aegypti population exhibits a seasonal pattern, and spatial heterogeneity in Ae. aegypti abundance was observed among treatment sites. The Ae. aegypti population was also found to be unevenly distributed among floors of an apartment block, with low floors (floors 1–4) having a higher abundance of mosquitoes trapped than mid (floors 5–8) and high (floors ≥9) floors. Areas with high GAI were shown to have higher dengue case count. Gravitrap has also demonstrated to be a good dengue control tool. The contribution of cases by treatment sites to the national numbers was lower after Gravitraps deployment. The GAI, which is of better relevance to dengue transmission risk, could be recommended as an indicator for decision making in vector control efforts, and to monitor the spatio-temporal variability of the adult Aedes population in the country. In addition, findings from this study indicate that Gravitraps can be used as a dengue control tool to reduce dengue transmission. In the absence of an effective vaccine: vector surveillance and control remain the key strategy for dengue prevention and control. The collection of the adult female Aedes mosquito is thus important to understand disease transmission dynamics. Information on its distribution and density are also essential for assessing transmission risk as well as for devising an effective control strategy. Here, we described a new approach to dengue vector surveillance based on adult female Aedes trapping using Gravitraps. Using the Gravitrap surveillance data, we derived a new entomological index, Gravitrap aegypti index (GAI), which estimates the adult female Ae. aegypti population in the community and presents its association with dengue cases. When analysed, the index can provide useful information on the spatio-temporal distribution of the Ae. aegypti population in the country and hence, assist planning of vector control. The GAI, which is of better relevance to dengue transmission risk, could be used as an indicator for decision making in vector control efforts, and to monitor the spatio-temporal variability of the adult Aedes population. In addition, findings from this study indicate that Gravitraps can be used as a dengue control tool to reduce dengue transmission.
Collapse
Affiliation(s)
- Janet Ong
- Environmental Health Institute, National Environment Agency, Singapore
| | - Chee-Seng Chong
- Environmental Health Institute, National Environment Agency, Singapore
| | - Grace Yap
- Environmental Public Health Operations, National Environment Agency, Singapore
| | - Caleb Lee
- Environmental Health Institute, National Environment Agency, Singapore
| | | | - Suzanna Chiang
- Environmental Health Institute, National Environment Agency, Singapore
| | - Lee-Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|
124
|
Association of genotype III of dengue virus serotype 3 with disease outbreak in Eastern Sudan, 2019. Virol J 2020; 17:118. [PMID: 32731875 PMCID: PMC7392696 DOI: 10.1186/s12985-020-01389-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Background Dengue fever (DF) is an arthropod-borne disease caused by dengue virus (DENV). DENV is a member of the genus Flavivirus in the family Flaviviridae. Recently, DENV has been reported as an important emerging infectious viral pathogen in Sudan. Multiple outbreaks and sporadic cases of DF have been frequently reported in the eastern region of Sudan. The present study was conducted to confirm DENV outbreak in Kassala State, eastern Sudan, 2019, and to provide some information on the molecular characterization of the DENV isolate associated with the disease outbreak. Methods A hundred serum samples were collected during the outbreak from residents of Kassala State, Sudan, 2019. ELISA was used to detect DENV non structural protein NS1 (DENV-NS1) in acute phase sera sampled during the disease outbreak. RT-PCR assays were used to amplify a fragment of the capsid/pre-membrane region (CprM) of the viral polyprotein gene. The PCR products of the amplified CprM region of the viral polyprotein gene were purified and partial sequences were generated and used to confirm the specificity of DENV sequences and to identify the virus serotype. Phylogenetic tree was constructed to determine the genotype of DENV associated with the outbreak. Results Using DENV-NS1 ELISA assay, DENV infection was confirmed in 23% sampled sera. The detection of DENV RNA was made possible using group-specific RT-PCR assay. The virus was serotyped as DENV serotype 3 (DENV-3) using DENV serotype-specific RT-PCR assay. Phylogenetic analysis of the partial CprM sequences of the viral polyprotein gene indicates that the virus belonged to genotype III of DENV-3. Conclusion The scientific data presented in this investigation confirmed that genotype III of DENV-3 was associated with the disease outbreak in eastern Sudan, 2019. The study represents the first report on molecular characterization of DENV-3 in Sudan.
Collapse
|
125
|
Udayanga L, Gunathilaka N, Iqbal MCM, Abeyewickreme W. Climate change induced vulnerability and adaption for dengue incidence in Colombo and Kandy districts: the detailed investigation in Sri Lanka. Infect Dis Poverty 2020; 9:102. [PMID: 32703273 PMCID: PMC7376859 DOI: 10.1186/s40249-020-00717-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/07/2020] [Indexed: 12/01/2022] Open
Abstract
Background Assessing the vulnerability of an infectious disease such as dengue among endemic population is an important requirement to design proactive programmes in order to improve resilience capacity of vulnerable communities. The current study aimed to evaluate the climate change induced socio-economic vulnerability of local communities to dengue in Colombo and Kandy districts of Sri Lanka. Methods A total of 42 variables (entomological, epidemiological, meteorological parameters, land-use practices and socio-demographic data) of all the 38 Medical Officer of Health (MOH) areas in the districts of Colombo and Kandy were considered as candidate variables for a composite index based vulnerability assessment. The Principal Component Analysis (PCA) was used in selecting and setting the weight for each indicator. Exposure, Sensitivity, Adaptive Capacity and Vulnerability of all MOH areas for dengue were calculated using the composite index approach recommended by the Intergovernmental Panel on Climate Change. Results Out of 42 candidate variables, only 23 parameters (Exposure Index: six variables; Sensitivity Index: 11 variables; Adaptive Capacity Index: six variables) were selected as indicators to assess climate change vulnerability to dengue. Colombo Municipal Council (CMC) MOH area denoted the highest values for exposure (0.89: exceptionally high exposure), sensitivity (0.86: exceptionally high sensitivity) in Colombo, while Kandy Municipal Council (KMC) area reported the highest exposure (0.79: high exposure) and sensitivity (0.77: high sensitivity) in Kandy. Piliyandala MOH area denoted the highest level of adaptive capacity (0.66) in Colombo followed by Menikhinna (0.68) in Kandy. The highest vulnerability (0.45: moderate vulnerability) to dengue was indicated from CMC and the lowest indicated from Galaha MOH (0.15; very low vulnerability) in Kandy. Interestingly the KMC MOH area had a notable vulnerability of 0.41 (moderate vulnerability), which was the highest within Kandy. Conclusions In general, vulnerability for dengue was relatively higher within the MOH areas of Colombo, than in Kandy, suggesting a higher degree of potential susceptibility to dengue within and among local communities of Colombo. Vector Controlling Entities are recommended to consider the spatial variations in vulnerability of local communities to dengue for decision making, especially in allocation of limited financial, human and mechanical resources for dengue epidemic management.
Collapse
Affiliation(s)
- Lahiru Udayanga
- Department of Biosystems Engineering, Faculty of Agriculture & Plantation Management, Wayamba University of Sri Lanka, Makadura, Sri Lanka
| | - Nayana Gunathilaka
- Department of Parasitology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka.
| | - M C M Iqbal
- Plant and Environmental Sciences, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - W Abeyewickreme
- Department of Parasitology, Faculty of Medicine, Sir John Kotelawala Defense University, Rathmalana, Sri Lanka
| |
Collapse
|
126
|
Taghikhani R, Sharomi O, Gumel AB. Dynamics of a two-sex model for the population ecology of dengue mosquitoes in the presence of Wolbachia. Math Biosci 2020; 328:108426. [PMID: 32712316 DOI: 10.1016/j.mbs.2020.108426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/30/2022]
Abstract
The release of Wolbachia-infected mosquitoes into the population of wild mosquitoes is one of the promising biological control method for combating the population abundance of mosquitoes that cause deadly diseases, such as dengue. In this study, a new two-sex mathematical model for the population ecology of dengue mosquitoes and disease is designed and used to assess the population-level impact of the periodic release of Wolbachia-infected mosquitoes. Rigorous analysis of the model, which incorporates many of the lifecycle features of dengue disease and the cytoplasmic incompatibility property of Wolbachia bacterium in mosquitoes, reveal that the disease-free equilibrium of the model is locally-asymptotically stable whenever a certain epidemiological threshold, known as the reproduction number of the model (denoted by R0W), is less than unity. The model is shown, using centre manifold theory, to undergo the phenomenon of backward bifurcation at R0W=1. The consequence of this bifurcation is that Wolbachia may not persist, or dengue disease may not be effectively-controlled, when R0W is less than unity. Such persistence and elimination will depend on the initial sizes of the sub-populations of the model. Two mechanisms were identified for which the backward bifurcation phenomenon can be removed. When backward bifurcation does not occur, the associated non-trivial disease-free equilibrium is shown to be globally-asymptotically stable when the reproduction number of the model is less than unity. Numerical simulations, using data relevant to dengue transmission dynamics in northern Queensland, Australia, shows that releasing Wolbachia-infected mosquitoes every three weeks, for a one-year duration, can lead to the effective control of the population abundance of the local wild mosquitoes, and that such effective control increases with increasing number of Wolbachia-infected mosquitoes released (resulting in the reduction of over 90% of the wild mosquito population from their baseline values). Furthermore, simulations show that releasing only adult male Wolbachia-infected mosquitoes provide more beneficial population-level impact (in terms of reducing the population abundance of the wild mosquitoes), in comparison to releasing adult female Wolbachia-infected mosquitoes. Increasing the frequency of Wolbachia release (e.g., from the default release frequency of every three weeks to weekly) does not significantly affect the effectiveness of the Wolbachia-based control program in curtailing the local abundance of the wild mosquitoes. Finally, it was shown that the cytoplasmic incompatibility property of Wolbachia bacterium does not significantly affect the effectiveness of the Wolbachia-based mosquito control strategy implemented in the community.
Collapse
Affiliation(s)
- Rahim Taghikhani
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Abba B Gumel
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA; Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
127
|
Larval Indices of Vector Mosquitoes as Predictors of Dengue Epidemics: An Approach to Manage Dengue Outbreaks Based on Entomological Parameters in the Districts of Colombo and Kandy, Sri Lanka. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6386952. [PMID: 32685511 PMCID: PMC7317327 DOI: 10.1155/2020/6386952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/30/2020] [Indexed: 11/17/2022]
Abstract
Background Early detection of dengue epidemics is a vital aspect in control programmes. Predictions based on larval indices of disease vectors are widely used in dengue control, with defined threshold values. However, there is no set threshold in Sri Lanka at the national or regional levels for Aedes larval indices. Therefore, the current study aimed at developing threshold values for vector indices in two dengue high-risk districts in Sri Lanka. Methods Monthly vector indices (House Index [HI], Container Index [CI], Breteau Index for Aedes aegypti [BIagp], and Ae. albopictus [BIalb]), of ten selected dengue high-risk Medical Officer of Health (MOH) areas located in Colombo and Kandy districts, were collected from January 2010 to June 2019, along with monthly reported dengue cases. Receiver Operating Characteristic (ROC) curve analysis in SPSS (version 23) was used to assess the discriminative power of the larval indices in identifying dengue epidemics and to develop thresholds for the dengue epidemic management. Results Only HI and BIagp denoted significant associations with dengue epidemics at lag periods of one and two months. Based on Ae. aegypti, average threshold values were defined for Colombo as Low Risk (2.4 ≤ BIagp < 3.8), Moderate Risk (3.8 ≤ BIagp < 5), High Risk (BIagp ≥ 5), along with BIagp 2.9 ≤ BIagp < 4.2 (Low Risk), 4.2 ≤ BIagp < 5.3 (Moderate Risk), and BIagp ≥ 5.3 (High Risk) for Kandy. Further, 5.5 ≤ HI < 8.9, 8.9 ≤ HI < 11.9, and HI ≥ 11.9 were defined as Low Risk, Moderate Risk, and High Risk average thresholds for HI in Colombo, while 6.9 ≤ HI < 9.1 (Low Risk), 8.9 ≥ HI < 11.8 (Moderate Risk), and HI ≥ 11.8 (High Risk) were defined for Kandy. Conclusions The defined threshold values for Ae. aegypti and HI could be recommended as indicators for early detection of dengue epidemics and to drive vector management activities, with the objective of managing dengue epidemics with optimal usage of financial, technical, and human resources in Sri Lanka.
Collapse
|
128
|
Risk factors and biomarkers of severe dengue. Curr Opin Virol 2020; 43:1-8. [PMID: 32688269 DOI: 10.1016/j.coviro.2020.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Dengue virus infects several million people each year. Although usually a self-limiting disease, some patients can develop life-threatening severe complications, characterized by plasma leakage, hemorrhaging, and shock. The signs and symptoms of severe disease usually arise late in the disease course when patients are recovering and fever has subsided, making it difficult to predict. Efforts are underway to identify risk factors and biomarkers that can accurately predict disease severity in the acute febrile phase of the disease, facilitating early intervention and treatment strategies for those at greatest risk. In this review we discuss recent advancements in identifying risk factors and biomarkers for the prognosis of severe dengue.
Collapse
|
129
|
Rodrigues-Alves ML, Melo-Júnior OADO, Silveira P, Mariano RMDS, Leite JC, Santos TAP, Soares IS, Lair DF, Melo MM, Resende LA, da Silveira-Lemos D, Dutra WO, Gontijo NDF, Araujo RN, Sant'Anna MRV, Andrade LAF, da Fonseca FG, Moreira LA, Giunchetti RC. Historical Perspective and Biotechnological Trends to Block Arboviruses Transmission by Controlling Aedes aegypti Mosquitos Using Different Approaches. Front Med (Lausanne) 2020; 7:275. [PMID: 32656216 PMCID: PMC7325419 DOI: 10.3389/fmed.2020.00275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/18/2020] [Indexed: 12/30/2022] Open
Abstract
Continuous climate changes associated with the disorderly occupation of urban areas have exposed Latin American populations to the emergence and reemergence of arboviruses transmitted by Aedes aegypti. The magnitude of the financial and political problems these epidemics may bring to the future of developing countries is still ignored. Due to the lack of effective antiviral drugs and vaccines against arboviruses, the primary measure for preventing or reducing the transmission of diseases depends entirely on the control of vectors or the interruption of human-vector contact. In Brazil the first attempt to control A. aegypti took place in 1902 by eliminating artificial sites of eproduction. Other strategies, such as the use of oviposition traps and chemical control with dichlorodiphenyltrichlorethane and pyrethroids, were successful, but only for a limited time. More recently, biotechnical approaches, such as the release of transgenics or sterile mosquitoes and the, development of transmission blocking vaccines, are being applied to try to control the A. aegypti population and/or arbovirus transmission. Endemic countries spend about twice as much to treat patients as they do on the prevention of mosquito-transmitted diseases. The result of this strategy is an explosive outbreak of arboviruses cases. This review summarizes the social impacts caused by A. aegypti-transmitted diseases, mainly from a biotechnological perspective in vector control aimed at protecting Latin American populations against arboviruses.
Collapse
Affiliation(s)
- Marina Luiza Rodrigues-Alves
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Otoni Alves de Oliveira Melo-Júnior
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia Silveira
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Reysla Maria da Silveira Mariano
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jaqueline Costa Leite
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaiza Aline Pereira Santos
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ingrid Santos Soares
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel Ferreira Lair
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marília Martins Melo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucilene Aparecida Resende
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denise da Silveira-Lemos
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Medicina, Universidade José Do Rosário Vellano, UNIFENAS, Belo Horizonte, Brazil
| | - Walderez Ornelas Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nelder de Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Nascimento Araujo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauricio Roberto Viana Sant'Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luis Adan Flores Andrade
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciano Andrade Moreira
- Laboratório de Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou, Fiocruz, Belo Horizonte, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
130
|
Ko HY, Salem GM, Chang GJJ, Chao DY. Application of Next-Generation Sequencing to Reveal How Evolutionary Dynamics of Viral Population Shape Dengue Epidemiology. Front Microbiol 2020; 11:1371. [PMID: 32636827 PMCID: PMC7318875 DOI: 10.3389/fmicb.2020.01371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Dengue viral (DENV) infection results in a wide spectrum of clinical manifestations from asymptomatic, mild fever to severe hemorrhage diseases upon infection. Severe dengue is the leading cause of pediatric deaths and/or hospitalizations, which are a major public health burden in dengue-endemic or hyperendemic countries. Like other RNA viruses, DENV continues to evolve. Adaptive mutations are obscured by the major consensus sequence (so-called wild-type sequences) and can only be identified once they become the dominant viruses in the virus population, a process that can take months or years. Traditional surveillance systems still rely on Sanger consensus sequencing. However, with the recent advancement of high-throughput next-generation sequencing (NGS) technologies, the genome-wide investigation of virus population within-host and between-hosts becomes achievable. Thus, viral population sequencing by NGS can increase our understanding of the changing epidemiology and evolution of viral genomics at the molecular level. This review focuses on the studies within the recent decade utilizing NGS in different experimental and epidemiological settings to understand how the adaptive evolution of dengue variants shapes the dengue epidemic and disease severity through its transmission. We propose three types of studies that can be pursued in the future to enhance our surveillance for epidemic prediction and better medical management.
Collapse
Affiliation(s)
- Hui-Ying Ko
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Gielenny M Salem
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Gwong-Jen J Chang
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
131
|
de Azevedo TS, Lorenz C, Chiaravalloti-Neto F. Spatiotemporal evolution of dengue outbreaks in Brazil. Trans R Soc Trop Med Hyg 2020; 114:593-602. [DOI: 10.1093/trstmh/traa030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/03/2019] [Accepted: 04/22/2020] [Indexed: 01/29/2023] Open
Abstract
Abstract
Background
Dengue is a mosquito-borne febrile disease infecting millions of people worldwide. Identification of high-risk areas will allow public health services to concentrate their efforts in areas where outbreaks are most likely to occur. The present study focuses on describing the spatiotemporal evolution of dengue outbreaks in Brazil from 2000 to 2018.
Method
To assess the pattern behaviour and spatiotemporal trend of dengue outbreaks, the non-parametric kernel estimator method and the Mann–Kendall test, respectively, were used. Bivariate global Moran's I statistic was used to test the spatial correlation between dengue outbreaks, temperature, precipitation and population data.
Results
Our results revealed that the transmission cycles of dengue outbreaks vary in different spatiotemporal scenarios, with intermittent periods of outbreaks. In the period of study, outbreak clusters were primarily concentrated in the Northeast region and the transmission of dengue extended throughout Brazil until 2018. The probability of occurrence of dengue outbreaks was higher in high temperatures. Further, these space-time fluctuations in the number of outbreaks in the different regions were probably related to the high mobility between the populations of these regions, circulating serotypes and susceptible populations.
Conclusions
The distribution of dengue outbreaks is not random; it can be modified by socioeconomic and climatic moving boundaries.
Collapse
Affiliation(s)
- Thiago S de Azevedo
- Secretary of Health, Municipality of Santa Barbara d'Oeste - Santa Bárbara d´Oeste, 13450-021, Sao Paulo, Brazil
| | - Camila Lorenz
- Department of Epidemiology, School of Public Health, Universidade de São Paulo, 01246-904, Sao Paulo, Brazil
| | | |
Collapse
|
132
|
Syenina A, Vijaykrishna D, Gan ES, Tan HC, Choy MM, Siriphanitchakorn T, Cheng C, Vasudevan SG, Ooi EE. Positive epistasis between viral polymerase and the 3' untranslated region of its genome reveals the epidemiologic fitness of dengue virus. Proc Natl Acad Sci U S A 2020; 117:11038-11047. [PMID: 32366663 PMCID: PMC7245076 DOI: 10.1073/pnas.1919287117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV) is a global health threat, causing repeated epidemics throughout the tropical world. While low herd immunity levels to any one of the four antigenic types of DENV predispose populations to outbreaks, viral genetic determinants that confer greater fitness for epidemic spread is an important but poorly understood contributor of dengue outbreaks. Here we report that positive epistasis between the coding and noncoding regions of the viral genome combined to elicit an epidemiologic fitness phenotype associated with the 1994 DENV2 outbreak in Puerto Rico. We found that five amino acid substitutions in the NS5 protein reduced viral genomic RNA (gRNA) replication rate to achieve a more favorable and relatively more abundant subgenomic flavivirus RNA (sfRNA), a byproduct of host 5'-3' exoribonuclease activity. The resulting increase in sfRNA relative to gRNA levels not only inhibited type I interferon (IFN) expression in infected cells through a previously described mechanism, but also enabled sfRNA to compete with gRNA for packaging into infectious particles. We suggest that delivery of sfRNA to new susceptible cells to inhibit type I IFN induction before gRNA replication and without the need for further de novo sfRNA synthesis could form a "preemptive strike" strategy against DENV.
Collapse
Affiliation(s)
- Ayesa Syenina
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, 117549 Singapore
| | - Dhanasekaran Vijaykrishna
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Esther Shuyi Gan
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Hwee Cheng Tan
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Milly M Choy
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Tanamas Siriphanitchakorn
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
- Department of Biological Sciences, National University of Singapore, 117558 Singapore
| | - Colin Cheng
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore;
- Saw Swee Hock School of Public Health, National University of Singapore, 117549 Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore
- SingHealth Duke-National University of Singapore Global Health Institute, 169857 Singapore
| |
Collapse
|
133
|
Nadim SS, Ghosh I, Martcheva M, Chattopadhyay J. Impact of venereal transmission on the dynamics of vertically transmitted viral diseases among mosquitoes. Math Biosci 2020; 325:108366. [PMID: 32387647 DOI: 10.1016/j.mbs.2020.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/20/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
Despite centuries of enormous control efforts, mosquito-borne diseases continue to show upward trend of morbidity. According to WHO reports, malaria caused 438000 deaths in the year 2015 and dengue cases have been increased 30-fold over the last five decades. To control these diseases, it is necessary to understand the transmission dynamics of them among mosquitoes. There are some vertically transmitted mosquito-borne diseases which can also be spread among mosquitoes through sexual contact (e.g., dengue, zika, chikungunya). Recent experimental observations indicate that for virus persistence in mosquito population, the role of venereal transmission cannot be ignored. It is therefore important to investigate which transmission route is more responsible for the persistence of the virus when there is no host. To this aim, we propose and analyze a novel compartmental model considering mosquito population only. To the best of authors knowledge, this is the first attempt to take into account both vertical and sexual transmission of the virus in a mathematical model. Expression representing the basic reproduction number is derived using Jacobian approach. Local stability conditions for disease-free equilibrium and complete infection equilibrium are obtained. Global sensitivity analysis of the system is performed with respect to an epidemiologically important response. While investigating the impact of sexual transmission in presence of vertical transmission, we observed that sexual transmission route has the potential to drive the equilibrium from disease free to endemic states. Further numerical experiments reveal that the virus will have higher half life in fertilized infected female mosquitoes for vertical transmission only than for venereal transmission alone. Furthermore, when both transmission pathways are active, a variety of parameters indicate threshold like behavior of the infection.
Collapse
Affiliation(s)
- Sk Shahid Nadim
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700 108, West Bengal, India
| | - Indrajit Ghosh
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700 108, West Bengal, India.
| | - Maia Martcheva
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
| | - Joydev Chattopadhyay
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700 108, West Bengal, India
| |
Collapse
|
134
|
Recent transmission of dengue virus and associated risk Facors among residents of Kassala state, eastern Sudan. BMC Public Health 2020; 20:530. [PMID: 32306941 PMCID: PMC7168835 DOI: 10.1186/s12889-020-08656-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/05/2020] [Indexed: 12/26/2022] Open
Abstract
Background Acute arboviral infections are distributed worldwide including Sudan, and dengue fever (DENV) is not an exception. The virus activity has recently been frequently reported in Kassala State, eastern Sudan. However, an appropriate epidemiological study would be necessary to provide accurate and precise estimates of the magnitude of recent DENV transmission in this area of endemicity. Methods In the present investigation, a cross sectional study was conducted to advance beyond the current knowledge of the epidemiology of the disease in Kassala State. The prevalence of the disease was estimated and associated risk factors were determined. Sampled sera were collected and screened for recent dengue transmissionas as determined by DENV-IgM enzyme-linked immunosorbent assay (ELISA). The collection of data for risk assessment was supported by a well designed structured questionnaire. Results The prevalence of recent DENV infection was estimated to be (11.42%). Potential risk factors to DENV seropsitivity include, age (OR = 3.24, CI = 1.81–5.77,p-value = 0.001); low income (OR = 3.75, CI = 1.57–8.93, p-value = 0.027); mosquito control (OR = 4.18, CI = 2.33–7.51, p-value = 0.004); and localities. Conclusion The present study showed a high rate of circulating DENV IgM antibodies among the participants of the study (11.42%), suggesting recent transmission of DENV in Kassala State, eastern Sudan. The frequent occurrence of DENV infections necessitates the need for improved surveillance programs and prevention measures to combat this important arboviral disease in Sudan.
Collapse
|
135
|
The aspartate aminotransferase/platelet count ratio index as a marker of dengue virus infection: Course of illness. J Infect Public Health 2020; 13:980-984. [PMID: 32265161 DOI: 10.1016/j.jiph.2020.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The usefulness of laboratory tests in the decision-making process with regard to early identification of dengue virus infection has not been widely reported, particularly the aspartate aminotransferase (AST)/platelet count ratio index during a patient's days of illness. The aim of this study was to examine the pattern of the ratio index over the course of illness and identify whether it is a marker of dengue virus infection in dengue patients, as well as to assess the role of other laboratory tests. METHODS A chart review of 205 dengue patients was analyzed using available records of 845 laboratory results within different time intervals or exam dates during the course of illness. We used repeated measures mixed binary logistic regression analyses to model the dengue virus infection, defined as giving at least one positive antibody test (yes/no). RESULTS The high risk of dengue virus infection in dengue patients was found in the male gender (adjusted OR=4.316, 95% CI: 1.285-14.498, P=0.018), in patients with a high AST/platelet count ratio index (adjusted OR=1.438, 95% CI: 1.057-1.957, P=0.021), in patients with a low MCV level (adjusted OR=0.815, 95% CI: 0.679-0.978, P=0.028), and in patients with a low ALT level (adjusted OR=0.996, 95% CI: 0.993-0.999, P=0.010). CONCLUSION Laboratory markers, in particular the AST/platelet count ratio index, can be useful for clinicians to strengthen the decision-making process in primary care settings. Furthermore, our model revealed that low MCV and low ALT are predictors of the dengue virus infection, while being a male increases the risk of dengue virus infection. More studies are needed to evaluate the impact of the AST/platelet count ratio index on the severity of dengue fever infection during the onset of symptoms and course of treatment.
Collapse
|
136
|
Santana LS, Braga JU. Spatial diffusion of Zika fever epidemics in the Municipality of Salvador-Bahia, Brazil, in 2015-2016: does Zika fever have the same spread pattern as Dengue and Chikungunya fever epidemics? Rev Soc Bras Med Trop 2020; 53:e20190563. [PMID: 32267460 PMCID: PMC7156255 DOI: 10.1590/0037-8682-0563-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/17/2020] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The recent emergence and rapid spread of Zika and Chikungunya fevers in Brazil, occurring simultaneously to a Dengue fever epidemic, together represent major challenges to public health authorities. This study aimed to identify and compare the 2015-2016 spatial diffusion pattern of Zika, Chikungunya, and Dengue epidemics in Salvador-Bahia. METHODS We used two study designs comprising a cross-sectional-to-point pattern and an ecological analysis of lattice data. Residential addresses involving notified cases were geocoded. We used four spatial diffusion analysis techniques: (i) visual inspection of the sequential kernel and choropleth map, (ii) spatial correlogram analysis, (iii) spatial local autocorrelation (LISA) changes analysis and, (iv) nearest neighbor index (NNI) modeling. RESULTS Kernel and choropleth maps indicated that arboviruses spread to neighboring areas near the first reported cases and occupied these new areas, suggesting a diffusion expansion pattern. A greater case density occurred in central and western areas. In 2015 and 2016, the NNI best-fit model had an S-curve compatible with an expansion pattern for Zika (R2 = 0.94; 0.95), Chikungunya (R2 = 0.99; 0.98) and Dengue (R2 = 0.93; 0.99) epidemics, respectively. Spatial correlograms indicated a decline in spatial lag autocorrelations for the three diseases (expansion pattern). Significant LISA changes suggested different diffusion patterns, although a small number of changes were detected. CONCLUSIONS These findings indicate diffusion expansion, a unique spatial diffusion pattern of Zika, Chikungunya, and Dengue epidemics in Salvador-Bahia, namely. Knowing how and where arboviruses spread in Salvador-Bahia can help improve subsequent specific epidemic control interventions.
Collapse
Affiliation(s)
- Laís Santos Santana
- Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública Sergio
Arouca, Programa de Pós-Graduação Stricto Sensu em Epidemiologia em Saúde Pública,
Rio de Janeiro, RJ, Brasil
| | - Jose Ueleres Braga
- Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública Sergio
Arouca, Departamento de Epidemiologia e Métodos Quantitativos, Rio de Janeiro, RJ,
Brasil
- Universidade do Estado do Rio de Janeiro, Instituto de Medicina
Social, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
137
|
Hosseini S, Azari P, Cardenas-Benitez B, Martínez-Guerra E, Aguirre-Tostado FS, Vázquez-Villegas P, Pingguan-Murphy B, Madou MJ, Martinez-Chapa SO. A LEGO inspired fiber probe analytical platform for early diagnosis of Dengue fever. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110629. [DOI: 10.1016/j.msec.2020.110629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
|
138
|
Anasir MI, Ramanathan B, Poh CL. Structure-Based Design of Antivirals against Envelope Glycoprotein of Dengue Virus. Viruses 2020; 12:v12040367. [PMID: 32225021 PMCID: PMC7232406 DOI: 10.3390/v12040367] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Dengue virus (DENV) presents a significant threat to global public health with more than 500,000 hospitalizations and 25,000 deaths annually. Currently, there is no clinically approved antiviral drug to treat DENV infection. The envelope (E) glycoprotein of DENV is a promising target for drug discovery as the E protein is important for viral attachment and fusion. Understanding the structure and function of DENV E protein has led to the exploration of structure-based drug discovery of antiviral compounds and peptides against DENV infections. This review summarizes the structural information of the DENV E protein with regards to DENV attachment and fusion. The information enables the development of antiviral agents through structure-based approaches. In addition, this review compares the potency of antivirals targeting the E protein with the antivirals targeting DENV multifunctional enzymes, repurposed drugs and clinically approved antiviral drugs. None of the current DENV antiviral candidates possess potency similar to the approved antiviral drugs which indicates that more efforts and resources must be invested before an effective DENV drug materializes.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia;
| | - Babu Ramanathan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia;
| | - Chit Laa Poh
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia;
- Correspondence: ; Tel.: +60-3-7491-8622; Fax: +60-3-5635-8633
| |
Collapse
|
139
|
Hosseini S, Muñoz-Soto RB, Oliva-Ramírez J, Vázquez-Villegas P, Aghamohammadi N, Rodriguez-Garcia A, Martinez-Chapa SO. Latest Updates in Dengue Fever Therapeutics: Natural, Marine and Synthetic Drugs. Curr Med Chem 2020; 27:719-744. [DOI: 10.2174/0929867325666180629124709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 11/22/2022]
Abstract
In this paper, we review the history of Dengue, the mechanism of infection, the
molecular characteristics and components of Dengue, the mechanism of entry to the target
cells, cyclization of the genome and replication process, as well as translation of the proteins
for virus assembly. The major emphasis of this work is on natural products and plant extracts,
which were used for as palliative or adjuvant treatment of Dengue. This review article also
summarizes the latest findings in regards to the marine products as effective drugs to target
different symptoms of Dengue. Furthermore, an update on synthetic drugs for treating Dengue
is provided in this review. As a novel alternative, we describe monoclonal antibody therapy
for Dengue management and treatment.
Collapse
Affiliation(s)
- Samira Hosseini
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, N.L. 64849, Mexico
| | - Rodrigo B. Muñoz-Soto
- Tecnologico de Monterrey, Campus Ciudad de México, Escuela de Ingeniería y Ciencias, Calle del Puente 222, Mexico City, Mexico
| | - Jacqueline Oliva-Ramírez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Lago de Guadalupe Km 3.5, Cd Lopez Mateos, Atizapan, Estado de Mexico, Mexico
| | | | - Nasrin Aghamohammadi
- Centre for Occupational and Environmental Health, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Aida Rodriguez-Garcia
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Instituto de Biotecnología. Ave. Pedro de Alba S/N, Ciudad Universitaria, San Nicolás de los Garza, N.L. 66455, Mexico
| | | |
Collapse
|
140
|
Tryptophan Trimers and Tetramers Inhibit Dengue and Zika Virus Replication by Interfering with Viral Attachment Processes. Antimicrob Agents Chemother 2020; 64:AAC.02130-19. [PMID: 31932383 DOI: 10.1128/aac.02130-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/25/2019] [Indexed: 12/15/2022] Open
Abstract
Here, we report a class of tryptophan trimers and tetramers that inhibit (at low micromolar range) dengue and Zika virus infection in vitro These compounds (AL family) have three or four peripheral tryptophan moieties directly linked to a central scaffold through their amino groups; thus, their carboxylic acid groups are free and exposed to the periphery. Structure-activity relationship (SAR) studies demonstrated that the presence of extra phenyl rings with substituents other than COOH at the N1 or C2 position of the indole side chain is a requisite for the antiviral activity against both viruses. The molecules showed potent antiviral activity, with low cytotoxicity, when evaluated on different cell lines. Moreover, they were active against laboratory and clinical strains of all four serotypes of dengue virus as well as a selected group of Zika virus strains. Additional mechanistic studies performed with the two most potent compounds (AL439 and AL440) demonstrated an interaction with the viral envelope glycoprotein (domain III) of dengue 2 virus, preventing virus attachment to the host cell membrane. Since no antiviral agent is approved at the moment against these two flaviviruses, further pharmacokinetic studies with these molecules are needed for their development as future therapeutic/prophylactic drugs.
Collapse
|
141
|
Chen X, Zhou T, Feng L, Liang J, Liljeros F, Havlin S, Hu Y. Nontrivial resource requirement in the early stage for containment of epidemics. Phys Rev E 2020; 100:032310. [PMID: 31640028 DOI: 10.1103/physreve.100.032310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Indexed: 11/07/2022]
Abstract
During epidemic control, containment of the disease is usually achieved through increasing a devoted resource to reduce the infectiousness. However, the impact of this resource expenditure has not been studied quantitatively. For disease spread, the recovery rate can be positively correlated with the average amount of resource devoted to infected individuals. By incorporating this relation we build a novel model and find that insufficient resource leads to an abrupt increase in the infected population size, which is in marked contrast with the continuous phase transitions believed previously. Counterintuitively, this abrupt phase transition is more pronounced in less contagious diseases. Furthermore, we find that even for a single infection source, the public resource needs to be available in a significant amount, which is proportional to the total population size, to ensure epidemic containment. Our findings provide a theoretical foundation for efficient epidemic containment strategies in the early stage.
Collapse
Affiliation(s)
- Xiaolong Chen
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China.,Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 611731, China.,Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tianshou Zhou
- School of Mathematics, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Feng
- Institute of High Performance Computing, A*STAR, 138632 Singapore.,Department of Physics, National University of Singapore, 117551 Singapore
| | - Junhao Liang
- School of Mathematics, Sun Yat-sen University, Guangzhou 510006, China
| | - Fredrik Liljeros
- Department of Sociology, Stockholm University, 17177 Stockholm, Sweden
| | - Shlomo Havlin
- Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Yanqing Hu
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China.,Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
142
|
Latent Infectious Capacities of Dengue Fever: Mathematical Modeling and Eco-Friendly Prevention Strategy. Symmetry (Basel) 2020. [DOI: 10.3390/sym12020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The main aim of this article is to propose a method for exploring the latent values about the capacities of spreading dengue for each potential site. First, a mathematical model connecting the observable public data and the capacities of spreading dengue is provided based on the split feasibility problem (SFP). Then, a proper iterative scheme for the SFP is presented to approach the values of infectious capacities (ICs) of potential sites—the capacities of spreading. The performance of our proposed method is demonstrated using public data from Kaohsiung City for 2014 and 2015. The results presented in this paper show that our proposed method is reliable and the sites with a high capacity of spreading are only a small portion of thousands of all potential sites and could be an alternative strategy for preventing the outbreak of dengue fever whilst also avoiding the damage of ecosystems caused by chemical insecticides.
Collapse
|
143
|
Chen WC, Simanjuntak Y, Chu LW, Ping YH, Lee YL, Lin YL, Li WS. Benzenesulfonamide Derivatives as Calcium/Calmodulin-Dependent Protein Kinase Inhibitors and Antiviral Agents against Dengue and Zika Virus Infections. J Med Chem 2020; 63:1313-1327. [PMID: 31972088 DOI: 10.1021/acs.jmedchem.9b01779] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Emerging and resurging mosquito-borne flaviviruses are an important public health challenge. The increased prevalence of dengue virus (DENV) infection has had a significant socioeconomic impact on epidemic countries. The recent outbreak of Zika virus (ZIKV) has created an international public health emergency because ZIKV infection has been linked to congenital defects and Guillain-Barré syndrome. To develop potentially prophylactic antiviral drugs for combating these acute infectious diseases, we have targeted the host calcium/calmodulin-dependent kinase II (CaMKII) for inhibition. By using CaMKII structure-guided inhibitor design, we generated four families of benzenesulfonamide (BSA) derivatives for SAR analysis. Among these substances, N-(4-cycloheptyl-4-oxobutyl)-4-methoxy-N-phenylbenzenesulfonamide (9) showed superior properties as a lead CaMKII inhibitor and antiviral agent. BSA 9 inhibited CaMKII activity with an IC50 value of 0.79 μM and displayed EC50 values of 1.52 μM and 1.91 μM against DENV and ZIKV infections of human neuronal BE(2)C cells, respectively. Notably, 9 significantly reduced the viremia level and increased animal survival time in mouse-challenge models.
Collapse
Affiliation(s)
- Wei-Chia Chen
- Department of Chemistry , National Taiwan Normal University , Taipei 11677 , Taiwan.,Institute of Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| | - Yogy Simanjuntak
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan
| | - Li-Wei Chu
- Institute of Biophotonics , National Yang-Ming University , Taipei 11221 , Taiwan.,Reseach Center for Applied Sciences , Academia Sinica , Taipei 11529 , Taiwan
| | - Yueh-Hsin Ping
- Institute of Biophotonics , National Yang-Ming University , Taipei 11221 , Taiwan.,Department and Institute of Pharmacology , National Yang-Ming University , Taipei 11221 , Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan.,Genomic Research Center , Academia Sinica , Taipei 11529 , Taiwan
| | - Wen-Shan Li
- Institute of Chemistry , Academia Sinica , Taipei 11529 , Taiwan.,Doctoral Degree Program in Marine Biotechnology , National Sun Yat-Sen University , Kaohsiung 80424 , Taiwan.,Ph.D Program in Biotechnology Research and Development , Taipei Medical University , Taipei 11031 , Taiwan.,Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 80708 , Taiwan
| |
Collapse
|
144
|
Taz TA, Kawsar M, Paul BK, Ahmed K, Bhuyian T. Characterizing topological properties and network pathway model among vector borne diseases. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
145
|
Abstract
Dengue virus (DENV) belongs to the family Flaviviridae, genus Flavivirus. It is a single-stranded positive-sense ribonucleic acid virus with 10,700 bases. The genus Flavivirus includes other arthropod borne viruses such as yellow fever virus, West Nile virus, Zika virus, tick-borne encephalitis virus. It infects ~50–200 million people annually, putting over 3.6 billion people living in tropical regions at risk and causing ~20,000 deaths annually. The expansion of dengue is attributed to factors such as the modern dynamics of climate change, globalization, travel, trade, socioeconomics, settlement, and also viral evolution. There are four antigenically different serotypes of DENV based on the differences in their viral structural and nonstructural proteins. DENV infection causes a spectrum of illness ranging from asymptomatic to dengue fever to severe dengue shock syndrome. Infection with one serotype confers lifelong immunity against that serotype, but heterologus infection leads to severe dengue hemorrhagic fever due to antibody-dependent enhancement. Diagnosis of dengue infections is based mainly on serological detection of either antigen in acute cases or antibodies in both acute and chronic infection. Viral detection and real-time PCR detection though helpful is not feasible in resource poor setup. Treatment of dengue depends on symptomatic management along with fluid resuscitation and may require platelet transfusion. Although vaccine development is in late stages of development, developing a single vaccine against four serotypes often causes serious challenges to researchers; hence, the main stay of prevention is vector control and management.
Collapse
|
146
|
Ghosh Roy S. TAM receptors: A phosphatidylserine receptor family and its implications in viral infections. TAM RECEPTORS IN HEALTH AND DISEASE 2020; 357:81-122. [DOI: 10.1016/bs.ircmb.2020.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
147
|
The association between dengue incidences and provincial-level weather variables in Thailand from 2001 to 2014. PLoS One 2019; 14:e0226945. [PMID: 31877191 PMCID: PMC6932763 DOI: 10.1371/journal.pone.0226945] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 12/09/2019] [Indexed: 11/19/2022] Open
Abstract
Dengue and dengue hemorrhagic pose significant burdens in many tropical countries. Dengue incidences have perpetually increased, leading to an annual (uncertain) peak. Dengue cases cause an enormous public health problem in Thailand because there is no anti-viral drug against the dengue virus. Searching for means to reduce the dengue incidences is a challenging and appropriate strategy for primary prevention in a dengue outbreak. This study constructs the best predictive model from past statistical dengue incidences at the provincial level and studies the relationships among dengue incidences and weather variables. We conducted experiments for 65 provinces (out of 77 provinces) in Thailand since there is no dengue information for the remaining provinces. Predictive models were constructed using weekly data during 2001-2014. The training set are data during 2001-2013, and the test set is the data from 2014. Collected data were separated into two parts: current dengue cases as the dependent variable, and weather variables and previous dengue cases as the independent variables. Eight weather variables are used in our models: average pressure, maximum temperature, minimum temperature, average humidity, precipitation, vaporization, wind direction, wind power. Each weather variable includes the current week and one to three weeks of lag time. A total of 32 independent weather variables are used for each province. The previous one to three weeks of dengue cases are also used as independent variables. There is a total of 35 independent variables. Predictive models were constructed using five methods: Poisson regression, negative binomial regression, quasi-likelihood regression, ARIMA(3,1,4) and SARIMA(2,0,1)(0,2,0). The best model is determined by combinations of 1–12 variables, which are 232,989,800 models for each province. We construct a total of 15,144,337,000 models. The best model is selected by the average from high to low of the coefficient of determination (R2) and the lowest root mean square error (RMSE). From our results, the one-week lag previous case variable is the most frequent in 55 provinces out of a total of 65 provinces (coefficient of determinations with a minimum of 0.257 and a maximum of 0.954, average of 0.6383, 95% CI: 0.57313 to 0.70355). The most influential weather variable is precipitation, which is used in most of the provinces, followed by wind direction, wind power, and barometric pressure. The results confirm the common knowledge that dengue incidences occur most often during the rainy season. It also shows that wind direction, wind power, and barometric pressure also have influences on the number of dengue cases. These three weather variables may help adult mosquitos to survive longer and spread dengue. In conclusion, The most influential factor for further cases is the number of dengue cases. However, weather variables are also needed to obtain better results. Predictions of the number of dengue cases should be done locally, not at the national level. The best models of different provinces use different sets of weather variables. Our model has an accuracy that is sufficient for the real prediction of future dengue incidences, to prepare for and protect against severe dengue outbreaks.
Collapse
|
148
|
Shelar A, Sangshetti J, Chakraborti S, Singh AV, Patil R, Gosavi S. Helminthicidal and Larvicidal Potentials of Biogenic Silver Nanoparticles Synthesized from Medicinal Plant Momordica charantia. Med Chem 2019; 15:781-789. [PMID: 31208313 DOI: 10.2174/1573406415666190430142637] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The drug formulations used to control mosquito vectors and helminth infections have resulted in the development of resistance, and negative impact on non-target organisms and environment. OBJECTIVE Plant-mediated synthesis of silver nanoparticles (P-AgNPs) using aqueous fruit peel extract of M. charantia, applications of P-AgNPs for helminthicidal activity against Indian earthworms (P. posthuma) and larvicidal activity against larvae of mosquito A. albopictus and A. aegypti. METHODS Aqueous fruit peel extract of Momordica charantia was used to reduce silver ions to silver nanoparticles (P-AgNPs). UV-Visible (UV-Vis) Spectroscopy, X-ray diffraction, Fourier Transform Infrared Spectroscopy and Transmission Electron Microscopy characterize synthesized P-AgNPs. The motility and survival rate of the worms were recorded for the helminthicidal activity. Percent mortality of larvae of A. albopictus and A. aegypti was recorded for larvicidal activity. RESULTS The UV-Vis absorption spectrum of P-AgNPs showed a strong surface plasmon absorption band in the visible region with a maximum absorption at 445 nm indicating the synthesis of silver nanoparticles by the addition of aqueous fruit peel extract. The XRD spectrum of P-AgNPs showed Bragg's reflection peaks 2θ value characteristics for the Face-Centered Cubic (FCC) structure of silver. The sharp absorption peak in FTIR at 1659 cm-1 assigned to C=O stretching vibration in carbonyl compounds represents terpenoids, flavonoids and polyphenols in the corona of PAgNPs; a 2 mg/mL of P-AgNPs. The concentration aqueous extract and P-AgNPs showed complete death of worms (the morphological alteration/coiling of body). A 20 ppm concentration of PAgNPs showed 85% mortality in larvae of Ae. albopictus and Ae. aegypti. P-AgNPs were nontoxic at low concentrations. CONCLUSION The aqueous extracts played a dual role as reducing and capping agent during the biosynthesis of AgNPs as per FTIR and XRD results. The surface reactivity facilitated by biomolecule corona attached to silver nanoparticles can further help to functionalize AgNPs in various pharmaceuticals, biomedicals, and environmental applications.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | | | | | - Ajay Vikram Singh
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, Heisenbergstr 3, 70569 Stuttgart, Germany.,Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Suresh Gosavi
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
149
|
Sawadogo S, Baguiya A, Yougbare F, Bicaba BW, Nebie K, Millogo T, Kamba I, Kaba L, Sangare L, Kafando E, Deneys V. Seroprevalence and factors associated with IgG anti-DENV positivity in blood donors in Burkina Faso during the 2016 dengue outbreak and implications for blood supply. Transfus Med 2019; 30:37-45. [PMID: 31709647 DOI: 10.1111/tme.12646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/23/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Our study aimed to update the seroprevalence and factors associated with anti-dengue virus (DENV) antibody positivity among blood donors and to discuss their implications for blood supply. BACKGROUND Questions on the potential transmission of DENV by transfusion increased after the documentation of the risk of transmission of the West Nile virus. This risk was estimated after transfusion of DENV RNA-positive blood units of up to 37.5%. In Burkina Faso, very few studies on DENV in blood donors have been conducted. As a result, there were no reliable data on DENV to allow the implementation of appropriate measures to control the risk of transmission of the dengue virus by blood transfusion. METHODS We conducted a 4-week cross-sectional study from December 4 to 30, 2016. Blood donors of both genders, aged 18-60 years, accepted for blood donation after medical selection were consecutively enrolled. RESULTS Our study included a total of 1007 blood donors, in which donors living in urban areas represented 78.2%. The mean age was 26.1 ± 8.1 years. After adjustment in a multiple regression logistic model, the odds of having IgG anti-DENV increased as age increased. The odds of DENV was 53% lower in rural areas (OR = 0.47; P = .000) compared to urban settings and 42% lower in mobile sites (OR = 0.58; P = .03) compared to fixed ones. CONCLUSION Our study provides new and useful insights for future research on the risk of TT-DENV throughout blood transfusion.
Collapse
Affiliation(s)
- Salam Sawadogo
- Joseph KI-ZERBO University, Ouagadougou, Burkina Faso
- National Blood Transfusion Center, Ouagadougou, Burkina Faso
| | - Adama Baguiya
- Research Institute of Health Sciences, Ouagadougou, Burkina Faso
| | - Fiffou Yougbare
- National Blood Transfusion Center, Ouagadougou, Burkina Faso
| | | | - Koumpingnin Nebie
- Joseph KI-ZERBO University, Ouagadougou, Burkina Faso
- National Blood Transfusion Center, Ouagadougou, Burkina Faso
| | - Tieba Millogo
- African Institute of Public Health, Ouagadougou, Burkina Faso
| | - Ibrahim Kamba
- Joseph KI-ZERBO University, Ouagadougou, Burkina Faso
| | - Losseni Kaba
- National Blood Transfusion Center, Ouagadougou, Burkina Faso
| | | | | | | |
Collapse
|
150
|
Construction of a novel tetravalent dengue vaccine with a Salmonella Typhimurium bacterial ghost and evaluation of its immunogenicity and protective efficacy using a murine model. Vaccine 2019; 38:916-924. [PMID: 31706812 DOI: 10.1016/j.vaccine.2019.10.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/14/2019] [Accepted: 10/25/2019] [Indexed: 01/27/2023]
Abstract
Efforts to develop a safe, effective, and affordable dengue vaccine have focused on providing simultaneous immunity against all four serotypes of the dengue virus (DENV). In the current study, Salmonella Typhimurium (ST) lysed by gene E activation was genetically constructed to deliver the envelope protein domain III (EDIII) of all four serotypes of DENV using a foreign antigen delivery and expression vector, pJHL184. Each DENV-EDIII protein expressed in the constructed strain was validated by immunoblot analysis. To assess the immunogenicity and protective efficacy of the constructs against dengue infection, BALB/c mice were injected once orally with either the individual ST-EDIII constructs or a mix of all four ST-EDIII constructs followed by intramuscular administration of the purified EDIII protein. Significantly elevated titers of EDIII-specific IgG, IgG1, and IgG2a were observed in the immunized mice (P < 0.01). Furthermore, lymphocyte proliferative activity and CD3+CD4+ T-cell subpopulations increased significantly in vitro in re-pulsed splenic T cells compared with those from non-immunized mice. In addition, a lower viral load was detected in the BG-EDIII vaccinated group after challenge with DENV-infected K562 cells. Collectively, the results demonstrate that DENV-EDIII expressed in the inactivated ST strain could induce robust humoral and cell-mediated immunity specific to the target antigen and could provide significant protective potential.
Collapse
|