101
|
Zhang L, Zhao Y, Liu Y, Gao G. High spin polarization, large perpendicular magnetic anisotropy and room-temperature ferromagnetism by biaxial strain and carrier doping in Janus MnSeTe and MnSTe. NANOSCALE 2023; 15:18910-18919. [PMID: 37975757 DOI: 10.1039/d3nr04627c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The emerging two-dimensional (2D) Janus systems with broken symmetry provide a new platform for designing ultrathin multifunctional spintronic materials. Recently, based on experimental monolayer MnSe2, ferromagnetism was predicted in Janus MnXY (X ≠ Y = S, Se, Te) monolayers; however, they exhibit low Curie temperatures and small magnetic anisotropic energies. To improve the Curie temperature and magnetic anisotropy, herein, we systemically explore the stability and electronic and magnetic properties of Janus MnSeTe and MnSTe monolayers under strain and carrier-doping using first-principles calculations and Monte Carlo simulations. It is found that both MnSeTe and MnSTe monolayers possess robustly high spin polarization with rational strain and carrier-doping. Both tensile strain and hole doping strengthen the ferromagnetic super-exchange interactions of the two nearest Mn atoms mediated by chalcogen atoms and exceedingly improve the perpendicular magnetic anisotropic energies (by up to 3.1 meV per f.u. for MnSeTe and 2.0 meV per f.u. for MnSTe). The Te-5p intraorbital hybridizations contributed to the main magnetic anisotropy. More remarkably, the tensile strain and hole doping collectively increase the Curie temperatures of MnSeTe and MnSTe to above and near room temperature (345 and 290 K, respectively). The present study reveals that Janus MnSeTe and MnSTe monolayers with robustly high spin polarization, room-temperature ferromagnetism and large perpendicular magnetic anisotropy are promising candidates for ultrathin multifunctional spintronic materials. This study will be of great interest for further experimental and theoretical explorations of 2D Janus manganese dichalcogenides.
Collapse
Affiliation(s)
- Long Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yan Zhao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yuqi Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guoying Gao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
102
|
Geng L, Chen K, Lu H, Wang S, Yang Y. Exploring electronic and valley properties of single-layer SMSiN 2 (M = Mo, W): a first-principles study on two-dimensional Janus materials. Phys Chem Chem Phys 2023; 25:32021-32028. [PMID: 37981807 DOI: 10.1039/d3cp04283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
In this study, we employ first-principles calculations to explore the electronic and valleytronic properties of single-layer (SL) SMSiN2 (M = Mo, W), which are two-dimensional Janus materials with strong spin-orbit coupling. Our findings indicate that SL SMoSiN2/SWSiN2 possess a direct/indirect band gap, where the valence band maximum is situated at the K/K' point, giving rise to the formation of degenerate valleys. When considering spin-orbit coupling, SMoSiN2 and SWSiN2 demonstrate intriguing valley spin splitting in their valleys, with a maximum splitting of up to 0.14/0.39 eV in the valence bands. By implementing magnetic doping with V and Cr, we provide a demonstration that valley polarization could be realized in SL SMSiN2. Moreover, the findings reveal high carrier mobility in SL SMSiN2, notably in SWSiN2, where hole carriers can achieve a remarkable mobility of up to 7.98 × 103 cm2 V-1 s-1 along the zigzag direction. Furthermore, our observations suggest that strain can be effectively utilized to manipulate the character and magnitude of the band gap, as well as the valley spin splitting in these materials.
Collapse
Affiliation(s)
- Lijie Geng
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Kun Chen
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Hongyan Lu
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, China
| | - Shizhuo Wang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yang Yang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
103
|
Asikainen K, Alatalo M, Huttula M, Sasikala Devi AA. Tuning the Electronic Properties of Two-Dimensional Lepidocrocite Titanium Dioxide-Based Heterojunctions. ACS OMEGA 2023; 8:45056-45064. [PMID: 38046343 PMCID: PMC10688046 DOI: 10.1021/acsomega.3c06786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023]
Abstract
Two-dimensional (2D) heterostructures reveal novel physicochemical phenomena at different length scales that are highly desirable for technological applications. We present a comprehensive density functional theory study of van der Waals (vdW) heterostructures constructed by stacking 2D TiO2 and 2D MoSSe monolayers to form the TiO2-MoSSe heterojunction. The heterostructure formation is found to be exothermic, indicating stability. We find that by varying the atomic species at the interfaces, the electronic structure can be considerably altered due to the differences in charge transfer arising from the inherent electronegativity of the atoms. We demonstrate that the heterostructures possess a type II or type III band alignment, depending on the atomic termination of MoSSe at the interface. The observed charge transfer occurs from MoSSe to TiO2. Our results suggest that the Janus interface enables the tuning of electronic properties, providing an understanding of the possible applications of the TiO2-MoSSe heterostructure.
Collapse
Affiliation(s)
- Kati Asikainen
- Nano and Molecular Systems
Research Unit, University of Oulu, Oulu FI-90014, Finland
| | - Matti Alatalo
- Nano and Molecular Systems
Research Unit, University of Oulu, Oulu FI-90014, Finland
| | - Marko Huttula
- Nano and Molecular Systems
Research Unit, University of Oulu, Oulu FI-90014, Finland
| | | |
Collapse
|
104
|
Sari B, Zeltmann SE, Zhao C, Pelz PM, Javey A, Minor AM, Ophus C, Scott MC. Analysis of Strain and Defects in Tellurium-WSe 2 Moiré Heterostructures Using Scanning Nanodiffraction. ACS NANO 2023; 17:22326-22333. [PMID: 37956410 PMCID: PMC10690779 DOI: 10.1021/acsnano.3c04283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
In recent years, there has been an increasing focus on 2D nongraphene materials that range from insulators to semiconductors to metals. As a single-elemental van der Waals semiconductor, tellurium (Te) has captivating anisotropic physical properties. Recent work demonstrated growth of ultrathin Te on WSe2 with the atomic chains of Te aligned with the armchair directions of the substrate using physical vapor deposition (PVD). In this system, a moiré superlattice is formed where micrometer-scale Te flakes sit on top of the continuous WSe2 film. Here, we determined the precise orientation of the Te flakes with respect to the substrate and detailed structure of the resulting moiré lattice by combining electron microscopy with image simulations. We directly visualized the moiré lattice using center of mass-differential phase contrast (CoM-DPC). We also investigated the local strain within the Te/WSe2 layered materials using scanning nanodiffraction techniques. There is a significant tensile strain at the edges of flakes along the direction perpendicular to the Te chain direction, which is an indication of the preferred orientation for the growth of Te on WSe2. In addition, we observed local strain relaxation regions within the Te film, specifically attributed to misfit dislocations, which we characterize as having a screw-like nature. The detailed structural analysis gives insight into the growth mechanisms and strain relaxation in this moiré heterostructure.
Collapse
Affiliation(s)
- Bengisu Sari
- Department
of Materials Science and Engineering, University
of California Berkeley, Berkeley, California 94720, United States
- The
National Center for Electron Microscopy, Molecular Foundry, Berkeley, California 94720, United States
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720-8099, United States
| | - Steven E. Zeltmann
- Department
of Materials Science and Engineering, University
of California Berkeley, Berkeley, California 94720, United States
| | - Chunsong Zhao
- Department
of Materials Science and Engineering, University
of California Berkeley, Berkeley, California 94720, United States
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720-8099, United States
- Department
of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Philipp M. Pelz
- Institute
of Micro- and Nanostructure Research, Center for Nanoanalysis and
Electron Microscopy, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen 91058, Germany
| | - Ali Javey
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720-8099, United States
- Department
of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Andrew M. Minor
- Department
of Materials Science and Engineering, University
of California Berkeley, Berkeley, California 94720, United States
- The
National Center for Electron Microscopy, Molecular Foundry, Berkeley, California 94720, United States
| | - Colin Ophus
- The
National Center for Electron Microscopy, Molecular Foundry, Berkeley, California 94720, United States
| | - Mary C. Scott
- Department
of Materials Science and Engineering, University
of California Berkeley, Berkeley, California 94720, United States
- The
National Center for Electron Microscopy, Molecular Foundry, Berkeley, California 94720, United States
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720-8099, United States
| |
Collapse
|
105
|
Lubert-Perquel D, Acharya S, Johnson JC. Optically Addressing Exciton Spin and Pseudospin in Nanomaterials for Spintronics Applications. ACS APPLIED OPTICAL MATERIALS 2023; 1:1742-1760. [PMID: 38037653 PMCID: PMC10683369 DOI: 10.1021/acsaom.3c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Oriented exciton spins that can be generated and manipulated optically are of interest for a range of applications, including spintronics, quantum information science, and neuromorphic computing architectures. Although materials that host such excitons often lack practical coherence times for use on their own, strategic transduction of the magnetic information across interfaces can combine fast modulation with longer-term storage and readout. Several nanostructure systems have been put forward due to their interesting magneto-optical properties and their possible manipulation using circularly polarized light. These material systems are presented here, namely two-dimensional (2D) systems due to the unique spin-valley coupling properties and quantum dots for their exciton fine structure. 2D magnets are also discussed for their anisotropic spin behavior and extensive 2D magnetic states that are not yet fully understood but could pave the way for emergent techniques of magnetic control. This review also details the experimental and theoretical tools to measure and understand these systems along with a discussion on the progress of optical manipulation of spins and magnetic order transitions.
Collapse
Affiliation(s)
- Daphné Lubert-Perquel
- Materials, Chemical, and
Computational Science Directorate, National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Swagata Acharya
- Materials, Chemical, and
Computational Science Directorate, National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Justin C. Johnson
- Materials, Chemical, and
Computational Science Directorate, National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
106
|
Lan J, Peng Y, Liang L, Duan X, Kong Z, Zhang L, Shen JW. Theoretical study of protein adsorption on graphene/h-BN heterostructures. Phys Chem Chem Phys 2023; 25:31206-31221. [PMID: 37955184 DOI: 10.1039/d3cp03303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The biological characteristics of planar heterojunction nanomaterials and their interactions with biomolecules are crucial for the potential application of these materials in the biomedical field. This study employed molecular dynamics (MD) simulations to investigate the interactions between proteins with distinct secondary structures (a single α-helix representing the minimal oligomeric domain protein, a single β-sheet representing the WW structural domain of the Yap65 protein, and a mixed α/β structure representing the BBA protein) and a planar two-dimensional heterojunction (a GRA/h-BN heterojunction consisting of a graphene nanoplate (GRA) and a hexagonal boron nitride nanoplate (h-BN)). The results indicate that all three kinds of protein can be quickly and stably adsorbed on the GRA/h-BN heterojunction due to the strong van der Waals interaction, regardless of their respective types, structures and initial orientations. Moreover, the proteins exhibit a pronounced binding preference for the hBN region of the GRA/h-BN heterojunction. Upon adsorption, the α-helix structure of the minimal oligomeric domain protein experiences partial or complete denaturation. Conversely, while the secondary structure of the single β-sheet and mixed α/β structure (BBA protein) undergoes slight changes (focus on the coil and turn regions), the main α-helix and β-sheet structures remain intact. The initial orientation significantly impacts the degree of protein adsorption and its position on the GRA/h-BN heterojunction. However, regardless of the initial orientation, proteins can ultimately be adsorbed onto the GRA/h-BN heterojunction. Furthermore, the initial orientation has a minor influence on the structural changes of proteins. Significantly, the combination of different secondary structures helps mitigate the denaturation of a single α-helix structure to some extent. Overall, the adsorption of proteins on GRA/h-BN is primarily driven by van der Waals and hydrophobic interactions. Proteins with β-sheet or mixed structures exhibit stronger biocompatibility on the GRA/h-BN heterojunction. Our research elucidated the biological characteristics of GRA/h-BN heterojunction nanomaterials and their interactions with proteins possessing diverse secondary structures. It offers a theoretical foundation for considering heterojunction nanomaterials as promising candidates for biomedical applications.
Collapse
Affiliation(s)
- Jun Lan
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Yiran Peng
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Lijun Liang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Xing Duan
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Zhe Kong
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
107
|
Li X, Wang Z, Lei Z, Ding W, Shi X, Yan J, Ku J. Magnetic characterization techniques and micromagnetic simulations of magnetic nanostructures: from zero to three dimensions. NANOSCALE 2023. [PMID: 37981862 DOI: 10.1039/d3nr04493a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The investigation of the magnetic characteristics of magnetic nanostructures (MNs) in various dimensions is a crucial direction of research in nanomagnetism, with MNs belonging to various dimensions exhibiting magnetic properties related to their geometry. A better understanding of these magnetic properties is required for MN manipulation. The primary tools for researching MNs are magnetic characterisation techniques with great spatial resolution and spin sensitivity. Micromagnetic simulation is another technique that minimises experimental costs, while providing information on the magnetic structure and magnetic behaviour, and has enormous potential for predicting, validating, and extending the magnetic characterisation results. This review first looks at the progress of research into quantitatively characterising the magnetic properties of low-dimensional (including 0D, 1D, and 2D) and 3D MNs in two directions: magnetic characterisation techniques and micromagnetic simulations, with a particular emphasis on the potential for future applications of these techniques. Single magnetic characterization techniques, single micromagnetic simulations, or a mix of both are utilised in these research studies to investigate MNs in a variety of dimensions. How the magnetic characterisation techniques and micromagnetic simulations can be better applied to MNs in various dimensions is then outlined. This discussion has significant application potential for low-dimensional and 3D MNs.
Collapse
Affiliation(s)
- Xin Li
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
- Fujian Key Laboratory of Green Extraction and High-value Utilization of Energy Metals, Fuzhou 350116, China
| | - Zhaolian Wang
- Shandong Huate Magnet Technology Co., Ltd, Weifang 261000, China
| | - Zhongyun Lei
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Wei Ding
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
| | - Xiao Shi
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
| | - Jujian Yan
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
| | - Jiangang Ku
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
- Fujian Key Laboratory of Green Extraction and High-value Utilization of Energy Metals, Fuzhou 350116, China
| |
Collapse
|
108
|
Cao S, Xu X, Liu Q, Chen H, Zhu H, Lin Y. Co quantum dots embedded in modified montmorillonite loaded with graphitized carbon as an ultra-stable anode material for sodium-ion battery. J Colloid Interface Sci 2023; 650:1073-1085. [PMID: 37463533 DOI: 10.1016/j.jcis.2023.07.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
Carbonaceous materials are competitive anodes in sodium-ion batteries (SIBs) due to their advantages, such as low cost, abundant active sites, and porosity. However, this type of material still suffers from slow rate capability and low capacity, which greatly hinders its application. In this work, the biomass-derived carbon is optimized based on a layered montmorillonite (Mt) skeleton and the cobalt quantum dots (Co QDs). A three-dimensional (3D) combination, specifically a 3D flower-like structure, of 0D material (Co QDs) and a two-dimensional (2D) material (Mt) has been achieved. The optimization and local limited effects of the Co QDs on the electronic properties have been demonstrated by density functional theory (DFT). The metallic Co QDs and carbon could form a Mott-Schottky junction, enhancing the conductivity and Na+ adsorption. Due to the synergetic improvement of structure and conductivity, the stripped Mt embedded with Co QDs loaded with nitrogen doped carbon (FMt@Co-NC) shows ultra-stable cycle stability (99.12% retention after 10,000 cycles at 10 A/g). This is the first time that Mt has been employed in high performance SIBs, which incubates a grand blueprint for effectively utilizing similar inactive energy-storage materials, through a simple and reliable approach.
Collapse
Affiliation(s)
- Shiyue Cao
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiaoting Xu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Qiming Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Hongyi Chen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Huijuan Zhu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ye Lin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
109
|
Ye P, Xiao J, Fan J, Chen J, Gao N, Yang X. Structural Characterization of Boron Sheets beyond the Monolayer and Implication for Experimental Synthesis and Identification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16191-16198. [PMID: 37930136 DOI: 10.1021/acs.langmuir.3c02573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The successful synthesis of quasi-freestanding bilayer borophene has aroused much attention for its superior physical properties and holds great promise for future electronic devices. Herein, we comprehensively explore six boron sheets beyond the monolayer and structurally characterize them via various methods using first-principles calculations for experimental references. On the basis of atomic models of borophenes, simulated scanning tunneling microscope (STM) images show different morphologies at different bias voltages and are explained by the partial densities of states and the height differences in the vertical direction. Simulated transmission electron microscope images further probe the internal atomic arrangement of boron sheets and compensate for the shortcomings of STM images to better distinguish different phases of boron sheets. The interlayer coupling strength is stronger in bilayer borophenes than in the three-layer system via the electron localization function and Mulliken bond population. In addition, simulated X-ray diffraction and infrared spectra show different characteristic peaks and corresponding vibrational modes to further characterize these boron sheets. These theoretical results can decrease the prime cost and provide vital guidance for the experimental synthesis and identification of boron sheets beyond the monolayer.
Collapse
Affiliation(s)
- Panbin Ye
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
| | - Jingyi Xiao
- Instrumental Analysis Center, Dalian University of Technology, Dalian 116024, China
| | - Junyu Fan
- Department of Physics, Taiyuan Normal University, Jinzhong 030619, People's Republic of China
| | - Jinghuang Chen
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
| | - Nan Gao
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
| | - Xiaowei Yang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| |
Collapse
|
110
|
Jia Y, Gao Y, Liu Y. First-principles study of two-dimensional half-metallic ferromagnetism in CrSiSe 4monolayer. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:075701. [PMID: 37922560 DOI: 10.1088/1361-648x/ad098e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
Two-dimensional (2D) ferromagnetic (FM) half-metallic materials have attracted intensive attention due to their unique electronic and magnetic properties and potential applications in spintronic devices. In this study, we predicted a stable 2D half-metallic material monolayer CrSiSe4using first-principles density functional theory. The structure, electronic and magnetic properties were systematically studied. The calculations show that the monolayer CrSiSe4is a dynamically stable FM half-metallic material. The spin-dependent transport properties and the Curie temperature up to 239 K are demonstrated. The spin band gap of monolayer CrSiSe4was about 0.83 eV by the the Heyd-Scuseria-Ernzerhof function calculation. The magnetic anisotropy energy of each Cr atom in the monolayer of CrSiSe4is-552.3μeV. When the applied biaxial tensile strain is greater than 2%, monolayer CrSiSe4spin-up conduction band and valence band will show a band gap at the Fermi level, and the electronic properties change from a half-metal to a semiconductor. Thus, the monolayer CrSiSe4can provide an ideal candidate material for exploring 2D magnetic and spintronics experiments.
Collapse
Affiliation(s)
- Yuanyuan Jia
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yan Gao
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yong Liu
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| |
Collapse
|
111
|
Arfaoui M, Zawadzka N, Ayari S, Chen Z, Watanabe K, Taniguchi T, Babiński A, Koperski M, Jaziri S, Molas MR. Optical properties of orthorhombic germanium sulfide: unveiling the anisotropic nature of Wannier excitons. NANOSCALE 2023; 15:17014-17028. [PMID: 37843442 DOI: 10.1039/d3nr03168c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
To fully explore exciton-based applications and improve their performance, it is essential to understand the exciton behavior in anisotropic materials. Here, we investigate the optical properties of anisotropic excitons in GeS encapsulated by h-BN using different approaches that combine polarization- and temperature-dependent photoluminescence (PL) measurements, ab initio calculations, and effective mass approximation (EMA). Using the Bethe-Salpeter Equation (BSE) method, we found that the optical absorption spectra in GeS are significantly affected by the Coulomb interaction included in the BSE method, which shows the importance of excitonic effects besides it exhibits a significant dependence on the direction of polarization, revealing the anisotropic nature of bulk GeS. By combining ab initio calculations and EMA methods, we investigated the quasi-hydrogenic exciton states and oscillator strength (OS) of GeS along the zigzag and armchair axes. We found that the anisotropy induces lifting of the degeneracy and mixing of the excitonic states in GeS, which results in highly non-hydrogenic features. A very good agreement with the experiment is observed.
Collapse
Affiliation(s)
- Mehdi Arfaoui
- Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences de Tunis, Université Tunis El Manar, Campus Universitaire, 1060 Tunis, Tunisia.
| | - Natalia Zawadzka
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland.
| | - Sabrine Ayari
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75005 Paris, France
| | - Zhaolong Chen
- Institute for Functional Intelligent Material, National University of Singapore, 117575, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Adam Babiński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland.
| | - Maciej Koperski
- Institute for Functional Intelligent Material, National University of Singapore, 117575, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Sihem Jaziri
- Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences de Tunis, Université Tunis El Manar, Campus Universitaire, 1060 Tunis, Tunisia.
| | - Maciej R Molas
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
112
|
Yu M, Zhang F, Gao W, Shen H, Kang L, Ju L, Yin H. Two-dimensional InTeClO 3: an ultrawide-bandgap material with potential application in a deep ultraviolet photodetector. Phys Chem Chem Phys 2023; 25:29241-29248. [PMID: 37874031 DOI: 10.1039/d3cp03612j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Ultrawide-bandgap semiconductors, possessing bandgaps distinctly larger than the 3.4 eV of GaN, have emerged as a promising class capable of achieving deep ultraviolet (UV) light detection. Based on first-principles calculations, we propose an unexplored two-dimensional (2D) InTeClO3 layered system with ultrawide bandgaps ranging from 4.34 eV of bulk to 4.54 eV of monolayer. Our calculations demonstrate that 2D InTeClO3 monolayer can be exfoliated from its bulk counterpart and maintain good thermal and dynamic stability at room temperature. The ultrawide bandgaps may be modulated by the small in-plane strains and layer thickness in a certain range. Furthermore, the 2D InTeClO3 monolayer shows promising electron transport behavior and strong optical absorption capacity in the deep UV range. A two-probe InTeClO3-based photodetection device has been constructed for evaluating the photocurrent. Remarkably, the effective photocurrent (5.7 A m-2 at photon energy of 4.2 eV) generation under polarized light has been observed in such a photodetector. Our results indicate that 2D InTeClO3 systems have strong photoresponse capacity in the deep UV region, accompanying the remarkable polarization sensitivity and high extinction ratio. These distinctive characteristics highlight the promising application prospects of InTeClO3 materials in the field of deep UV optoelectronics.
Collapse
Affiliation(s)
- Meiyang Yu
- Joint Center for Theoretical Physics, Institute for Computational Materials Science, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Fumin Zhang
- Joint Center for Theoretical Physics, Institute for Computational Materials Science, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Wenjiang Gao
- Joint Center for Theoretical Physics, Institute for Computational Materials Science, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Huimin Shen
- Joint Center for Theoretical Physics, Institute for Computational Materials Science, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Lili Kang
- Joint Center for Theoretical Physics, Institute for Computational Materials Science, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Lin Ju
- School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China.
| | - Huabing Yin
- Joint Center for Theoretical Physics, Institute for Computational Materials Science, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| |
Collapse
|
113
|
Huang H, Zheng Y, Liu C, Zhang Z, Gao M, Wang J, Liu Y, Chu PK, Yu XF. Interfacial Engineering Enables Perovskite Heteroepitaxial Growth on Black Phosphorus for Flexible X-ray Detectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303229. [PMID: 37475501 DOI: 10.1002/smll.202303229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Indexed: 07/22/2023]
Abstract
2D materials with atomic-scale thickness and mechanical robustness are required for flexible devices. The superior optoelectronic properties and high-Z atoms in metal halide perovskites render them desirable for X-ray detection, but the intrinsic brittleness is an obstacle hampering the applications in flexible detectors. Herein, an interfacial engineering strategy is demonstrated for the epitaxial growth of methylammonium lead bromide (MAPbBr3 ) on black phosphorus (BP) for flexible X-ray detectors. The mechanically robust, high-quality heterostructure consisting of a Pb transition layer is synthesized for the two-way bridging of BP and MAPbBr3 . Excellent optoelectronic properties such as a high X-ray sensitivity of 1,609 ± 122 µC Gy-1 cm-2 (80 times higher than that of the commercial amorphous Se), a fast response time of 40 ± 5 ms, as well as a low detection limit of 3 µGys-1 (about a fifteenth of the medical chest X-ray dose rate) are achieved from the simple and planar direct X-ray detector fabricated on an organic filter membrane. More importantly, these flat and simple devices are bendable and mechanically durable by exhibiting only 10% photocurrent degradation after 200 bending cycles. The novel heterostructure has great potential in large-area, flexible, and sensitive X-ray detection applications.
Collapse
Affiliation(s)
- Hao Huang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Hubei Three Gorges Laboratory, Yichang, Hubei, 443007, P. R. China
| | - Ying Zheng
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Chang Liu
- Hubei Three Gorges Laboratory, Yichang, Hubei, 443007, P. R. China
| | - Zhenyu Zhang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Ming Gao
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jiahong Wang
- Hubei Three Gorges Laboratory, Yichang, Hubei, 443007, P. R. China
| | - Yanliang Liu
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China
| | - Xue-Feng Yu
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Hubei Three Gorges Laboratory, Yichang, Hubei, 443007, P. R. China
| |
Collapse
|
114
|
Prasad A, Varshney V, Nepal D, Frank GJ. Bioinspired Design Rules from Highly Mineralized Natural Composites for Two-Dimensional Composite Design. Biomimetics (Basel) 2023; 8:500. [PMID: 37887631 PMCID: PMC10604232 DOI: 10.3390/biomimetics8060500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Discoveries of two-dimensional (2D) materials, exemplified by the recent entry of MXene, have ushered in a new era of multifunctional materials for applications from electronics to biomedical sensors due to their superior combination of mechanical, chemical, and electrical properties. MXene, for example, can be designed for specialized applications using a plethora of element combinations and surface termination layers, making them attractive for highly optimized multifunctional composites. Although multiple critical engineering applications demand that such composites balance specialized functions with mechanical demands, the current knowledge of the mechanical performance and optimized traits necessary for such composite design is severely limited. In response to this pressing need, this paper critically reviews structure-function connections for highly mineralized 2D natural composites, such as nacre and exoskeletal of windowpane oysters, to extract fundamental bioinspired design principles that provide pathways for multifunctional 2D-based engineered systems. This paper highlights key bioinspired design features, including controlling flake geometry, enhancing interface interlocks, and utilizing polymer interphases, to address the limitations of the current design. Challenges in processing, such as flake size control and incorporating interlocking mechanisms of tablet stitching and nanotube forest, are discussed along with alternative potential solutions, such as roughened interfaces and surface waviness. Finally, this paper discusses future perspectives and opportunities, including bridging the gap between theory and practice with multiscale modeling and machine learning design approaches. Overall, this review underscores the potential of bioinspired design for engineered 2D composites while acknowledging the complexities involved and providing valuable insights for researchers and engineers in this rapidly evolving field.
Collapse
Affiliation(s)
- Anamika Prasad
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Vikas Varshney
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (V.V.); (D.N.); (G.J.F.)
| | - Dhriti Nepal
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (V.V.); (D.N.); (G.J.F.)
| | - Geoffrey J. Frank
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (V.V.); (D.N.); (G.J.F.)
- University of Dayton Research Institute, Dayton, OH 45469, USA
| |
Collapse
|
115
|
Priyadharsan RR, Timothy RA, Thomas JM, Jeyakumar TC, Rajaram R, Louis H. Investigating the structure, bonding, and energy decomposition analysis of group 10 transition metal carbonyls with substituted terminal germanium chalcogenides [M(CO) 3GeX] (M = Ni, Pd, and Pt; X = O, S, Se, and Te) complexes: insight from first-principles calculations. J Mol Model 2023; 29:344. [PMID: 37847395 DOI: 10.1007/s00894-023-05745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
CONTEXT This research focused on the theoretical investigation of transition metal carbonyls [M(CO)4] coordinated with terminal germanium chalcogenides complexes [M(CO)3GeX], where M represents Ni, Pd, and Pt and X represents O, S, Se, and Te labeled 1-15. While the notable complexes M(CO)4 (where M = Ni, Pd, Pt) numbered 1, 6, and 11 are of significance, substituting one of the CO ligands in 1, 6, and 11 with a GeX ligand (where X = O, S, Se, or Te) result in substituted complexes (2-5, 7-10, and 11-15). Substituting of the CO ligand slightly alters these bond angles. Specifically, the ∠CMC bond angles for [Ni] complexes range from 111.9° to 112.2°, for [Pd] complexes from 111.4° to 111.7°, and for [Pt] complexes from 112.4° to 112.8°. These findings indicate a minor deviation from the tetrahedral geometry due to the influence of the new GeX ligand. Similarly, there is a slight change in the geometry of the metal complexes, where the ∠GeMC angles for [Ni] complexes are between 106.7° and 106.9°, for [Pd] complexes between 107.2° and 107.5°, and for [Pt] complexes between 105.9° and 106.4°. Comparing among the substituted GeX complexes, those containing GeTe exhibit a higher natural bond orbital (NBO) contribution from the Ge atom compared to the M atom. Consequently, based on the above observations, it can be inferred that GeX acts as an effective sigma donor in contrast to carbonyl compounds. Results of energy decomposition analysis (EDA) for the M-CO bond in 1, 6, and 11 and for the M-GeX bond in the other [M(CO)3(GeX)] complexes where M = Ni, Pd and Pt. The percentage contribution of ΔEelstat and ΔEorb shows a relatively identical behavior for all ligands in case of each metal complexes. METHODS Density functional theory (DFT) calculations were conducted using the B3LYP/gen/6-31G*/LanL2DZ level of theory to examine transition metal carbonyls [M(CO)4] coordinated with terminal germanium chalcogenides complexes [M(CO)3GeX], where M represents Ni, Pd, and Pt, and X represents O, S, Se, and Te labeled 1-15 utilized through the use of Gaussian 09W and GaussView 6.0.16 software packages. Post-processing computational code such as multi-wave function was employed for results analysis and visualization.
Collapse
Affiliation(s)
- R Rameshbabu Priyadharsan
- PG & Research Department of Chemistry, The American College (Autonomous), Madurai, Tamil Nadu, India
| | - Rawlings A Timothy
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Jisha Mary Thomas
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | | | - Rajendran Rajaram
- Department of Chemistry, Madanapalle Institute of Technology and Science, Angallu (V), Madanapalle, Andhra Pradesh, 517325, India
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria.
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
116
|
Xu Q, Wu Q, Wang C, Zhang X, Cai Z, Lin L, Gu X, Ostrikov KK, Nan H, Xiao S. High-performance multilayer WSe 2/SnS 2p-n heterojunction photodetectors by two step confined space chemical vapor deposition. NANOTECHNOLOGY 2023; 34:505604. [PMID: 37748477 DOI: 10.1088/1361-6528/acfcc3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Two-dimensional (2D) p-n heterojunctions have attracted great attention due to their outstanding properties in electronic and optoelectronic devices, especially in photodetectors. Various types of heterojunctions have been constituted by mechanical exfoliation and stacking. However, achieving controlled growth of heterojunction structures remains a tremendous challenge. Here, we employed a two-step KI-assisted confined-space chemical vapor deposition method to prepare multilayer WSe2/SnS2p-n heterojunctions. Optical characterization results revealed that the prepared WSe2/SnS2vertical heterostructures have clear interfaces as well as vertical heterostructures. The electrical and optoelectronic properties were investigated by constructing the corresponding heterojunction devices, which exhibited good rectification characteristics and obtained a high detectivity of 7.85 × 1012Jones and a photoresponse of 227.3 A W-1under visible light irradiation, as well as a fast rise/fall time of 166/440μs. These remarkable performances are likely attributed to the ultra-low dark current generated in the depletion region at the junction and the high direct tunneling current during illumination. This work demonstrates the value of multilayer WSe2/SnS2heterojunctions for applications in high-performance photodetectors.
Collapse
Affiliation(s)
- Qilei Xu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qianqian Wu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Chenglin Wang
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiumei Zhang
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhengyang Cai
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Liangliang Lin
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaofeng Gu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Kostya Ken Ostrikov
- School of Physics and Chemistry and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Haiyan Nan
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Shaoqing Xiao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
117
|
Ramzan MS, Cocchi C. Strained Monolayer MoTe 2 as a Photon Absorber in the Telecom Range. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2740. [PMID: 37887890 PMCID: PMC10608843 DOI: 10.3390/nano13202740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
To achieve the atomistic control of two-dimensional materials for emerging technological applications, such as valleytronics, spintronics, and single-photon emission, it is of paramount importance to gain an in-depth understanding of their structure-property relationships. In this work, we present a systematic analysis, carried out in the framework of density-functional theory, on the influence of uniaxial strain on the electronic and optical properties of monolayer MoTe2. By spanning a ±10% range of deformation along the armchair and zigzag direction of the two-dimensional sheet, we inspect how the fundamental gap, the dispersion of the bands, the frontier states, and the charge distribution are affected by strain. Under tensile strain, the system remains a semiconductor but a direct-to-indirect band gap transition occurs above 7%. Compressive strain, instead, is highly direction-selective. When it is applied along the armchair edge, the material remains a semiconductor, while along the zigzag direction a semiconductor-to-metal transition happens above 8%. The characteristics of the fundamental gap and wave function distribution are also largely dependent on the strain direction, as demonstrated by a thorough analysis of the band structure and of the charge density. Additional ab initio calculations based on many-body perturbation theory confirm the ability of strained MoTe2 to absorb radiation in the telecom range, thus suggesting the application of this material as a photon absorber upon suitable strain modulation.
Collapse
Affiliation(s)
| | - Caterina Cocchi
- Institut für Physik, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
- Center for Nanoscale Dynamics (CeNaD), Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| |
Collapse
|
118
|
Ghosh R, De M. Liposome-Based Antibacterial Delivery: An Emergent Approach to Combat Bacterial Infections. ACS OMEGA 2023; 8:35442-35451. [PMID: 37810644 PMCID: PMC10551917 DOI: 10.1021/acsomega.3c04893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
The continued emergence and spread of drug-resistant pathogens and the decline in the approval of new antimicrobial drugs pose a major threat to managing infectious diseases, resulting in high morbidity and mortality. Even though a significant variety of antibiotics can effectively cure many bacterial infectious diseases, microbial infections remain one of the biggest global health problems, which may be due to the traditional drug delivery system's shortcomings which lead to poor therapeutic index, low drug absorption, and numerous other drawbacks. Further, the use of traditional antibiotics to treat infectious diseases has always been accompanied by the emergence of multidrug resistance and adverse side effects. Despite developing numerous new antibiotics, nanomaterials, and various techniques to combat infectious diseases, they have persisted as major global health issues. Improving the current antibiotic delivery systems is a promising approach to solving many life-threatening infections. In this context, nanoliposomal systems have recently attracted much attention. Herein, we attempt to provide a concise summary of recent studies that have used liposomal nanoparticles as delivery systems for antibacterial medicines. The minireview also highlights the enormous potential of liposomal nanoparticles as antibiotic delivery systems. The future of these promising approaches lies in developing more efficient delivery systems by precisely targeting bacterial cells with antibiotics with minimum cytotoxicity and high bacterial combating efficacy.
Collapse
Affiliation(s)
- Rita Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
119
|
Santos EJA, Giozza WF, de Souza Júnior RT, Nepomuceno Cavalcante NJ, Ribeiro Júnior LA, Lopes Lima KA. On the CO
2
adsorption in a boron nitride analog for the recently synthesized biphenylene network: a DFT study. J Mol Model 2023; 29:327. [PMID: 37773546 DOI: 10.1007/s00894-023-05709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/28/2023] [Indexed: 10/01/2023]
Abstract
CONTEXT Recent advances in nanomaterial synthesis and characterization have led to exploring novel 2D materials. The biphenylene network (BPN) is a notable achievement in current fabrication efforts. Numerical studies have indicated the stability of its boron nitride counterpart, known as BN-BPN. In this study, we employ computational simulations to investigate the electronic and structural properties of pristine and doped BN-BPN monolayers upon CO2 adsorption. Our findings demonstrate that pristine BN-BPN layers exhibit moderate adsorption energies for CO2 molecules, approximately− 0.16 eV, indicating physisorption. However, introducing one-atom doping with silver, germanium, nickel, palladium, platinum, or silicon significantly enhances CO2 adsorption, leading to adsorption energies ranging from− 0.13 to− 0.65 eV. This enhancement indicates the presence of both physisorption and chemisorption mechanisms. BN-BPN does not show precise CO2 sensing and selectivity. Furthermore, our investigation of the recovery time for adsorbed CO2 molecules suggests that the interaction between BN-BPN and CO2 cannot modify the electronic properties of BN-BPN before the CO2 molecules escape. METHODS We performed density functional theory (DFT) simulations using the DMol3 code in the Biovia Materials Studio software. We incorporated Van der Waals corrections (DFT-D) within the Grimme scheme for an accurate representation. The exchange and correlation functions were treated using the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA). We used a double-zeta plus polarization (DZP) basis set to describe the electronic structure. Additionally, we accounted for the basis set superposition error (BSSE) through the counterpoise method. We included semicore DFT pseudopotentials to accurately model the interactions between the nuclei and valence electrons.
Collapse
Affiliation(s)
- Emanuel J A Santos
- Department of Physics, State University of Piauí, Teresina, Piauí, 64002-150, Brazil
| | - William F Giozza
- Faculty of Technology, Department of Electrical Engineering, University of Brasília, Brasília, Brazil
| | - Rafael T de Souza Júnior
- Faculty of Technology, Department of Electrical Engineering, University of Brasília, Brasília, Brazil
| | | | - Luiz A Ribeiro Júnior
- University of Brasilia, Institute of Physics, Brasília, 70910-900, Brazil.
- Computational Materials Laboratory, LCCMat, Institute of Physics, University of Brasília, Brasília, 70910-900, Brazil.
| | - Kleuton A Lopes Lima
- Department of Physics, State University of Piauí, Teresina, Piauí, 64002-150, Brazil
| |
Collapse
|
120
|
Martins DAF, Lima KA, Monteiro FF, Pereira ML, Ribeiro LA, Macedo-Filho A. Examining O
2
adsorption on pristine and defective popgraphene sheets: A DFT study. J Mol Model 2023; 29:328. [PMID: 37773299 DOI: 10.1007/s00894-023-05692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/11/2023] [Indexed: 10/01/2023]
Abstract
CONTEXT Popgraphene (PopG) is a two-dimensional carbon-based material with fused pentagonal and octagonal rings. Like graphene, it exhibits a metallic band gap and exceptional thermal, dynamic, and mechanical stability. Here, we theoretically study the electronic and structural properties of PopG monolayers, including their doped and vacancy-endowed versions, as O2 adsorbers. Our findings show that pristine and vacancy-endowed PopG sheets have a comparable ability to adsorb O2 molecules, with adsorption energies ranging from− 0.57 to− 0.59 eV (physisorption). In these cases, octagonal rings play a dominant role in the adsorption mechanism. Platinum and Silicon doping enhance the O2 adsorption in areas close to the octagonal rings, resulting in adsorption energies ranging from− 1.13 to− 2.56 eV (chemisorption). Furthermore, we computed the recovery time for the adsorbed O2 molecules. The results suggest that PopG/O2 interaction in pristine and vacancy-endowed cases can change the PopG electronic properties before O2 diffusion. METHODS Density Functional Theory (DFT) simulations, with Van der Waals corrections (DFT-D, within the Grimme scheme), were performed to study the structural and electronic properties of PopG/O2 systems using the DMol3 code within the Biovia Materials Studio software. The exchange and correlation functions are treated within the generalized gradient approximation (GGA) as parameterized by Perdew-Burke-Ernzerhof (PBE) functional. We used the double-zeta plus polarization (DZP) for the basis set in these cases. We also considered the BSSE correction through the counterpoise method and the nuclei-valence electron interactions by including semi-core DFT pseudopotentials.
Collapse
Affiliation(s)
- David A F Martins
- Department of Physics, State University of Piauí, 64002-150, Teresina, Piauí, Brazil
| | - Kleuton A Lima
- Department of Physics, State University of Piauí, 64002-150, Teresina, Piauí, Brazil
| | - Fábio F Monteiro
- Institute of Physics, University of Brasilia, 70910-900, Brasília, Brazil
| | - Marcelo L Pereira
- University of Brasília, Faculty of Technology, Department of Electrical Engineering, 70910-900, Brasília, Brazil.
| | - Luiz A Ribeiro
- Institute of Physics, University of Brasilia, 70910-900, Brasília, Brazil
| | - Antonio Macedo-Filho
- Department of Physics, State University of Piauí, 64002-150, Teresina, Piauí, Brazil
| |
Collapse
|
121
|
Ghosh S, Pannone A, Sen D, Wali A, Ravichandran H, Das S. An all 2D bio-inspired gustatory circuit for mimicking physiology and psychology of feeding behavior. Nat Commun 2023; 14:6021. [PMID: 37758750 PMCID: PMC10533903 DOI: 10.1038/s41467-023-41046-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Animal behavior involves complex interactions between physiology and psychology. However, most AI systems neglect psychological factors in decision-making due to a limited understanding of the physiological-psychological connection at the neuronal level. Recent advancements in brain imaging and genetics have uncovered specific neural circuits that regulate behaviors like feeding. By developing neuro-mimetic circuits that incorporate both physiology and psychology, a new emotional-AI paradigm can be established that bridges the gap between humans and machines. This study presents a bio-inspired gustatory circuit that mimics adaptive feeding behavior in humans, considering both physiological states (hunger) and psychological states (appetite). Graphene-based chemitransistors serve as artificial gustatory taste receptors, forming an electronic tongue, while 1L-MoS2 memtransistors construct an electronic-gustatory-cortex comprising a hunger neuron, appetite neuron, and feeding circuit. This work proposes a novel paradigm for emotional neuromorphic systems with broad implications for human health. The concept of gustatory emotional intelligence can extend to other sensory systems, benefiting future humanoid AI.
Collapse
Affiliation(s)
- Subir Ghosh
- Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA
| | - Andrew Pannone
- Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA
| | - Dipanjan Sen
- Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA
| | - Akshay Wali
- Electrical Engineering, Penn State University, University Park, PA, 16802, USA
| | | | - Saptarshi Das
- Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA.
- Electrical Engineering, Penn State University, University Park, PA, 16802, USA.
- Materials Science and Engineering, Penn State University, University Park, PA, 16802, USA.
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|
122
|
Loukopoulos S, Sakellis E, Kostakis MG, Gerokonstantis DT, Tsipas P, Gardelis S, Kontos AG, Katsaros FK, Sideratou Z, Romanos GE, Dimoulas A, Thomaidis NS, Likodimos V. Co-assembled MoS 2-TiO 2 Inverse Opal Photocatalysts for Visible Light-Activated Pharmaceutical Photodegradation. ACS OMEGA 2023; 8:33639-33650. [PMID: 37744818 PMCID: PMC10515384 DOI: 10.1021/acsomega.3c03881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
Heterostructured photocatalytic materials in the form of photonic crystals have been attracting attention for their unique light harvesting ability that can be ideally combined with judicious compositional modifications toward the development of visible light-activated (VLA) photonic catalysts, though practical environmental applications, such as the degradation of pharmaceutical emerging contaminants, have been rarely reported. Herein, heterostructured MoS2-TiO2 inverse opal films are introduced as highly active immobilized photocatalysts for the VLA degradation of tetracycline and ciprofloxacin broad-spectrum antibiotics as well as salicylic acid. A single-step co-assembly method was implemented for the challenging incorporation of MoS2 nanosheets into the nanocrystalline inverse opal walls. Compositional tuning and photonic band gap engineering of the MoS2-TiO2 photonic films showed that integration of low amounts of MoS2 nanosheets in the inverse opal framework maintains intact the periodic macropore structure and enhances the available surface area, resulting in efficient VLA antibiotic degradation far beyond the performance of benchmark TiO2 films. The combination of broadband MoS2 visible light absorption and photonic-assisted light trapping together with the enhanced charge separation that enables the generation of reactive oxygen species via firm interfacial coupling between MoS2 nanosheets and TiO2 nanoparticles is concluded as a competent approach for pharmaceutical abatement in water bodies.
Collapse
Affiliation(s)
- Stelios Loukopoulos
- Section
of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, Zografou, Athens 15784, Greece
| | - Elias Sakellis
- Institute
of Nanoscience and Nanotechnology, National
Center for Scientific Research “Demokritos”, Agia Paraskevi, Athens 15341, Greece
| | - Marios G. Kostakis
- Laboratory
of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, Athens 15771, Greece
| | - Dimitrios-Triantafyllos Gerokonstantis
- Laboratory
of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, Athens 15771, Greece
| | - Polychronis Tsipas
- Institute
of Nanoscience and Nanotechnology, National
Center for Scientific Research “Demokritos”, Agia Paraskevi, Athens 15341, Greece
| | - Spiros Gardelis
- Section
of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, Zografou, Athens 15784, Greece
| | - Athanassios G. Kontos
- Institute
of Nanoscience and Nanotechnology, National
Center for Scientific Research “Demokritos”, Agia Paraskevi, Athens 15341, Greece
- Department
of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens 15780, Greece
| | - Fotis K. Katsaros
- Institute
of Nanoscience and Nanotechnology, National
Center for Scientific Research “Demokritos”, Agia Paraskevi, Athens 15341, Greece
| | - Zili Sideratou
- Institute
of Nanoscience and Nanotechnology, National
Center for Scientific Research “Demokritos”, Agia Paraskevi, Athens 15341, Greece
| | - George Em. Romanos
- Institute
of Nanoscience and Nanotechnology, National
Center for Scientific Research “Demokritos”, Agia Paraskevi, Athens 15341, Greece
| | - Athanasios Dimoulas
- Institute
of Nanoscience and Nanotechnology, National
Center for Scientific Research “Demokritos”, Agia Paraskevi, Athens 15341, Greece
| | - Nikolaos S. Thomaidis
- Laboratory
of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, Athens 15771, Greece
| | - Vlassis Likodimos
- Section
of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, Zografou, Athens 15784, Greece
| |
Collapse
|
123
|
Fu W, John M, Maddumapatabandi TD, Bussolotti F, Yau YS, Lin M, Johnson Goh KE. Toward Edge Engineering of Two-Dimensional Layered Transition-Metal Dichalcogenides by Chemical Vapor Deposition. ACS NANO 2023; 17:16348-16368. [PMID: 37646426 DOI: 10.1021/acsnano.3c04581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The manipulation of edge configurations and structures in atomically-thin transition metal dichalcogenides (TMDs) for versatile functionalization has attracted intensive interest in recent years. The chemical vapor deposition (CVD) approach has shown promise for TMD edge engineering of atomic edge configurations (1H, 1T or 1T'-zigzag or armchair edges) as well as diverse edge morphologies (1D nanoribbons, 2D dendrites, 3D spirals, etc.). These edge-rich TMD layers offer versatile candidates for probing the physical and chemical properties and exploring potential applications in electronics, optoelectronics, catalysis, sensing, and quantum technologies. In this Review, we present an overview of the current state-of-the-art in the manipulation of TMD atomic edges and edge-rich structures using CVD. We highlight the vast range of distinct properties associated with these edge configurations and structures and provide insights into the opportunities afforded by such edge-functionalized crystals. The objective of this Review is to motivate further research and development efforts to use CVD as a scalable approach to harness the benefits of such crystal-edge engineering.
Collapse
Affiliation(s)
- Wei Fu
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Mark John
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
| | - Thathsara D Maddumapatabandi
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Fabio Bussolotti
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Yong Sean Yau
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Ming Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Kuan Eng Johnson Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| |
Collapse
|
124
|
Chiu CH, Chen YT, Shen JL. Quantum dots derived from two-dimensional transition metal dichalcogenides: synthesis, optical properties and optoelectronic applications. NANOTECHNOLOGY 2023; 34:482001. [PMID: 37607498 DOI: 10.1088/1361-6528/acf29c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Zero-dimensional transition metal dichalcogenides (TMD) quantum dots (QDs) have attracted a lot of attention due to their interesting fundamental properties and various applications. Compared to TMD monolayers, the QD counterpart exhibits larger values for direct transition energies, exciton binding energies, absorption coefficient, luminescence efficiency, and specific surface area. These characteristics make them useful in optoelectronic devices. In this review, recent exciting progress on synthesis, optical properties, and applications of TMD QDs is highlighted. The first part of this article begins with a brief description of the synthesis approaches, which focus on microwave-assistant heating and pulsed laser ablation methods. The second part introduces the fundamental optical properties of TMD QDs, including quantum confinement in optical absorption, excitation-wavelength-dependent photoluminescence, and many-body effects. These properties are highlighted. In the third part, we discuss lastest advancements in optoelectronic devices based on TMD QDs These devices include light-emitting diodes, solar cells, photodetectors, optical sensors, and light-controlled memory devices. Finally, a brief summary and outlook will be provided.
Collapse
Affiliation(s)
- Ching-Hsueh Chiu
- Department of Physics, Center for Nanotechnology, and Research Center for Crystalline Materials and Optoelectronic Characterization, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Yu-Ting Chen
- Department of Physics, Center for Nanotechnology, and Research Center for Crystalline Materials and Optoelectronic Characterization, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Ji-Lin Shen
- Department of Physics, Center for Nanotechnology, and Research Center for Crystalline Materials and Optoelectronic Characterization, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| |
Collapse
|
125
|
Yam KM, Zhang Y, Guo N, Jiang Z, Deng H, Zhang C. Two-dimensional graphitic metal carbides: structure, stability and electronic properties. NANOTECHNOLOGY 2023; 34:465706. [PMID: 37549662 DOI: 10.1088/1361-6528/acedb6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Via first-principles computational modeling and calculations, we propose a new class of two-dimensional (2D) atomically thin crystals that contain metal-C3(MC3) moieties periodically distributed in a graphenic lattice, which we refer to as 2D graphitic metal carbides (g-MCs). Most g-MCs are dynamically stable as verified by the calculated phonon spectra. Our detailed chemical bonding analyzes reveal that the high stability of g-MCs can be attributed to a unique bonding feature, which manifests as the carbon-backbone-mediated metal-metal interactions. These analyzes provide new insights for understanding the stability of 2D materials. It is found that the calculated electronic band gaps and magnetic moments (per unit cell) of g-MCs can range from 0 to 1.30 eV and 0 to 4.40μB, respectively. Highly tunable electronic properties imply great potential of 2D g-MCs in various applications. As an example, we show that 2D g-MnC can be an excellent electrocatalyst towards CO2reductive reaction for the formation of formic acid with an exceptionally high loading of Mn atoms (∼43 wt%). We expect this work to simulate new experiments for fabrication and applications of g-MCs.
Collapse
Affiliation(s)
- Kah-Meng Yam
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3 117543, Singapore
| | - Yongjie Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Na Guo
- NUS (Chongqing) Research Institute, No. 16 South Huashan Road, 401123, Chongqing, People's Republic of China
| | - Zhuoling Jiang
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
| | - Hui Deng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Chun Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3 117543, Singapore
| |
Collapse
|
126
|
Sangolkar AA, Kadiyam RK, Faizan M, Chedupaka O, Mucherla R, Pawar R. Electronic and photophysical properties of an atomically thin bowl-shaped beryllene encapsulated inside the cavity of [6]cycloparaphenylene (Be n@[6]CPP). Phys Chem Chem Phys 2023; 25:23262-23276. [PMID: 37608746 DOI: 10.1039/d3cp01952g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Exotic metallic nanostructures are being intensely pursued for a myriad of applications, with ultrathin membranes currently at the heart of several investigations. The objective of the present study was to systematically assess the atom-by-atom encapsulation of Be in the molecular nanoring of [6]cycloparaphenylene ([6]CPP). Further, the study aimed to scrutinize the structure, stability, and properties of the encapsulated Ben@[6]CPP systems. The outcomes clearly revealed that [6]CPP enabled the cooperative confinement of atomically thin bowl-shaped beryllene inside its circular cavity. The confinement of Be in [6]CPP generated topologically anisotropic surfaces with distinct interior and exterior charge distributions. The Ben@[6]CPP complexes could render a cationic or anionic nature to Be depending on its neighbouring environment. Thus, the systems may offer a promising opportunity for the synergistic co-adsorption of multiple reactants that are involved in multicomponent reactions. Energy decomposition analysis (EDA) elucidated that the bonding between Be and [6]CPP was partially ionic and covalent in character. The progressive encapsulation of Be atoms inside the cavity of [6]CPP led to a red-shift of the excitation wavelength to the visible region. The calculated optical absorption coefficient was higher than 104 L mol-1 cm-1, which shows promise for diverse optoelectronic applications.
Collapse
Affiliation(s)
- Akanksha Ashok Sangolkar
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| | - Rama Krishna Kadiyam
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| | - Mohmmad Faizan
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| | - Omshireesh Chedupaka
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| | - Raghasudha Mucherla
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| | - Ravinder Pawar
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| |
Collapse
|
127
|
Yang K, Yang X, Liu Z, Zhang R, Yue Y, Wang F, Li K, Shi X, Yuan J, Liu N, Wang Z, Wang G, Xin G. Scalable microfluidic fabrication of vertically aligned two-dimensional nanosheets for superior thermal management. MATERIALS HORIZONS 2023; 10:3536-3547. [PMID: 37272086 DOI: 10.1039/d3mh00615h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Two-dimensional (2D) nanosheets have been assembled into various macroscopic structures for wide engineering applications. To fully explore their exceptional thermal, mechanical, and electrical properties, 2D nanosheets must be aligned into highly ordered structures due to their strong structural anisotropy. Structures stacked layer by layer such as films and fibers have been readily assembled from 2D nanosheets due to their planar geometry. However, scalable manufacturing of macroscopic structures with vertically aligned 2D nanosheets remains challenging, given their large lateral size with a thickness of only a few nanometers. Herein, we report a scalable and efficient microfluidics-enabled sheet-aligning process to assemble 2D nanosheets into a large-area film with a highly ordered vertical alignment. By applying microchannels with a high aspect ratio, 2D nanosheets were well aligned vertically under strong channel size confinement and high flow shear stress. A vertically aligned graphene sheet film was obtained and applied to effectively improve the heat transfer of thermal interfacial materials (TIMs). Superior through-plane thermal conductivity of 82.7 W m-1 K-1 at a low graphene content of 11.8 vol% was measured for vertically aligned TIMs. Thus, they demonstrate exceptional thermal management performance for switching power supplies with high reliability.
Collapse
Affiliation(s)
- Kai Yang
- Wuhan National High Magnetic Field Center and School of Materials Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiaoran Yang
- Wuhan National High Magnetic Field Center and School of Materials Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zexin Liu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong Zhang
- Wuhan National High Magnetic Field Center and School of Materials Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yue Yue
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanfan Wang
- Wuhan National High Magnetic Field Center and School of Materials Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Kangyong Li
- Wuhan National High Magnetic Field Center and School of Materials Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiaojie Shi
- School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jun Yuan
- Department of Integrated Power Systems and Device Technology, Hubei Jiufengshan Laboratory, Wuhan 430206, China
| | - Ningyu Liu
- Department of Integrated Power Systems and Device Technology, Hubei Jiufengshan Laboratory, Wuhan 430206, China
| | - Zhiqiang Wang
- School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Gongkai Wang
- School of Material Science and Engineering, Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin, 300130, China.
| | - Guoqing Xin
- Wuhan National High Magnetic Field Center and School of Materials Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
128
|
Jeon M, Kim M, Lee JS, Kim H, Choi SJ, Moon HR, Kim J. Computational Prediction of Stacking Mode in Conductive Two-Dimensional Metal-Organic Frameworks: An Exploration of Chemical and Electrical Property Changes. ACS Sens 2023; 8:3068-3075. [PMID: 37524053 DOI: 10.1021/acssensors.3c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Conductive two-dimensional metal-organic frameworks (2D MOFs) have attracted interest as they induce strong charge delocalization and improve charge carrier mobility and concentration. However, characterizing their stacking mode depends on expensive and time-consuming experimental measurements. Here, we construct a potential energy surface (PES) map database for 36 2D MOFs using density functional theory (DFT) for the experimentally synthesized and non-synthesized 2D MOFs to predict their stacking mode. The DFT PES results successfully predict the experimentally synthesized stacking mode with an accuracy of 92.9% and explain the coexistence mechanism of dual stacking modes in a single compound. Furthermore, we analyze the chemical (i.e., host-guest interaction) and electrical (i.e., electronic structure) property changes affected by stacking mode. The DFT results show that the host-guest interaction can be enhanced by the transition from AA to AB stacking, taking H2S gas as a case study. The electronic band structure calculation confirms that as AB stacking displacement increases, the in-plane charge transport pathway is reduced while the out-of-plane charge transport pathway is maintained or even increased. These results indicate that there is a trade-off between chemical and electrical properties in accordance with the stacking mode.
Collapse
Affiliation(s)
- Mingyu Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Minhyuk Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joon-Seok Lee
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Honghui Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hoi Ri Moon
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
129
|
Jaiswal S, Fathi-Hafshejani P, Yakupoglu B, Boebinger MG, Azam N, Unocic RR, Hamilton MC, Mahjouri-Samani M. Wafer-Scale Synthesis of 2D Materials by an Amorphous Phase-Mediated Crystallization Approach. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39697-39706. [PMID: 37579298 DOI: 10.1021/acsami.3c06009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The interest in the wafer-scale growth of two-dimensional (2D) materials, including transition metal dichalcogenides (TMDCs), has been rising for transitioning from lab-scale devices to commercial-scale systems. Among various synthesis techniques, physical vapor deposition, such as pulsed laser deposition (PLD), has shown promise for the wafer-scale growth of 2D materials. However, due to the high volatility of chalcogen atoms (e.g., S and Se), films deposited by PLD usually suffer from a lack of stoichiometry and chalcogen deficiency. To mitigate this issue, excess chalcogen is necessary during the deposition, which results in problems like uniformity or not being repeatable. This study demonstrates a condensed-phase or amorphous phase-mediated crystallization (APMC) approach for the wafer-scale synthesis of 2D materials. This method uses a room-temperature PLD process for the deposition and formation of amorphous precursors with controlled thicknesses, followed by a post-deposition crystallization process to convert the amorphous materials to crystalline structures. This approach maintains the stoichiometry of the deposited materials throughout the deposition and crystallization process and enables the large-scale synthesis of crystalline 2D materials (e.g., MoS2 and WSe2) on Si/SiO2 substrates, which is critical for future wafer-scale electronics. We show that the thickness of the layers can be digitally controlled by the number of laser pulses during the PLD phase. Optical spectroscopy is used to monitor the crystallization dynamics of amorphous layers as a function of annealing temperature. The crystalline quality, domain sizes, and the number of layers were explored using nanoscale and atomistic characterization (e.g., AFM, STEM, and EDS) along with electrical characterization to explore process-structure-performance relationships. This growth technique is a promising method that could potentially be adopted in conventional semiconductor industries for wafer-scale manufacturing of next-generation electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Suman Jaiswal
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Parvin Fathi-Hafshejani
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Baha Yakupoglu
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Matthew G Boebinger
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nurul Azam
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Raymond R Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michael C Hamilton
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Masoud Mahjouri-Samani
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
130
|
Wang K, Ren K, Hou Y, Cheng Y, Zhang G. Magnon-phonon coupling: from fundamental physics to applications. Phys Chem Chem Phys 2023; 25:21802-21815. [PMID: 37581291 DOI: 10.1039/d3cp02683c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In recent decades, there are immense applications for bulk and few-layer magnetic insulators in biomedicine, data storage, and signal transfer. In these applications, the interaction between spin and lattice vibration has significant impacts on the device performance. In this article, we systematically review the fundamental physical aspects of magnon-phonon coupling in magnetic insulators. We first introduce the fundamental physics of magnons and magnon-phonon coupling in magnetic insulators and then discuss the influence of magnon-phonon coupling on the properties of magnons and phonons. Finally, a summary is presented, and we also discuss the possible open problems in this field. This article presents the advanced understanding of magnon-phonon coupling in magnetic insulators, which provides new opportunities for improving various possible applications.
Collapse
Affiliation(s)
- Ke Wang
- School of Automation, Xi'an University of Posts and Telecommunications, Shaanxi, 710121, China
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, PR China.
| | - Kai Ren
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210042, China
| | - Yinlong Hou
- School of Automation, Xi'an University of Posts and Telecommunications, Shaanxi, 710121, China
| | - Yuan Cheng
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, PR China.
- Department of Materials Science and Engineering, Monash University, VIC 3800, Australia
| | - Gang Zhang
- Institute of High Performance Computing, A*STAR, 138632, Singapore.
| |
Collapse
|
131
|
Wei H, Yang L, Pang C, Lian L, Hong L. Bacteria-targeted photothermal therapy for combating drug-resistant bacterial infections. Biomater Sci 2023; 11:5634-5640. [PMID: 37404189 DOI: 10.1039/d3bm00841j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Photothermal therapy is an ideal non-invasive treatment for bacterial infections. However, if photothermal agents are unable to target bacteria, they can also cause thermal damage to healthy tissue. This study describes the fabrication of a Ti3C2Tx MXene-based photothermal nanobactericide (denoted as MPP) that targets bacteria by modifying MXene nanosheets with polydopamine and the bacterial recognition peptide CAEKA. The polydopamine layer blunts the sharp edges of MXene nanosheets, preventing their damage to normal tissue cells. Furthermore, as a constituent of peptidoglycan, CAEKA can recognize and penetrate the bacterial cell membrane based on similar compatibility. The obtained MPP exhibits superior antibacterial activity and high cytocompatibility compared to the pristine MXene nanosheets. In vivo studies showed that MPP colloidal solution under 808 nm NIR light can effectively treat a subcutaneous abscess caused by multi-drug resistant bacterial infection without adverse effects.
Collapse
Affiliation(s)
- Hongxin Wei
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Liu Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chuming Pang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Liqin Lian
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Liangzhi Hong
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
132
|
Xia Y, Zha J, Huang H, Wang H, Yang P, Zheng L, Zhang Z, Yang Z, Chen Y, Chan HP, Ho JC, Tan C. Uncovering the Role of Crystal Phase in Determining Nonvolatile Flash Memory Device Performance Fabricated from MoTe 2-Based 2D van der Waals Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35196-35205. [PMID: 37459597 DOI: 10.1021/acsami.3c06316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Although the crystal phase of two-dimensional (2D) transition metal dichalcogenides (TMDs) has been proven to play an essential role in fabricating high-performance electronic devices in the past decade, its effect on the performance of 2D material-based flash memory devices still remains unclear. Here, we report the exploration of the effect of MoTe2 in different phases as the charge-trapping layer on the performance of 2D van der Waals (vdW) heterostructure-based flash memory devices, where a metallic 1T'-MoTe2 or semiconducting 2H-MoTe2 nanoflake is used as the floating gate. By conducting comprehensive measurements on the two kinds of vdW heterostructure-based devices, the memory device based on MoS2/h-BN/1T'-MoTe2 presents much better performance, including a larger memory window, faster switching speed (100 ns), and higher extinction ratio (107), than that of the device based on the MoS2/h-BN/2H-MoTe2 heterostructure. Moreover, the device based on the MoS2/h-BN/1T'-MoTe2 heterostructure also shows a long cycle (>1200 cycles) and retention (>3000 s) stability. Our study clearly demonstrates that the crystal phase of 2D TMDs has a significant impact on the performance of nonvolatile flash memory devices based on 2D vdW heterostructures, which paves the way for the fabrication of future high-performance memory devices based on 2D materials.
Collapse
Affiliation(s)
- Yunpeng Xia
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Jiajia Zha
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Haoxin Huang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Huide Wang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Peng Yang
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen 518118, China
| | - Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Zhuomin Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Zhengbao Yang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Hau Ping Chan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong SAR, China
| |
Collapse
|
133
|
Marques-Moros F, Boix-Constant C, Mañas-Valero S, Canet-Ferrer J, Coronado E. Interplay between Optical Emission and Magnetism in the van der Waals Magnetic Semiconductor CrSBr in the Two-Dimensional Limit. ACS NANO 2023; 17:13224-13231. [PMID: 37442121 PMCID: PMC10863932 DOI: 10.1021/acsnano.3c00375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
The van der Waals semiconductor metamagnet CrSBr offers an ideal platform for studying the interplay between optical and magnetic properties in the two-dimensional limit. Here, we carried out an exhaustive optical characterization of this material by means of temperature- and magnetic-field-dependent photoluminescence (PL) on flakes of different thicknesses down to the monolayer. We found a characteristic emission peak that is quenched upon switching the ferromagnetic layers from an antiparallel to a parallel configuration and exhibits a temperature dependence different from that of the peaks commonly ascribed to excitons. The contribution of this peak to the PL is boosted around 30-40 K, coinciding with the hidden order magnetic transition temperature. Our findings reveal the connection between the optical and magnetic properties via the ionization of magnetic donor vacancies. This behavior enables a useful tool for the optical reading of the magnetic states in atomically thin layers of CrSBr and shows the potential of the design of 2D heterostructures with magnetic and excitonic properties.
Collapse
Affiliation(s)
| | - Carla Boix-Constant
- Instituto de Ciencia Molecular
(ICMol), Universitat de València, 46980, Paterna, Spain
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular
(ICMol), Universitat de València, 46980, Paterna, Spain
| | - Josep Canet-Ferrer
- Instituto de Ciencia Molecular
(ICMol), Universitat de València, 46980, Paterna, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular
(ICMol), Universitat de València, 46980, Paterna, Spain
| |
Collapse
|
134
|
Hill B, Abraham S, Akhtar A, Selvaggio G, Tschulik K, Kruss S. Surfactant assisted exfoliation of near infrared fluorescent silicate nanosheets. RSC Adv 2023; 13:20916-20925. [PMID: 37441047 PMCID: PMC10334366 DOI: 10.1039/d3ra04083f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Fluorophores that emit light in the near infrared (NIR) are advantageous in photonics and imaging due to minimal light scattering, absorption, phototoxicity and autofluorescence in this spectral region. The layered silicate Egyptian blue (CaCuSi4O10) emits as a bulk material bright and stable fluorescence in the NIR and is a promising NIR fluorescent material for (bio)photonics. Here, we demonstrate a surfactant-based (mild) exfoliation procedure to produce nanosheets (EB-NS) of high monodispersity, heights down to 1 nm and diameters <20 nm in large quantities. The approach combines planetary ball milling, surfactant assisted bath sonication and centrifugation steps. It avoids the impurities that are typical for the harsh conditions of tip-sonication. Several solvents and surfactants were tested and we found the highest yield for sodium dodecyl benzyl sulfate (SDBS) and water. The NIR fluorescence emission (λem ≈ 930-940 nm) is not affected by this procedure, is extremely stable and is not affected by quenchers. This enables the use of EB-NS for macroscopic patterning/barcoding of materials in the NIR. In summary, we present a simple and mild route to NIR fluorescent nanosheets that promise high potential as NIR fluorophores for optical applications.
Collapse
Affiliation(s)
- Bjoern Hill
- Department of Chemistry, Ruhr Universität Bochum 44801 Bochum Germany
| | - Smitha Abraham
- Department of Chemistry, Ruhr Universität Bochum 44801 Bochum Germany
| | - Anas Akhtar
- Analytical Chemistry II, Ruhr Universität Bochum 44801 Bochum
| | | | | | - Sebastian Kruss
- Department of Chemistry, Ruhr Universität Bochum 44801 Bochum Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems 47057 Duisburg Germany
- Center for Nanointegration Duisburg-Essen (CENIDE) 47057 Duisburg Germany
| |
Collapse
|
135
|
Zhang Z, Ji P, Li S, Wang F, He S, Cheng Y, Zhao S, Li K, Wang X, Wang Y, Yang S. High-performance broadband flexible photodetector based on Gd 3Fe 5O 12-assisted double van der Waals heterojunctions. MICROSYSTEMS & NANOENGINEERING 2023; 9:84. [PMID: 37408537 PMCID: PMC10318041 DOI: 10.1038/s41378-023-00548-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/20/2023] [Accepted: 05/08/2023] [Indexed: 07/07/2023]
Abstract
Flexible photodetectors are fundamental components for developing wearable systems, which can be widely used for medical detection, environmental monitoring and flexible imaging. However, compared with 3D materials, low-dimensional materials have degraded performance, a key challenge for current flexible photodetectors. Here, a high-performance broadband photodetector has been proposed and fabricated. By combining the high mobility of graphene (Gr) with the strong light-matter interactions of single-walled carbon nanotubes (SWCNTs) and molybdenum disulfide (MoS2), the flexible photodetector exhibits a greatly improved photoresponse covering the visible to near-infrared range. Additionally, a thin layer of gadolinium iron garnet (Gd3Fe5O12, GdlG) film is introduced to improve the interface of the double van der Waals heterojunctions to reduce the dark current. The SWCNT/GdIG/Gr/GdIG/MoS2 flexible photodetector exhibits a high photoresponsivity of 47.375 A/W and a high detectivity of 1.952 × 1012 Jones at 450 nm, a high photoresponsivity of 109.311 A/W and a high detectivity of 4.504 × 1012 Jones at 1080 nm, and good mechanical stability at room temperature. This work demonstrates the good capacity of GdIG-assisted double van der Waals heterojunctions on flexible substrates and provides a new solution for constructing high-performance flexible photodetectors.
Collapse
Affiliation(s)
- Ze Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Peirui Ji
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Shaobo Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Fei Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Shengmei He
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Yiwei Cheng
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Shuhao Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Kaili Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Xiaomin Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Yu Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Shuming Yang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi China
| |
Collapse
|
136
|
Wang H, Dong C, Gui Y, Ye J, Altaleb S, Thomaschewski M, Movahhed Nouri B, Patil C, Dalir H, Sorger VJ. Self-Powered Sb 2Te 3/MoS 2 Heterojunction Broadband Photodetector on Flexible Substrate from Visible to Near Infrared. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1973. [PMID: 37446489 DOI: 10.3390/nano13131973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
Van der Waals (vdWs) heterostructures, assembled by stacking of two-dimensional (2D) crystal layers, have emerged as a promising new material system for high-performance optoelectronic applications, such as thin film transistors, photodetectors, and light-emitters. In this study, we showcase an innovative device that leverages strain-tuning capabilities, utilizing a MoS2/Sb2Te3 vdWs p-n heterojunction architecture designed explicitly for photodetection across the visible to near-infrared spectrum. These heterojunction devices provide ultra-low dark currents as small as 4.3 pA, a robust photoresponsivity of 0.12 A W-1, and reasonable response times characterized by rising and falling durations of 0.197 s and 0.138 s, respectively. These novel devices exhibit remarkable tunability under the application of compressive strain up to 0.3%. The introduction of strain at the heterojunction interface influences the bandgap of the materials, resulting in a significant alteration of the heterojunction's band structure. This subsequently shifts the detector's optical absorption properties. The proposed strategy of strain-induced engineering of the stacked 2D crystal materials allows the tuning of the electronic and optical properties of the device. Such a technique enables fine-tuning of the optoelectronic performance of vdWs devices, paving the way for tunable high-performance, low-power consumption applications. This development also holds significant potential for applications in wearable sensor technology and flexible electro-optic circuits.
Collapse
Affiliation(s)
- Hao Wang
- Optelligence LLC, 10703 Marlboro Pike, Upper Marlboro, MD 20772, USA
- Department of Electrical & Computer Engineering, University of Florida, 968 Center Drive 216 Larsen Hall, Gainesville, FL 32611, USA
| | - Chaobo Dong
- Department of Electrical and Computer Engineering, The George Washington University, 800 22nd Street, Washington, DC 20052, USA
| | - Yaliang Gui
- Department of Electrical and Computer Engineering, The George Washington University, 800 22nd Street, Washington, DC 20052, USA
| | - Jiachi Ye
- Department of Electrical & Computer Engineering, University of Florida, 968 Center Drive 216 Larsen Hall, Gainesville, FL 32611, USA
| | - Salem Altaleb
- Department of Electrical & Computer Engineering, University of Florida, 968 Center Drive 216 Larsen Hall, Gainesville, FL 32611, USA
| | - Martin Thomaschewski
- Department of Electrical and Computer Engineering, The George Washington University, 800 22nd Street, Washington, DC 20052, USA
| | - Behrouz Movahhed Nouri
- Optelligence LLC, 10703 Marlboro Pike, Upper Marlboro, MD 20772, USA
- Department of Electrical and Computer Engineering, The George Washington University, 800 22nd Street, Washington, DC 20052, USA
| | - Chandraman Patil
- Department of Electrical and Computer Engineering, The George Washington University, 800 22nd Street, Washington, DC 20052, USA
| | - Hamed Dalir
- Department of Electrical & Computer Engineering, University of Florida, 968 Center Drive 216 Larsen Hall, Gainesville, FL 32611, USA
| | - Volker J Sorger
- Optelligence LLC, 10703 Marlboro Pike, Upper Marlboro, MD 20772, USA
- Department of Electrical and Computer Engineering, The George Washington University, 800 22nd Street, Washington, DC 20052, USA
| |
Collapse
|
137
|
Schwarz M, Vethaak TD, Derycke V, Francheteau A, Iniguez B, Kataria S, Kloes A, Lefloch F, Lemme M, Snyder JP, Weber WM, Calvet LE. The Schottky barrier transistor in emerging electronic devices. NANOTECHNOLOGY 2023; 34:352002. [PMID: 37100049 DOI: 10.1088/1361-6528/acd05f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/25/2023] [Indexed: 06/16/2023]
Abstract
This paper explores how the Schottky barrier (SB) transistor is used in a variety of applications and material systems. A discussion of SB formation, current transport processes, and an overview of modeling are first considered. Three discussions follow, which detail the role of SB transistors in high performance, ubiquitous and cryogenic electronics. For high performance computing, the SB typically needs to be minimized to achieve optimal performance and we explore the methods adopted in carbon nanotube technology and two-dimensional electronics. On the contrary for ubiquitous electronics, the SB can be used advantageously in source-gated transistors and reconfigurable field-effect transistors (FETs) for sensors, neuromorphic hardware and security applications. Similarly, judicious use of an SB can be an asset for applications involving Josephson junction FETs.
Collapse
Affiliation(s)
| | - Tom D Vethaak
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Vincent Derycke
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, Gif-sur-Yvette, F-91191, France
| | | | | | | | | | - Francois Lefloch
- University Grenoble Alps, GINP, CEA-IRIG-PHELIQS, Grenoble, France
| | | | | | - Walter M Weber
- Technische Universität Wien, Institute of Solid State Electronics, Vienna, Austria
| | | |
Collapse
|
138
|
Lin YC, Torsi R, Younas R, Hinkle CL, Rigosi AF, Hill HM, Zhang K, Huang S, Shuck CE, Chen C, Lin YH, Maldonado-Lopez D, Mendoza-Cortes JL, Ferrier J, Kar S, Nayir N, Rajabpour S, van Duin ACT, Liu X, Jariwala D, Jiang J, Shi J, Mortelmans W, Jaramillo R, Lopes JMJ, Engel-Herbert R, Trofe A, Ignatova T, Lee SH, Mao Z, Damian L, Wang Y, Steves MA, Knappenberger KL, Wang Z, Law S, Bepete G, Zhou D, Lin JX, Scheurer MS, Li J, Wang P, Yu G, Wu S, Akinwande D, Redwing JM, Terrones M, Robinson JA. Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications. ACS NANO 2023; 17:9694-9747. [PMID: 37219929 PMCID: PMC10324635 DOI: 10.1021/acsnano.2c12759] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of emergent 2D systems. Here, we review recent advances in the theory, synthesis, characterization, device, and quantum physics of 2D materials and their heterostructures. First, we shed insight into modeling of defects and intercalants, focusing on their formation pathways and strategic functionalities. We also review machine learning for synthesis and sensing applications of 2D materials. In addition, we highlight important development in the synthesis, processing, and characterization of various 2D materials (e.g., MXnenes, magnetic compounds, epitaxial layers, low-symmetry crystals, etc.) and discuss oxidation and strain gradient engineering in 2D materials. Next, we discuss the optical and phonon properties of 2D materials controlled by material inhomogeneity and give examples of multidimensional imaging and biosensing equipped with machine learning analysis based on 2D platforms. We then provide updates on mix-dimensional heterostructures using 2D building blocks for next-generation logic/memory devices and the quantum anomalous Hall devices of high-quality magnetic topological insulators, followed by advances in small twist-angle homojunctions and their exciting quantum transport. Finally, we provide the perspectives and future work on several topics mentioned in this review.
Collapse
Affiliation(s)
- Yu-Chuan Lin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Riccardo Torsi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rehan Younas
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Christopher L Hinkle
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Albert F Rigosi
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Heather M Hill
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kunyan Zhang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christopher E Shuck
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chen Chen
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yu-Hsiu Lin
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel Maldonado-Lopez
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jose L Mendoza-Cortes
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - John Ferrier
- Department of Physics and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Swastik Kar
- Department of Physics and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nadire Nayir
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, Karamanoglu Mehmet University, Karaman 70100, Turkey
| | - Siavash Rajabpour
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adri C T van Duin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiwen Liu
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jie Jiang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jian Shi
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Wouter Mortelmans
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Rafael Jaramillo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Joao Marcelo J Lopes
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplaz 5-7, 10117 Berlin, Germany
| | - Roman Engel-Herbert
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplaz 5-7, 10117 Berlin, Germany
| | - Anthony Trofe
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Tetyana Ignatova
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Seng Huat Lee
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhiqiang Mao
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Leticia Damian
- Department of Physics, University of North Texas, Denton, Texas 76203, United States
| | - Yuanxi Wang
- Department of Physics, University of North Texas, Denton, Texas 76203, United States
| | - Megan A Steves
- Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Kenneth L Knappenberger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhengtianye Wang
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Stephanie Law
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - George Bepete
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jiang-Xiazi Lin
- Department of Physics, Brown University, Providence, Rhode Island 02906, United States
| | - Mathias S Scheurer
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Jia Li
- Department of Physics, Brown University, Providence, Rhode Island 02906, United States
| | - Pengjie Wang
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
| | - Guo Yu
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Sanfeng Wu
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas, Austin, Texas 78758, United States
| | - Joan M Redwing
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mauricio Terrones
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Research Initiative for Supra-Materials and Global Aqua Innovation Center, Shinshu University, Nagano 380-8553, Japan
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
139
|
Gartman AD, Shorokhov AS, Fedyanin AA. Efficient Light Coupling and Purcell Effect Enhancement for Interlayer Exciton Emitters in 2D Heterostructures Combined with SiN Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1821. [PMID: 37368251 DOI: 10.3390/nano13121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Optimal design of a silicon nitride waveguide structure composed of resonant nanoantennas for efficient light coupling with interlayer exciton emitters in a MoSe2-WSe2 heterostructure is proposed. Numerical simulations demonstrate up to eight times coupling efficiency improvement and twelve times Purcell effect enhancement in comparison with a conventional strip waveguide. Achieved results can be beneficial for development of on-chip non-classical light sources.
Collapse
Affiliation(s)
- Alexandra D Gartman
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Andrey A Fedyanin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
140
|
Baz S, Ikram M, Haider A, Shahzadi A, Ul-Hamid A, Nabgan W, Haider J, Imran M, Alshahrani T, Medina F, Imran M. Facile Synthesis of Vanadium Oxide/Carbon Spheres-Doped Nickel Oxide Functioned as a Nanocatalyst and Bactericidal Behavior with Molecular Docking Analysis. ACS OMEGA 2023; 8:19474-19485. [PMID: 37305260 PMCID: PMC10249084 DOI: 10.1021/acsomega.3c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
Vanadium oxide (V2O5) and carbon spheres (Cs)-doped NiO2 nanostructures (NSs) were prepared using the co-precipitation approach. Several spectroscopic and microscopic techniques, including X-ray diffraction (XRD), UV-vis, FTIR, TEM, and HR-TEM investigations, were used to describe the as-synthesized NSs. The XRD pattern exhibited the hexagonal structure, and the crystallite size of pristine and doped NSs was calculated as 29.3, 32.8, 25.79, and 45.19 nm, respectively. The control sample (NiO2) showed maximum absorption at 330 nm, and upon doping, a redshift was observed, leading to decreased band gap energy from 3.75 to 3.59 eV. TEM of NiO2 shows agglomerated nonuniform nanorods exhibited with various nanoparticles without a specific orientation; a higher agglomeration was observed upon doping. The (4 wt %) V2O5/Cs-doped NiO2 NSs served as superior catalysts with a 94.21% MB reduction in acidic media. The significant antibacterial efficacy was estimated against Escherichia coli by measuring the zone of inhibition (3.75 mm). Besides their bactericidal analysis, V2O5/Cs-doped NiO2 was shown to have a binding score of 6.37 for dihydrofolate reductase and a binding score of 4.31 for dihydropteroate synthase in an in silico docking study of E. coli.
Collapse
Affiliation(s)
- Shair Baz
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, 66000 Multan, Punjab, Pakistan
| | - Anum Shahzadi
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Anwar Ul-Hamid
- Core
Research Facilities, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain
| | - Junaid Haider
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - M. Imran
- Department
of Chemistry, Government College University
Faisalabad, Pakpattan
Road, Sahiwal, Punjab 57000, Pakistan
| | - Thamraa Alshahrani
- Department
of Physics, College of Sciences, Princess
Nourah bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Francisco Medina
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain
| | - Muhammad Imran
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| |
Collapse
|
141
|
Sun H, Deng K, Kan E, Du Y. Second-order Jahn-Teller effect induced high-temperature ferroelectricity in two-dimensional NbO 2X (X = I, Br). NANOSCALE ADVANCES 2023; 5:2979-2985. [PMID: 37260497 PMCID: PMC10228335 DOI: 10.1039/d3na00245d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
Based on the first-principles calculations, we investigated the ferroelectric properties of two-dimensional (2D) materials NbO2X (X = I, Br). Our cleavage energy analysis shows that exfoliating one NbO2I monolayer from its existing bulk counterpart is feasible. The phonon spectrum and molecular dynamics simulations confirm the dynamic and thermal stability of the monolayer structures for both NbO2I and NbO2Br. Total energy calculations show that the ferroelectric phase is the ground state for both materials, with the calculated in-plane ferroelectric polarizations being 384.5 pC m-1 and 375.2 pC m-1 for monolayers NbO2I and NbO2Br, respectively. Moreover, the intrinsic Curie temperature TC of monolayer NbO2I (NbO2Br) is as high as 1700 K (1500 K) from Monte Carlo simulation. Furthermore, with the orbital selective external potential method, the origin of ferroelectricity in NbO2X is revealed as the second-order Jahn-Teller effect. Our findings suggest that monolayers NbO2I and NbO2Br are promising candidate materials for practical ferroelectric applications.
Collapse
Affiliation(s)
- Huasheng Sun
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Kaiming Deng
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Erjun Kan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Yongping Du
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| |
Collapse
|
142
|
Wang Z, Zheng Y, Chen J, Wang Y, Liang Y, Li X, Wu F. Room-temperature half-metals induced via chemical surface modification: 2D Mn 2Se 2 monolayer. Phys Chem Chem Phys 2023; 25:14294-14302. [PMID: 37183440 DOI: 10.1039/d3cp00922j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Compared with various antiferromagnetic (AFM) materials, two-dimensional (2D) room-temperature ferromagnetic (FM) materials are rarely discovered because of the geometrically determined spin interactions. Since 2D FM materials have shown great potential in the next-generational information devices, it is quite important to design new FM materials based on the reported AFM materials. Here, in this study, we found that the Mn2Se2 monolayer can be converted to half-metal from AFM semiconductor at room temperature by edge modification of certain chemical groups (such as -Cl, -Br, -I, and -S) based on systematical first-principles calculations. Our results show that the adsorbed chemical groups significantly modify the electronic states of Mn ions and the resulting spin interactions. Moreover, our results indicate that the Curie temperatures (Tc) of some Mn2Se2 monolayer derivatives approach or even exceed room temperature, among which Curie temperatures after chemical modification by -Cl, -Br, -I, -S are 290 K, 320 K, 400 K, and 1050 K, respectively. Thus, chemical modifications can be one of the effective methods to construct 2D FM materials in experiments.
Collapse
Affiliation(s)
- Zhe Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China.
| | - Yanqiu Zheng
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China.
| | - Ji Chen
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China.
| | - Yun Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China.
| | - Yu Liang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China.
| | - Xiang Li
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China.
| | - Fang Wu
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China.
| |
Collapse
|
143
|
Savchenko A, Kireev D, Yin RT, Efimov IR, Molokanova E. Graphene-based cardiac sensors and actuators. Front Bioeng Biotechnol 2023; 11:1168667. [PMID: 37256116 PMCID: PMC10225741 DOI: 10.3389/fbioe.2023.1168667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023] Open
Abstract
Graphene, a 2D carbon allotrope, is revolutionizing many biomedical applications due to its unique mechanical, electrical, thermal, and optical properties. When bioengineers realized that these properties could dramatically enhance the performance of cardiac sensors and actuators and may offer fundamentally novel technological capabilities, the field exploded with numerous studies developing new graphene-based systems and testing their limits. Here we will review the link between specific properties of graphene and mechanisms of action of cardiac sensors and actuators, analyze the performance of these systems from inaugural studies to the present, and offer future perspectives.
Collapse
Affiliation(s)
| | - Dmitry Kireev
- Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Rose T. Yin
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Igor R. Efimov
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Chicago, IL, United States
| | - Elena Molokanova
- Nanotools Bioscience, La Jolla, CA, United States
- NeurANO Bioscience, La Jolla, CA,United States
| |
Collapse
|
144
|
Cheng B, Zhou Y, Jiang R, Wang X, Huang S, Huang X, Zhang W, Dai Q, Zhou L, Lu P, Song HZ. Structural, Electronic and Optical Properties of Some New Trilayer Van de Waals Heterostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091574. [PMID: 37177119 PMCID: PMC10180676 DOI: 10.3390/nano13091574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Constructing two-dimensional (2D) van der Waals (vdW) heterostructures is an effective strategy for tuning and improving the characters of 2D-material-based devices. Four trilayer vdW heterostructures, BP/BP/MoS2, BlueP/BlueP/MoS2, BP/graphene/MoS2 and BlueP/graphene/MoS2, were designed and simulated using the first-principles calculation. Structural stabilities were confirmed for all these heterostructures, indicating their feasibility in fabrication. BP/BP/MoS2 and BlueP/BlueP/MoS2 lowered the bandgaps further, making them suitable for a greater range of applications, with respect to the bilayers BP/MoS2 and BlueP/MoS2, respectively. Their absorption coefficients were remarkably improved in a wide spectrum, suggesting the better performance of photodetectors working in a wide spectrum from mid-wave (short-wave) infrared to violet. In contrast, the bandgaps in BP/graphene/MoS2 and BlueP/graphene/MoS2 were mostly enlarged, with a specific opening of the graphene bandgap in BP/graphene/MoS2, 0.051 eV, which is much larger than usual and beneficial for optoelectronic applications. Accompanying these bandgap increases, BP/graphene/MoS2 and BlueP/graphene/MoS2 exhibit absorption enhancement in the whole infrared, visible to deep ultraviolet or solar blind ultraviolet ranges, implying that these asymmetrically graphene-sandwiched heterostructures are more suitable as graphene-based 2D optoelectronic devices. The proposed 2D trilayer vdW heterostructures are prospective new optoelectronic devices, possessing higher performance than currently available devices.
Collapse
Affiliation(s)
- Beitong Cheng
- Quantum Research Center, Southwest Institute of Technical Physics, Chengdu 610041, China
| | - Yong Zhou
- Quantum Research Center, Southwest Institute of Technical Physics, Chengdu 610041, China
- School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China
| | - Ruomei Jiang
- Quantum Research Center, Southwest Institute of Technical Physics, Chengdu 610041, China
| | - Xule Wang
- Quantum Research Center, Southwest Institute of Technical Physics, Chengdu 610041, China
| | - Shuai Huang
- Quantum Research Center, Southwest Institute of Technical Physics, Chengdu 610041, China
| | - Xingyong Huang
- Faculty of Science, Yibin University, Yibin 644007, China
| | - Wei Zhang
- Quantum Research Center, Southwest Institute of Technical Physics, Chengdu 610041, China
| | - Qian Dai
- Quantum Research Center, Southwest Institute of Technical Physics, Chengdu 610041, China
| | - Liujiang Zhou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Pengfei Lu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Hai-Zhi Song
- Quantum Research Center, Southwest Institute of Technical Physics, Chengdu 610041, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130013, China
| |
Collapse
|
145
|
Karimzadeh S, Safaei B, Jen TC. Investigation on electrochemical performance of striped, β12 and χ3 Borophene as anode materials for lithium-ion batteries. J Mol Graph Model 2023; 120:108423. [PMID: 36731208 DOI: 10.1016/j.jmgm.2023.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
By developing next-generation lithium-ion batteries (LIBS), demand for exploring novel anode materials with exclusive electrochemical features and ultra-high capacity is increasing. In the current research, first-principles theory, and density functional theory (DFT) calculations were conducted to extensively investigate and compare the capability of three different borophene nanolayers, including striped, β12, and χ3 borophene, as a novel candidate for anode electrode in LIBs. We first predicted the most preferential Li atom adsorption sites on the three borophene structures. The predicted average formation energies for striped, β12, and χ3 borophene were obtained 3.123, 3.184, and 3.216 eV, respectively. The positive value of formation energy exhibits the sufficient stability of the structures. Moreover, the negative adsorption energy proved that Li atom insertion on all borophene monolayers is thermodynamically favorable. In order to simulate the lithiation process, we gradually increased the concentration of Li atoms. We found that the fully lithiated striped, β12 and χ3 borophenes could provide ultra-high specific capacities of 1700, 1983, and 1859 mAh/g, respectively. Structural analysis proved that the surface area expansion rate of the striped borophene in a fully lithiated state was 1%, which was lower than those of β12 and χ3 borophene with 3.33% and 2.63%, respectively. The analyses of electronic properties confirmed that borophenes were inherently metallic and superior ion conductive agents, even after fully lithiated state. Ion diffusion was studied using Nudged elastic band method and the value of diffusion energy barrier ranged from 0.03 to 0.36 eV which was lower than other promising 2D anode materials. Furthermore, open-circuit voltage results demonstrated that the electronic potential of modeled borophenes was low enough to be in the acceptable range of under 1.2V. All these reports exhibited that borophene nanolayers with excellent specific capacity and superior conductivity were desired candidates for anode materials of next generation LIBs.
Collapse
Affiliation(s)
- Sina Karimzadeh
- Department of Mechanical Engineering Science, University of Johannesburg, Gauteng, 2006, South Africa.
| | - Babak Safaei
- Department of Mechanical Engineering Science, University of Johannesburg, Gauteng, 2006, South Africa; Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta, North Cyprus Via Mersin 10, Turkey.
| | - Tien-Chien Jen
- Department of Mechanical Engineering Science, University of Johannesburg, Gauteng, 2006, South Africa.
| |
Collapse
|
146
|
Jin X, Zhang YY, Du S. Recent progress in the theoretical design of two-dimensional ferroelectric materials. FUNDAMENTAL RESEARCH 2023; 3:322-331. [PMID: 38933769 PMCID: PMC11197756 DOI: 10.1016/j.fmre.2023.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Two-dimensional (2D) ferroelectrics (FEs), which maintain stable electric polarization in ultrathin films, are a promising class of materials for the development of various miniature functional devices. In recent years, several 2D FEs with unique properties have been successfully fabricated through experiments. They have been found to exhibit some unique properties either by themselves or when they are coupled with other functional materials (e.g., ferromagnetic materials, materials with 5d electrons, etc.). As a result, several new types of 2D FE functional devices have been developed, exhibiting excellent performance. As a type of newly discovered 2D functional material, the number of 2D FEs and the exploration of their properties are still limited and this calls for further theoretical predictions. This review summarizes recent progress in the theoretical predictions of 2D FE materials and provides strategies for the rational design of 2D FE materials. The aim of this review is to provide guidelines for the design of 2D FE materials and related functional devices.
Collapse
Affiliation(s)
- Xin Jin
- University of the Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Yang Zhang
- University of the Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shixuan Du
- University of the Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
147
|
Wali A, Das S. Hardware and Information Security Primitives Based on 2D Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205365. [PMID: 36564174 DOI: 10.1002/adma.202205365] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/01/2022] [Indexed: 05/05/2023]
Abstract
Hardware security is a major concern for the entire semiconductor ecosystem that accounts for billions of dollars in annual losses. Similarly, information security is a critical need for the rapidly proliferating edge devices that continuously collect and communicate a massive volume of data. While silicon-based complementary metal-oxide-semiconductor technology offers security solutions, these are largely inadequate, inefficient, and often inconclusive, as well as resource intensive in time, energy, and cost, leading to tremendous room for innovation in this field. Furthermore, silicon-based security primitives have shown vulnerability to machine learning (ML) attacks. In recent years, 2D materials such as graphene and transition metal dichalcogenides have been intensely explored to mitigate these security challenges. In this review, 2D-materials-based hardware security solutions such as camouflaging, true random number generation, watermarking, anticounterfeiting, physically unclonable functions, and logic locking of integrated circuits (ICs) are summarized with accompanying discussion on their reliability and resilience to ML attacks. In addition, the role of native defects in 2D materials in developing high entropy hardware security primitives is also examined. Finally, the existing challenges for 2D materials, which must be overcome for large-scale deployment of 2D ICs to meet the security needs of the semiconductor industry, are discussed.
Collapse
Affiliation(s)
- Akshay Wali
- Electrical Engineering and Computer Science, Penn State University, University Park, PA, 16802, USA
| | - Saptarshi Das
- Electrical Engineering and Computer Science, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA
- Materials Science and Engineering, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
| |
Collapse
|
148
|
Oh E, Jin KH, Yeom HW. Realizing a Superconducting Square-Lattice Bismuth Monolayer. ACS NANO 2023; 17:7604-7610. [PMID: 37017311 DOI: 10.1021/acsnano.2c12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Interplay of crystal symmetry, strong spin-orbit coupling (SOC), and many-body interactions in low-dimensional materials provides a fertile ground for the discovery of unconventional electronic and magnetic properties and versatile functionalities. Two-dimensional (2D) allotropes of group 15 elements are appealing due to their structures and controllability over symmetries and topology under strong SOC. Here, we report the heteroepitaxial growth of a proximity-induced superconducting 2D square-lattice bismuth monolayer on superconducting Pb films. The square lattice of monolayer bismuth films in a C4 symmetry together with a stripey moiré structure is clearly resolved by our scanning tunneling microscopy, and its atomic structure is revealed by density functional theory (DFT) calculations. A Rashba-type spin-split Dirac band is predicted by DFT calculations to exist at the Fermi level and becomes superconducting through the proximity effect from the Pb substrate. We suggest the possibility of a topological superconducting state in this system with magnetic dopants/field. This work introduces an intriguing material platform with 2D Dirac bands, strong SOC, topological superconductivity, and the moiré superstructure.
Collapse
Affiliation(s)
- Eunseok Oh
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Korea
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Kyung-Hwan Jin
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Korea
| | - Han Woong Yeom
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Korea
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
149
|
Schiettecatte P, Singh S, Zhou P, Hens Z. The Dynamic Interaction of Surfactants with Colloidal Molybdenum Disulfide Nanosheets Calls for Thermodynamic Stabilization by Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6568-6579. [PMID: 37095622 DOI: 10.1021/acs.langmuir.3c00546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Top-down liquid-phase exfoliation (LPE) and bottom-up hot-injection synthesis are scalable methods to produce colloids of two-dimensional (2D) van der Waals (vdW) solids. Generally thought off as two entirely different fields, we show that similar stabilization mechanisms apply to colloids of molybdenum disulfide (MoS2) produced by both methods. By screening the colloidal stability of MoS2 produced in a hot-injection synthesis in a wide range of solvents, we observe that colloidal stability can be understood based on solution thermodynamics, wherein matching the solubility parameter of solvent and nanomaterial maximizes colloidal stability. Identical to MoS2 produced through LPE, optimal solvents to disperse MoS2 produced from the bottom-up have similar solubility parameters of ≈22 MPa1/2 and include aromatic solvents with polar functionalities, such as o-dichlorobenzene, and polar aprotic solvents, such as N,N-dimethylformamide. We further complemented our findings by nuclear magnetic resonance (NMR) spectrscopy, highlighting that organic surfactants, such as oleylamine and oleic acid, have a minimal affinity toward the nanocrystal surface and engage in a highly dynamic adsorption/desorption equilibrium. We thus conclude that hot injection yields MoS2 colloids with comparable surfaces as those produced by LPE. These similarities might offer the prospect of using established procedures developed for LPE nanomaterials to postprocess colloidally synthesized dispersions of 2D colloids as processable inks.
Collapse
Affiliation(s)
- Pieter Schiettecatte
- Physics and Chemistry of Nanostructures, Ghent University, Ghent 9000, Belgium
- Center for Nano and Biophotonics, Ghent University, Ghent 9000, Belgium
| | - Shalini Singh
- Department of Chemical Sciences, Unviersity of Limerick, Limerick V94T9PX, Ireland
| | - Pengshang Zhou
- Physics and Chemistry of Nanostructures, Ghent University, Ghent 9000, Belgium
- Center for Nano and Biophotonics, Ghent University, Ghent 9000, Belgium
- Jiangnan University, Wuxi 214122, China
| | - Zeger Hens
- Physics and Chemistry of Nanostructures, Ghent University, Ghent 9000, Belgium
- Center for Nano and Biophotonics, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
150
|
Cicirello G, Wang M, Sam QP, Hart JL, Williams NL, Yin H, Cha JJ, Wang J. Two-Dimensional Violet Phosphorus P 11: A Large Band Gap Phosphorus Allotrope. J Am Chem Soc 2023; 145:8218-8230. [PMID: 36996286 DOI: 10.1021/jacs.3c01766] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The discovery of novel large band gap two-dimensional (2D) materials with good stability and high carrier mobility will innovate the next generation of electronics and optoelectronics. A new allotrope of 2D violet phosphorus P11 was synthesized via a salt flux method in the presence of bismuth. Millimeter-sized crystals of violet-P11 were collected after removing the salt flux with DI water. From single-crystal X-ray diffraction, the crystal structure of violet-P11 was determined to be in the monoclinic space group C2/c (no. 15) with unit cell parameters of a = 9.166(6) Å, b = 9.121(6) Å, c = 21.803(14)Å, β = 97.638(17)°, and a unit cell volume of 1807(2) Å3. The structure differences between violet-P11, violet-P21, and fibrous-P21 are discussed. The violet-P11 crystals can be mechanically exfoliated down to a few layers (∼6 nm). Photoluminescence and Raman measurements reveal the thickness-dependent nature of violet-P11, and exfoliated violet-P11 flakes were stable in ambient air for at least 1 h, exhibiting moderate ambient stability. The bulk violet-P11 crystals exhibit excellent stability, being stable in ambient air for many days. The optical band gap of violet-P11 bulk crystals is 2.0(1) eV measured by UV-Vis and electron energy-loss spectroscopy measurements, in agreement with density functional theory calculations which predict that violet-P11 is a direct band gap semiconductor with band gaps of 1.8 and 1.9 eV for bulk and monolayer, respectively, and with a high carrier mobility. This band gap is the largest among the known single-element 2D layered bulk crystals and thus attractive for various optoelectronic devices.
Collapse
Affiliation(s)
- Gary Cicirello
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Mengjing Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, United States
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Quynh P Sam
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - James L Hart
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Natalie L Williams
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Huabing Yin
- Institute for Computational Materials Science, Joint Center for Theoretical Physics, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Judy J Cha
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, United States
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Jian Wang
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| |
Collapse
|