101
|
Casella C, Chamberland M, Laguna PL, Parker GD, Rosser AE, Coulthard E, Rickards H, Berry SC, Jones DK, Metzler‐Baddeley C. Mutation-related magnetization-transfer, not axon density, drives white matter differences in premanifest Huntington disease: Evidence from in vivo ultra-strong gradient MRI. Hum Brain Mapp 2022; 43:3439-3460. [PMID: 35396899 PMCID: PMC9248323 DOI: 10.1002/hbm.25859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/27/2022] [Indexed: 11/10/2022] Open
Abstract
White matter (WM) alterations have been observed in Huntington disease (HD) but their role in the disease-pathophysiology remains unknown. We assessed WM changes in premanifest HD by exploiting ultra-strong-gradient magnetic resonance imaging (MRI). This allowed to separately quantify magnetization transfer ratio (MTR) and hindered and restricted diffusion-weighted signal fractions, and assess how they drove WM microstructure differences between patients and controls. We used tractometry to investigate region-specific alterations across callosal segments with well-characterized early- and late-myelinating axon populations, while brain-wise differences were explored with tract-based cluster analysis (TBCA). Behavioral measures were included to explore disease-associated brain-function relationships. We detected lower MTR in patients' callosal rostrum (tractometry: p = .03; TBCA: p = .03), but higher MTR in their splenium (tractometry: p = .02). Importantly, patients' mutation-size and MTR were positively correlated (all p-values < .01), indicating that MTR alterations may directly result from the mutation. Further, MTR was higher in younger, but lower in older patients relative to controls (p = .003), suggesting that MTR increases are detrimental later in the disease. Finally, patients showed higher restricted diffusion signal fraction (FR) from the composite hindered and restricted model of diffusion (CHARMED) in the cortico-spinal tract (p = .03), which correlated positively with MTR in the posterior callosum (p = .033), potentially reflecting compensatory mechanisms. In summary, this first comprehensive, ultra-strong gradient MRI study in HD provides novel evidence of mutation-driven MTR alterations at the premanifest disease stage which may reflect neurodevelopmental changes in iron, myelin, or a combination of these.
Collapse
Affiliation(s)
- Chiara Casella
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
- Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging SciencesKing's College London, St Thomas' HospitalLondonUK
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenThe Netherlands
| | - Pedro L. Laguna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Greg D. Parker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Anne E. Rosser
- Department of Neurology and Psychological MedicineHayden Ellis BuildingCardiffUK
- School of BiosciencesCardiff UniversityCardiffUK
| | | | - Hugh Rickards
- Birmingham and Solihull Mental Health NHS Foundation TrustBirminghamUK
- Institute of Clinical Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Samuel C. Berry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Claudia Metzler‐Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| |
Collapse
|
102
|
Rocha NP, Charron O, Colpo GD, Latham LB, Patino JE, Stimming EF, Freeman L, Teixeira AL. Cerebral blood flow is associated with markers of neurodegeneration in Huntington’s disease. Parkinsonism Relat Disord 2022; 102:79-85. [DOI: 10.1016/j.parkreldis.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/21/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022]
|
103
|
Reasoner EE, van der Plas E, Al‐Kaylani HM, Langbehn DR, Conrad AL, Schultz JL, Epping EA, Magnotta VA, Nopoulos PC. Behavioral features in child and adolescent huntingtin gene-mutation carriers. Brain Behav 2022; 12:e2630. [PMID: 35604958 PMCID: PMC9304841 DOI: 10.1002/brb3.2630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 05/03/2022] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION We compared neuropsychiatric symptoms between child and adolescent huntingtin gene-mutation carriers and noncarriers. Given previous evidence of atypical striatal development in carriers, we also assessed the relationship between neuropsychiatric traits and striatal development. METHODS Participants between 6 and 18 years old were recruited from families affected by Huntington's disease and tested for the huntingtin gene expansion. Neuropsychiatric traits were assessed using the Pediatric Behavior Scale and the Behavior Rating Inventory of Executive Function. Striatal volumes were extracted from 3T neuro-anatomical images. Multivariable linear regression models were conducted to evaluate the impact of group (i.e., gene nonexpanded [GNE] or gene expanded [GE]), age, and trajectory of striatal growth on neuropsychiatric symptoms. RESULTS There were no group differences in any behavioral measure with the exception of depression/anxiety score, which was higher in the GNE group compared to the GE group (estimate = 4.58, t(129) = 2.52, FDR = 0.051). The growth trajectory of striatal volume predicted depression scores (estimate = 0.429, 95% CI 0.15:0.71, p = .0029), where a negative slope of striatal volume over time was associated with lower depression/anxiety. CONCLUSIONS The current findings show that GE children may have lower depression/anxiety compared to their peers. Previously, we observed a unique pattern of early striatal hypertrophy and continued decrement in volume over time among GE children and adolescents. In contrast, GNE individuals largely show striatal volume growth. These findings suggest that the lower scores of depression and anxiety seen in GE children and adolescents may be associated with differential growth of the striatum.
Collapse
Affiliation(s)
- Erin E. Reasoner
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Ellen van der Plas
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Hend M. Al‐Kaylani
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Douglas R. Langbehn
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Amy L. Conrad
- Stead Family Children's Hospital at the University of IowaIowa CityIowaUSA
| | - Jordan L. Schultz
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Eric A. Epping
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Vincent A. Magnotta
- Department of RadiologyUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Peggy C. Nopoulos
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
- Stead Family Children's Hospital at the University of IowaIowa CityIowaUSA
- Department of NeurologyUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| |
Collapse
|
104
|
Tabrizi SJ, Schobel S, Gantman EC, Mansbach A, Borowsky B, Konstantinova P, Mestre TA, Panagoulias J, Ross CA, Zauderer M, Mullin AP, Romero K, Sivakumaran S, Turner EC, Long JD, Sampaio C. A biological classification of Huntington's disease: the Integrated Staging System. Lancet Neurol 2022; 21:632-644. [PMID: 35716693 DOI: 10.1016/s1474-4422(22)00120-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022]
Abstract
The current research paradigm for Huntington's disease is based on participants with overt clinical phenotypes and does not address its pathophysiology nor the biomarker changes that can precede by decades the functional decline. We have generated a new research framework to standardise clinical research and enable interventional studies earlier in the disease course. The Huntington's Disease Integrated Staging System (HD-ISS) comprises a biological research definition and evidence-based staging centred on biological, clinical, and functional assessments. We used a formal consensus method that involved representatives from academia, industry, and non-profit organisations. The HD-ISS characterises individuals for research purposes from birth, starting at Stage 0 (ie, individuals with the Huntington's disease genetic mutation without any detectable pathological change) by using a genetic definition of Huntington's disease. Huntington's disease progression is then marked by measurable indicators of underlying pathophysiology (Stage 1), a detectable clinical phenotype (Stage 2), and then decline in function (Stage 3). Individuals can be precisely classified into stages based on thresholds of stage-specific landmark assessments. We also demonstrated the internal validity of this system. The adoption of the HD-ISS could facilitate the design of clinical trials targeting populations before clinical motor diagnosis and enable data standardisation across ongoing and future studies.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, UK Dementia Research Institute, University College London, UK.
| | - Scott Schobel
- Product Development Neuroscience, F Hoffmann-La Roche, Basel, Switzerland
| | | | | | | | | | - Tiago A Mestre
- Parkinson's Disease and Movement Disorders Centre, Division of Neurology, Department of Medicine, The Ottawa Hospital Research Institute, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | | | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Neurology, Neuroscience, and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Klaus Romero
- Critical Path Institute, Tucson, Arizona 85718, USA
| | | | | | - Jeffrey D Long
- Department of Psychiatry, Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Cristina Sampaio
- CHDI Management/CHDI Foundation, Princeton, NJ, USA; Clinical Pharmacology Laboratory, Faculdade de Medicina de Lisboa, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
105
|
Gallezot C, Riad R, Titeux H, Lemoine L, Montillot J, Sliwinski A, Bagnou JH, Cao XN, Youssov K, Dupoux E, Bachoud Levi AC. Emotion expression through spoken language in Huntington Disease. Cortex 2022; 155:150-161. [DOI: 10.1016/j.cortex.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/18/2022] [Accepted: 05/29/2022] [Indexed: 11/26/2022]
|
106
|
Petersen MH, Willert CW, Andersen JV, Madsen M, Waagepetersen HS, Skotte NH, Nørremølle A. Progressive Mitochondrial Dysfunction of Striatal Synapses in R6/2 Mouse Model of Huntington's Disease. J Huntingtons Dis 2022; 11:121-140. [PMID: 35311711 DOI: 10.3233/jhd-210518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disorder characterized by synaptic dysfunction and loss of white matter volume especially in the striatum of the basal ganglia and to a lesser extent in the cerebral cortex. Studies investigating heterogeneity between synaptic and non-synaptic mitochondria have revealed a pronounced vulnerability of synaptic mitochondria, which may lead to synaptic dysfunction and loss. OBJECTIVE As mitochondrial dysfunction is a hallmark of HD pathogenesis, we investigated synaptic mitochondrial function from striatum and cortex of the transgenic R6/2 mouse model of HD. METHODS We assessed mitochondrial volume, ROS production, and antioxidant levels as well as mitochondrial respiration at different pathological stages. RESULTS Our results reveal that striatal synaptic mitochondria are more severely affected by HD pathology than those of the cortex. Striatal synaptosomes of R6/2 mice displayed a reduction in mitochondrial mass coinciding with increased ROS production and antioxidants levels indicating prolonged oxidative stress. Furthermore, synaptosomal oxygen consumption rates were significantly increased during depolarizing conditions, which was accompanied by a marked increase in mitochondrial proton leak of the striatal synaptosomes, indicating synaptic mitochondrial stress. CONCLUSION Overall, our study provides new insight into the gradual changes of synaptic mitochondrial function in HD and suggests compensatory mitochondrial actions to maintain energy production in the HD brain, thereby supporting that mitochondrial dysfunction do indeed play a central role in early disease progression of HD.
Collapse
Affiliation(s)
- Maria Hvidberg Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens Velde Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Mette Madsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Niels Henning Skotte
- Proteomics Program, The Novo Nordisk Foundation Centre for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
107
|
Hellem MNN, Cheong RY, Tonetto S, Vinther-Jensen T, Hendel RK, Larsen IU, Nielsen TT, Hjermind LE, Vogel A, Budtz-Jørgensen E, Petersén Å, Nielsen JE. Decreased CSF oxytocin relates to measures of social cognitive impairment in Huntington's disease patients. Parkinsonism Relat Disord 2022; 99:23-29. [PMID: 35580426 DOI: 10.1016/j.parkreldis.2022.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/21/2022] [Accepted: 05/08/2022] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Huntington's disease (HD) is an inherited neurodegenerative disease with motor, cognitive and psychiatric symptoms. Non-motor symptoms like depression and altered social cognition are proposed to be caused by dysfunction of the hypothalamus. We measured the hypothalamic neuropeptide oxytocin in plasma and cerebrospinal fluid (CSF) in a cohort of HD gene expansion carriers (HDGECs), compared the levels to healthy HD family controls and correlated oxytocin levels to disease progression and social cognition. METHODS We recruited 113 HDGECs and 33 controls. Psychiatric and cognitive symptoms were evaluated, and social cognition was assessed with the Emotion Hexagon test, Reading the Mind in the Eyes and The Awareness of Social Inference Test. The levels of oxytocin in CSF and blood were analyzed by radioimmunoassay. RESULTS We found the level of oxytocin in CSF to be significantly lower by 33.5% in HDGECs compared to controls (p = 0.016). When dividing the HDGECs into groups with or without cognitive impairment, we found the oxytocin level to be significantly lower by 30.3% in the HDGECs with cognitive symptoms (p = 0.046). We found a statistically significant correlation between the level of oxytocin and scores on social cognition (Reading the Mind in the Eyes p = 0.0019; Emotion Hexagon test: p = 0.0062; The Awareness of Social Inference Test: p = 0.002). CONCLUSIONS This is the first study to measure oxytocin in the CSF of HDGECs. We find that HDGECs have a significantly lower level of oxytocin compared to controls, and that the level of oxytocin may represent an objective and comparable measure that could be used as a state biomarker for impairment of social cognition. We suggest treatment trials to evaluate a potential effect of oxytocin on social cognition in HD.
Collapse
Affiliation(s)
- Marie N N Hellem
- The Neurogenetics Clinic and Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej, Section 8008, 2100, Copenhagen, Denmark.
| | - Rachel Y Cheong
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Simone Tonetto
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Tua Vinther-Jensen
- The Neurogenetics Clinic and Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej, Section 8008, 2100, Copenhagen, Denmark; Department of Neurology, Bispebjerg-Frederiksberg Hospital, Bispebjerg Bakke 23, 2400, Copenhagen, NV, Denmark
| | - Rebecca K Hendel
- The Neurogenetics Clinic and Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej, Section 8008, 2100, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Øster Farimagsgade 2, 1014, Copenhagen, Denmark
| | - Ida U Larsen
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, Bispebjerg Bakke 23, 2400, Copenhagen, NV, Denmark
| | - Troels T Nielsen
- The Neurogenetics Clinic and Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej, Section 8008, 2100, Copenhagen, Denmark
| | - Lena E Hjermind
- The Neurogenetics Clinic and Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej, Section 8008, 2100, Copenhagen, Denmark
| | - Asmus Vogel
- The Neurogenetics Clinic and Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej, Section 8008, 2100, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Øster Farimagsgade 2, 1014, Copenhagen, Denmark
| | - Esben Budtz-Jørgensen
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Øster Farimagsgade 5, 1014, Copenhagen, Denmark
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Jørgen E Nielsen
- The Neurogenetics Clinic and Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej, Section 8008, 2100, Copenhagen, Denmark
| |
Collapse
|
108
|
Schmid RD, Remlinger J, Abegg M, Hoepner R, Hoffmann R, Lukas C, Saft C, Salmen A. No optical coherence tomography changes in premanifest Huntington's disease mutation carriers far from disease onset. Brain Behav 2022; 12:e2592. [PMID: 35511084 PMCID: PMC9226796 DOI: 10.1002/brb3.2592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Spectral-domain optical coherence tomography (OCT) may detect retinal changes as a biomarker in neurodegenerative diseases like manifest Huntington's disease (HD). We investigate macular retinal layer thicknesses in a premanifest HD (pre-HD) cohort and healthy controls (HC). METHODS Pre-HD mutation carriers underwent standardized ratings and a preset macular OCT scan. Thickness values were determined for each sector of all macular retinal layers, the mean of all sectors and the mean of the inner ring (IR, 3 mm) after segmentation (Heyex segmentation batch). HC were retrospectively included from an existing database. The IR thickness of the ganglion cell layer (GCL), retinal nerve fiber layer (RNFL), GCL + inner plexiform layer (GCIPL), and total retina were included in the exploratory correlation analyses with paraclinical ratings and compared to HC. RESULTS The analyses comprised n = 24 pre-HD participants (n = 10 male, n = 14 female) and n = 38 HC (n = 14 male, n = 24 female). Retinal layer parameters did not correlate with paraclinical ratings. Expected correlations between established HD biomarkers were robust. The IR thicknesses of the GCL, GCIPL, and total retina did not differ between pre-HD and HC. The IR thickness of the RNFL was significantly higher in pre-HD participants (pre-HD: 23.22 μm (standard deviation 2.91), HC: 21.26 μm (1.90), p = .002). DISCUSSION In this cross-sectional cohort of genetically determined pre-HD participants, neurodegenerative features were not detected with retinal layer segmentation. Since our pre-HD collective was more than 16 years before disease onset, OCT may not be sensitive enough to detect early changes.
Collapse
Affiliation(s)
- Rahel Dominique Schmid
- Department of Ophthalmology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Jana Remlinger
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mathias Abegg
- Department of Ophthalmology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Robert Hoepner
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Rainer Hoffmann
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Huntington Center NRW, Bochum, Germany.,Department of Neuropsychiatry, Huntington Center South, kbo-Isar-Amper-Klinikum, Taufkirchen (Vils), Germany
| | - Carsten Lukas
- Institute of Neuroradiology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Saft
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Huntington Center NRW, Bochum, Germany
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Huntington Center NRW, Bochum, Germany
| |
Collapse
|
109
|
Barrios-Martinez JV, Fernandes-Cabral DT, Abhinav K, Fernandez-Miranda JC, Chang YF, Suski V, Yeh FC, Friedlander RM. Differential tractography as a dynamic imaging biomarker: A methodological pilot study for Huntington's disease. Neuroimage Clin 2022; 35:103062. [PMID: 35671556 PMCID: PMC9168197 DOI: 10.1016/j.nicl.2022.103062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/26/2022] [Indexed: 11/21/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by motor, psychiatric, and cognitive symptoms. Due to its diverse manifestations, the scientific community has long recognized the need for sensitive, objective, individualized, and dynamic disease assessment tools. We examined the feasibility of Differential Tractography as a biomarker to evaluate correlation of symptom severity and of HD progression at the individual level. Differential tractography is a novel tractography modality that maps pathways with axonal injury characterized by a decrease of anisotropic diffusion pattern. We recruited sixteen patients scanned at 0-, 6-, and 12-month intervals by diffusion MRI scans for differential tractography assessment and correlated its volumetric findings with the Unified Huntington's Disease Rating Scale (UHDRS). Deterministic fiber tracking algorithm was applied. Longitudinal data was modeled using the generalized estimating equation (GEE) model and correlated with UHDRS scores, in addition to Spearman correlation for cross-sectional data. Our results show that volumes of affected pathways revealed by differential tractography significantly correlated with UHDRS scores in longitudinal data (p-value < 0.001), and chronological changes in differential tractography also correlated with the changes in UHDRS (p-value < 0.001). This technique opens new clinical avenues as a clinical translational tool to evaluate presymptomatic and symptomatic gene positive individuals. Our results provide support that differential tractography has the potential to be used as a dynamic imaging biomarker to assess at the individual level in a non-invasive manner, disease progression in HD. Critically important, differential tractography proves to be a quantitative tool for following degeneration in presymptomatic patients, with potential applications in clinical trials.
Collapse
Affiliation(s)
| | | | - Kumar Abhinav
- Department of Neurosurgery, University of Bristol, Southmead Hospital, Bristol, UK
| | | | - Yue-Fang Chang
- Department of Neurological Surgery, University of Pittsburgh, UPMC, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie Suski
- Department of Neurology, University of Pittsburgh, UPMC, Pittsburgh, PA, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, UPMC, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh, UPMC, Pittsburgh, PA, USA.
| |
Collapse
|
110
|
Maffi S, Scaricamazza E, Migliore S, Casella M, Ceccarelli C, Squitieri F. Sleep Quality and Related Clinical Manifestations in Huntington Disease. J Pers Med 2022; 12:jpm12060864. [PMID: 35743649 PMCID: PMC9224745 DOI: 10.3390/jpm12060864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Sleep patterns are frequently disrupted in neurodegenerative disorders such as Huntington disease (HD); however, they are still poorly understood, especially their association with clinic features. Our study aimed to explore potential correlations between sleep features and motor, cognitive, behavioural and functional changes in manifest HD subjects. (2) Methods: We enrolled 42 patients who were assessed by the Pittsburgh Sleep Quality Index (PSQI) and Insomnia Severity Index (ISI) questionnaires; clinical features were evaluated by the validated ENROLL-HD platform assay, including the Unified Huntington’s Disease Rating Scale (UHDRS) and the Problem Behaviours Assessment Short Form (PBA-s). (3) Results: We found a significant association between the patients’ perception of sleep abnormalities and scores of impaired independence, cognitive and motor performances. Specifically, sleep efficiency (PSQI—C4 subscores) and the use of sleep medications (PSQI—C6 subscores) seem to be more frequently associated with the severity of the disease progression. (4) Conclusion: sleep abnormalities represent an important part of the HD clinical profile and can impair patients’ quality of life by affecting their level of independence, cognition performance and mental well-being.
Collapse
Affiliation(s)
- Sabrina Maffi
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (S.M.); (E.S.); (S.M.)
| | - Eugenia Scaricamazza
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (S.M.); (E.S.); (S.M.)
| | - Simone Migliore
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (S.M.); (E.S.); (S.M.)
| | - Melissa Casella
- Italian League for Research on Huntington (LIRH) Foundation, 00185 Rome, Italy; (M.C.); (C.C.)
| | - Consuelo Ceccarelli
- Italian League for Research on Huntington (LIRH) Foundation, 00185 Rome, Italy; (M.C.); (C.C.)
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (S.M.); (E.S.); (S.M.)
- Correspondence:
| |
Collapse
|
111
|
Riad R, Lunven M, Titeux H, Cao XN, Hamet Bagnou J, Lemoine L, Montillot J, Sliwinski A, Youssov K, Cleret de Langavant L, Dupoux E, Bachoud-Lévi AC. Predicting clinical scores in Huntington's disease: a lightweight speech test. J Neurol 2022; 269:5008-5021. [PMID: 35567614 PMCID: PMC9363375 DOI: 10.1007/s00415-022-11148-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/19/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Using brief samples of speech recordings, we aimed at predicting, through machine learning, the clinical performance in Huntington's Disease (HD), an inherited Neurodegenerative disease (NDD). METHODS We collected and analyzed 126 samples of audio recordings of both forward and backward counting from 103 Huntington's disease gene carriers [87 manifest and 16 premanifest; mean age 50.6 (SD 11.2), range (27-88) years] from three multicenter prospective studies in France and Belgium (MIG-HD (ClinicalTrials.gov NCT00190450); BIO-HD (ClinicalTrials.gov NCT00190450) and Repair-HD (ClinicalTrials.gov NCT00190450). We pre-registered all of our methods before running any analyses, in order to avoid inflated results. We automatically extracted 60 speech features from blindly annotated samples. We used machine learning models to combine multiple speech features in order to make predictions at individual levels of the clinical markers. We trained machine learning models on 86% of the samples, the remaining 14% constituted the independent test set. We combined speech features with demographics variables (age, sex, CAG repeats, and burden score) to predict cognitive, motor, and functional scores of the Unified Huntington's disease rating scale. We provided correlation between speech variables and striatal volumes. RESULTS Speech features combined with demographics allowed the prediction of the individual cognitive, motor, and functional scores with a relative error from 12.7 to 20.0% which is better than predictions using demographics and genetic information. Both mean and standard deviation of pause durations during backward recitation and clinical scores correlated with striatal atrophy (Spearman 0.6 and 0.5-0.6, respectively). INTERPRETATION Brief and examiner-free speech recording and analysis may become in the future an efficient method for remote evaluation of the individual condition in HD and likely in other NDD.
Collapse
Affiliation(s)
- Rachid Riad
- Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France.,Faculté de Médecine, Université Paris-Est Créteil, 94000, Créteil, France.,Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France.,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France.,Laboratoire de Sciences Cognitives et Psycholinguistique, CNRS 8554, PSL University, 29 rue d'Ulm, 75005, Paris, France.,INRIA, Cognitive Machine Learning Team, 2 Rue Simone IFF, 75012, Paris, France.,EHESS, 54 boulevard Raspail, 75006, Paris, France
| | - Marine Lunven
- Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France.,Faculté de Médecine, Université Paris-Est Créteil, 94000, Créteil, France.,Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France.,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Hadrien Titeux
- Laboratoire de Sciences Cognitives et Psycholinguistique, CNRS 8554, PSL University, 29 rue d'Ulm, 75005, Paris, France.,INRIA, Cognitive Machine Learning Team, 2 Rue Simone IFF, 75012, Paris, France.,EHESS, 54 boulevard Raspail, 75006, Paris, France
| | - Xuan-Nga Cao
- Laboratoire de Sciences Cognitives et Psycholinguistique, CNRS 8554, PSL University, 29 rue d'Ulm, 75005, Paris, France.,INRIA, Cognitive Machine Learning Team, 2 Rue Simone IFF, 75012, Paris, France.,EHESS, 54 boulevard Raspail, 75006, Paris, France
| | - Jennifer Hamet Bagnou
- Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France.,Faculté de Médecine, Université Paris-Est Créteil, 94000, Créteil, France.,Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France.,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Laurie Lemoine
- Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France.,Faculté de Médecine, Université Paris-Est Créteil, 94000, Créteil, France.,Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France.,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Justine Montillot
- Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France.,Faculté de Médecine, Université Paris-Est Créteil, 94000, Créteil, France.,Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France.,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Agnes Sliwinski
- Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France.,Faculté de Médecine, Université Paris-Est Créteil, 94000, Créteil, France.,Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France.,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Katia Youssov
- Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France.,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Laurent Cleret de Langavant
- Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France.,Faculté de Médecine, Université Paris-Est Créteil, 94000, Créteil, France.,Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France.,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Emmanuel Dupoux
- Laboratoire de Sciences Cognitives et Psycholinguistique, CNRS 8554, PSL University, 29 rue d'Ulm, 75005, Paris, France.,INRIA, Cognitive Machine Learning Team, 2 Rue Simone IFF, 75012, Paris, France.,EHESS, 54 boulevard Raspail, 75006, Paris, France
| | - Anne-Catherine Bachoud-Lévi
- Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France. .,Faculté de Médecine, Université Paris-Est Créteil, 94000, Créteil, France. .,Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France. .,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France.
| |
Collapse
|
112
|
Matz OC, Spocter M. The Effect of Huntington’s Disease on the Basal Nuclei: A Review. Cureus 2022; 14:e24473. [PMID: 35651462 PMCID: PMC9132741 DOI: 10.7759/cureus.24473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/14/2022] Open
Abstract
Huntington’s disease is an autosomal dominant trinucleotide repeat disorder that causes the progressive degeneration of the basal nuclei. This degeneration leads to clinical symptoms affecting voluntary movement, cognitive impairment, and psychiatric disorders. The patient affected by this disease demonstrates anticipation, meaning that even though there is normal embryological development, the signs and symptoms appear at an earlier age as the gene is continually passed throughout subsequent generations. The degeneration occurs due to the accumulation of the protein Huntingtin that destroys the medium spiny neurons located in the caudate and putamen, collectively termed the striatum. Four pathways converge onto the striatum known as the “input” center. These consist of the motor loop, oculomotor loop, association loop, and limbic loop. In each of these loops, the striatum maintains an inhibitory gamma-aminobutyric acid (GABA)-ergic function. The imbalance of the inhibitory versus excitatory input directly relates to the symptoms seen in Huntington’s disease such as the inability to control voluntary movements termed chorea, the inability to control voluntary saccadic ocular movements, the cognitive inability to plan and determine the direction of movement, and the inability to control the emotional and motivational aspects of the movement. There is currently no cure for Huntington’s disease but there is a symptomatic treatment for the chorea and psychiatric conditions. Further research is being done to determine the pathophysiology behind the Hungtintin protein to allow for a targeted treatment regimen while also looking into reliable biomarkers for the progression of Huntington’s disease.
Collapse
|
113
|
Zhang S, Shen L, Jiao B. Cognitive Dysfunction in Repeat Expansion Diseases: A Review. Front Aging Neurosci 2022; 14:841711. [PMID: 35478698 PMCID: PMC9036481 DOI: 10.3389/fnagi.2022.841711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
With the development of the sequencing technique, more than 40 repeat expansion diseases (REDs) have been identified during the past two decades. Moreover, the clinical features of these diseases show some commonality, and the nervous system, especially the cognitive function was affected in part by these diseases. However, the specific cognitive domains impaired in different diseases were inconsistent. Here, we survey literature on the cognitive consequences of the following disorders presenting cognitive dysfunction and summarizing the pathogenic genes, epidemiology, and different domains affected by these diseases. We found that the cognitive domains affected in neuronal intranuclear inclusion disease (NIID) were widespread including the executive function, memory, information processing speed, attention, visuospatial function, and language. Patients with C9ORF72-frontotemporal dementia (FTD) showed impairment in executive function, memory, language, and visuospatial function. While in Huntington's disease (HD), the executive function, memory, and information processing speed were affected, in the fragile X-associated tremor/ataxia syndrome (FXTAS), executive function, memory, information processing speed, and attention were impaired. Moreover, the spinocerebellar ataxias showed broad damage in almost all the cognitive domains except for the relatively intact language ability. Some other diseases with relatively rare clinical data also indicated cognitive dysfunction, such as myotonic dystrophy type 1 (DM1), progressive myoclonus epilepsy (PME), Friedreich ataxia (FRDA), Huntington disease like-2 (HDL2), and cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). We drew a cognitive function landscape of the related REDs that might provide an aspect for differential diagnosis through cognitive domains and effective non-specific interventions for these diseases.
Collapse
Affiliation(s)
- Sizhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- *Correspondence: Bin Jiao
| |
Collapse
|
114
|
Hewitt SRC, White AJ, Mason SL, Barker RA. Metacognitive insight into cognitive performance in Huntington's disease gene carriers. BMJ Neurol Open 2022; 4:e000268. [PMID: 35463389 PMCID: PMC8987702 DOI: 10.1136/bmjno-2022-000268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives Insight is an important predictor of quality of life in Huntington's disease and other neurodegenerative conditions. However, estimating insight with traditional methods such as questionnaires is challenging and subjected to limitations. This cross-sectional study experimentally quantified metacognitive insight into cognitive performance in Huntington's disease gene carriers. Methods We dissociated perceptual decision-making performance and metacognitive insight into performance in healthy controls (n=29), premanifest (n=19) and early-manifest (n=10) Huntington's disease gene carriers. Insight was operationalised as the degree to which a participant's confidence in their performance was informative of their actual performance (metacognitive efficiency) and estimated using a computational model (HMeta-d'). Results We found that premanifest and early-manifest Huntington's disease gene carriers were impaired in making perceptual decisions compared with controls. Gene carriers required more evidence in favour of the correct choice to achieve similar performance and perceptual impairments were increased in those with manifest disease. Surprisingly, despite marked perceptual impairments, Huntington's disease gene carriers retained metacognitive insight into their perceptual performance. This was the case after controlling for confounding variables and regardless of disease stage. Conclusion We report for the first time a dissociation between impaired cognition and intact metacognition (trial-by-trial insight) in the early stages of a neurodegenerative disease. This unexpected finding contrasts with the prevailing assumption that cognitive deficits are associated with impaired insight. Future studies should investigate how intact metacognitive insight could be used by some early Huntington's disease gene carriers to positively impact their quality of life.
Collapse
Affiliation(s)
- Samuel RC Hewitt
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, Cambridgeshire, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Alice J White
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Sarah L Mason
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Roger A Barker
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, Cambridgeshire, UK
| |
Collapse
|
115
|
Ramirez-Garcia G, Galvez V, Diaz R, Campos-Romo A, Fernandez-Ruiz J. Montreal Cognitive Assessment (MoCA) performance in Huntington's disease patients correlates with cortical and caudate atrophy. PeerJ 2022; 10:e12917. [PMID: 35402100 PMCID: PMC8988933 DOI: 10.7717/peerj.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
Huntington's Disease (HD) is an autosomal neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. Cognitive impairment develops gradually in HD patients, progressing later into a severe cognitive dysfunction. The Montreal Cognitive Assessment (MoCA) is a brief screening test commonly employed to detect mild cognitive impairment, which has also been useful to assess cognitive decline in HD patients. However, the relationship between MoCA performance and brain structural integrity in HD patients remains unclear. Therefore, to explore this relationship we analyzed if cortical thinning and subcortical nuclei volume differences correlated with HD patients' MoCA performance. Twenty-two HD patients and twenty-two healthy subjects participated in this study. T1-weighted images were acquired to analyze cortical thickness and subcortical nuclei volumes. Group comparison analysis showed a significantly lower score in the MoCA global performance of HD patients. Also, the MoCA total score correlated with cortical thinning of fronto-parietal and temporo-occipital cortices, as well as with bilateral caudate volume differences in HD patients. These results provide new insights into the effectiveness of using the MoCA test to detect cognitive impairment and the brain atrophy pattern associated with the cognitive status of prodromal/early HD patients.
Collapse
Affiliation(s)
- Gabriel Ramirez-Garcia
- Departamento de Fisiología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| | - Victor Galvez
- Escuela de Psicología, Universidad Panamericana, Ciudad de Mexico, Mexico
| | - Rosalinda Diaz
- Departamento de Fisiología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| | - Aurelio Campos-Romo
- Facultad de Medicina, Unidad Periférica de Neurociencias, Universidad Nacional Autónoma de México/Instituto Nacional de Neurologia y Neurocirugia, Ciudad de Mexico, Mexico
| | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
116
|
Rosser AE, Jones L. Huntington's Disease Gene Hunters: An Expanding Tale. Mov Disord Clin Pract 2022; 9:330-333. [PMID: 35392298 PMCID: PMC8974877 DOI: 10.1002/mdc3.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Anne E. Rosser
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences Cardiff University School of Medicine Cardiff United Kingdom
- Cardiff Brain Repair Group Cardiff University School Biosciences Cardiff United Kingdom
- Wales Brain Research And Intracranial Neurotherapeutics (BRAIN) Unit Cardiff United Kingdom
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences Cardiff University School of Medicine Cardiff United Kingdom
| |
Collapse
|
117
|
Benatar M, Wuu J, McHutchison C, Postuma RB, Boeve BF, Petersen R, Ross CA, Rosen H, Arias JJ, Fradette S, McDermott MP, Shefner J, Stanislaw C, Abrahams S, Cosentino S, Andersen PM, Finkel RS, Granit V, Grignon AL, Rohrer JD, McMillan CT, Grossman M, Al-Chalabi A, Turner MR. Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. Brain 2022; 145:27-44. [PMID: 34677606 PMCID: PMC8967095 DOI: 10.1093/brain/awab404] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022] Open
Abstract
Significant progress has been made in understanding the pre-symptomatic phase of amyotrophic lateral sclerosis. While much is still unknown, advances in other neurodegenerative diseases offer valuable insights. Indeed, it is increasingly clear that the well-recognized clinical syndromes of Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy and frontotemporal dementia are also each preceded by a pre-symptomatic or prodromal period of varying duration, during which the underlying disease process unfolds, with associated compensatory changes and loss of inherent system redundancy. Key insights from these diseases highlight opportunities for discovery in amyotrophic lateral sclerosis. The development of biomarkers reflecting amyloid and tau has led to a shift in defining Alzheimer's disease based on inferred underlying histopathology. Parkinson's disease is unique among neurodegenerative diseases in the number and diversity of non-genetic biomarkers of pre-symptomatic disease, most notably REM sleep behaviour disorder. Huntington's disease benefits from an ability to predict the likely timing of clinically manifest disease based on age and CAG-repeat length alongside reliable neuroimaging markers of atrophy. Spinal muscular atrophy clinical trials have highlighted the transformational value of early therapeutic intervention, and studies in frontotemporal dementia illustrate the differential role of biomarkers based on genotype. Similar advances in amyotrophic lateral sclerosis would transform our understanding of key events in pathogenesis, thereby dramatically accelerating progress towards disease prevention. Deciphering the biology of pre-symptomatic amyotrophic lateral sclerosis relies on a clear conceptual framework for defining the earliest stages of disease. Clinically manifest amyotrophic lateral sclerosis may emerge abruptly, especially among those who harbour genetic mutations associated with rapidly progressive amyotrophic lateral sclerosis. However, the disease may also evolve more gradually, revealing a prodromal period of mild motor impairment preceding phenoconversion to clinically manifest disease. Similarly, cognitive and behavioural impairment, when present, may emerge gradually, evolving through a prodromal period of mild cognitive impairment or mild behavioural impairment before progression to amyotrophic lateral sclerosis. Biomarkers are critically important to studying pre-symptomatic amyotrophic lateral sclerosis and essential to efforts to intervene therapeutically before clinically manifest disease emerges. The use of non-genetic biomarkers, however, presents challenges related to counselling, informed consent, communication of results and limited protections afforded by existing legislation. Experiences from pre-symptomatic genetic testing and counselling, and the legal protections against discrimination based on genetic data, may serve as a guide. Building on what we have learned-more broadly from other pre-symptomatic neurodegenerative diseases and specifically from amyotrophic lateral sclerosis gene mutation carriers-we present a road map to early intervention, and perhaps even disease prevention, for all forms of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Caroline McHutchison
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Ronald B Postuma
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Howard Rosen
- Department of Neurology, University of California San Francisco, CA, USA
| | - Jalayne J Arias
- Department of Neurology, University of California San Francisco, CA, USA
| | | | - Michael P McDermott
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | | | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Sweden
| | - Richard S Finkel
- Department of Pediatric Medicine, Center for Experimental Neurotherapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Volkan Granit
- Department of Neurology, University of Miami, Miami, FL, USA
| | | | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, UK
- Department of Neurology, King's College Hospital, London, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
118
|
Abstract
OBJECTIVE Discrepancies exist in reports of social cognition deficits in individuals with premanifest Huntington's disease (HD); however, the reason for this variability has not been investigated. The aims of this study were to (1) evaluate group- and individual-level social cognitive performance and (2) examine intra-individual variability (dispersion) across social cognitive domains in individuals with premanifest HD. METHOD Theory of mind (ToM), social perception, empathy, and social connectedness were evaluated in 35 individuals with premanifest HD and 29 healthy controls. Cut-off values beneath the median and 1.5 × the interquartile range below the 25th percentile (P25 - 1.5 × IQR) of healthy controls for each variable were established for a profiling method. Dispersion between social cognitive domains was also calculated. RESULTS Compared to healthy controls, individuals with premanifest HD performed worse on all social cognitive domains except empathy. Application of the profiling method revealed a large proportion of people with premanifest HD fell below healthy control median values across ToM (>80%), social perception (>57%), empathy (>54%), and social behaviour (>40%), with a percentage of these individuals displaying more pronounced impairments in empathy (20%) and ToM (22%). Social cognition dispersion did not differ between groups. No significant correlations were found between social cognitive domains and mood, sleep, and neurocognitive outcomes. CONCLUSIONS Significant group-level social cognition deficits were observed in the premanifest HD cohort. However, our profiling method showed that only a small percentage of these individuals experienced marked difficulties in social cognition, indicating the importance of individual-level assessments, particularly regarding future personalised treatments.
Collapse
|
119
|
Pavan M, Bassani D, Bolcato G, Bissaro M, Sturles M, Moro S. Computational strategies to identify new drug candidates against neuroinflammation. Curr Med Chem 2022; 29:4756-4775. [PMID: 35135446 DOI: 10.2174/0929867329666220208095122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
The even more increasing application of computational approaches in these last decades has deeply modified the process of discovery and commercialization of new therapeutic entities. This is especially true in the field of neuroinflammation, in which both the peculiar anatomical localization and the presence of the blood-brain barrier makeit mandatory to finely tune the candidates' physicochemical properties from the early stages of the discovery pipeline. The aim of this review is therefore to provide a general overview to the readers about the topic of neuroinflammation, together with the most common computational strategies that can be exploited to discover and design small molecules controlling neuroinflammation, especially those based on the knowledge of the three-dimensional structure of the biological targets of therapeutic interest. The techniques used to describe the molecular recognition mechanisms, such as molecular docking and molecular dynamics, will therefore be eviscerated, highlighting their advantages and their limitations. Finally, we report several case studies in which computational methods have been applied in drug discovery on neuroinflammation, focusing on the last decade's research.
Collapse
Affiliation(s)
- Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Giovanni Bolcato
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Maicol Bissaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Mattia Sturles
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
120
|
Cerebrospinal fluid mutant huntingtin is a biomarker for huntingtin lowering in the striatum of Huntington disease mice. Neurobiol Dis 2022; 166:105652. [PMID: 35143966 PMCID: PMC8901112 DOI: 10.1016/j.nbd.2022.105652] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disease caused by a trinucleotide repeat expansion in the HTT gene encoding an elongated polyglutamine tract in the huntingtin (HTT) protein. Expanded mutant HTT (mHTT) is toxic and leads to regional atrophy and neuronal cell loss in the brain, which occurs earliest in the striatum. Therapeutic lowering of mHTT in the central nervous system (CNS) has shown promise in preclinical studies, with multiple approaches currently in clinical development for HD. Quantitation of mHTT in the cerebrospinal fluid (CSF) is being used as a clinical pharmacodynamic biomarker of target engagement in the CNS. We have previously shown that the CNS is a major source of mHTT in the CSF. However, little is known about the specific brain regions and cell types that contribute to CSF mHTT. Therefore, a better understanding of the origins of CSF mHTT and whether therapies targeting mHTT in the striatum would be expected to be associated with significant lowering of mHTT in the CSF is needed. Here, we use complementary pharmacological and genetic-based approaches to either restrict expression of mHTT to the striatum or selectively deplete mHTT in the striatum to evaluate the contribution of this brain region to mHTT in the CSF. We show that viral expression of a mHTT fragment restricted to the striatum leads to detectable mHTT in the CSF. We demonstrate that targeted lowering of mHTT selectively in the striatum using an antisense oligonucleotide leads to a significant reduction of mHTT in the CSF of HD mice. Furthermore, using a transgenic mouse model of HD that expresses full length human mHTT and wild type HTT, we show that genetic inactivation of mHTT selectively in the striatum results in a significant reduction of mHTT in the CSF. Taken together, our data supports the conclusion that the striatum contributes sufficiently to the pool of mHTT in the CSF that therapeutic levels of mHTT lowering in the striatum can be detected by this measure in HD mice. This suggests that CSF mHTT may represent a pharmacodynamic biomarker for therapies that lower mHTT in the striatum.
Collapse
|
121
|
Tan B, Shishegar R, Fornito A, Poudel G, Georgiou-Karistianis N. Longitudinal mapping of cortical surface changes in Huntington's Disease. Brain Imaging Behav 2022; 16:1381-1391. [PMID: 35029800 DOI: 10.1007/s11682-021-00625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
This paper investigated cortical folding in Huntington's disease to understand how disease progression impacts the surface of the cortex. Cortical morphometry changes in eight gyral based regions of interest (i.e. the left and right hemispheres of the lateral occipital, precentral, superior frontal and rostral middle gyri) were examined. We used existing neuroimaging data from IMAGE-HD, comprising 26 pre-symptomatic, 26 symptomatic and 24 healthy control individuals at three separate time points (baseline, 18-month, 30-month). Local gyrification index and cortical thickness were derived as the measures of cortical morphometry using FreeSurfer 6.0's longitudinal pipeline. The gyral based regions of interest were identified using the Desikan-Killiany Atlas. A Group by Time repeated measures ANCOVA was conducted for each region of interest. We found significantly lower LGI at a group level in the right hemisphere lateral occipital region and both hemispheres of the precentral region; as well as significantly reduced cortical thickness at a group level in both hemispheres of the lateral occipital and precentral regions and the right hemisphere of the superior frontal region. We also found a Group by Time interaction for Local gyrification index in the right hemisphere lateral occipital region. This change was largely driven by a significant decrease in the symptomatic group between baseline and 18-months. Additionally, lower local gyrification index and cortical thickness were associated with higher disease burden score. These findings demonstrate that significant longitudinal decline in right hemisphere local gyrification index is evident during manifest disease in lateral occipital cortex and that these changes are more profound in individuals with greater disease burden score.
Collapse
Affiliation(s)
- Brendan Tan
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, 3800, Australia
| | - Rosita Shishegar
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, 3800, Australia.,The Australian e-Health Research Centre, CSIRO, Melbourne, Australia.,Monash Biomedical Imaging, 770 Blackburn Road, 3800, Melbourne, Victoria, Australia
| | - Alex Fornito
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, 3800, Australia.,Monash Biomedical Imaging, 770 Blackburn Road, 3800, Melbourne, Victoria, Australia
| | - Govinda Poudel
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, 3800, Australia.,Sydney Imaging, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, 2050, Australia.,The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3000, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, 3800, Australia. .,Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
122
|
Prediagnostic Progressive Supranuclear Palsy - Insights from the UK Biobank. Parkinsonism Relat Disord 2022; 95:59-64. [PMID: 35032742 DOI: 10.1016/j.parkreldis.2022.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/22/2021] [Accepted: 01/07/2022] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Prediagnostic features of Parkinson's Disease are well described but prediagnostic Progressive Supranuclear Palsy (PSP) is less understood. The diagnosis of PSP is delayed by an average of three years after symptom onset. Understanding the changes that occur in the prediagnostic period will aid earlier diagnosis, clarify the natural history, and may aid the design of early disease-modifying therapy trials. We set out to identify motor and cognitive markers of prediagnostic PSP, with Parkinson's disease as a comparator condition, in a large prospective cohort. METHODS Baseline UK Biobank data from 502,504 individuals were collected between 2006 and 2010. Subsequent PSP and Parkinson's disease cases were identified from primary and secondary care electronic health records' diagnostic coding data and death registry, with 5404 matched controls. RESULTS 176 PSP cases (time to diagnosis 7.8 ± 2.8 years) and 2526 Parkinson's disease cases (time to diagnosis 7.8 ± 2.9 years) were identified. At baseline, those later diagnosed with PSP had slower reaction times, weaker hand grip, lower fluid intelligence, prospective memory, self-rated health scores and digit recall than controls. Reaction times were correlated with time to diagnosis. The PSP group had higher mortality than both Parkinson's disease and control groups. CONCLUSIONS Motor slowing, cognitive dysfunction, and postural instability are clinical diagnostic features of PSP that are typically symptomatic three years before diagnosis. Objective markers of these features were evident on average 7.8 years before diagnosis. Our findings suggest the existence of a long prediagnostic phase in PSP, with subtle changes in motor and cognitive function.
Collapse
|
123
|
Langbehn DR. Longer CAG repeat length is associated with shorter survival after disease onset in Huntington disease. Am J Hum Genet 2022; 109:172-179. [PMID: 34942093 DOI: 10.1016/j.ajhg.2021.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/03/2021] [Indexed: 01/10/2023] Open
Abstract
It is well known that the length of the CAG trinucleotide expansion of the huntingtin gene is associated with many aspects of Huntington disease progression. These include age of clinical onset and rate of initial progression of disease severity. The relationship between CAG length and survival in Huntington disease is less studied. To address this, we obtained the complete Registry HD database from the European Huntington Disease Network and reanalyzed the time from reported age of disease onset until death. We conducted semiparametric proportional hazards modeling of 8,422 participants who had experienced onset of clinical Huntington disease, either retrospectively or prospectively. Of these, 826 had a recorded age of death. To avoid biased model estimates, retrospective onset ages were represented by left truncation at study entry. After controlling for onset age, which tends to be younger in those with longer CAG repeat lengths, we found that CAG length had a substantial and highly significant influence upon survival time after disease onset. For a fixed age of onset, longer CAG expansions were predictive of shorter survival. This is consistent with other known relationships between CAG length and disease severity. We also show that older onset age predicts shorter lifespan after controlling for CAG length and that the influence of CAG on survival length is substantially greater in women. We demonstrate that apparent contradictions between these and previous analyses of the same data are primarily due to the question of whether to control for clinical onset age in the analysis of time until death.
Collapse
Affiliation(s)
- Douglas R Langbehn
- Departments of Psychiatry and Biostatistics, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
124
|
Drew CJG, Busse M. Considerations for clinical trial design and conduct in the evaluation of novel advanced therapeutics in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:235-279. [PMID: 36424094 DOI: 10.1016/bs.irn.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recent advances in the development of potentially disease modifying cell and gene therapies for neurodegenerative disease has resulted in the production of a number of promising novel therapies which are now moving forward to clinical evaluation. The robust evaluation of these therapies pose a significant number of challenges when compared to more traditional evaluations of pharmacotherapy, which is the current mainstay of neurodegenerative disease symptom management. Indeed, there is an inherent complexity in the design and conduct of these trials at multiple levels. Here we discuss specific aspects requiring consideration in the context of investigating novel cell and gene therapies for neurodegenerative disease. This extends to overarching trial designs that could be employed and the factors that underpin design choices such outcome assessments, participant selection and methods for delivery of cell and gene therapies. We explore methods of data collection that may improve efficiency in trials of cell and gene therapy to maximize data sharing and collaboration. Lastly, we explore some of the additional context beyond efficacy evaluations that should be considered to ensure implementation across relevant healthcare settings.
Collapse
Affiliation(s)
- Cheney J G Drew
- Centre For Trials Research, Cardiff University, Cardiff, United Kingdom; Brain Repair and Intracranial Neurotherapeutics Unit (BRAIN), College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.
| | - Monica Busse
- Centre For Trials Research, Cardiff University, Cardiff, United Kingdom; Brain Repair and Intracranial Neurotherapeutics Unit (BRAIN), College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
125
|
Scan Once, Analyse Many: Using Large Open-Access Neuroimaging Datasets to Understand the Brain. Neuroinformatics 2022; 20:109-137. [PMID: 33974213 PMCID: PMC8111663 DOI: 10.1007/s12021-021-09519-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2021] [Indexed: 02/06/2023]
Abstract
We are now in a time of readily available brain imaging data. Not only are researchers now sharing data more than ever before, but additionally large-scale data collecting initiatives are underway with the vision that many future researchers will use the data for secondary analyses. Here I provide an overview of available datasets and some example use cases. Example use cases include examining individual differences, more robust findings, reproducibility-both in public input data and availability as a replication sample, and methods development. I further discuss a variety of considerations associated with using existing data and the opportunities associated with large datasets. Suggestions for further readings on general neuroimaging and topic-specific discussions are also provided.
Collapse
|
126
|
Abstract
The CAG/CAA expansion encoding polyQ huntingtin (mutant huntingtin [mHTT]) causes Huntington's disease (HD), which is characterized by atrophy and loss of striatal medium spiny neurons (MSNs), which are preceded by neuropathological alterations in the cortex. Previous studies have shown that mHTT can spread in the brain, but the mechanisms involved in the stereotyped degeneration and dysfunction of the neurons from the striatum to the cortex remain unclear. In this study, we found that the mHTT expression initially restricted in the striatum later spread to the cortical regions in mouse brains. Such transmission was diminished in mice that lacked the striatal-enriched protein Ras-homolog enriched in the striatum (Rhes). Rhes restricted to MSNs was also found in the cortical layers of the brain, indicating a new transmission route for the Rhes protein to the brain. Mechanistically, Rhes promotes such transmission via a direct cell-to-cell contact mediated by tunneling nanotubes (TNTs), the membranous protrusions that enable the transfer of mHTT, Rhes, and other vesicular cargoes. These transmission patterns suggest that Rhes and mHTT are likely co-transported in the brain using TNT-like cell-to-cell contacts. On the basis of these new results, a perspective is presented in this review: Rhes may ignite the mHTT transmission from the striatum that may coincide with HD onset and disease progression through an anatomically connected striato-cortical retrograde route.
Collapse
|
127
|
Burban A, Jahani-Asl A. Isolation of Mouse Embryonic Neural Stem Cells and Characterization of Neural Stem Markers by Flow Cytometry. Methods Mol Biol 2022; 2515:297-308. [PMID: 35776359 DOI: 10.1007/978-1-0716-2409-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurogenesis is outlined as a process in which new neurons are generated from neural stem cells (NSCs). This process comprises proliferation and fate specification of NSCs, migration of newborn neurons, and their maturation. Defects in embryonic neurogenesis have emerged as a key mechanism underlying neurodevelopmental disorders such as autism spectrum disorders and intellectual disability. An impairment in neurogenesis has also been observed in neurodegenerative disorders such as Huntington's disease. Transgenic animal models of neurodevelopmental and neurodegenerative diseases have been developed which serve as invaluable tools to investigate the early mechanisms of disease pathogenesis. In this chapter, we describe our optimized method to obtain and maintain reproducible neurosphere cultures from transgenic or patient mouse models followed by characterization of NSCs by flow cytometry.
Collapse
Affiliation(s)
- Audrey Burban
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada
- University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
- University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
128
|
Sönmez A, Mustafa R, Ryll ST, Tuorto F, Wacheul L, Ponti D, Litke C, Hering T, Kojer K, Koch J, Pitzer C, Kirsch J, Neueder A, Kreiner G, Lafontaine DLJ, Orth M, Liss B, Parlato R. Nucleolar stress controls mutant Huntington toxicity and monitors Huntington's disease progression. Cell Death Dis 2021; 12:1139. [PMID: 34880223 PMCID: PMC8655027 DOI: 10.1038/s41419-021-04432-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022]
Abstract
Transcriptional and cellular-stress surveillance deficits are hallmarks of Huntington's disease (HD), a fatal autosomal-dominant neurodegenerative disorder caused by a pathological expansion of CAG repeats in the Huntingtin (HTT) gene. The nucleolus, a dynamic nuclear biomolecular condensate and the site of ribosomal RNA (rRNA) transcription, is implicated in the cellular stress response and in protein quality control. While the exact pathomechanisms of HD are still unclear, the impact of nucleolar dysfunction on HD pathophysiology in vivo remains elusive. Here we identified aberrant maturation of rRNA and decreased translational rate in association with human mutant Huntingtin (mHTT) expression. The protein nucleophosmin 1 (NPM1), important for nucleolar integrity and rRNA maturation, loses its prominent nucleolar localization. Genetic disruption of nucleolar integrity in vulnerable striatal neurons of the R6/2 HD mouse model decreases the distribution of mHTT in a disperse state in the nucleus, exacerbating motor deficits. We confirmed NPM1 delocalization in the gradually progressing zQ175 knock-in HD mouse model: in the striatum at a presymptomatic stage and in the skeletal muscle at an early symptomatic stage. In Huntington's patient skeletal muscle biopsies, we found a selective redistribution of NPM1, similar to that in the zQ175 model. Taken together, our study demonstrates that nucleolar integrity regulates the formation of mHTT inclusions in vivo, and identifies NPM1 as a novel, readily detectable peripheral histopathological marker of HD progression.
Collapse
Affiliation(s)
- Aynur Sönmez
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Rasem Mustafa
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Salome T Ryll
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim and Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Donatella Ponti
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Rome, Italy
| | - Christian Litke
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Tanja Hering
- Department of Neurology, Ulm University, Ulm, Germany
| | - Kerstin Kojer
- Department of Neurology, Ulm University, Ulm, Germany
| | - Jenniver Koch
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core (INBC), Heidelberg University, Heidelberg, Germany
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | | | - Grzegorz Kreiner
- Maj Institute of Pharmacology, Department of Brain Biochemistry, Polish Academy of Sciences, Krakow, Poland
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Michael Orth
- Department of Neurology, Ulm University, Ulm, Germany
| | - Birgit Liss
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Linacre & New College, University of Oxford, Oxford, UK
| | - Rosanna Parlato
- Institute of Applied Physiology, Ulm University, Ulm, Germany.
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
- Division for Neurodegenerative Diseases, Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
129
|
Liu H, Zhang C, Xu J, Jin J, Cheng L, Miao X, Wu Q, Wei Z, Liu P, Lu H, van Zijl PCM, Ross CA, Hua J, Duan W. Huntingtin silencing delays onset and slows progression of Huntington's disease: a biomarker study. Brain 2021; 144:3101-3113. [PMID: 34043007 PMCID: PMC8634120 DOI: 10.1093/brain/awab190] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 01/29/2023] Open
Abstract
Huntington's disease is a dominantly inherited, fatal neurodegenerative disorder caused by a CAG expansion in the huntingtin (HTT) gene, coding for pathological mutant HTT protein (mHTT). Because of its gain-of-function mechanism and monogenic aetiology, strategies to lower HTT are being actively investigated as disease-modifying therapies. Most approaches are currently targeted at the manifest stage, where clinical outcomes are used to evaluate the effectiveness of therapy. However, as almost 50% of striatal volume has been lost at the time of onset of clinical manifest, it would be preferable to begin therapy in the premanifest period. An unmet challenge is how to evaluate therapeutic efficacy before the presence of clinical symptoms as outcome measures. To address this, we aim to develop non-invasive sensitive biomarkers that provide insight into therapeutic efficacy in the premanifest stage of Huntington's disease. In this study, we mapped the temporal trajectories of arteriolar cerebral blood volumes (CBVa) using inflow-based vascular-space-occupancy (iVASO) MRI in the heterozygous zQ175 mice, a full-length mHTT expressing and slowly progressing model with a premanifest period as in human Huntington's disease. Significantly elevated CBVa was evident in premanifest zQ175 mice prior to motor deficits and striatal atrophy, recapitulating altered CBVa in human premanifest Huntington's disease. CRISPR/Cas9-mediated non-allele-specific HTT silencing in striatal neurons restored altered CBVa in premanifest zQ175 mice, delayed onset of striatal atrophy, and slowed the progression of motor phenotype and brain pathology. This study-for the first time-shows that a non-invasive functional MRI measure detects therapeutic efficacy in the premanifest stage and demonstrates long-term benefits of a non-allele-selective HTT silencing treatment introduced in the premanifest Huntington's disease.
Collapse
Affiliation(s)
- Hongshuai Liu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chuangchuang Zhang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jing Jin
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liam Cheng
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinyuan Miao
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qian Wu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C M van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Hua
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
130
|
Hergert DC, Cimino CR. Predictors of Caregiver Burden in Huntington's Disease. Arch Clin Neuropsychol 2021; 36:1426–1437. [PMID: 33723593 DOI: 10.1093/arclin/acab009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/19/2020] [Accepted: 02/10/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Huntington's disease (HD) is a genetic neurodegenerative condition that is characterized by cognitive, motor, and psychiatric dysfunction. The purpose of this study was to explore which disease characteristics influence caregiver burden in HD. METHODS Fifty participants with HD and 50 of their caregivers participated in the study at the University of South Florida. Participants were administered a neuropsychological battery, the Unified Huntington's Disease Rating Scale (UHDRS) motor exam, and the Frontal Systems Behavior Scale (FrSBe) self-report. Caregivers completed the Caregiving Appraisal Scale and the FrSBe family-report. RESULTS There were significant correlations between caregiver burden and caregiver age and sex, UHDRS motor scores, cognitive functioning, and self and caregiver-reported FrSBe scores. The significant variables were entered into a regression model and explained 63.1% of the variance in caregiver burden scores. Caregiver age, cognitive functioning, and caregiver-reported FrSBe scores continued to be significant predictors of caregiver burden, whereas the other variables were no longer significant. CONCLUSIONS There were significant relationships between caregiver burden, cognitive functioning, and frontally mediated behaviors, but not motor scores. The results suggest that possible interventions for caregivers may include education to caregivers on how to cope with apathy/executive dysfunction and cognitive decline. Caregiver age was associated with burden, with younger age being associated with increased burden when controlling for symptom severity. This has implications for this population in that HD typically has a younger age of onset than other neurodegenerative diseases and therefore, these caregivers may be particularly at risk for caregiver burden.
Collapse
Affiliation(s)
- Danielle C Hergert
- New Mexico Department of Health, Developmental Disabilities Supports Division, Albuquerque, NM, USA
| | - Cynthia R Cimino
- Deparment of Psychology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
131
|
You H, Wu T, Du G, Huang Y, Zeng Y, Lin L, Chen D, Wu C, Li X, Burgunder JM, Pei Z. Evaluation of Blood Glial Fibrillary Acidic Protein as a Potential Marker in Huntington's Disease. Front Neurol 2021; 12:779890. [PMID: 34867769 PMCID: PMC8639701 DOI: 10.3389/fneur.2021.779890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022] Open
Abstract
Objective: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. Neurofilament light protein (NfL) is correlated with clinical severity of HD but relative data are the lack in the Chinese population. Reactive astrocytes are related to HD pathology, which predicts their potential to be a biomarker in HD progression. Our aim was to discuss the role of blood glial fibrillary acidic protein (GFAP) to evaluate clinical severity in patients with HD. Methods: Fifty-seven HD mutation carriers (15 premanifest HD, preHD, and 42 manifest HD) and 26 healthy controls were recruited. Demographic data and clinical severity assessed with the internationally Unified Huntington's Disease Rating Scale (UHDRS) were retrospectively analyzed. Plasma NfL and GFAP were quantified with an ultra-sensitive single-molecule (Simoa, Norcross, GA, USA) technology. We explored their consistency and their correlation with clinical severity. Results: Compared with healthy controls, plasma NfL (p < 0.0001) and GFAP (p < 0.001) were increased in Chinese HD mutation carriers, and they were linearly correlated with each other (r = 0.612, p < 0.001). They were also significantly correlated with disease burden, Total Motor Score (TMS) and Total Functional Capacity (TFC). The scores of Stroop word reading, symbol digit modalities tests, and short version of the Problem Behaviors Assessments (PBAs) for HD were correlated with plasma NfL but not GFAP. Compared with healthy controls, plasma NfL has been increased since stage 1 but plasma GFAP began to increase statistically in stage 2. Conclusions: Plasma GFAP was correlated with plasma NfL, disease burden, TMS, and TFC in HD mutation carriers. Plasma GFAP may have potential to be a sensitive biomarker for evaluating HD progression.
Collapse
Affiliation(s)
- Huajing You
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Tengteng Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Du
- China National Clinical Research Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- China National Clinical Research Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yixuan Zeng
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Health Center Shenzhen Second People's Hospital, Shenzhen, China
| | - Lishan Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Dingbang Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Chao Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Xunhua Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jean-marc Burgunder
- Swiss HD Centre, NeuroZentrumSiloah and Department of Neurology, University of Bern, Bern, Switzerland
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
- *Correspondence: Zhong Pei
| |
Collapse
|
132
|
Kinnunen KM, Mullin AP, Pustina D, Turner EC, Burton J, Gordon MF, Scahill RI, Gantman EC, Noble S, Romero K, Georgiou-Karistianis N, Schwarz AJ. Recommendations to Optimize the Use of Volumetric MRI in Huntington's Disease Clinical Trials. Front Neurol 2021; 12:712565. [PMID: 34744964 PMCID: PMC8569234 DOI: 10.3389/fneur.2021.712565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Volumetric magnetic resonance imaging (vMRI) has been widely studied in Huntington's disease (HD) and is commonly used to assess treatment effects on brain atrophy in interventional trials. Global and regional trajectories of brain atrophy in HD, with early involvement of striatal regions, are becoming increasingly understood. However, there remains heterogeneity in the methods used and a lack of widely-accessible multisite, longitudinal, normative datasets in HD. Consensus for standardized practices for data acquisition, analysis, sharing, and reporting will strengthen the interpretation of vMRI results and facilitate their adoption as part of a pathobiological disease staging system. The Huntington's Disease Regulatory Science Consortium (HD-RSC) currently comprises 37 member organizations and is dedicated to building a regulatory science strategy to expedite the approval of HD therapeutics. Here, we propose four recommendations to address vMRI standardization in HD research: (1) a checklist of standardized practices for the use of vMRI in clinical research and for reporting results; (2) targeted research projects to evaluate advanced vMRI methodologies in HD; (3) the definition of standard MRI-based anatomical boundaries for key brain structures in HD, plus the creation of a standard reference dataset to benchmark vMRI data analysis methods; and (4) broad access to raw images and derived data from both observational studies and interventional trials, coded to protect participant identity. In concert, these recommendations will enable a better understanding of disease progression and increase confidence in the use of vMRI for drug development.
Collapse
Affiliation(s)
| | - Ariana P Mullin
- Critical Path Institute, Tucson, AZ, United States.,Wave Life Sciences, Ltd., Cambridge, MA, United States
| | - Dorian Pustina
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | | | | | - Mark F Gordon
- Teva Pharmaceuticals, West Chester, PA, United States
| | - Rachael I Scahill
- Huntington's Disease Research Centre, UCL Institute of Neurology, London, United Kingdom
| | - Emily C Gantman
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | - Simon Noble
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | - Klaus Romero
- Critical Path Institute, Tucson, AZ, United States
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Adam J Schwarz
- Takeda Pharmaceuticals, Ltd., Cambridge, MA, United States
| |
Collapse
|
133
|
Aracil-Bolaños I, Martínez-Horta S, González-de-Echávarri JM, Sampedro F, Pérez-Pérez J, Horta A, Campolongo A, Izquierdo C, Gómez-Ansón B, Pagonabarraga J, Kulisevsky J. Structure and Dynamics of Large-Scale Cognitive Networks in Huntington's Disease. Mov Disord 2021; 37:343-353. [PMID: 34752656 DOI: 10.1002/mds.28839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Huntington's disease is a neurodegenerative disorder characterized by clinical alterations in the motor, behavioral, and cognitive domains. However, the structure and disruptions to large-scale brain cognitive networks have not yet been established. OBJECTIVE We aimed to profile changes in large-scale cognitive networks in premanifest and symptomatic patients with Huntington's disease. METHODS We prospectively recruited premanifest and symptomatic Huntington's disease mutation carriers as well as healthy controls. Clinical and sociodemographic data were obtained from all participants, and resting-state functional connectivity data, using both time-averaged and dynamic functional connectivity, was acquired from whole-brain and cognitively oriented brain parcellations. RESULTS A total of 64 gene mutation carriers and 23 healthy controls were included; 21 patients with Huntington's disease were classified as premanifest and 43 as symptomatic Huntington's disease. Compared with healthy controls, patients with Huntington's disease showed decreased network connectivity within the posterior hubs of the default-mode network and the medial prefrontal cortex, changes that correlated with cognitive (t = 2.25, P = 0.01) and disease burden scores (t = -2.42, P = 0.009). The salience network showed decreased functional connectivity between insular and supramarginal cortices and also correlated with cognitive (t = 2.11, P = 0.02) and disease burden scores (t = -2.35, P = 0.01). Dynamic analyses showed that network variability was decreased for default-central executive networks, a feature already present in premanifest mutation carriers (dynamic factor 8, P = 0.02). CONCLUSIONS Huntington's disease shows an early and widespread disruption of large-scale cognitive networks. Importantly, these changes are related to cognitive and disease burden scores, and novel dynamic functional analyses uncovered subtler network changes even in the premanifest stages.
Collapse
Affiliation(s)
- Ignacio Aracil-Bolaños
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Saül Martínez-Horta
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jose M González-de-Echávarri
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation and Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jesús Pérez-Pérez
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Andrea Horta
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Cristina Izquierdo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Beatriz Gómez-Ansón
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain.,Neuroradiology Unit, Sant Pau Hospital, Barcelona, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
134
|
Samperi SV, Kwong P, McGill T, Tsui DS. Huntington’s Disease: A Nursing Perspective. AUSTRALASIAN JOURNAL OF NEUROSCIENCE 2021. [DOI: 10.21307/ajon-2021-007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
135
|
McColgan P, Helbling S, Vaculčiaková L, Pine K, Wagstyl K, Attar FM, Edwards L, Papoutsi M, Wei Y, Van den Heuvel MP, Tabrizi SJ, Rees G, Weiskopf N. Relating quantitative 7T MRI across cortical depths to cytoarchitectonics, gene expression and connectomics. Hum Brain Mapp 2021; 42:4996-5009. [PMID: 34272784 PMCID: PMC8449108 DOI: 10.1002/hbm.25595] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Ultra-high field MRI across the depth of the cortex has the potential to provide anatomically precise biomarkers and mechanistic insights into neurodegenerative disease like Huntington's disease that show layer-selective vulnerability. Here we compare multi-parametric mapping (MPM) measures across cortical depths for a 7T 500 μm whole brain acquisition to (a) layer-specific cell measures from the von Economo histology atlas, (b) layer-specific gene expression, using the Allen Human Brain atlas and (c) white matter connections using high-fidelity diffusion tractography, at a 1.3 mm isotropic voxel resolution, from a 300mT/m Connectom MRI system. We show that R2*, but not R1, across cortical depths is highly correlated with layer-specific cell number and layer-specific gene expression. R1- and R2*-weighted connectivity strength of cortico-striatal and intra-hemispheric cortical white matter connections was highly correlated with grey matter R1 and R2* across cortical depths. Limitations of the layer-specific relationships demonstrated are at least in part related to the high cross-correlations of von Economo atlas cell counts and layer-specific gene expression across cortical layers. These findings demonstrate the potential and limitations of combining 7T MPMs, gene expression and white matter connections to provide an anatomically precise framework for tracking neurodegenerative disease.
Collapse
Affiliation(s)
- Peter McColgan
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Huntington's Disease Research Centre, Institute of NeurologyUniversity College LondonLondon
| | - Saskia Helbling
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Lenka Vaculčiaková
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Kerrin Pine
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Konrad Wagstyl
- The Wellcome Centre for Human Neuroimaging, Institute of NeurologyUniversity College LondonLondonUK
| | | | - Luke Edwards
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Marina Papoutsi
- Huntington's Disease Research Centre, Institute of NeurologyUniversity College LondonLondon
| | - Yongbin Wei
- Vrije Universiteit AmsterdamComplex Traits Genetics LabAmsterdamNetherlands
| | | | - Sarah J Tabrizi
- Huntington's Disease Research Centre, Institute of NeurologyUniversity College LondonLondon
| | - Geraint Rees
- The Wellcome Centre for Human Neuroimaging, Institute of NeurologyUniversity College LondonLondonUK
| | - Nikolaus Weiskopf
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Felix Bloch Institute for Solid State PhysicsFaculty of Physics and Earth Sciences, Leipzig UniversityLeipzigGermany
| |
Collapse
|
136
|
Kinnunen KM, Schwarz AJ, Turner EC, Pustina D, Gantman EC, Gordon MF, Joules R, Mullin AP, Scahill RI, Georgiou-Karistianis N. Volumetric MRI-Based Biomarkers in Huntington's Disease: An Evidentiary Review. Front Neurol 2021; 12:712555. [PMID: 34621236 PMCID: PMC8490802 DOI: 10.3389/fneur.2021.712555] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/10/2021] [Indexed: 01/02/2023] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder that is caused by expansion of a CAG-repeat tract in the huntingtin gene and characterized by motor impairment, cognitive decline, and neuropsychiatric disturbances. Neuropathological studies show that disease progression follows a characteristic pattern of brain atrophy, beginning in the basal ganglia structures. The HD Regulatory Science Consortium (HD-RSC) brings together diverse stakeholders in the HD community—biopharmaceutical industry, academia, nonprofit, and patient advocacy organizations—to define and address regulatory needs to accelerate HD therapeutic development. Here, the Biomarker Working Group of the HD-RSC summarizes the cross-sectional evidence indicating that regional brain volumes, as measured by volumetric magnetic resonance imaging, are reduced in HD and are correlated with disease characteristics. We also evaluate the relationship between imaging measures and clinical change, their longitudinal change characteristics, and within-individual longitudinal associations of imaging with disease progression. This analysis will be valuable in assessing pharmacodynamics in clinical trials and supporting clinical outcome assessments to evaluate treatment effects on neurodegeneration.
Collapse
Affiliation(s)
| | - Adam J Schwarz
- Takeda Pharmaceuticals, Ltd., Cambridge, MA, United States
| | | | - Dorian Pustina
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | - Emily C Gantman
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | - Mark F Gordon
- Teva Pharmaceuticals, West Chester, PA, United States
| | | | - Ariana P Mullin
- Critical Path Institute, Tucson, AZ, United States.,Wave Life Sciences, Ltd., Cambridge, MA, United States
| | - Rachael I Scahill
- Huntington's Disease Research Centre, UCL Institute of Neurology, London, United Kingdom
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
137
|
Horta-Barba A, Martinez-Horta S, Perez-Perez J, Sampedro F, de Lucia N, De Michele G, Salvatore E, Kehrer S, Priller J, Migliore S, Squitieri F, Castaldo A, Mariotti C, Mañanes V, Lopez-Sendon JL, Rodriguez N, Martinez-Descals A, Júlio F, Janurio C, Delussi M, de Tommaso M, Noguera S, Ruiz-Idiago J, Sitek EJ, Wallner R, Nuzzi A, Pagonabarraga J, Kulisevsky J. Arithmetic Word-Problem Solving as Cognitive Marker of Progression in Pre-Manifest and Manifest Huntington's Disease. J Huntingtons Dis 2021; 10:459-468. [PMID: 34602494 DOI: 10.3233/jhd-210480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Arithmetic word-problem solving depends on the interaction of several cognitive processes that may be affected early in the disease in gene-mutation carriers for Huntington's disease (HD). OBJECTIVE Our goal was to examine the pattern of performance of arithmetic tasks in premanifest and manifest HD, and to examine correlations between arithmetic task performance and other neuropsychological tasks. METHODS We collected data from a multicenter cohort of 165 HD gene-mutation carriers. The sample consisted of 31 premanifest participants: 16 far-from (>12 years estimated time to diagnosis; preHD-A) and 15 close-to (≤12 years estimated time to diagnosis; preHD-B), 134 symptomatic patients (early-mild HD), and 37 healthy controls (HC). We compared performance between groups and explored the associations between arithmetic word-problem solving and neuropsychological and clinical variables. RESULTS Total arithmetic word-problem solving scores were lower in preHD-B patients than in preHD-A (p < 0.05) patients and HC (p < 0.01). Early-mild HD patients had lower scores than preHD patients (p < 0.001) and HC (p < 0.001). Compared to HC, preHD and early-mild HD participants made more errors as trial complexity increased. Moreover, arithmetic word-problem solving scores were significantly associated with measures of global cognition (p < 0.001), frontal-executive functions (p < 0.001), attention (p < 0.001) visual working memory (p < 0.001), mental rotation (p < 0.001), and confrontation naming (p < 0.05). CONCLUSION Arithmetic word-problem solving is affected early in the course of HD and is related to deficient processes in frontal-executive and mentalizing-related processes.
Collapse
Affiliation(s)
- Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain.,European Huntington's Disease Network (EHDN)
| | - Saul Martinez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain.,European Huntington's Disease Network (EHDN)
| | - Jesús Perez-Perez
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain.,European Huntington's Disease Network (EHDN)
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Natascia de Lucia
- European Huntington's Disease Network (EHDN).,University of Naples "Federico II", Naples, Italy
| | - Giuseppe De Michele
- European Huntington's Disease Network (EHDN).,University of Naples "Federico II", Naples, Italy
| | - Elena Salvatore
- European Huntington's Disease Network (EHDN).,University of Naples "Federico II", Naples, Italy
| | - Stefanie Kehrer
- European Huntington's Disease Network (EHDN).,Department of Neuropsychiatry, Charité - Universitätsmedizin, Berlin, Germany
| | - Josef Priller
- European Huntington's Disease Network (EHDN).,Department of Neuropsychiatry, Charité - Universitätsmedizin, Berlin, Germany
| | - Simone Migliore
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della, Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della, Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Anna Castaldo
- European Huntington's Disease Network (EHDN).,Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Caterina Mariotti
- European Huntington's Disease Network (EHDN).,Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Veronica Mañanes
- European Huntington's Disease Network (EHDN).,Department of Neurology, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Jose Luis Lopez-Sendon
- European Huntington's Disease Network (EHDN).,Department of Neurology, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Noelia Rodriguez
- European Huntington's Disease Network (EHDN).,Department of Neurology. Fundación Jimenez Diaz, Madrid, Spain
| | - Asunción Martinez-Descals
- European Huntington's Disease Network (EHDN).,Department of Neurology. Fundación Jimenez Diaz, Madrid, Spain
| | - Filipa Júlio
- European Huntington's Disease Network (EHDN).,Coimbra Institute for Biomedical Imaging and Translational Research - CIBIT, University of Coimbra, Coimbra, Portugal.,Neurology Department, Coimbra University Hospital, Coimbra, Portugal
| | - Cristina Janurio
- European Huntington's Disease Network (EHDN).,Coimbra Institute for Biomedical Imaging and Translational Research - CIBIT, University of Coimbra, Coimbra, Portugal.,Neurology Department, Coimbra University Hospital, Coimbra, Portugal
| | - Marianna Delussi
- European Huntington's Disease Network (EHDN).,Applied Neurophysiology and Pain Unit, Apulian Center for Huntington's Disease SMBNOS Department, "Aldo Moro" University, Bari, Italy
| | - Marina de Tommaso
- European Huntington's Disease Network (EHDN).,Applied Neurophysiology and Pain Unit, Apulian Center for Huntington's Disease SMBNOS Department, "Aldo Moro" University, Bari, Italy
| | - Sandra Noguera
- European Huntington's Disease Network (EHDN).,Hospital Mare de Deu de la Mercè, Barcelona, Spain
| | - Jesus Ruiz-Idiago
- European Huntington's Disease Network (EHDN).,Hospital Mare de Deu de la Mercè, Barcelona, Spain
| | - Emilia J Sitek
- European Huntington's Disease Network (EHDN).,Department of Neurological and Psychiatric Nursing, Faculty of Health Science, Medical University of Gdansk, Gdańsk, Poland.,Department of Neurology, St. Adalbert Hospital, Gdańsk, Poland
| | - Renata Wallner
- Department of Psychiatry, Medical University of Wroclaw, Wroclaw, Poland
| | | | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain.,European Huntington's Disease Network (EHDN)
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain.,European Huntington's Disease Network (EHDN)
| | | |
Collapse
|
138
|
Di Lazzaro V, Bella R, Benussi A, Bologna M, Borroni B, Capone F, Chen KHS, Chen R, Chistyakov AV, Classen J, Kiernan MC, Koch G, Lanza G, Lefaucheur JP, Matsumoto H, Nguyen JP, Orth M, Pascual-Leone A, Rektorova I, Simko P, Taylor JP, Tremblay S, Ugawa Y, Dubbioso R, Ranieri F. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol 2021; 132:2568-2607. [PMID: 34482205 DOI: 10.1016/j.clinph.2021.05.035] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a powerful tool to probe in vivo brain circuits, as it allows to assess several cortical properties such asexcitability, plasticity and connectivity in humans. In the last 20 years, TMS has been applied to patients with dementia, enabling the identification of potential markers of thepathophysiology and predictors of cognitive decline; moreover, applied repetitively, TMS holds promise as a potential therapeutic intervention. The objective of this paper is to present a comprehensive review of studies that have employed TMS in dementia and to discuss potential clinical applications, from the diagnosis to the treatment. To provide a technical and theoretical framework, we first present an overview of the basic physiological mechanisms of the application of TMS to assess cortical excitability, excitation and inhibition balance, mechanisms of plasticity and cortico-cortical connectivity in the human brain. We then review the insights gained by TMS techniques into the pathophysiology and predictors of progression and response to treatment in dementias, including Alzheimer's disease (AD)-related dementias and secondary dementias. We show that while a single TMS measure offers low specificity, the use of a panel of measures and/or neurophysiological index can support the clinical diagnosis and predict progression. In the last part of the article, we discuss the therapeutic uses of TMS. So far, only repetitive TMS (rTMS) over the left dorsolateral prefrontal cortex and multisite rTMS associated with cognitive training have been shown to be, respectively, possibly (Level C of evidence) and probably (Level B of evidence) effective to improve cognition, apathy, memory, and language in AD patients, especially at a mild/early stage of the disease. The clinical use of this type of treatment warrants the combination of brain imaging techniques and/or electrophysiological tools to elucidate neurobiological effects of neurostimulation and to optimally tailor rTMS treatment protocols in individual patients or specific patient subgroups with dementia or mild cognitive impairment.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kai-Hsiang S Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada; Division of Brain, Imaging& Behaviour, Krembil Brain Institute, Toronto, Canada
| | | | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig University Medical Center, Germany
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Department of Neurology IC, Oasi Research Institute-IRCCS, Troina, Italy
| | - Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | | | - Jean-Paul Nguyen
- Pain Center, clinique Bretéché, groupe ELSAN, Multidisciplinary Pain, Palliative and Supportive care Center, UIC 22/CAT2 and Laboratoire de Thérapeutique (EA3826), University Hospital, Nantes, France
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Swiss Huntington's Disease Centre, Siloah, Bern, Switzerland
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Universitat Autonoma Barcelona, Spain
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Tremblay
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada; Royal Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
139
|
Wijeratne PA, Garbarino S, Gregory S, Johnson EB, Scahill RI, Paulsen JS, Tabrizi SJ, Lorenzi M, Alexander DC. Revealing the Timeline of Structural MRI Changes in Premanifest to Manifest Huntington Disease. Neurol Genet 2021; 7:e617. [PMID: 34660889 PMCID: PMC8515202 DOI: 10.1212/nxg.0000000000000617] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/06/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND OBJECTIVES Longitudinal measurements of brain atrophy using structural MRI (sMRI) can provide powerful markers for tracking disease progression in neurodegenerative diseases. In this study, we use a disease progression model to learn individual-level disease times and hence reveal a new timeline of sMRI changes in Huntington disease (HD). METHODS We use data from the 2 largest cohort imaging studies in HD-284 participants from TRACK-HD (100 control, 104 premanifest, and 80 manifest) and 159 participants from PREDICT-HD (36 control and 128 premanifest)-to train and test the model. We longitudinally register T1-weighted sMRI scans from 3 consecutive time points to reduce intraindividual variability and calculate regional brain volumes using an automated segmentation tool with rigorous manual quality control. RESULTS Our model reveals, for the first time, the relative magnitude and timescale of subcortical and cortical atrophy changes in HD. We find that the largest (∼20% average change in magnitude) and earliest (∼2 years before average abnormality) changes occur in the subcortex (pallidum, putamen, and caudate), followed by a cascade of changes across other subcortical and cortical regions over a period of ∼11 years. We also show that sMRI, when combined with our disease progression model, provides improved prediction of onset over the current best method (root mean square error = 4.5 years and maximum error = 7.9 years vs root mean square error = 6.6 years and maximum error = 18.2 years). DISCUSSION Our findings support the use of disease progression modeling to reveal new information from sMRI, which can potentially inform imaging marker selection for clinical trials.
Collapse
Affiliation(s)
- Peter A. Wijeratne
- From the Centre for Medical Image Computing (P.A.W., D.C.A.), Department of Computer Science, University College London, Gower Street; Huntington's Disease Research Centre (P.A.W., S. Gregory, E.B.J., R.I.S., S.J.T.), Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom; Dipartimento di Matematica (S. Garbarino), UNIGE, DIMA, Genova, Italy; Departments of Neurology and Psychiatry (J.S.P.), Carver College of Medicine, University of Iowa; and Université Côte d’Azur (M.L.), Inria, Epione Research Project, Valbonne, France
| | - Sara Garbarino
- From the Centre for Medical Image Computing (P.A.W., D.C.A.), Department of Computer Science, University College London, Gower Street; Huntington's Disease Research Centre (P.A.W., S. Gregory, E.B.J., R.I.S., S.J.T.), Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom; Dipartimento di Matematica (S. Garbarino), UNIGE, DIMA, Genova, Italy; Departments of Neurology and Psychiatry (J.S.P.), Carver College of Medicine, University of Iowa; and Université Côte d’Azur (M.L.), Inria, Epione Research Project, Valbonne, France
| | - Sarah Gregory
- From the Centre for Medical Image Computing (P.A.W., D.C.A.), Department of Computer Science, University College London, Gower Street; Huntington's Disease Research Centre (P.A.W., S. Gregory, E.B.J., R.I.S., S.J.T.), Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom; Dipartimento di Matematica (S. Garbarino), UNIGE, DIMA, Genova, Italy; Departments of Neurology and Psychiatry (J.S.P.), Carver College of Medicine, University of Iowa; and Université Côte d’Azur (M.L.), Inria, Epione Research Project, Valbonne, France
| | - Eileanoir B. Johnson
- From the Centre for Medical Image Computing (P.A.W., D.C.A.), Department of Computer Science, University College London, Gower Street; Huntington's Disease Research Centre (P.A.W., S. Gregory, E.B.J., R.I.S., S.J.T.), Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom; Dipartimento di Matematica (S. Garbarino), UNIGE, DIMA, Genova, Italy; Departments of Neurology and Psychiatry (J.S.P.), Carver College of Medicine, University of Iowa; and Université Côte d’Azur (M.L.), Inria, Epione Research Project, Valbonne, France
| | - Rachael I. Scahill
- From the Centre for Medical Image Computing (P.A.W., D.C.A.), Department of Computer Science, University College London, Gower Street; Huntington's Disease Research Centre (P.A.W., S. Gregory, E.B.J., R.I.S., S.J.T.), Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom; Dipartimento di Matematica (S. Garbarino), UNIGE, DIMA, Genova, Italy; Departments of Neurology and Psychiatry (J.S.P.), Carver College of Medicine, University of Iowa; and Université Côte d’Azur (M.L.), Inria, Epione Research Project, Valbonne, France
| | - Jane S. Paulsen
- From the Centre for Medical Image Computing (P.A.W., D.C.A.), Department of Computer Science, University College London, Gower Street; Huntington's Disease Research Centre (P.A.W., S. Gregory, E.B.J., R.I.S., S.J.T.), Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom; Dipartimento di Matematica (S. Garbarino), UNIGE, DIMA, Genova, Italy; Departments of Neurology and Psychiatry (J.S.P.), Carver College of Medicine, University of Iowa; and Université Côte d’Azur (M.L.), Inria, Epione Research Project, Valbonne, France
| | - Sarah J. Tabrizi
- From the Centre for Medical Image Computing (P.A.W., D.C.A.), Department of Computer Science, University College London, Gower Street; Huntington's Disease Research Centre (P.A.W., S. Gregory, E.B.J., R.I.S., S.J.T.), Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom; Dipartimento di Matematica (S. Garbarino), UNIGE, DIMA, Genova, Italy; Departments of Neurology and Psychiatry (J.S.P.), Carver College of Medicine, University of Iowa; and Université Côte d’Azur (M.L.), Inria, Epione Research Project, Valbonne, France
| | | | | |
Collapse
|
140
|
Lai HY, Saavedra-Pena G, Sodini C, Heldt T, Sze V. App-based saccade latency and directional error determination across the adult age spectrum. IEEE Trans Biomed Eng 2021; 69:1029-1039. [PMID: 34529556 DOI: 10.1109/tbme.2021.3112007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We aid in neurocognitive monitoring outside the hospital environment by enabling app-based measurements of visual reaction time (saccade latency) and directional error rate in a cohort of subjects spanning the adult age spectrum. Methods: We developed an iOS app to record subjects with the frontal camera during pro- and anti-saccade tasks. We further developed automated algorithms for measuring saccade latency and directional error rate that take into account the possibility that it might not always be possible to determine the eye movement from app-based recordings. Results: To measure saccade latency on a tablet, we ensured that the absolute timing error between on-screen task presentation and the camera recording is within 5 ms. We collected over 235,000 eye movements in 80 subjects ranging in age from 20 to 92 years, with 96% of recorded eye movements either declared good or directional errors. Our error detection code achieved a sensitivity of 0.97 and a specificity of 0.97. Confirming prior reports, we observed a positive correlation between saccade latency and age while the relationship between directional error rate and age was not significant. Finally, we observed significant intra- and inter-subject variations in saccade latency and directional error rate distributions, which highlights the importance of individualized tracking of these visual digital biomarkers. Conclusion and Significance: Our system and algorithms allow ubiquitous tracking of saccade latency and directional error rate, which opens up the possibility of quantifying patient state on a finer timescale in a broader population than previously possible.
Collapse
|
141
|
Glikmann-Johnston Y, Mercieca EC, Carmichael AM, Alexander B, Harding IH, Stout JC. Hippocampal and striatal volumes correlate with spatial memory impairment in Huntington's disease. J Neurosci Res 2021; 99:2948-2963. [PMID: 34516012 DOI: 10.1002/jnr.24966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 08/19/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023]
Abstract
Spatial memory impairments are observed in people with Huntington's disease (HD), however, the domain of spatial memory has received little focus when characterizing the cognitive phenotype of HD. Spatial memory is traditionally thought to be a hippocampal-dependent function, while the neuropathology of HD centers on the striatum. Alongside spatial memory deficits in HD, recent neurocognitive theories suggest that a larger brain network is involved, including the striatum. We examined the relationship between hippocampal and striatal volumes and spatial memory in 36 HD gene expansion carriers, including premanifest (n = 24) and early manifest HD (n = 12), and 32 matched healthy controls. We assessed spatial memory with Paired Associates Learning, Rey-Osterrieth Complex Figure Test, and the Virtual House task, which assesses three components of spatial memory: navigation, object location, and plan drawing. Caudate nucleus, putamen, and hippocampal volumes were manually segmented on T1-weighted MR images. As expected, caudate nucleus and putamen volumes were significantly smaller in the HD group compared to controls, with manifest HD having more severe atrophy than the premanifest HD group. Hippocampal volumes did not differ significantly between HD and control groups. Nonetheless, on average, the HD group performed significantly worse than controls across all spatial memory tasks. The spatial memory components of object location and recall of figural and topographical drawings were associated with striatal and hippocampal volumes in the HD cohort. We provide a case to include spatial memory impairments in the cognitive phenotype of HD, and extend the neurocognitive picture of HD beyond its primary pathology within the striatum.
Collapse
Affiliation(s)
- Yifat Glikmann-Johnston
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Emily-Clare Mercieca
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Anna M Carmichael
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Bonnie Alexander
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia.,Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Neurosurgery, Royal Children's Hospital, Parkville, VIC, Australia
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Julie C Stout
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
142
|
Sathe S, Ware J, Levey J, Neacy E, Blumenstein R, Noble S, Mühlbäck A, Rosser A, Landwehrmeyer GB, Sampaio C. Enroll-HD: An Integrated Clinical Research Platform and Worldwide Observational Study for Huntington's Disease. Front Neurol 2021; 12:667420. [PMID: 34484094 PMCID: PMC8416308 DOI: 10.3389/fneur.2021.667420] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Established in July 2012, Enroll-HD is both an integrated clinical research platform and a worldwide observational study designed to meet the clinical research requirements necessary to develop therapeutics for Huntington's disease (HD). The platform offers participants a low-burden entry into HD research, providing a large, well-characterized, research-engaged cohort with associated clinical data and biosamples that facilitates recruitment into interventional trials and other research studies. Additional studies that use Enroll-HD data and/or biosamples are built into the platform to further research on biomarkers and outcome measures. Enroll-HD is now operating worldwide in 21 countries at 159 clinical sites across four continents—Europe, North America, Latin America, and Australasia—and has recruited almost 25,000 participants, generating a large, rich clinical database with associated biosamples to expedite HD research; any researcher at a verifiable research organization can access the clinical datasets and biosamples from Enroll-HD and nested studies. Important operational features of Enroll-HD include a strong emphasis on standardization, data quality, and protecting participant identity, a single worldwide study protocol, a flexible EDC system capable of integrating multiple studies, a comprehensive monitoring infrastructure, an online portal to train and certify site personnel, and standardized study documents including informed consent forms and contractual agreements.
Collapse
Affiliation(s)
- Swati Sathe
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | - Jen Ware
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | - Jamie Levey
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | - Eileen Neacy
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | | | - Simon Noble
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | | | - Anne Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom.,Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Brain Research and Intracranial Neurotherapeutics Unit, Cardiff University, Cardiff, United Kingdom
| | | | | |
Collapse
|
143
|
Wijeratne PA, Johnson EB, Gregory S, Georgiou-Karistianis N, Paulsen JS, Scahill RI, Tabrizi SJ, Alexander DC. A Multi-Study Model-Based Evaluation of the Sequence of Imaging and Clinical Biomarker Changes in Huntington's Disease. Front Big Data 2021; 4:662200. [PMID: 34423286 PMCID: PMC8374237 DOI: 10.3389/fdata.2021.662200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
Understanding the order and progression of change in biomarkers of neurodegeneration is essential to detect the effects of pharmacological interventions on these biomarkers. In Huntington’s disease (HD), motor, cognitive and MRI biomarkers are currently used in clinical trials of drug efficacy. Here for the first time we use directly compare data from three large observational studies of HD (total N = 532) using a probabilistic event-based model (EBM) to characterise the order in which motor, cognitive and MRI biomarkers become abnormal. We also investigate the impact of the genetic cause of HD, cytosine-adenine-guanine (CAG) repeat length, on progression through these stages. We find that EBM uncovers a broadly consistent order of events across all three studies; that EBM stage reflects clinical stage; and that EBM stage is related to age and genetic burden. Our findings indicate that measures of subcortical and white matter volume become abnormal prior to clinical and cognitive biomarkers. Importantly, CAG repeat length has a large impact on the timing of onset of each stage and progression through the stages, with a longer repeat length resulting in earlier onset and faster progression. Our results can be used to help design clinical trials of treatments for Huntington’s disease, influencing the choice of biomarkers and the recruitment of participants.
Collapse
Affiliation(s)
- Peter A Wijeratne
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom.,Huntington's Disease Research Centre, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Eileanoir B Johnson
- Huntington's Disease Research Centre, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Sarah Gregory
- Huntington's Disease Research Centre, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Nellie Georgiou-Karistianis
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Faculty of Nursing, Medicine, and Health Sciences, Monash University Clayton Campus, Clayton, VIC, Australia
| | - Jane S Paulsen
- Departments of Neurology and Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Rachael I Scahill
- Huntington's Disease Research Centre, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Sarah J Tabrizi
- Huntington's Disease Research Centre, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
144
|
Stoker TB, Mason SL, Greenland JC, Holden ST, Santini H, Barker RA. Huntington's disease: diagnosis and management. Pract Neurol 2021; 22:32-41. [PMID: 34413240 DOI: 10.1136/practneurol-2021-003074] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 11/03/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease characterised by neuropsychiatric symptoms, a movement disorder (most commonly choreiform) and progressive cognitive impairment. The diagnosis is usually confirmed through identification of an increased CAG repeat length in the huntingtin gene in a patient with clinical features of the condition. Though diagnosis is usually straightforward, unusual presentations can occur, and it can be difficult to know when someone has transitioned from being an asymptomatic carrier into the disease state. This has become increasingly important recently, with several putative disease-modifying therapies entering trials. A growing number of conditions can mimic HD, including rare genetic causes, which must be considered in the event of a negative HD genetic test. Patients are best managed in specialist multidisciplinary clinics, including when considering genetic testing. Current treatments are symptomatic, and largely directed at the chorea and neurobehavioural problems, although supporting trial evidence for these is often limited.
Collapse
Affiliation(s)
- Thomas B Stoker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sarah L Mason
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Julia C Greenland
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Simon T Holden
- Department of Clinical Genetics, Addenbrooke's Hospital, Cambridge, UK
| | | | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome Trust Medical Research Council - Cambridge Stem Cell Institute, Cambridge, UK
| |
Collapse
|
145
|
Hellem MNN, Hendel RK, Vinther-Jensen T, Larsen IU, Nielsen TT, Hjermind LE, Budtz-Jørgensen E, Vogel A, Nielsen JE. Endophenotypical drift in Huntington's disease: a 5-year follow-up study. Orphanet J Rare Dis 2021; 16:340. [PMID: 34344392 PMCID: PMC8336065 DOI: 10.1186/s13023-021-01967-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is clinically characterized by progressing motor, cognitive and psychiatric symptoms presenting as varying phenotypes within these three major symptom domains. The disease is caused by an expanded CAG repeat tract in the huntingtin gene and the pathomechanism leading to these endophenotypes is assumed to be neurodegenerative. In 2012/2013 we recruited 107 HD gene expansion carriers (HDGECs) and examined the frequency of the three cardinal symptoms and in 2017/2018 we followed up 74 HDGECs from the same cohort to describe the symptom trajectories and individual drift between the endophenotypes as well as potential predictors of progression and remission. RESULTS We found higher age to reduce the probability of improving on psychiatric symptoms; increasing disease burden score ((CAG-35.5) * age) to increase the risk of developing cognitive impairment; increasing disease burden score and shorter education to increase the risk of motor onset while lower disease burden score and higher Mini Mental State Examination increased the probability of remaining asymptomatic. We found 23.5% (N = 8) to improve from their psychiatric symptoms. CONCLUSIONS There is no clear pattern in the development of or drift between endophenotypes. In contrast to motor and cognitive symptoms we find that psychiatric symptoms may resolve and thereby not entirely be caused by neurodegeneration. The probability of improving from psychiatric symptoms is higher in younger age and advocates for a potential importance of early treatment.
Collapse
Affiliation(s)
- Marie N N Hellem
- The Neurogenetics Clinic, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Rebecca K Hendel
- The Neurogenetics Clinic, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Øster Farimagsgade 2, 1014, Copenhagen, Denmark
| | - Tua Vinther-Jensen
- The Neurogenetics Clinic, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, Bispebjerg Bakke 23, 2400, Copenhagen NV, Denmark
| | - Ida U Larsen
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, Bispebjerg Bakke 23, 2400, Copenhagen NV, Denmark
| | - Troels T Nielsen
- The Neurogenetics Clinic, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Lena E Hjermind
- The Neurogenetics Clinic, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Esben Budtz-Jørgensen
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Øster Farimagsgade 5, 1014, Copenhagen, Denmark
| | - Asmus Vogel
- The Neurogenetics Clinic, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Øster Farimagsgade 2, 1014, Copenhagen, Denmark
| | - Jørgen E Nielsen
- The Neurogenetics Clinic, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
146
|
Ferrari Bardile C, Sidik H, Quek R, Yusof NABM, Garcia-Miralles M, Pouladi MA. Abnormal Spinal Cord Myelination due to Oligodendrocyte Dysfunction in a Model of Huntington's Disease. J Huntingtons Dis 2021; 10:377-384. [PMID: 34366364 DOI: 10.3233/jhd-210495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The relative contribution of grey matter (GM) and white matter (WM) degeneration to the progressive brain atrophy in Huntington's disease (HD) has been well studied. The pathology of the spinal cord in HD is comparatively less well documented. OBJECTIVE We aim to characterize spinal cord WM abnormalities in a mouse model of HD and evaluate whether selective removal of mutant huntingtin (mHTT) from oligodendroglia rescues these deficits. METHODS Histological assessments were used to determine the area of GM and WM in the spinal cord of 12-month-old BACHD mice, while electron microscopy was used to analyze myelin fibers in the cervical area of the spinal cord. To investigate the impact of inactivation of mHTT in oligodendroglia on these measures, we used the previously described BACHDxNG2Cre mouse line where mHTT is specifically reduced in oligodendrocyte progenitor cells. RESULTS We show that spinal GM and WM areas are significantly atrophied in HD mice compared to wild-type controls. We further demonstrate that specific reduction of mHTT in oligodendroglial cells rescues the atrophy of spinal cord WM, but not GM, observed in HD mice. Inactivation of mHTT in oligodendroglia had no effect on the density of oligodendroglial cells but enhanced the expression of myelin-related proteins in the spinal cord. CONCLUSION Our findings demonstrate that the myelination abnormalities observed in brain WM structures in HD extend to the spinal cord and suggest that specific expression of mHTT in oligodendrocytes contributes to such abnormalities.
Collapse
Affiliation(s)
- Costanza Ferrari Bardile
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A *STAR), Singapore.,Departments of Medicine and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Harwin Sidik
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A *STAR), Singapore
| | - Reynard Quek
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A *STAR), Singapore
| | | | - Marta Garcia-Miralles
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A *STAR), Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A *STAR), Singapore.,Departments of Medicine and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
147
|
Müller HP, Behler A, Landwehrmeyer GB, Huppertz HJ, Kassubek J. How to Arrange Follow-Up Time-Intervals for Longitudinal Brain MRI Studies in Neurodegenerative Diseases. Front Neurosci 2021; 15:682812. [PMID: 34335162 PMCID: PMC8319674 DOI: 10.3389/fnins.2021.682812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022] Open
Abstract
Background Longitudinal brain MRI monitoring in neurodegeneration potentially provides substantial insights into the temporal dynamics of the underlying biological process, but is time- and cost-intensive and may be a burden to patients with disabling neurological diseases. Thus, the conceptualization of follow-up time-intervals in longitudinal MRI studies is an essential challenge and substantial for the results. The objective of this work is to discuss the association of time-intervals and the results of longitudinal trends in the frequently used design of one baseline and two follow-up scans. Methods Different analytical approaches for calculating the linear trend of longitudinal parameters were studied in simulations including their performance of dealing with outliers; these simulations were based on the longitudinal striatum atrophy in MRI data of Huntington’s disease patients, detected by atlas-based volumetry (ABV). Results For the design of one baseline and two follow-up visits, the simulations with outliers revealed optimum results for identical time-intervals between baseline and follow-up scans. However, identical time-intervals between the three acquisitions lead to the paradox that, depending on the fit method, the first follow-up scan results do not influence the final results of a linear trend analysis. Conclusions This theoretical study analyses how the design of longitudinal imaging studies with one baseline and two follow-up visits influences the results. Suggestions for the analysis of longitudinal trends are provided.
Collapse
Affiliation(s)
| | - Anna Behler
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
148
|
Heim B, Valent D, Carbone F, Spielberger S, Krismer F, Djamshidian-Tehrani A, Seppi K. Extending the Spectrum of Nonmotor Symptoms with Olfaction in Premotor Huntington's Disease: A Pilot Study. NEURODEGENER DIS 2021; 20:207-211. [PMID: 34348324 DOI: 10.1159/000518136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/25/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of this pilot study was to investigate change of olfactory functions in Huntington's disease (HD). BACKGROUND HD is a neurodegenerative disease characterized by motor, cognitive, and behavioral abnormalities. There are several studies reporting olfactory dysfunction in manifest and some studies in premanifest HD carriers, and a recent neuropathological study demonstrated HD-specific protein aggregation in the anterior olfactory nucleus in HD patients. In this study, we wanted to assess olfactory functions as a possible early nonmotor symptom of HD mutation carriers without disease-specific motor symptoms and HD patients. METHODS All participants had genetic confirmed HD and were prospectively recruited during their routine control in a specialized outpatient clinic of the Medical University of Innsbruck, Department of Neurology, Austria. Healthy controls (HCs) were caregivers from patients. They were only included if they were younger than 70 years, scored more than 24/30 points on the Mini Mental State Examination, and had no other disease compromising olfactory function. Furthermore, all participants were tested on the Sniffin' sticks 16-items identification test. RESULTS We included 23 patients with manifest HD, 13 HD mutation carriers, and 19 HCs. Mutation carriers showed significant impaired odor identification compared to HCs (p < 0.001), as well as Huntington's patients compared with both mutation carriers (p = 0.003) and HCs (p < 0.001). CONCLUSIONS The results of this pilot study suggest that olfactory dysfunction may be an early nonmotor symptom of HD and could be a potential marker to assess disease progression.
Collapse
Affiliation(s)
- Beatrice Heim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dora Valent
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Federico Carbone
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sabine Spielberger
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
149
|
Khan W, Alusi S, Tawfik H, Hussain A. The relationship between non-motor features and weight-loss in the premanifest stage of Huntington's disease. PLoS One 2021; 16:e0253817. [PMID: 34197537 PMCID: PMC8248657 DOI: 10.1371/journal.pone.0253817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/14/2021] [Indexed: 11/19/2022] Open
Abstract
Weight-loss is an integral part of Huntington's disease (HD) that can start before the onset of motor symptoms. Investigating the underlying pathological processes may help in the understanding of this devastating disease as well as contribute to its management. However, the complex behavior and associations of multiple biological factors is impractical to be interpreted by the conventional statistics or human experts. For the first time, we combine a clinical dataset, expert knowledge and machine intelligence to model the multi-dimensional associations between the potentially relevant factors and weight-loss activity in HD, specifically at the premanifest stage. The HD dataset is standardized and transformed into required knowledge base with the help of clinical HD experts, which is then processed by the class rule mining and self-organising maps to identify the significant associations. Statistical results and experts' report indicate a strong association between severe weight-loss in HD at the premanifest stage and measures of certain cognitive, psychiatric functional ability factors. These results suggest that the mechanism underlying weight-loss in HD is, at least partly related to dysfunction of certain areas of the brain, a finding that may have not been apparent otherwise. These associations will aid the understanding of the pathophysiology of the disease and its progression and may in turn help in HD treatment trials.
Collapse
Affiliation(s)
- Wasiq Khan
- School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, United Kingdom
| | - Sundus Alusi
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Hissam Tawfik
- School of Built Environment, Engineering and Computing, Leeds Beckett University, Leeds, United Kingdom
| | - Abir Hussain
- School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
150
|
Adanyeguh IM, Branzoli F, Delorme C, Méneret A, Monin ML, Luton MP, Durr A, Sabidussi E, Mochel F. Multiparametric characterization of white matter alterations in early stage Huntington disease. Sci Rep 2021; 11:13101. [PMID: 34162958 PMCID: PMC8222368 DOI: 10.1038/s41598-021-92532-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
Huntington's disease (HD) is a monogenic, fully penetrant neurodegenerative disorder. Widespread white matter damage affects the brain of patients with HD at very early stages of the disease. Fixel-based analysis (FBA) is a novel method to investigate the contribution of individual crossing fibers to the white matter damage and to detect possible alterations in both fiber density and fiber-bundle morphology. Diffusion-weighted magnetic resonance spectroscopy (DW-MRS), on the other hand, quantifies the motion of brain metabolites in vivo, thus enabling the investigation of microstructural alteration of specific cell populations. The aim of this study was to identify novel specific microstructural imaging markers of white matter degeneration in HD, by combining FBA and DW-MRS. Twenty patients at an early stage of HD and 20 healthy controls were recruited in a monocentric study. Using diffusion imaging we observed alterations to the brain microstructure and their morphology in patients with HD. Furthermore, FBA revealed specific fiber populations that were affected by the disease. Moreover, the mean diffusivity of the intra-axonal metabolite N-acetylaspartate, co-measured with N-acetylaspartylglutamate (tNAA), was significantly reduced in the corpus callosum of patients compared to controls. FBA and DW-MRS of tNAA provided more specific information about the biological mechanisms underlying HD and showed promise for early investigation of white matter degeneration in HD.
Collapse
Affiliation(s)
- Isaac M Adanyeguh
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, ICM, 75013, Paris, France
| | - Francesca Branzoli
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, ICM, 75013, Paris, France.,Center for NeuroImaging Research (CENIR), Institut du Cerveau Et de La Moelle Épinière, 75013, Paris, France
| | - Cécile Delorme
- Department of Neurology, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Aurélie Méneret
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, ICM, 75013, Paris, France.,Department of Neurology, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Marie-Lorraine Monin
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, ICM, 75013, Paris, France
| | - Marie-Pierre Luton
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, ICM, 75013, Paris, France
| | - Alexandra Durr
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, ICM, 75013, Paris, France
| | - Emanoel Sabidussi
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, ICM, 75013, Paris, France
| | - Fanny Mochel
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, ICM, 75013, Paris, France. .,Department of Genetics, Center for Neurometabolic Diseases, AP-HP, La Pitié-Salpêtrière University Hospital, 47 Boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|