101
|
Selective dietary supplementation in early postpartum is associated with high resilience against depressed mood. Proc Natl Acad Sci U S A 2017; 114:3509-3514. [PMID: 28289215 DOI: 10.1073/pnas.1611965114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Medical research is moving toward prevention strategies during prodromal states. Postpartum blues (PPB) is often a prodromal state for postpartum depression (PPD), with severe PPB strongly associated with an elevated risk for PPD. The most common complication of childbearing, PPD has a prevalence of 13%, but there are no widespread prevention strategies, and no nutraceutical interventions have been developed. To counter the effects of the 40% increase in monoamine oxidase A (MAO-A) levels that occurs during PPB, a dietary supplement kit consisting of monoamine precursor amino acids and dietary antioxidants was created. Key ingredients (tryptophan and tyrosine) were shown not to affect their total concentration in breast milk. The aim of this open-label study was to assess whether this dietary supplement reduces vulnerability to depressed mood at postpartum day 5, the typical peak of PPB. Forty-one healthy women completed all study procedures. One group (n = 21) received the dietary supplement, composed of 2 g of tryptophan, 10 g of tyrosine, and blueberry juice with blueberry extract. The control group (n = 20) did not receive any supplement. PPB severity was quantitated by the elevation in depressed mood on a visual analog scale following the sad mood induction procedure (MIP). Following the MIP, there was a robust induction of depressed mood in the control group, but no effect in the supplement group [43.85 ± 18.98 mm vs. 0.05 ± 9.57 mm shift; effect size: 2.9; F(1,39) = 88.33, P < 0.001]. This dietary supplement designed to counter functions of elevated MAO-A activity eliminates vulnerability to depressed mood during the peak of PPB.
Collapse
|
102
|
Kalt W, McDonald JE, Liu Y, Fillmore SAE. Flavonoid Metabolites in Human Urine during Blueberry Anthocyanin Intake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1582-1591. [PMID: 28150498 DOI: 10.1021/acs.jafc.6b05455] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The human health benefits of anthocyanins (Anc) and other flavonoids are widely recognized. However, the flavonoid-based urinary metabolites arising in vivo after Anc intake are not well described. Human (n = 17) urine was collected while blueberry juice (BJ) was consumed daily for 28 days and once after a 7 day washout. MS/MS scanning of 664 urine samples for 18 parent Anc (PAnc) and 42 predicted Anc metabolites (AncM) yielded 371 products (i.e., MS/MS × retention time (RT)). Flavonoid-based AncM, which were likely underestimated, were almost 20 times more abundant than PAnc. Together, PAnc and AncM accounted for about 1% of the daily Anc dose. Aglycone forms were >94% of the total. Cluster analysis of the 371 Anc identified about 55 major Anc that contributed about 80% to the total Anc. The abundance of flavonoid-based Anc-derived products in the gastrointestinal tract could contribute to the health benefits of Anc-rich berries.
Collapse
Affiliation(s)
- Wilhelmina Kalt
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada , 32 Main Street, Kentville, Nova Scotia B4N 1J5, Canada
| | - Jane E McDonald
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada , 32 Main Street, Kentville, Nova Scotia B4N 1J5, Canada
| | - Yan Liu
- Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences , No. 4899 Juye Street, Changchun 130112, China
| | - Sherry A E Fillmore
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada , 32 Main Street, Kentville, Nova Scotia B4N 1J5, Canada
| |
Collapse
|
103
|
Fernandes I, Pérez-Gregorio R, Soares S, Mateus N, de Freitas V. Wine Flavonoids in Health and Disease Prevention. Molecules 2017; 22:molecules22020292. [PMID: 28216567 PMCID: PMC6155685 DOI: 10.3390/molecules22020292] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 02/06/2023] Open
Abstract
Wine, and particularly red wine, is a beverage with a great chemical complexity that is in continuous evolution. Chemically, wine is a hydroalcoholic solution (~78% water) that comprises a wide variety of chemical components, including aldehydes, esters, ketones, lipids, minerals, organic acids, phenolics, soluble proteins, sugars and vitamins. Flavonoids constitute a major group of polyphenolic compounds which are directly associated with the organoleptic and health-promoting properties of red wine. However, due to the insufficient epidemiological and in vivo evidences on this subject, the presence of a high number of variables such as human age, metabolism, the presence of alcohol, the complex wine chemistry, and the wide array of in vivo biological effects of these compounds suggest that only cautious conclusions may be drawn from studies focusing on the direct effect of wine and any specific health issue. Nevertheless, there are several reports on the health protective properties of wine phenolics for several diseases such as cardiovascular diseases, some cancers, obesity, neurodegenerative diseases, diabetes, allergies and osteoporosis. The different interactions that wine flavonoids may have with key biological targets are crucial for some of these health-promoting effects. The interaction between some wine flavonoids and some specific enzymes are one example. The way wine flavonoids may be absorbed and metabolized could interfere with their bioavailability and therefore in their health-promoting effect. Hence, some reports have focused on flavonoids absorption, metabolism, microbiota effect and overall on flavonoids bioavailability. This review summarizes some of these major issues which are directly related to the potential health-promoting effects of wine flavonoids. Reports related to flavonoids and health highlight some relevant scientific information. However, there is still a gap between the knowledge of wine flavonoids bioavailability and their health-promoting effects. More in vivo results as well as studies focused on flavonoid metabolites are still required. Moreover, it is also necessary to better understand how biological interactions (with microbiota and cells, enzymes or general biological systems) could interfere with flavonoid bioavailability.
Collapse
Affiliation(s)
- Iva Fernandes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Rosa Pérez-Gregorio
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Susana Soares
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Nuno Mateus
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Victor de Freitas
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| |
Collapse
|
104
|
Figueira I, Menezes R, Macedo D, Costa I, Nunes dos Santos C. Polyphenols Beyond Barriers: A Glimpse into the Brain. Curr Neuropharmacol 2017; 15:562-594. [PMID: 27784225 PMCID: PMC5543676 DOI: 10.2174/1570159x14666161026151545] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 08/02/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ageing can be simply defined as the process of becoming older, which is genetically determined but also environmentally modulated. With the continuous increase of life expectancy, quality of life during ageing has become one of the biggest challenges of developed countries. The quest for a healthy ageing has led to the extensive study of plant polyphenols with the aim to prevent age-associated deterioration and diseases, including neurodegenerative diseases. The world of polyphenols has fascinated researchers over the past decades, and in vitro, cell-based, animal and human studies have attempted to unravel the mechanisms behind dietary polyphenols neuroprotection. METHODS In this review, we compiled some of the extensive and ever-growing research in the field, highlighting some of the most recent trends in the area. RESULTS The main findings regarding polypolyphenols neuroprotective potential performed using in vitro, cellular and animal studies, as well as human trials are covered in this review. Concepts like bioavailability, polyphenols biotransformation, transport of dietary polyphenols across barriers, including the blood-brain barrier, are here explored. CONCLUSION The diversity and holistic properties of polypolyphenol present them as an attractive alternative for the treatment of multifactorial diseases, where a multitude of cellular pathways are disrupted. The underlying mechanisms of polypolyphenols for nutrition or therapeutic applications must be further consolidated, however there is strong evidence of their beneficial impact on brain function during ageing. Nevertheless, only the tip of the iceberg of nutritional and pharmacological potential of dietary polyphenols is hitherto understood and further research needs to be done to fill the gaps in pursuing a healthy ageing.
Collapse
Affiliation(s)
- Inês Figueira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
| | - Regina Menezes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Diana Macedo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Inês Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Cláudia Nunes dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| |
Collapse
|
105
|
Belkacemi A, Ramassamy C. Anthocyanins Protect SK-N-SH Cells Against Acrolein-Induced Toxicity by Preserving the Cellular Redox State. J Alzheimers Dis 2016; 50:981-98. [PMID: 26890747 DOI: 10.3233/jad-150770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In Alzheimer's disease (AD) and in mild cognitive impairment (MCI) patients, by-products of lipid peroxidation such as acrolein accumulated in vulnerable regions of the brain. We have previously shown that acrolein is a highly reactive and neurotoxic aldehyde and its toxicity involves the alteration of several redox-sensitive pathways. Recently, protein-conjugated acrolein in cerebrospinal fluid has been proposed as a biomarker to distinguish between MCI and AD. With growing evidence of the early involvement of oxidative stress in AD etiology, one would expect that a successful therapy should prevent brain oxidative damage. In this regard, several studies have demonstrated that polyphenol-rich extracts exert beneficial effect on cognitive impairment and oxidative stress. We have recently demonstrated the efficacy of an anthocyanin formulation (MAF14001) against amyloid-β-induced oxidative stress. The aim of this study is to investigate the neuroprotective effect of MAF14001 as a mixture of anthocyanins, a particular class of polyphenols, against acrolein-induced oxidative damage in SK-N-SH neuronal cells. Our results demonstrated that MAF14001, from 5μM, was able to efficiently protect SK-N-SH cells against acrolein-induced cell death. MAF14001 was able to lower reactive oxygen species and protein carbonyl levels induced by acrolein. Moreover, MAF1401 prevented glutathione depletion and positively modulated, in the presence of acrolein, some oxidative stress-sensitive pathways including the transcription factors NF-κB and Nrf2, the proteins γ-GCS and GSK3β, and the protein adaptator p66Shc. Along with its proven protective effect against amyloid-β toxicity, these results demonstrate that MAF14001 could target multiple mechanisms and could be a promising agent for AD prevention.
Collapse
Affiliation(s)
- Abdenour Belkacemi
- Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Canada
| | - Charles Ramassamy
- Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Canada.,Institut sur la Nutrition et les Aliments Fonctionnels, Laval University, Québec, Canada
| |
Collapse
|
106
|
Martineau AS, Leray V, Lepoudere A, Blanchard G, Bensalem J, Gaudout D, Ouguerram K, Nguyen P. A mixed grape and blueberry extract is safe for dogs to consume. BMC Vet Res 2016; 12:162. [PMID: 27487916 PMCID: PMC4973095 DOI: 10.1186/s12917-016-0786-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/28/2016] [Indexed: 11/27/2022] Open
Abstract
Background Grape and blueberry extracts are known to protect against age-related cognitive decline. However, beneficial effects achieved by mixing grape and blueberry extracts have yet to be evaluated in dogs, or their bioavailability assessed. Of concern to us were cases of acute renal failure in dogs, after their ingestion of grapes or raisins. The European Pet Food Industry Federation (2013) considers only the grape or raisin itself to be potentially dangerous; grape-seed extracts per-se, are not considered to be a threat. Our aim was therefore to evaluate the renal and hepatic safety, and measure plasma derivatives of a polyphenol-rich extract from grape and blueberry (PEGB; from the Neurophenols Consortium) in dogs. Polyphenol expression was analyzed by UHPLC-MS/MS over 8 hours, for dogs given PEGB at 4 mg/kg. Safety was evaluated using four groups of 6 dogs. These groups received capsules containing no PEGB (control), or PEGB at 4, 20, or 40 mg/kg BW/d, for 24 weeks. Blood and urine samples were taken the week prior to study commencement, then at the end of the 24-wk study period. Routine markers of renal and liver damage, including creatinine (Creat), blood urea nitrogen, albumin, minerals, alkaline phosphatase (ALP), and alanine transaminase (ALT) were measured. Biomarkers for early renal damage were also evaluated in plasma (cystatin C (CysC), and neutrophil gelatinase-associated lipocalin (NGAL)), and urine (CysC, clusterin (Clu), and NGAL). Ratios of urinary biomarkers to Creat were calculated, and compared with acceptable maximal values obtained for healthy dogs, as reported in the literature. Results While several PEGB-specific polyphenols and metabolites were detected in dog plasma, at the end of the PEGB consumption period, our biomarker analyses presented no evidence of either renal or liver damage (Creat, BUN, ionogram, albumin and ALT, ALP). Similarly, no indication of early renal damage could be detected. Plasma CysC, urinary CysC/Creat, Clu/Creat, and NGAL/Creat ratios were all beneath reported benchmarked maximums, with no evidence of PEGB toxicity. Conclusions Long-term consumption of a pet specific blend of a polyphenol-rich extract from grape and blueberry (PEGB; from the Neurophenols Consortium), was not associated with renal or hepatic injury, and can therefore be considered safe.
Collapse
Affiliation(s)
- Anne-Sophie Martineau
- LUNAM University, Oniris, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, Nutrition and Endocrinology Unit, C.S. 40706, 44307, Nantes Cedex 03, France
| | - Véronique Leray
- LUNAM University, Oniris, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, Nutrition and Endocrinology Unit, C.S. 40706, 44307, Nantes Cedex 03, France
| | - Anne Lepoudere
- SPF-DIANA Pet Food Business, ZA du Gohélis, 56250, Elven, France
| | - Géraldine Blanchard
- Animal Nutrition Expertise, 33 avenue de l'Île-de-France, 92160, Antony, France
| | - Julien Bensalem
- Activ'Inside, Espace Legendre, 33 rue Max Linder, 33500, Libourne, France
| | - David Gaudout
- Activ'Inside, Espace Legendre, 33 rue Max Linder, 33500, Libourne, France
| | - Khadija Ouguerram
- UMR1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, CHU-Hôtel Dieu, Place Alexis Ricordeau, 44096, Nantes Cedex 1, France
| | - Patrick Nguyen
- LUNAM University, Oniris, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, Nutrition and Endocrinology Unit, C.S. 40706, 44307, Nantes Cedex 03, France.
| | | |
Collapse
|
107
|
Domínguez-Avila JA, González-Aguilar GA, Alvarez-Parrilla E, de la Rosa LA. Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets. Int J Mol Sci 2016; 17:ijms17071002. [PMID: 27367676 PMCID: PMC4964378 DOI: 10.3390/ijms17071002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPAR) are transcription factors that modulate energy metabolism in liver, adipose tissue and muscle. High fat diets (HFD) can negatively impact PPAR expression or activity, favoring obesity, dyslipidemia, insulin resistance and other conditions. However, polyphenols (PP) found in vegetable foodstuffs are capable of positively modulating this pathway. We therefore focused this review on the possible effects that PP can have on PPAR when administered together with HFD. We found that PP from diverse sources, such as coffee, olives, rice, berries and others, are capable of inducing the expression of genes involved in a decrease of adipose mass, liver and serum lipids and lipid biosynthesis in animal and cell models of HFD. Since cells or gut bacteria can transform PP into different metabolites, it is possible that a synergistic or antagonistic effect ultimately occurs. PP molecules from vegetable sources are an interesting option to maintain or return to a state of energy homeostasis, possibly due to an adequate PPAR expression and activity.
Collapse
Affiliation(s)
- J Abraham Domínguez-Avila
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A. C., Carretera a La Victoria km 0.6, AP 1735, CP 83304 Hermosillo, Sonora, Mexico.
| | - Gustavo A González-Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A. C., Carretera a La Victoria km 0.6, AP 1735, CP 83304 Hermosillo, Sonora, Mexico.
| | - Emilio Alvarez-Parrilla
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, CP 32310 Ciudad Juárez, Chihuahua, Mexico.
| | - Laura A de la Rosa
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, CP 32310 Ciudad Juárez, Chihuahua, Mexico.
| |
Collapse
|
108
|
Marques Peixoto F, Fernandes I, Gouvêa ACM, Santiago MC, Galhardo Borguini R, Mateus N, Freitas V, Godoy RL, Ferreira IM. Simulation of in vitro digestion coupled to gastric and intestinal transport models to estimate absorption of anthocyanins from peel powder of jabuticaba, jamelão and jambo fruits. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
109
|
Smeriglio A, Barreca D, Bellocco E, Trombetta D. Chemistry, Pharmacology and Health Benefits of Anthocyanins. Phytother Res 2016; 30:1265-86. [DOI: 10.1002/ptr.5642] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Antonella Smeriglio
- University of Messina; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Davide Barreca
- University of Messina; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Ersilia Bellocco
- University of Messina; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Domenico Trombetta
- University of Messina; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| |
Collapse
|
110
|
Wang Y, Huo Y, Zhao L, Lu F, Wang O, Yang X, Ji B, Zhou F. Cyanidin-3-glucoside and its phenolic acid metabolites attenuate visible light-induced retinal degeneration in vivo via activation of Nrf2/HO-1 pathway and NF-κB suppression. Mol Nutr Food Res 2016; 60:1564-77. [DOI: 10.1002/mnfr.201501048] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Yong Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering; China Agricultural University; Beijing People's Republic of China
| | - Yazhen Huo
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering; China Agricultural University; Beijing People's Republic of China
| | - Liang Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering; China Agricultural University; Beijing People's Republic of China
| | - Feng Lu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering; China Agricultural University; Beijing People's Republic of China
| | - Ou Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering; China Agricultural University; Beijing People's Republic of China
| | - Xue Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering; China Agricultural University; Beijing People's Republic of China
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering; China Agricultural University; Beijing People's Republic of China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering; China Agricultural University; Beijing People's Republic of China
| |
Collapse
|
111
|
Meireles M, Marques C, Norberto S, Santos P, Fernandes I, Mateus N, Faria A, Calhau C. Anthocyanin effects on microglia M1/M2 phenotype: Consequence on neuronal fractalkine expression. Behav Brain Res 2016; 305:223-8. [DOI: 10.1016/j.bbr.2016.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/29/2016] [Accepted: 03/05/2016] [Indexed: 02/03/2023]
|
112
|
Wang Y, Zhao L, Wang D, Huo Y, Ji B. Anthocyanin-rich extracts from blackberry, wild blueberry, strawberry, and chokeberry: antioxidant activity and inhibitory effect on oleic acid-induced hepatic steatosis in vitro. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2494-2503. [PMID: 26250597 DOI: 10.1002/jsfa.7370] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/18/2015] [Accepted: 08/01/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Limited information is available regarding the relationship between the chemical structures and inhibitory effects of anthocyanin (ACN) on triglyceride (TG) overaccumulation. Thus this study investigated the antioxidant activity and inhibitory effect of blackberry, wild blueberry, strawberry, and chokeberry ACN-rich extracts, with different structural characteristics, on oleic acid-induced hepatic steatosis in vitro. Four major ACNs from these berries, with different aglycones, namely cyanidin-3-glucoside (Cy-3-glu), delphinidin-3-glucoside, pelargonidin-3-glucoside, and malvidin-3-glucoside, were also investigated. RESULTS Blackberry ACN-rich extract exhibited the most significant inhibitory effect on TG clearance (30.5% ± 3.4%) and reactive oxygen species generation. TG clearance was significantly correlated with total phenolic content (r = 0.991, P < 0.05) and oxygen radical absorbance capacity value (r = 0.961, P < 0.05). Furthermore, Cy-3-glu showed the highest inhibitory effect on intracellular TG overaccumulation, with a maximum TG clearance of 61.3% at 40 µg mL(-1) . CONCLUSION Our findings suggest that the inhibitory effects of different ACNs on oleic acid-induced hepatic steatosis significantly vary. Cy-3-glu, which contains the ortho hydroxyl group in its B ring, possibly confers the protective effects of antioxidants and inhibits TG accumulation in HepG2 cells. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Liang Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Dan Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Yazhen Huo
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| |
Collapse
|
113
|
Ayoub M, de Camargo AC, Shahidi F. Antioxidants and bioactivities of free, esterified and insoluble-bound phenolics from berry seed meals. Food Chem 2016; 197:221-32. [DOI: 10.1016/j.foodchem.2015.10.107] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/28/2015] [Accepted: 10/22/2015] [Indexed: 11/28/2022]
|
114
|
Faehnrich B, Lukas B, Humer E, Zebeli Q. Phytogenic pigments in animal nutrition: potentials and risks. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1420-1430. [PMID: 26415572 DOI: 10.1002/jsfa.7478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/23/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Phytogenic pigments are secondary plant compounds responsible for coloring effects in plant tissues. In particular, phenolic flavonoids and terpenoid carotenoids, but also rare compounds like curcumin and betalain, form this group of biochemical agents used in animal nutrition. From the perspective of ecological mutuality between plants and animals, these compounds are of crucial importance because they serve as visual attraction for herbivores but also signal nutritional and/or health-promoting values. This review focuses on the properties of phytogenic pigments which are likely to impact feed intake and preferences of livestock. Also natural prophylactic and/or therapeutic properties and, in particular, the potential of pigments to enhance quality and health value of animal products for human consumption are important issues. Nevertheless, reasonable limits of use due to possible adverse indications have been suggested recently. Pathways of digestion, metabolism and excretion in animals play a crucial role not only in the evaluation of effectiveness but also in the prediction of potential risks for human consumption. The popularity of natural feed additives is growing; therefore, more research work is needed to better understand metabolic pathways in the animal's body and to better estimate the potentials and risks of pigmenting plant compounds used in animal nutrition.
Collapse
Affiliation(s)
- Bettina Faehnrich
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Brigitte Lukas
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Elke Humer
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| |
Collapse
|
115
|
Kšonžeková P, Mariychuk R, Eliašová A, Mudroňová D, Csank T, Király J, Marcinčáková D, Pistl J, Tkáčiková L. In vitro study of biological activities of anthocyanin-rich berry extracts on porcine intestinal epithelial cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1093-1100. [PMID: 25801092 DOI: 10.1002/jsfa.7181] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/04/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Anthocyanins, compounds that represent the major group of flavonoids in berries, are one of the most powerful natural antioxidants. The aim of this study was to evaluate biological activities and comparison of anthocyanin-rich extracts prepared from chokeberry (Aronia melanocarpa), elderberry (Sambucus nigra), bilberry (Vaccinium myrtillus) and blueberry (V. corymbosum) on the porcine intestinal epithelial IPEC-1 cell line. RESULTS The IC50 values calculated in the antioxidant cell-based dichlorofluorescein assay (DCF assay) were 1.129 mg L(-1) for chokeberry, 1.081 mg L(-1) for elderberry, 2.561 mg L(-1) for bilberry and 2.965 mg L(-1) for blueberry, respectively. We found a significant negative correlation (P < 0.001) between cyanidin glycosides content and IC50 values. Moreover, extracts rich in cyanidin glycosides stimulated proliferation of IPEC-1 cells and did not have cytotoxic effect on cells at an equivalent in vivo concentration. CONCLUSIONS We found that the chokeberry and elderberry extracts rich in cyanidin glycosides possess better antioxidant and anticytotoxic activities in comparison to blueberry or bilberry extracts with complex anthocyanin profiles.
Collapse
Affiliation(s)
- Petra Kšonžeková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Ruslan Mariychuk
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, Prešov, Slovakia
| | - Adriana Eliašová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, Prešov, Slovakia
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Tomáš Csank
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Ján Király
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Dana Marcinčáková
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Juraj Pistl
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - L'udmila Tkáčiková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| |
Collapse
|
116
|
Fornasaro S, Ziberna L, Gasperotti M, Tramer F, Vrhovšek U, Mattivi F, Passamonti S. Determination of cyanidin 3-glucoside in rat brain, liver and kidneys by UPLC/MS-MS and its application to a short-term pharmacokinetic study. Sci Rep 2016; 6:22815. [PMID: 26965389 PMCID: PMC4786809 DOI: 10.1038/srep22815] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/22/2016] [Indexed: 01/25/2023] Open
Abstract
Anthocyanins exert neuroprotection in various in vitro and in vivo experimental models. However, no details regarding their brain-related pharmacokinetics are so far available to support claims about their direct neuronal bioactivity as well as to design proper formulations of anthocyanin-based products. To gather this missing piece of knowledge, we intravenously administered a bolus of 668 nmol cyanidin 3-glucoside (C3G) in anaesthetized Wistar rats and shortly after (15 s to 20 min) we collected blood, brain, liver, kidneys and urine samples. Extracts thereof were analysed for C3G and its expected metabolites using UPLC/MS-MS. The data enabled to calculate a set of pharmacokinetics parameters. The main finding was the distinctive, rapid distribution of C3G in the brain, with an apparently constant plasma/brain ratio in the physiologically relevant plasma concentration range (19-355 nM). This is the first report that accurately determines the distribution pattern of C3G in the brain, paving the way to the rational design of future tests of neuroprotection by C3G in animal models and humans.
Collapse
Affiliation(s)
- Stefano Fornasaro
- University of Trieste, Department of Life Sciences, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Lovro Ziberna
- University of Trieste, Department of Life Sciences, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Mattia Gasperotti
- Fondazione Edmund Mach (FEM), Department of Food Quality and Nutrition, Research and Innovation Centre, via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Federica Tramer
- University of Trieste, Department of Life Sciences, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Urška Vrhovšek
- Fondazione Edmund Mach (FEM), Department of Food Quality and Nutrition, Research and Innovation Centre, via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Fulvio Mattivi
- Fondazione Edmund Mach (FEM), Department of Food Quality and Nutrition, Research and Innovation Centre, via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Sabina Passamonti
- University of Trieste, Department of Life Sciences, via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
117
|
Fisher DR, Poulose SM, Bielinski DF, Shukitt-Hale B. Serum metabolites from walnut-fed aged rats attenuate stress-induced neurotoxicity in BV-2 microglial cells. Nutr Neurosci 2016; 20:103-109. [PMID: 25153536 DOI: 10.1179/1476830514y.0000000150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The shift in equilibrium towards excess reactive oxygen or nitrogen species production from innate antioxidant defenses in brain is a critical factor in the declining neural function and cognitive deficit accompanying age. Previous studies from our laboratory have reported that walnuts, rich in polyphenols, antioxidants, and omega fatty acids such as alpha-linolenic acid and linoleic acid, improve the age-associated declines in cognition and neural function in rats. Possible mechanisms of action of these effects include enhancing protective signaling, altering membrane microstructures, decreasing inflammation, and preventing accumulation of polyubiquitinated protein aggregates in critical regions of the brain. In the current study, we investigated whether the serum collected from aged animals fed with walnut diets (0, 6, and 9%, w/w) would enhance protection on stressed BV-2 microglia in vitro. In the growth medium, fetal bovine serum was substituted with the serum collected from 22-month-old rats fed per protocol for 12 weeks. Walnut diet serum (6 and 9%) significantly attenuated lipopolysaccharide-induced nitrite release compared to untreated control cells and those treated with serum from rats fed 0% walnut diets. The results also indicated a significant reduction in pro-inflammatory tumor necrosis factor-alpha, cyclooxygenase-2, and inducible nitric oxide synthase. These results suggest antioxidant and anti-inflammatory protection or enhancement of membrane-associated functions in brain cells by walnut serum metabolites.
Collapse
Affiliation(s)
- Derek R Fisher
- a United States Department of Agriculture - Agricultural Research Services , Human Nutrition Research Center on Aging, Tufts University , Boston , MA , USA
| | - Shibu M Poulose
- a United States Department of Agriculture - Agricultural Research Services , Human Nutrition Research Center on Aging, Tufts University , Boston , MA , USA
| | - Donna F Bielinski
- a United States Department of Agriculture - Agricultural Research Services , Human Nutrition Research Center on Aging, Tufts University , Boston , MA , USA
| | - Barbara Shukitt-Hale
- a United States Department of Agriculture - Agricultural Research Services , Human Nutrition Research Center on Aging, Tufts University , Boston , MA , USA
| |
Collapse
|
118
|
Lila MA, Burton-Freeman B, Grace M, Kalt W. Unraveling Anthocyanin Bioavailability for Human Health. Annu Rev Food Sci Technol 2016; 7:375-93. [DOI: 10.1146/annurev-food-041715-033346] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mary Ann Lila
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081; ,
| | - Britt Burton-Freeman
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois 60501;
| | - Mary Grace
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081; ,
| | - Wilhelmina Kalt
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, Kentville, Nova Scotia, B4N 1J5 Canada;
| |
Collapse
|
119
|
Bensalem J, Dal-Pan A, Gillard E, Calon F, Pallet V. Protective effects of berry polyphenols against age-related cognitive impairment. ACTA ACUST UNITED AC 2016. [DOI: 10.3233/nua-150051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Julien Bensalem
- Univ. de Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33000 Bordeaux, France
- INRA, Nutrition et neurobiologie intégrée, UMR 1286, 33000 Bordeaux, France
- Activ’Inside, 33500 Libourne, France
| | - Alexandre Dal-Pan
- Faculté de Pharmacie, Université Laval, Centre de Recherche du CHU de Québec, Québec, Canada
- Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec, Canada
- OptiNutriBrain International Associated Laboratory (NutriNeuro France-INAF Canada), 33000 Bordeaux, France
| | - Elodie Gillard
- Faculté de Pharmacie, Université Laval, Centre de Recherche du CHU de Québec, Québec, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Centre de Recherche du CHU de Québec, Québec, Canada
- Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec, Canada
- OptiNutriBrain International Associated Laboratory (NutriNeuro France-INAF Canada), 33000 Bordeaux, France
| | - Véronique Pallet
- Univ. de Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33000 Bordeaux, France
- INRA, Nutrition et neurobiologie intégrée, UMR 1286, 33000 Bordeaux, France
- Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
- OptiNutriBrain International Associated Laboratory (NutriNeuro France-INAF Canada), 33000 Bordeaux, France
| |
Collapse
|
120
|
Tao Y, Chen T, Yang GQ, Peng GH, Yan ZJ, Huang YF. Anthocyanin can arrest the cone photoreceptor degeneration and act as a novel treatment for retinitis pigmentosa. Int J Ophthalmol 2016; 9:153-8. [PMID: 26949626 DOI: 10.18240/ijo.2016.01.25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/20/2015] [Indexed: 12/20/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of heterogeneous inherited retinal diseases that is characterized by primary death rod photoreceptors and the secondary loss of cones. The degeneration of cones causes gradual constriction of visual fields, leaving the central islands that are eventually snuffed out. Studies indicate that the hyperoxia causes oxidative damage in the retina and contributes to the cone death of RP. Moreover, abundant reactive oxidative species (ROS) which are generated in cones may result in mitochondria membrane depolarization, which has been ascribed a central role in the apoptotic process and has been proposed to act as a forward feeding loop for the activation of downstream cascades. Anthocyanin is a potent antioxidant which has been evidenced to be able to counteract oxidative damages, scavenge surplus ROS, and rectify abnormities in the apoptotic cascade. Taken together with its ability to attenuate inflammation which also contributes to the etiology of RP, it is reasonable to hypothesize that the anthocyanin could act as a novel therapeutic strategy to retard or prevent cone degeneration in RP retinas, particularly if the treatment is timed appropriately and delivered efficiently. Future pharmacological investigations will identify the anthocyanin as an effective candidate for PR therapy and refinements of that knowledge would ignite the hope of restoring the visual function in RP patients.
Collapse
Affiliation(s)
- Ye Tao
- Department of Ophthalmology, General Hospital of Chinese PLA, Beijing 100853, China
| | - Tao Chen
- Department of Clinical Aerospace Medicine, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Guo-Qing Yang
- Department of Clinical Aerospace Medicine, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Guang-Hua Peng
- Department of Ophthalmology, General Hospital of Chinese PLA, Beijing 100853, China
| | - Zhong-Jun Yan
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China
| | - Yi-Fei Huang
- Department of Ophthalmology, General Hospital of Chinese PLA, Beijing 100853, China
| |
Collapse
|
121
|
Almeida S, Alves MG, Sousa M, Oliveira PF, Silva BM. Are Polyphenols Strong Dietary Agents Against Neurotoxicity and Neurodegeneration? Neurotox Res 2016; 30:345-66. [PMID: 26745969 DOI: 10.1007/s12640-015-9590-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 12/21/2022]
Abstract
Life expectancy of most human populations has greatly increased as a result of factors including better hygiene, medical practice, and nutrition. Unfortunately, as humans age, they become more prone to suffer from neurodegenerative diseases and neurotoxicity. Polyphenols can be cheaply and easily obtained as part of a healthy diet. They present a wide range of biological activities, many of which have relevance for human health. Compelling evidence has shown that dietary phytochemicals, particularly polyphenols, have properties that may suppress neuroinflammation and prevent toxic and degenerative effects in the brain. The mechanisms by which polyphenols exert their action are not fully understood, but it is clear that they have a direct effect through their antioxidant activities. They have also been shown to modulate intracellular signaling cascades, including the PI3K-Akt, MAPK, Nrf2, and MEK pathways. Polyphenols also interact with a range of neurotransmitters, illustrating that these compounds can promote their health benefits in the brain through a direct, indirect, or complex action. We discuss whether polyphenols obtained from diet or food supplements are an effective strategy to prevent or treat neurodegeneration. We also discuss the safety, mechanisms of action, and the current and future relevance of polyphenols in clinical treatment of neurodegenerative diseases. As populations age, it is important to discuss the dietary strategies to avoid or counteract the effects of incurable neurodegenerative disorders, which already represent an enormous financial and emotional burden for health care systems, patients, and their families.
Collapse
Affiliation(s)
- Susana Almeida
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Marco G Alves
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,I3S - Institute of Health Research and Innovation, University of Porto, Porto, Portugal
| | - Branca M Silva
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
122
|
Silván JM, Reguero M, de Pascual-Teresa S. A protective effect of anthocyanins and xanthophylls on UVB-induced damage in retinal pigment epithelial cells. Food Funct 2016; 7:1067-76. [DOI: 10.1039/c5fo01368b] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cyanidin-3-glucoside and zeaxanthin, alone or in combination, protect against UVB-induced retinal cells damage throw redox and MAPK activation regulation.
Collapse
Affiliation(s)
- Jose Manuel Silván
- Department of Metabolism and Nutrition
- Institute of Food Science
- Food Technology and Nutrition (ICTAN)
- Spanish National Research Council (CSIC)
- 28040 - Madrid
| | - Marina Reguero
- Department of Metabolism and Nutrition
- Institute of Food Science
- Food Technology and Nutrition (ICTAN)
- Spanish National Research Council (CSIC)
- 28040 - Madrid
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition
- Institute of Food Science
- Food Technology and Nutrition (ICTAN)
- Spanish National Research Council (CSIC)
- 28040 - Madrid
| |
Collapse
|
123
|
Low-Dose Aronia melanocarpa Concentrate Attenuates Paraquat-Induced Neurotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5296271. [PMID: 26770655 PMCID: PMC4684878 DOI: 10.1155/2016/5296271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/26/2015] [Accepted: 08/30/2015] [Indexed: 12/05/2022]
Abstract
Herbicides containing paraquat may contribute to the pathogenesis of neurodegenerative disorders such as Parkinson's disease. Paraquat induces reactive oxygen species-mediated apoptosis in neurons, which is a primary mechanism behind its toxicity. We sought to test the effectiveness of a commercially available polyphenol-rich Aronia melanocarpa (aronia berry) concentrate in the amelioration of paraquat-induced neurotoxicity. Considering the abundance of antioxidants in aronia berries, we hypothesized that aronia berry concentrate attenuates the paraquat-induced increase in reactive oxygen species and protects against paraquat-mediated neuronal cell death. Using a neuronal cell culture model, we observed that low doses of aronia berry concentrate protected against paraquat-mediated neurotoxicity. Additionally, low doses of the concentrate attenuated the paraquat-induced increase in superoxide, hydrogen peroxide, and oxidized glutathione levels. Interestingly, high doses of aronia berry concentrate increased neuronal superoxide levels independent of paraquat, while at the same time decreasing hydrogen peroxide. Moreover, high-dose aronia berry concentrate potentiated paraquat-induced superoxide production and neuronal cell death. In summary, aronia berry concentrate at low doses restores the homeostatic redox environment of neurons treated with paraquat, while high doses exacerbate the imbalance leading to further cell death. Our findings support that moderate levels of aronia berry concentrate may prevent reactive oxygen species-mediated neurotoxicity.
Collapse
|
124
|
Bhaswant M, Fanning K, Netzel M, Mathai ML, Panchal SK, Brown L. Cyanidin 3-glucoside improves diet-induced metabolic syndrome in rats. Pharmacol Res 2015; 102:208-17. [DOI: 10.1016/j.phrs.2015.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/11/2015] [Accepted: 10/11/2015] [Indexed: 01/16/2023]
|
125
|
Chen TY, Kritchevsky J, Hargett K, Feller K, Klobusnik R, Song BJ, Cooper B, Jouni Z, Ferruzzi MG, Janle EM. Plasma bioavailability and regional brain distribution of polyphenols from apple/grape seed and bilberry extracts in a young swine model. Mol Nutr Food Res 2015; 59:2432-47. [PMID: 26417697 DOI: 10.1002/mnfr.201500224] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 01/16/2023]
Abstract
SCOPE The pharmacokinetics, bioavailability, and regional brain distribution of polyphenols from apple-grape seed extract (AGSE) mixture and bilberry extract were studied after 3 weeks of dosing in weanling pigs. MATERIALS AND METHODS Weanling piglets were treated for 3 weeks with extracts of (AGSE) or bilberry extracts, using a physiological (27.5 mg/kg) or supplement (82.5 mg/kg) dose. A 24-h pharmacokinetic study was conducted and brain tissue was harvested. Major flavan-3-ol and flavonol metabolites including catechin-O-β-glucuronide, epicatechin-O-β-glucuronide, 3'O-methyl-catechin-O-β-glucuronide, 3'O-methyl-epicatechin-O-β-glucuronide, quercetin-O-β-glucuronide, and O-methyl-quercetin-O-β-glucuronide were analyzed in plasma, urine, and regional brain extracts from AGSE groups. Anthocyanidin-O-galactosides and O-glucosides of delphinidin (Del), cyanidin (Cyn), petunidin (Pet), peonidin (Peo), and malvidin (Mal) were analyzed in plasma, urine, and brain extracts from bilberry groups. CONCLUSION Significant plasma dose-dependence was observed in flavan-3-ol metabolites of the AGSE group and in Mal, Del and Cyn galactosides and Pet, Peo, and Cyn glucosides of the bilberry groups. In the brain, a significant dose dependence was found in the cerebellum and frontal cortex in all major flavan-3-ol metabolites. All anthocyanidin glycosides, except for delphinidin, showed a dose-dependent increase in the cerebellum.
Collapse
Affiliation(s)
- Tzu-Ying Chen
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Janice Kritchevsky
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Katherine Hargett
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Kathryn Feller
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Ryan Klobusnik
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Brian J Song
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Bruce Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Zeina Jouni
- Mead Johnson Pediatric Nutrition Institute, Evansville, IN, USA
| | - Mario G Ferruzzi
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA.,Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Elsa M Janle
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
126
|
Liu Y, Zhang D, Hu J, Liu G, Chen J, Sun L, Jiang Z, Zhang X, Chen Q, Ji B. Visible Light-Induced Lipid Peroxidation of Unsaturated Fatty Acids in the Retina and the Inhibitory Effects of Blueberry Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9295-9305. [PMID: 26456696 DOI: 10.1021/acs.jafc.5b04341] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The lipid peroxidation of unsaturated fatty acids (UFAs) in the retina not only threatens visual cells but also affects the physiological health of the retina. In this work, the potential damages caused by daily visible light exposure on retinal UFAs were evaluated via a simulated in vitro model. At the same time, the benefits of dietary supplementation of blueberries to the eyes were also assessed. After prolonged light exposure, lipid peroxidation occurred for both docosahexaenoic and arachidonic acids (DHA and AA, respectively). The oxidized UFAs presented obvious cytotoxicity and significantly inhibited cell growth in retinal pigment epithelium cells. Among the different blueberry polyphenol fractions, the flavonoid-rich fraction, in which quercetin was discovered as the main component, was considerably better in preventing visible light-induced DHA lipid peroxidation than the anthocyanin- and phenolic acid-rich fractions. Then the retinal protective activity of blueberry polyphenols against light-induced retinal injury was confirmed in vivo. On the basis of the above results, inhibiting lipid peroxidation of UFAs in the retina is proposed to be another important function mechanism for antioxidants to nourish eyes.
Collapse
Affiliation(s)
- Yixiang Liu
- College of Food and Biological Engineering, Jimei University , Xiamen, Fujian, People's Republic of China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University , Zhenjiang, Jiangsu, People's Republic of China
| | - Jimei Hu
- College of Food Science & Nutritional Engineering, China Agricultural University , Beijing, People's Republic of China
| | - Guangming Liu
- College of Food and Biological Engineering, Jimei University , Xiamen, Fujian, People's Republic of China
| | - Jun Chen
- College of Food and Biological Engineering, Jimei University , Xiamen, Fujian, People's Republic of China
| | - Lechang Sun
- College of Food and Biological Engineering, Jimei University , Xiamen, Fujian, People's Republic of China
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University , Xiamen, Fujian, People's Republic of China
| | - Xichun Zhang
- College of Food and Biological Engineering, Jimei University , Xiamen, Fujian, People's Republic of China
| | - Qingchou Chen
- College of Food and Biological Engineering, Jimei University , Xiamen, Fujian, People's Republic of China
| | - Baoping Ji
- College of Food Science & Nutritional Engineering, China Agricultural University , Beijing, People's Republic of China
| |
Collapse
|
127
|
The mechanisms of action of flavonoids in the brain: Direct versus indirect effects. Neurochem Int 2015; 89:126-39. [PMID: 26260546 DOI: 10.1016/j.neuint.2015.08.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 02/01/2023]
Abstract
The projected increase in the incidence of dementia in the population highlights the urgent need for a more comprehensive understanding of how different aspects of lifestyle, in particular exercise and diet, may affect neural function and consequent cognitive performance throughout the life course. In this regard, flavonoids, found in a variety of fruits, vegetables and derived beverages, have been identified as a group of promising bioactive compounds capable of influencing different aspects of brain function, including cerebrovascular blood flow and synaptic plasticity, both resulting in improvements in learning and memory in mammalian species. However, the precise mechanisms by which flavonoids exert these actions are yet to be fully established, although accumulating data indicate an ability to interact with neuronal receptors and kinase signaling pathways which are key to neuronal activation and communication and synaptic strengthening. Alternatively or concurrently, there is also compelling evidence derived from human clinical studies suggesting that flavonoids can positively affect peripheral and cerebrovascular blood flow, which may be an indirect effective mechanism by which dietary flavonoids can impact on brain health and cognition. The current review examines the beneficial effects of flavonoids on both human and animal brain function and attempts to address and link direct and indirect actions of flavonoids and their derivatives within the central nervous system (CNS).
Collapse
|
128
|
Meireles M, Marques C, Norberto S, Fernandes I, Mateus N, Rendeiro C, Spencer JPE, Faria A, Calhau C. The impact of chronic blackberry intake on the neuroinflammatory status of rats fed a standard or high-fat diet. J Nutr Biochem 2015; 26:1166-73. [PMID: 26315997 DOI: 10.1016/j.jnutbio.2015.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 11/19/2022]
Abstract
Neuroinflammation has been suggested as a central mediator of central nervous system dysfunction, including in dementia and neurodegenerative disease. Flavonoids have emerged as promising candidates for the prevention of neurodegenerative diseases and are thought to be capable of antiinflammatory effects in the brain. In the present study, the impact of a chronic intake of an anthocyanin extract from blackberry (BE) on brain inflammatory status in the presence or absence of a high-fat diet was investigated. Following intake of the dietary regimes for 17 weeks neuroinflammatory status in Wistar rat cortex, hippocampus and plasma were assessed using cytokine antibody arrays. In the cortex, intake of the high-fat diet resulted in an increase of at least 4-fold, in expression of the cytokine-induced neutrophil chemoattractant CINC-3, the ciliary neurotrophic factor CNTF, the platelet-derived growth factor PDGF-AA, IL-10, the tissue inhibitor of metalloproteinase TIMP-1 and the receptor for advanced glycation end products RAGE. BE intake partially decreased the expression of these mediators in the high-fat challenged brain. In standard-fed animals, BE intake significantly increased cortical levels of fractalkine, PDGF-AA, activin, the vascular endothelial growth factor VEGF and agrin expression, suggesting effects as neuronal growth and synaptic connection modulators. In hippocampus, BE modulates fractalkine and the thymus chemokine TCK-1 expression independently of diet intake and, only in standard diet, increased PDGF-AA. Exploring effects of anthocyanins on fractalkine transcription using the neuronal cell line SH-SY5Y suggested that other cell types may be involved in this effect. This is the first evidence, in in vivo model, that blackberry extract intake may be capable of preventing the detrimental effects of neuroinflammation in a high-fat challenged brain. Also, fractalkine and TCK-1 expression may be specific targets of anthocyanins and their metabolites on neuroinflammation.
Collapse
Affiliation(s)
- Manuela Meireles
- Departamento de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; Department of Food Biosciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6AP, UK
| | - Cláudia Marques
- Departamento de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Sónia Norberto
- Departamento de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Iva Fernandes
- REQUIMTE - Rede de Química e Tecnologia, Faculdade de Ciências, Universidade do Porto, 4169-009 Porto, Portugal
| | - Nuno Mateus
- REQUIMTE - Rede de Química e Tecnologia, Faculdade de Ciências, Universidade do Porto, 4169-009 Porto, Portugal
| | - Catarina Rendeiro
- Department of Food Biosciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6AP, UK
| | - Jeremy P E Spencer
- Department of Food Biosciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6AP, UK
| | - Ana Faria
- Departamento de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; REQUIMTE - Rede de Química e Tecnologia, Faculdade de Ciências, Universidade do Porto, 4169-009 Porto, Portugal; Faculdade Ciências da Nutrição e Alimentação, Universidade do Porto, 4200-465 Porto, Portugal
| | - Conceição Calhau
- Departamento de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; CINTESIS - Center for Research in Health Technologies and Information Systems, Centro de Investigação Médica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal.
| |
Collapse
|
129
|
Sun M, Lu X, Hao L, Wu T, Zhao H, Wang C. The influences of purple sweet potato anthocyanin on the growth characteristics of human retinal pigment epithelial cells. Food Nutr Res 2015; 59:27830. [PMID: 26070791 PMCID: PMC4464420 DOI: 10.3402/fnr.v59.27830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 01/05/2023] Open
Abstract
Background Anthocyanins have been proven to be beneficial to the eyes. However, information is scarce about the effects of purple sweet potato (Ipomoea batatas, L.) anthocyanin (PSPA), a class of anthocyanins derived from purple sweet potato roots, on visual health. Objective The aim of this study was to investigate whether PSPA could have influences on the growth characteristics (cellular morphology, survival, and proliferation) of human retinal pigment epithelial (RPE) cells, which perform essential functions for the visual process. Methods The RPE cell line D407 was used in the present study. The cytotoxicity of PSPA was assessed by MTT assay. Then, cellular morphology, viability, cell cycle, Ki67expression, and PI3K/MAPK activation of RPE cells treated with PSPA were determined. Results PSPA exhibited dose-dependent promotion of RPE cell proliferation at concentrations ranging from 10 to 1,000 µg/ml. RPE cells treated with PSPA demonstrated a predominantly polygonal morphology in a mosaic arrangement, and colony-like cells displayed numerous short apical microvilli and typical ultrastructure. PSPA treatment also resulted in a better platform growing status, statistically higher viability, an increase in the S-phase, and more Ki67+ cells. However, neither pAkt nor pERK were detected in either group. Conclusions We found that PSPA maintained high cell viability, boosted DNA synthesis, and preserved a high percentage of continuously cycling cells to promote cell survival and division without changing cell morphology. This paper lays the foundation for further research about the damage-protective activities of PSPA on RPE cells or human vision.
Collapse
Affiliation(s)
- Min Sun
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Xiaoling Lu
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China;
| | - Lei Hao
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Tao Wu
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Huanjiao Zhao
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Chao Wang
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
130
|
Wang Y, Zhang D, Liu Y, Wang D, Liu J, Ji B. The protective effects of berry-derived anthocyanins against visible light-induced damage in human retinal pigment epithelial cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:936-944. [PMID: 24909670 DOI: 10.1002/jsfa.6765] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/29/2014] [Accepted: 05/29/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Studies have shown that anthocyanins (ACNs) in berries contribute to eye health. However, information on the relationship between the chemical structures and visual functions of ACNs is scarce. This study investigated the protection effects of ACNs with different structures against visible light-induced damage in human retinal pigment epithelial (RPE) cells. RESULTS Four ACNs with different aglycones, namely, pelargonidin-3-glucoside (Pg-3-glu), cyanidin-3-glucoside (Cy-3-glu), delphinidin-3-glucoside, and malvidin-3-glucoside (Mv-3-glu), were isolated from three berries (blueberry, blackberry and strawberry). Of these ACNs, Cy-3-glu exhibited the highest reactive oxygen species inhibitory capacity in RPE cells, with 40 µg mL(-1) Cy-3-glu showing a ROS clearance of 57.5% ± 4.2%. The expression of vascular endothelial growth factor levels were significantly (P < 0.05) down-regulated by Cy-3-glu and Mv-3-glu in a visible light-induced damage RPE cell model. Cy-3-glu and Pg-3-glu treatments significantly (P < 0.05) inhibited the increase in β-galactosidase during the RPE cell ageing caused by visible light exposure. CONCLUSION Our findings suggest that the biological properties of different ACNs significantly vary. Cy-3-glu, which contains an ortho hydroxyl group in its B ring, possibly exerts multiple protective effects (antioxidant, anti-angiogenic and anti-ageing) in RPE cells. Therefore, Cy-3-glu may prove useful as a prophylactic health food for the prevention of retinal diseases.
Collapse
Affiliation(s)
- Yong Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | | | | | | | | | | |
Collapse
|
131
|
Simonyi A, Chen Z, Jiang J, Zong Y, Chuang DY, Gu Z, Lu CH, Fritsche KL, Greenlief CM, Rottinghaus GE, Thomas AL, Lubahn DB, Sun GY. Inhibition of microglial activation by elderberry extracts and its phenolic components. Life Sci 2015; 128:30-8. [PMID: 25744406 DOI: 10.1016/j.lfs.2015.01.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/15/2015] [Accepted: 01/28/2015] [Indexed: 02/07/2023]
Abstract
AIMS Elderberry (Sambucus spp.) is one of the oldest medicinal plants noted for its cardiovascular, anti-inflammatory, and immune-stimulatory properties. In this study, we investigated the anti-inflammatory and anti-oxidant effects of the American elderberry (Sambucus nigra subsp. canadensis) pomace as well as some of the anthocyanins (cyanidin chloride and cyanidin 3-O-glucoside) and flavonols (quercetin and rutin) in bv-2 mouse microglial cells. MAIN METHODS The bv-2 cells were pretreated with elderberry pomace (extracted with ethanol or ethyl acetate) or its anthocyanins and flavonols and stimulated by either lipopolysaccharide (LPS) or interferon-γ (IFNγ). Reactive oxygen species (ROS) and nitric oxide (NO) production (indicating oxidative stress and inflammatory response) were measured using the ROS detection reagent DCF-DA and the Griess reaction, respectively. KEY FINDINGS Analysis of total monomeric anthocyanin (as cyanidin 3-O-glucoside equivalents) indicated five-fold higher amount in the freeze-dried ethanol extract as compared to that of the oven-dried extract; anthocyanin was not detected in the ethyl acetate extracts. Elderberry ethanol extracts (freeze-dried or oven-dried) showed higher anti-oxidant activities and better ability to inhibit LPS or IFNγ-induced NO production as compared with the ethyl acetate extracts. The phenolic compounds strongly inhibited LPS or IFNγ-induced ROS production, but except for quercetin, they were relatively poor in inhibiting NO production. SIGNIFICANCE These results demonstrated differences in anti-oxidative and anti-inflammatory effects of elderberry extracts depending on solvents used. Results further identified quercetin as the most active component in suppressing oxidative stress and inflammatory responses on microglial cells.
Collapse
Affiliation(s)
- Agnes Simonyi
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA; Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Center for Translational Neuroscience, University of Missouri, Columbia, MO, USA
| | - Zihong Chen
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA; Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Jinghua Jiang
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA; Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Yijia Zong
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Center for Translational Neuroscience, University of Missouri, Columbia, MO, USA
| | - Dennis Y Chuang
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Center for Translational Neuroscience, University of Missouri, Columbia, MO, USA
| | - Zezong Gu
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Center for Translational Neuroscience, University of Missouri, Columbia, MO, USA; Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - Chi-Hua Lu
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA; Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Kevin L Fritsche
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA; Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - C Michael Greenlief
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA; Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - George E Rottinghaus
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA; Veterinary Medical Diagnostic Laboratory, University of Missouri, Columbia, MO, USA
| | - Andrew L Thomas
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA; University of Missouri Southwest Research Center, Mt. Vernon, MO, USA
| | - Dennis B Lubahn
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA; Department of Biochemistry, University of Missouri, Columbia, MO, USA; Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Grace Y Sun
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA; Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Center for Translational Neuroscience, University of Missouri, Columbia, MO, USA; Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
132
|
Schmidl D, Garhöfer G, Schmetterer L. Nutritional supplements in age-related macular degeneration. Acta Ophthalmol 2015; 93:105-21. [PMID: 25586104 DOI: 10.1111/aos.12650] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/28/2014] [Indexed: 12/22/2022]
Abstract
Age-related macular degeneration (AMD) is the most frequent cause of blindness in the Western World. While with new therapies that are directed towards vascular endothelial growth factor (VEGF), a potentially efficient treatment option for the wet form of the disease has been introduced, a therapeutic regimen for dry AMD is still lacking. There is evidence from several studies that oral intake of supplements is beneficial in preventing progression of the disease. Several formulations of micronutrients are currently available. The present review focuses on the role of supplements in the treatment and prevention of AMD and sums up the current knowledge about the most frequently used micronutrients. In addition, regulatory issues are discussed, and future directions for the role of supplementation in AMD are highlighted.
Collapse
Affiliation(s)
- Doreen Schmidl
- Department of Clinical Pharmacology; Medical University of Vienna; Vienna Austria
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology; Medical University of Vienna; Vienna Austria
| | - Leopold Schmetterer
- Department of Clinical Pharmacology; Medical University of Vienna; Vienna Austria
- Center for Medical Physics and Biomedical Engineering; Medical University of Vienna; Vienna Austria
| |
Collapse
|
133
|
London DS, Beezhold B. A phytochemical-rich diet may explain the absence of age-related decline in visual acuity of Amazonian hunter-gatherers in Ecuador. Nutr Res 2014; 35:107-17. [PMID: 25636674 DOI: 10.1016/j.nutres.2014.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/24/2014] [Accepted: 12/28/2014] [Indexed: 11/18/2022]
Abstract
Myopia is absent in undisturbed hunter-gatherers but ubiquitous in modern populations. The link between dietary phytochemicals and eye health is well established, although transition away from a wild diet has reduced phytochemical variety. We hypothesized that when larger quantities and greater variety of wild, seasonal phytochemicals are consumed in a food system, there will be a reduced prevalence of degenerative-based eye disease as measured by visual acuity. We compared food systems and visual acuity across isolated Amazonian Kawymeno Waorani hunter-gatherers and neighboring Kichwa subsistence agrarians, using dietary surveys, dietary pattern observation, and Snellen Illiterate E visual acuity examinations. Hunter-gatherers consumed more food species (130 vs. 63) and more wild plants (80 vs. 4) including 76 wild fruits, thereby obtaining larger variety and quantity of phytochemicals than agrarians. Visual acuity was inversely related to age only in agrarians (r = -.846, P < .001). As hypothesized, when stratified by age (<40 and ≥ 40 years), Mann-Whitney U tests revealed that hunter-gatherers maintained high visual acuity throughout life, whereas agrarian visual acuity declined (P values < .001); visual acuity of younger participants was high across the board, however, did not differ between groups (P > .05). This unusual absence of juvenile-onset vision problems may be related to local, organic, whole food diets of subsistence food systems isolated from modern food production. Our results suggest that intake of a wider variety of plant foods supplying necessary phytochemicals for eye health may help maintain visual acuity and prevent degenerative eye conditions as humans age.
Collapse
Affiliation(s)
- Douglas S London
- Adelphi University, One South Street, Garden City, NY 11530, USA.
| | - Bonnie Beezhold
- Benedictine University, 5700 College Drive, Lisle, IL, 60532, USA.
| |
Collapse
|
134
|
Mahmudatussa’adah A, Fardiaz D, Andarwulan N, Kusnandar F. KARAKTERISTIK WARNA DAN AKTIVITAS ANTIOKSIDAN ANTOSIANIN UBI JALAR UNGU [Color Characteristics and Antioxidant Activity of Anthocyanin Extract from Purple Sweet Potato]. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2014. [DOI: 10.6066/jtip.2014.25.2.176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
135
|
Kalt W, McDonald JE, Fillmore SAE, Tremblay F. Blueberry effects on dark vision and recovery after photobleaching: placebo-controlled crossover studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11180-11189. [PMID: 25335781 DOI: 10.1021/jf503689c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Clinical evidence for anthocyanin benefits in night vision is controversial. This paper presents two human trials investigating blueberry anthocyanin effects on dark adaptation, functional night vision, and vision recovery after retinal photobleaching. One trial, S2 (n = 72), employed a 3 week intervention and a 3 week washout, two anthocyanin doses (271 and 7.11 mg cyanidin 3-glucoside equivalents (C3g eq)), and placebo. The other trial, L1 (n = 59), employed a 12 week intervention and an 8 week washout and tested one dose (346 mg C3g eq) and placebo. In both S2 and L1 neither dark adaptation nor night vision was improved by anthocyanin intake. However, in both trials anthocyanin consumption hastened the recovery of visual acuity after photobleaching. In S2 both anthocyanin doses were effective (P = 0.014), and in L1 recovery was improved at 8 weeks (P = 0.027) and 12 weeks (P = 0.030). Although photobleaching recovery was hastened by anthocyanins, it is not known whether this improvement would have an impact on everyday vision.
Collapse
Affiliation(s)
- Wilhelmina Kalt
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main Street, Kentville, Nova Scotia B4N 1J5, Canada
| | | | | | | |
Collapse
|
136
|
|
137
|
Assessing Antioxidant Capacity in Brain Tissue: Methodologies and Limitations in Neuroprotective Strategies. Antioxidants (Basel) 2014; 3:636-48. [PMID: 26785231 PMCID: PMC4665495 DOI: 10.3390/antiox3040636] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 07/24/2014] [Accepted: 09/02/2014] [Indexed: 12/18/2022] Open
Abstract
The number of putative neuroprotective compounds with antioxidant activity described in the literature continues to grow. Although these compounds are validated using a variety of in vivo and in vitro techniques, they are often evaluated initially using in vitro cell culture techniques in order to establish toxicity and effective concentrations. Both in vivo and in vitro methodologies have their respective advantages and disadvantages, including, but not limited to, cost, time, use of resources and technical limitations. This review expands on the inherent benefits and drawbacks of in vitro and in vivo methods for assessing neuroprotection, especially in light of proper evaluation of compound efficacy and neural bioavailability. For example, in vivo studies can better evaluate the effects of protective compounds and/or its metabolites on various tissues, including the brain, in the whole animal, whereas in vitro studies can better discern the cellular and/or mechanistic effects of compounds. In particular, we aim to address the question of appropriate and accurate extrapolation of findings from in vitro experiment-where compounds are often directly applied to cellular extracts, potentially at higher concentrations than would ever cross the blood-brain barrier-to the more complex scenario of neuroprotection due to pharmacodynamics in vivo.
Collapse
|
138
|
Flores FP, Singh RK, Kong F. Physical and storage properties of spray-dried blueberry pomace extract with whey protein isolate as wall material. J FOOD ENG 2014. [DOI: 10.1016/j.jfoodeng.2014.03.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
139
|
Nakamura S, Tanaka J, Imada T, Shimoda H, Tsubota K. Delphinidin 3,5-O-diglucoside, a constituent of the maqui berry (Aristotelia chilensis) anthocyanin, restores tear secretion in a rat dry eye model. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
140
|
Flavonoids and phenolic acids from cranberry juice are bioavailable and bioactive in healthy older adults. Food Chem 2014; 168:233-40. [PMID: 25172705 DOI: 10.1016/j.foodchem.2014.07.062] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/07/2014] [Accepted: 07/09/2014] [Indexed: 01/25/2023]
Abstract
Cranberries (Vaccinium macrocarpon) are a rich source of phenolic phytochemicals, which likely contribute to their putative health benefits. A single-dose pharmacokinetic trial was conducted in 10 healthy adults ⩾50y to evaluate the acute (24-h) absorption and excretion of flavonoids, phenolic acids and proanthocyanidins (PACs) from a low-calorie cranberry juice cocktail (54% juice). Inter-individual variability was observed in the Cmax and Tmax of many of these compounds in both plasma and urine. The sum total concentration of phenolics detected in plasma reached a peak of 34.2μg/ml between 8 and 10h, while in urine this peak was 269.8μg/mg creatinine, and appeared 2-4h earlier. The presence of PAC-A2 dimers in human urine has not previously been reported. After cranberry juice consumption, plasma total antioxidant capacity assessed using ORAC and TAP assays correlated with individual metabolites. Our results show phenolic compounds in cranberry juice are bioavailable and exert antioxidant actions in healthy older adults.
Collapse
|
141
|
Flores FP, Singh RK, Kerr WL, Phillips DR, Kong F. In vitro release properties of encapsulated blueberry (Vaccinium ashei) extracts. Food Chem 2014; 168:225-32. [PMID: 25172704 DOI: 10.1016/j.foodchem.2014.07.059] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/16/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
We aimed to determine the effect of encapsulation on the release properties of blueberry extracts during simulated gastrointestinal digestion. An ethanolic pomace extract was microencapsulated with whey protein isolate via spray drying. The in vitro release of monomeric anthocyanins, phenolics and ferric reducing antioxidant activity of the microcapsules (W) were evaluated for the microcapsules and two non-encapsulated systems: ethanolic pomace extract (P) and freeze-dried juice (F). Concentrations of anthocyanin and phenolics were normalised prior to digestion. Results showed that antioxidant activity was in the order of: F>W>P. Regardless of encapsulation, more phenolics were released from W and P than F. Anthocyanin concentration decreased after intestinal digestion for W, but remained constant for P and F. MALDI-MS showed similar spectra for P and F but not for W. The spray-dried product has comparable release characteristics to freeze-dried juice, and may be investigated for food applications.
Collapse
Affiliation(s)
- Floirendo P Flores
- Department of Food Science and Technology, The University of Georgia, 100 Cedar St., Athens, GA 30602-2610, USA; Institute of Food Science and Technology, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Rakesh K Singh
- Department of Food Science and Technology, The University of Georgia, 100 Cedar St., Athens, GA 30602-2610, USA
| | - William L Kerr
- Department of Food Science and Technology, The University of Georgia, 100 Cedar St., Athens, GA 30602-2610, USA
| | - Dennis R Phillips
- Proteomic and Mass Spectrometry (PAMS) Core Facility, Department of Chemistry, The University of Georgia, 140 Cedar St., Athens, GA 30602, USA
| | - Fanbin Kong
- Department of Food Science and Technology, The University of Georgia, 100 Cedar St., Athens, GA 30602-2610, USA.
| |
Collapse
|
142
|
Ogawa K, Kuse Y, Tsuruma K, Kobayashi S, Shimazawa M, Hara H. Protective effects of bilberry and lingonberry extracts against blue light-emitting diode light-induced retinal photoreceptor cell damage in vitro. Altern Ther Health Med 2014; 14:120. [PMID: 24690313 PMCID: PMC3992157 DOI: 10.1186/1472-6882-14-120] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/27/2014] [Indexed: 11/20/2022]
Abstract
Background Blue light is a high-energy or short-wavelength visible light, which induces retinal diseases such as age-related macular degeneration and retinitis pigmentosa. Bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea) contain high amounts of polyphenols (anthocyanins, resveratrol, and proanthocyanidins) and thus confer health benefits. This study aimed to determine the protective effects and mechanism of action of bilberry extract (B-ext) and lingonberry extract (L-ext) and their active components against blue light-emitting diode (LED) light-induced retinal photoreceptor cell damage. Methods Cultured murine photoreceptor (661 W) cells were exposed to blue LED light following treatment with B-ext, L-ext, or their constituents (cyanidin, delphinidin, malvidin, trans-resveratrol, and procyanidin B2). 661 W cell viability was assessed using a tetrazolium salt (WST-8) assay and Hoechst 33342 nuclear staining, and intracellular reactive oxygen species (ROS) production was determined using CM-H2DCFDA after blue LED light exposure. Activation of p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor-kappa B (NF-κB), and LC3, an ubiquitin-like protein that is necessary for the formation of autophagosomes, were analyzed using Western blotting. Caspase-3/7 activation caused by blue LED light exposure in 661 W cells was determined using a caspase-3/7 assay kit. Results B-ext, L-ext, NAC, and their active components improved the viability of 661 W cells and inhibited the generation of intracellular ROS induced by blue LED light irradiation. Furthermore, B-ext and L-ext inhibited the activation of p38 MAPK and NF-κB induced by blue LED light exposure. Finally, B-ext, L-ext, and NAC inhibited caspase-3/7 activation and autophagy. Conclusions These findings suggest that B-ext and L-ext containing high amounts of polyphenols exert protective effects against blue LED light-induced retinal photoreceptor cell damage mainly through inhibition of ROS production and activation of pro-apoptotic proteins.
Collapse
|
143
|
Fernandes I, Faria A, Calhau C, de Freitas V, Mateus N. Bioavailability of anthocyanins and derivatives. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.05.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
144
|
A local Thai cultivar glutinous black rice bran: A source of functional compounds in immunomodulation, cell viability and collagen synthesis, and matrix metalloproteinase-2 and -9 inhibition. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
145
|
Abdel-Aal ESM, Akhtar H, Rabalski I, Bryan M. Accelerated, Microwave-Assisted, and Conventional Solvent Extraction Methods Affect Anthocyanin Composition from Colored Grains. J Food Sci 2014; 79:C138-46. [PMID: 24547694 DOI: 10.1111/1750-3841.12346] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/27/2013] [Indexed: 11/30/2022]
Affiliation(s)
- El-Sayed M. Abdel-Aal
- Agriculture and Agri-Food Canada; Guelph Food Research Centre; 93 Stone Road West Guelph Ontario Canada N1G 5C9
| | - Humayoun Akhtar
- Agriculture and Agri-Food Canada; Guelph Food Research Centre; 93 Stone Road West Guelph Ontario Canada N1G 5C9
| | - Iwona Rabalski
- Agriculture and Agri-Food Canada; Guelph Food Research Centre; 93 Stone Road West Guelph Ontario Canada N1G 5C9
| | - Michael Bryan
- Agriculture and Agri-Food Canada; Guelph Food Research Centre; 93 Stone Road West Guelph Ontario Canada N1G 5C9
| |
Collapse
|
146
|
Gutierres JM, Carvalho FB, Schetinger MRC, Marisco P, Agostinho P, Rodrigues M, Rubin MA, Schmatz R, da Silva CR, de P. Cognato G, Farias JG, Signor C, Morsch VM, Mazzanti CM, Bogo M, Bonan CD, Spanevello R. Anthocyanins restore behavioral and biochemical changes caused by streptozotocin-induced sporadic dementia of Alzheimer's type. Life Sci 2014; 96:7-17. [DOI: 10.1016/j.lfs.2013.11.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/26/2013] [Accepted: 11/14/2013] [Indexed: 12/20/2022]
|
147
|
Iwasa H, Kameda H, Fukui N, Yoshida S, Hongo K, Mizobata T, Kobayashi S, Kawata Y. Bilberry Anthocyanins Neutralize the Cytotoxicity of Co-Chaperonin GroES Fibrillation Intermediates. Biochemistry 2013; 52:9202-11. [DOI: 10.1021/bi401135j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | | | | | - Saori Kobayashi
- Wakasa Seikatsu
Co., Ltd., Research Park 1st Building,
134 Chudoujiminami-cho, Shimogyo-ku, Kyoto 600-8813, Japan
| | | |
Collapse
|
148
|
Rashid K, Wachira FN, Nyabuga JN, Wanyonyi B, Murilla G, Isaac AO. Kenyan purple tea anthocyanins ability to cross the blood brain barrier and reinforce brain antioxidant capacity in mice. Nutr Neurosci 2013; 17:178-85. [DOI: 10.1179/1476830513y.0000000081] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
149
|
Ogawa K, Tsuruma K, Tanaka J, Kakino M, Kobayashi S, Shimazawa M, Hara H. The protective effects of bilberry and lingonberry extracts against UV light-induced retinal photoreceptor cell damage in vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10345-10353. [PMID: 24083563 DOI: 10.1021/jf402772h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bilberry extract (B-ext) and lingonberry extract (L-ext) are currently used as health supplements. We investigated the protective mechanisms of the B-ext and L-ext against ultraviolet A (UVA)-induced retinal photoreceptor cell damage. Cultured murine photoreceptor (661W) cells were exposed to UVA following treatment with B-ext and L-ext and their main constituents (cyanidin, delphinidin, malvidin, trans-resveratrol, and procyanidin). B-ext, L-ext, and constituents improved cell viability and suppressed ROS generation. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase (JNK), and protein kinase B (Akt) were analyzed by Western blotting. B-ext and cyanidin inhibited phosphorylation of p38 MAPK, and B-ext also inhibited phosphorylation of JNK by UVA. L-ext, trans-resveratrol, and procyanidin alleviated the reduction of phosphorylated Akt levels by UVA. Finally, a cotreatment with B-ext and L-ext showed an additive effect on cell viability. Our findings suggest that both B-ext and L-ext endow protective effects against UVA-induced retinal damage.
Collapse
Affiliation(s)
- Kenjirou Ogawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | | | | | | | | | | | | |
Collapse
|
150
|
Norberto S, Silva S, Meireles M, Faria A, Pintado M, Calhau C. Blueberry anthocyanins in health promotion: A metabolic overview. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.08.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|