101
|
Vilgis TA. Soft matter food physics--the physics of food and cooking. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:124602. [PMID: 26534781 DOI: 10.1088/0034-4885/78/12/124602] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from 'hard matter systems', such as chocolates or crystalline fats, to 'soft matter' in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.
Collapse
Affiliation(s)
- Thomas A Vilgis
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| |
Collapse
|
102
|
Fan Y, Ortiz-Urquiza A, Garrett T, Pei Y, Keyhani NO. Involvement of a caleosin in lipid storage, spore dispersal, and virulence in the entomopathogenic filamentous fungus,Beauveria bassiana. Environ Microbiol 2015; 17:4600-14. [DOI: 10.1111/1462-2920.12990] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/14/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Yanhua Fan
- Biotechnology Research Center; Southwest University; Chongqing Beibei China
- Department of Microbiology and Cell Science; Institute of Food and Agricultural Sciences; University of Florida; Gainesville FL 32611 USA
| | - Almudena Ortiz-Urquiza
- Department of Microbiology and Cell Science; Institute of Food and Agricultural Sciences; University of Florida; Gainesville FL 32611 USA
| | - Timothy Garrett
- Department of Pathology, Immunology, and Laboratory Medicine; College of Medicine; University of Florida; Gainesville FL 32610 USA
| | - Yan Pei
- Biotechnology Research Center; Southwest University; Chongqing Beibei China
| | - Nemat O. Keyhani
- Department of Microbiology and Cell Science; Institute of Food and Agricultural Sciences; University of Florida; Gainesville FL 32611 USA
| |
Collapse
|
103
|
Kilaru A, Cao X, Dabbs PB, Sung HJ, Rahman MM, Thrower N, Zynda G, Podicheti R, Ibarra-Laclette E, Herrera-Estrella L, Mockaitis K, Ohlrogge JB. Oil biosynthesis in a basal angiosperm: transcriptome analysis of Persea Americana mesocarp. BMC PLANT BIOLOGY 2015. [PMID: 26276496 DOI: 10.1186/s12870-015-0586-582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND The mechanism by which plants synthesize and store high amounts of triacylglycerols (TAG) in tissues other than seeds is not well understood. The comprehension of controls for carbon partitioning and oil accumulation in nonseed tissues is essential to generate oil-rich biomass in perennial bioenergy crops. Persea americana (avocado), a basal angiosperm with unique features that are ancestral to most flowering plants, stores ~ 70 % TAG per dry weight in its mesocarp, a nonseed tissue. Transcriptome analyses of select pathways, from generation of pyruvate and leading up to TAG accumulation, in mesocarp tissues of avocado was conducted and compared with that of oil-rich monocot (oil palm) and dicot (rapeseed and castor) tissues to identify tissue- and species-specific regulation and biosynthesis of TAG in plants. RESULTS RNA-Seq analyses of select lipid metabolic pathways of avocado mesocarp revealed patterns similar to that of other oil-rich species. However, only some predominant orthologs of the fatty acid biosynthetic pathway genes in this basal angiosperm were similar to those of monocots and dicots. The accumulation of TAG, rich in oleic acid, was associated with higher transcript levels for a putative stearoyl-ACP desaturase and endoplasmic reticulum (ER)-associated acyl-CoA synthetases, during fruit development. Gene expression levels for enzymes involved in terminal steps to TAG biosynthesis in the ER further indicated that both acyl-CoA-dependent and -independent mechanisms might play a role in TAG assembly, depending on the developmental stage of the fruit. Furthermore, in addition to the expression of an ortholog of WRINKLED1 (WRI1), a regulator of fatty acid biosynthesis, high transcript levels for WRI2-like and WRI3-like suggest a role for additional transcription factors in nonseed oil accumulation. Plastid pyruvate necessary for fatty acid synthesis is likely driven by the upregulation of genes involved in glycolysis and transport of its intermediates. Together, a comparative transcriptome analyses for storage oil biosynthesis in diverse plants and tissues suggested that several distinct and conserved features in this basal angiosperm species might contribute towards its rich TAG content. CONCLUSIONS Our work represents a comprehensive transcriptome resource for a basal angiosperm species and provides insight into their lipid metabolism in mesocarp tissues. Furthermore, comparison of the transcriptome of oil-rich mesocarp of avocado, with oil-rich seed and nonseed tissues of monocot and dicot species, revealed lipid gene orthologs that are highly conserved during evolution. The orthologs that are distinctively expressed in oil-rich mesocarp tissues of this basal angiosperm, such as WRI2, ER-associated acyl-CoA synthetases, and lipid-droplet associated proteins were also identified. This study provides a foundation for future investigations to increase oil-content and has implications for metabolic engineering to enhance storage oil content in nonseed tissues of diverse species.
Collapse
Affiliation(s)
- Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Xia Cao
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
- Bayer CropSciences, Morrisville, NC, 27560, USA.
| | - Parker B Dabbs
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Ha-Jung Sung
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Nicholas Thrower
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Greg Zynda
- School of Informatics and Computing, Indiana University, Bloomington, IN, 47408, USA.
| | - Ram Podicheti
- School of Informatics and Computing, Indiana University, Bloomington, IN, 47408, USA.
| | - Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, Mexico.
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, Mexico.
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, Mexico.
| | | | - John B Ohlrogge
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
104
|
Kilaru A, Cao X, Dabbs PB, Sung HJ, Rahman MM, Thrower N, Zynda G, Podicheti R, Ibarra-Laclette E, Herrera-Estrella L, Mockaitis K, Ohlrogge JB. Oil biosynthesis in a basal angiosperm: transcriptome analysis of Persea Americana mesocarp. BMC PLANT BIOLOGY 2015; 15:203. [PMID: 26276496 PMCID: PMC4537532 DOI: 10.1186/s12870-015-0586-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/29/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND The mechanism by which plants synthesize and store high amounts of triacylglycerols (TAG) in tissues other than seeds is not well understood. The comprehension of controls for carbon partitioning and oil accumulation in nonseed tissues is essential to generate oil-rich biomass in perennial bioenergy crops. Persea americana (avocado), a basal angiosperm with unique features that are ancestral to most flowering plants, stores ~ 70 % TAG per dry weight in its mesocarp, a nonseed tissue. Transcriptome analyses of select pathways, from generation of pyruvate and leading up to TAG accumulation, in mesocarp tissues of avocado was conducted and compared with that of oil-rich monocot (oil palm) and dicot (rapeseed and castor) tissues to identify tissue- and species-specific regulation and biosynthesis of TAG in plants. RESULTS RNA-Seq analyses of select lipid metabolic pathways of avocado mesocarp revealed patterns similar to that of other oil-rich species. However, only some predominant orthologs of the fatty acid biosynthetic pathway genes in this basal angiosperm were similar to those of monocots and dicots. The accumulation of TAG, rich in oleic acid, was associated with higher transcript levels for a putative stearoyl-ACP desaturase and endoplasmic reticulum (ER)-associated acyl-CoA synthetases, during fruit development. Gene expression levels for enzymes involved in terminal steps to TAG biosynthesis in the ER further indicated that both acyl-CoA-dependent and -independent mechanisms might play a role in TAG assembly, depending on the developmental stage of the fruit. Furthermore, in addition to the expression of an ortholog of WRINKLED1 (WRI1), a regulator of fatty acid biosynthesis, high transcript levels for WRI2-like and WRI3-like suggest a role for additional transcription factors in nonseed oil accumulation. Plastid pyruvate necessary for fatty acid synthesis is likely driven by the upregulation of genes involved in glycolysis and transport of its intermediates. Together, a comparative transcriptome analyses for storage oil biosynthesis in diverse plants and tissues suggested that several distinct and conserved features in this basal angiosperm species might contribute towards its rich TAG content. CONCLUSIONS Our work represents a comprehensive transcriptome resource for a basal angiosperm species and provides insight into their lipid metabolism in mesocarp tissues. Furthermore, comparison of the transcriptome of oil-rich mesocarp of avocado, with oil-rich seed and nonseed tissues of monocot and dicot species, revealed lipid gene orthologs that are highly conserved during evolution. The orthologs that are distinctively expressed in oil-rich mesocarp tissues of this basal angiosperm, such as WRI2, ER-associated acyl-CoA synthetases, and lipid-droplet associated proteins were also identified. This study provides a foundation for future investigations to increase oil-content and has implications for metabolic engineering to enhance storage oil content in nonseed tissues of diverse species.
Collapse
Affiliation(s)
- Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Xia Cao
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
- Bayer CropSciences, Morrisville, NC, 27560, USA.
| | - Parker B Dabbs
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Ha-Jung Sung
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Nicholas Thrower
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Greg Zynda
- School of Informatics and Computing, Indiana University, Bloomington, IN, 47408, USA.
| | - Ram Podicheti
- School of Informatics and Computing, Indiana University, Bloomington, IN, 47408, USA.
| | - Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, Mexico.
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, Mexico.
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, Mexico.
| | | | - John B Ohlrogge
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
105
|
D'Andrea S. Lipid droplet mobilization: The different ways to loosen the purse strings. Biochimie 2015; 120:17-27. [PMID: 26187474 DOI: 10.1016/j.biochi.2015.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/11/2015] [Indexed: 01/25/2023]
Abstract
Cytosolic lipid droplets are dynamic lipid-storage organelles that play a crucial role as reservoirs of metabolic energy and membrane precursors. These organelles are present in virtually all cell types, from unicellular to pluricellular organisms. Despite similar structural organization, lipid droplets are heterogeneous in morphology, distribution and composition. The protein repertoire associated to lipid droplet controls the organelle dynamics. Distinct structural lipid droplet proteins are associated to specific lipolytic pathways. The role of these structural lipid droplet-associated proteins in the control of lipid droplet degradation and lipid store mobilization is discussed. The control of the strictly-regulated lipolysis in lipid-storing tissues is compared between mammals and plants. Differences in the cellular regulation of lipolysis between lipid-storing tissues and other cell types are also discussed.
Collapse
Affiliation(s)
- Sabine D'Andrea
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France.
| |
Collapse
|
106
|
Purkrtová Z, Chardot T, Froissard M. N-terminus of seed caleosins is essential for lipid droplet sorting but not for lipid accumulation. Arch Biochem Biophys 2015; 579:47-54. [PMID: 26032334 DOI: 10.1016/j.abb.2015.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 11/26/2022]
Abstract
Caleosin, a calcium-binding protein associated with plant lipid droplets, stimulates lipid accumulation when heterologously expressed in Saccharomyces cerevisiae. Accumulated lipids are stored in cytoplasmic lipid droplets that are stabilised by incorporated caleosin. We designed a set of mutants affecting putative crucial sites for caleosin function and association with lipid droplets, i.e. the N-terminus, the EF-hand motif and the proline-knot motif. We investigated the effect of introduced mutations on caleosin capacity to initiate lipid accumulation and on caleosin sorting within cell as well as on its association with lipid droplets. Our results strongly suggest that the N-terminal domain is essential for proper protein sorting and targeting to lipid droplets but not for enhancing lipid accumulation.
Collapse
Affiliation(s)
- Zita Purkrtová
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France.
| | - Thierry Chardot
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France.
| | - Marine Froissard
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France.
| |
Collapse
|
107
|
Chen J, Tan RK, Guo XJ, Fu ZL, Wang Z, Zhang ZY, Tan XL. Transcriptome Analysis Comparison of Lipid Biosynthesis in the Leaves and Developing Seeds of Brassica napus. PLoS One 2015; 10:e0126250. [PMID: 25965272 PMCID: PMC4429122 DOI: 10.1371/journal.pone.0126250] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
Brassica napus seed is a lipid storage organ containing approximately 40% oil, while its leaves contain many kinds of lipids for many biological roles, but the overall amounts are less than in seeds. Thus, lipid biosynthesis in the developing seeds and the leaves is strictly regulated which results the final difference of lipids. However, there are few reports about the molecular mechanism controlling the difference in lipid biosynthesis between developing seeds and leaves. In this study, we tried to uncover this mechanism by analyzing the transcriptome data for lipid biosynthesis. The transcriptome data were de novo assembled and a total of 47,216 unigenes were obtained, which had an N50 length and median of 1271 and 755 bp, respectively. Among these unigenes, 36,368 (about 77.02%) were annotated and there were 109 up-regulated unigenes and 72 down-regulated unigenes in the developing seeds lipid synthetic pathway after comparing with leaves. In the oleic acid pathway, 23 unigenes were up-regulated and four unigenes were down-regulated. During triacylglycerol (TAG) synthesis, the key unigenes were all up-regulated, such as phosphatidate phosphatase and diacylglycerol O-acyltransferase. During palmitic acid, palmitoleic acid, stearic acid, linoleic acid and linolenic acid synthesis in leaves, the unigenes were nearly all up-regulated, which indicated that the biosynthesis of these particular fatty acids were more important in leaves. In the developing seeds, almost all the unigenes in the ABI3VP1, RKD, CPP, E2F-DP, GRF, JUMONJI, MYB-related, PHD and REM transcript factor families were up-regulated, which helped us to discern the regulation mechanism underlying lipid biosynthesis. The differential up/down-regulation of the genes and TFs involved in lipid biosynthesis in developing seeds and leaves provided direct evidence that allowed us to map the network that regulates lipid biosynthesis, and the identification of new TFs that are up-regulated in developing seeds will help us to further elucidate the lipids biosynthesis pathway in developing seeds and leaves.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Ren-Ke Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Xiao-Juan Guo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Zheng-Li Fu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Zheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Zhi-Yan Zhang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
108
|
Bouchez I, Pouteaux M, Canonge M, Genet M, Chardot T, Guillot A, Froissard M. Regulation of lipid droplet dynamics in Saccharomyces cerevisiae depends on the Rab7-like Ypt7p, HOPS complex and V1-ATPase. Biol Open 2015; 4:764-75. [PMID: 25948753 PMCID: PMC4571102 DOI: 10.1242/bio.20148615] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It has now been clearly shown that lipid droplets (LDs) play a dynamic role in the cell. This was reinforced by LD proteomics which suggest that a significant number of trafficking proteins are associated with this organelle. Using microscopy, we showed that LDs partly co-localize with the vacuole in S. cerevisiae. Immunoblot experiments confirmed the association of the vacuolar Rab GTPase Rab7-like Ypt7p with LDs. We observed an increase in fatty acid content and LD number in ypt7Δ mutant and also changes in LD morphology and intra LD fusions, revealing a direct role for Ypt7p in LD dynamics. Using co-immunoprecipitation, we isolated potential Ypt7p partners including, Vma13p, the H subunit of the V1 part of the vacuolar (H+) ATPase (V-ATPase). Deletion of the VMA13 gene, as well as deletion of three other subunits of the V1 part of the V-ATPase, also increased the cell fatty acid content and LD number. Mutants of the Homotypic fusion and vacuole protein sorting (HOPS) complex showed similar phenotypes. Here, we demonstrated that LD dynamics and membrane trafficking between the vacuole and LDs are regulated by the Rab7-like Ypt7p and are impaired when the HOPS complex and the V1 domain of the V-ATPase are defective.
Collapse
Affiliation(s)
- Isabelle Bouchez
- Institut Jean-Pierre Bourgin IJPB, UMR 1318 INRA, Saclay Plant Sciences, route de St Cyr (RD 10), 78026, Versailles cedex, France Institut Jean-Pierre Bourgin IJPB, UMR 1318 AgroParisTech, route de St Cyr (RD 10), 78026, Versailles cedex, France
| | - Marie Pouteaux
- Institut Jean-Pierre Bourgin IJPB, UMR 1318 INRA, Saclay Plant Sciences, route de St Cyr (RD 10), 78026, Versailles cedex, France Institut Jean-Pierre Bourgin IJPB, UMR 1318 AgroParisTech, route de St Cyr (RD 10), 78026, Versailles cedex, France
| | - Michel Canonge
- Institut Jean-Pierre Bourgin IJPB, UMR 1318 INRA, Saclay Plant Sciences, route de St Cyr (RD 10), 78026, Versailles cedex, France Institut Jean-Pierre Bourgin IJPB, UMR 1318 AgroParisTech, route de St Cyr (RD 10), 78026, Versailles cedex, France
| | - Mélanie Genet
- Institut Jean-Pierre Bourgin IJPB, UMR 1318 INRA, Saclay Plant Sciences, route de St Cyr (RD 10), 78026, Versailles cedex, France Institut Jean-Pierre Bourgin IJPB, UMR 1318 AgroParisTech, route de St Cyr (RD 10), 78026, Versailles cedex, France
| | - Thierry Chardot
- Institut Jean-Pierre Bourgin IJPB, UMR 1318 INRA, Saclay Plant Sciences, route de St Cyr (RD 10), 78026, Versailles cedex, France Institut Jean-Pierre Bourgin IJPB, UMR 1318 AgroParisTech, route de St Cyr (RD 10), 78026, Versailles cedex, France
| | - Alain Guillot
- MICALIS PAPPSO, UMR 1319 INRA, Domaine de Vilvert 78352, Jouy-en-Josas cedex, France MICALIS PAPPSO, UMR 1319 AgroParisTech, Domaine de Vilvert 78352, Jouy-en-Josas cedex, France
| | - Marine Froissard
- Institut Jean-Pierre Bourgin IJPB, UMR 1318 INRA, Saclay Plant Sciences, route de St Cyr (RD 10), 78026, Versailles cedex, France Institut Jean-Pierre Bourgin IJPB, UMR 1318 AgroParisTech, route de St Cyr (RD 10), 78026, Versailles cedex, France
| |
Collapse
|
109
|
Ambrosewicz-Walacik M, Tańska M, Rotkiewicz D. Phospholipids of Rapeseeds and Rapeseed Oils: Factors Determining Their Content and Technological Significance—A Review. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1022831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
110
|
Development of a novel strategy to isolate lipophilic allergens (oleosins) from peanuts. PLoS One 2015; 10:e0123419. [PMID: 25860789 PMCID: PMC4393030 DOI: 10.1371/journal.pone.0123419] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/23/2015] [Indexed: 11/24/2022] Open
Abstract
Background Peanut allergy is one of the most severe class I food allergies with increasing prevalence. Especially lipophilic allergens, such as oleosins, were found to be associated with severe symptoms, but are usually underrepresented in diagnostic extracts. Therefore, this study focused on isolation, molecular characterization and assessment of the allergenicity of peanut oleosins. Methods and Results A comprehensive method adapted for the isolation of peanut oil bodies of high purity was developed comprising a stepwise removal of seed storage proteins from oil bodies. Further separation of the oil body constituents, including the allergens Ara h 10, Ara h 11, the presumed allergen oleosin 3 and additional oleosin variants was achieved by a single run on a preparative electrophoresis cell. Protein identification realized by N-terminal sequencing, peptide mass fingerprinting and homology search revealed the presence of oleosins, steroleosins and a caleosin. Immunoblot analysis with sera of peanut-allergic individuals illustrated the IgE-binding capacity of peanut-derived oleosins. Conclusion Our method is a novel way to isolate all known immunologically distinct peanut oleosins simultaneously. Moreover, we were able to provide evidence for the allergenicity of oleosins and thus identified peanut oleosins as probable candidates for component-resolved allergy diagnosis.
Collapse
|
111
|
Matsuno K, Fujimura T. Do rice suspension-cultured cells treated with abscisic acid mimic developing seeds? Mol Genet Genomics 2015; 290:1551-62. [PMID: 25732383 DOI: 10.1007/s00438-015-1018-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/23/2015] [Indexed: 11/28/2022]
Abstract
Starch synthesis is activated in the endosperm during seed development and also in rice suspension cells cultured with abscisic acid. In the anticipation that the mechanisms of starch synthesis are similar between the endosperm and the suspension cells cultured with abscisic acid, expression of genes involved in starch synthesis was evaluated in the suspension cells after abscisic acid treatment. However, it was found that the regulatory mechanism of starch synthesis in the suspension cells cultured with abscisic acid was different from that in developing seeds. Expression analyses of genes involved in oil bodies, which accumulate in the embryo and aleurone layer, and seed storage proteins, which accumulate mainly in the endosperm, showed that the former were activated in the suspension cells cultured with abscisic acid, but the latter were not. Master regulators for embryogenesis, OsVP1 (homologue of AtABI3) and OsLFL1 (homologue of AtFUS3 or AtLFL2), were expressed in the suspension cells at levels comparable to those in the embryo. From these results, it is suggested that interactions between regulators and abscisic acid control the synthesis of phytic acid and oil bodies in the cultured cells and embryo. We suggest that the system of suspension cells cultured with abscisic acid helps to reveal the mechanisms of phytic acid and oil body synthesis in embryo.
Collapse
Affiliation(s)
- Koya Matsuno
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan,
| | | |
Collapse
|
112
|
Qu Y, Chakrabarty R, Tran HT, Kwon EJG, Kwon M, Nguyen TD, Ro DK. A lettuce (Lactuca sativa) homolog of human Nogo-B receptor interacts with cis-prenyltransferase and is necessary for natural rubber biosynthesis. J Biol Chem 2015; 290:1898-914. [PMID: 25477521 PMCID: PMC4303647 DOI: 10.1074/jbc.m114.616920] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/03/2014] [Indexed: 12/22/2022] Open
Abstract
Natural rubber (cis-1,4-polyisoprene) is an indispensable biopolymer used to manufacture diverse consumer products. Although a major source of natural rubber is the rubber tree (Hevea brasiliensis), lettuce (Lactuca sativa) is also known to synthesize natural rubber. Here, we report that an unusual cis-prenyltransferase-like 2 (CPTL2) that lacks the conserved motifs of conventional cis-prenyltransferase is required for natural rubber biosynthesis in lettuce. CPTL2, identified from the lettuce rubber particle proteome, displays homology to a human NogoB receptor and is predominantly expressed in latex. Multiple transgenic lettuces expressing CPTL2-RNAi constructs showed that a decrease of CPTL2 transcripts (3-15% CPTL2 expression relative to controls) coincided with the reduction of natural rubber as low as 5%. We also identified a conventional cis-prenyltransferase 3 (CPT3), exclusively expressed in latex. In subcellular localization studies using fluorescent proteins, cytosolic CPT3 was relocalized to endoplasmic reticulum by co-occurrence of CPTL2 in tobacco and yeast at the log phase. Furthermore, yeast two-hybrid data showed that CPTL2 and CPT3 interact. Yeast microsomes containing CPTL2/CPT3 showed enhanced synthesis of short cis-polyisoprenes, but natural rubber could not be synthesized in vitro. Intriguingly, a homologous pair CPTL1/CPT1, which displays ubiquitous expressions in lettuce, showed a potent dolichol biosynthetic activity in vitro. Taken together, our data suggest that CPTL2 is a scaffolding protein that tethers CPT3 on endoplasmic reticulum and is necessary for natural rubber biosynthesis in planta, but yeast-expressed CPTL2 and CPT3 alone could not synthesize high molecular weight natural rubber in vitro.
Collapse
Affiliation(s)
- Yang Qu
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Romit Chakrabarty
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hue T Tran
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Eun-Joo G Kwon
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Moonhyuk Kwon
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Trinh-Don Nguyen
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Dae-Kyun Ro
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
113
|
|
114
|
Liu H, Wang C, Chen F, Shen S. Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content. J Proteomics 2014; 113:403-14. [PMID: 25449834 DOI: 10.1016/j.jprot.2014.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/24/2014] [Accepted: 10/17/2014] [Indexed: 11/18/2022]
Abstract
UNLABELLED To reveal the difference among three mature Jatropha curcas seeds (JcVH, variant with high lipid content; JcW, wild type and JcVL, variant with low lipid content) with different lipid content, comparative proteomics was employed to profile the changes of oil body (OB) associated protein species by using gels-based proteomic technique. Eighty-three protein species were successfully identified through LTQ-ES-MS/MS from mature JcW seeds purified OBs. Two-dimensional electrophoresis analysis of J. curcas OB associated protein species revealed they had essential interactions with other organelles and demonstrated that oleosin and caleosin were the most abundant OB structural protein species. Twenty-eight OB associated protein species showed significant difference among JcVH, JcW and JcVL according to statistical analysis. Complementary transient expression analysis revealed that calcium ion binding protein (CalBP) and glycine-rich RNA binding protein (GRP) were well targeted in OBs apart from the oleosins. This study demonstrated that ratio of lipid content to caleosins abundance was involved in the regulation of OB size, and the mutant induced by ethylmethylsulfone treatment might be related to the caleosin like protein species. These findings are important for biotechnological improvement with the aim to alter the lipid content in J. curcas seeds. BIOLOGICAL SIGNIFICANCE The economic value of Jatropha curcas largely depends on the lipid content in seeds which are mainly stored in the special organelle called oil bodies (OBs). In consideration of the biological importance and applications of J. curcas OB in seeds, it is necessary to further explore the components and functions of J. curcas OBs. Although a previous study concerning the J. curcas OB proteome revealed oleosins were the major OB protein component and additional protein species were similar to those in other oil seed plants, these identified OB associated protein species were corresponding to the protein bands instead of protein spots in the electrophoresis gels. Furthermore, the interaction of OB associated protein species and their contribution to OB formation and stabilization are still blank. In this study, with the overall object of profiling OB protein species from mature J. curcas seeds with different lipid content, we provided a setting of comparative OB proteomics with biochemical data and transient expression to explore the core of OB associated protein species involved in the regulation of OB size and lipid accumulation. The results were important for biotechnological improvement with the aim to a global modification of lipid storage in J. curcas seeds. Meanwhile, this study gave insight into possible associations between OBs and other organelles in mature J. curcas seeds. It may represent new aspects of the biological functions of the OBs during the oil mobilization. Combined the technique of transient transformation, a newly reported protein species, glycine-rich RNA binding protein (GRP) was successfully targeted in OBs. Therefore, further molecular analysis of these protein species is warranted to verify this association and what role they have in OBs.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Cuiping Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Fan Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Shihua Shen
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
115
|
Pasaribu B, Lin IP, Chen CS, Lu CY, Jiang PL. Nutrient limitation in Auxenochlorella protothecoides induces qualitative changes of fatty acid and expression of caleosin as a membrane protein associated with oil bodies. Biotechnol Lett 2014; 36:175-80. [PMID: 24078127 DOI: 10.1007/s10529-013-1332-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
Abstract
Oil bodies formed in Auxenochlorella protothecoides induced during limited nutrition had a coating of caleosin. The total lipid content obtained from A. protothecoides in unstressed cultures (first week) was ~210 mg/g compared to the 231 mg/g obtained in the third week (nutrient limited) and 290 mg/g obtained in the fourth week (nutrient limited). The proportion of total saturated fatty acids increased from 28 to 46 %, whereas that of total polyunsaturated fatty acids decreased from 52 to 35 %. The expression levels of the 28 kDa caleosin protein in A. protothecoides rose to a maximum up to 4 weeks; immunolocalization studies showed that caleosin was predominantly associated with the membranes of oil bodies.
Collapse
|
116
|
Laibach N, Post J, Twyman RM, Gronover CS, Prüfer D. The characteristics and potential applications of structural lipid droplet proteins in plants. J Biotechnol 2014; 201:15-27. [PMID: 25160916 DOI: 10.1016/j.jbiotec.2014.08.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/07/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
Abstract
Plant cytosolic lipid droplets are storage organelles that accumulate hydrophobic molecules. They are found in many tissues and their general structure includes an outer lipid monolayer with integral and associated proteins surrounding a hydrophobic core. Two distinct types can be distinguished, which we define here as oleosin-based lipid droplets (OLDs) and non-oleosin-based lipid droplets (NOLDs). OLDs are the best characterized lipid droplets in plants. They are primarily restricted to seeds and other germinative tissues, their surface is covered with oleosin-family proteins to maintain stability, they store triacylglycerols (TAGs) and they are used as a source of energy (and possibly signaling molecules) during the germination of seeds and pollen. Less is known about NOLDs. They are more abundant than OLDs and are distributed in many tissues, they accumulate not only TAGs but also other hydrophobic molecules such as natural rubber, and the structural proteins that stabilize them are unrelated to oleosins. In many species these proteins are members of the rubber elongation factor superfamily. NOLDs are not typically used for energy storage but instead accumulate hydrophobic compounds required for environmental interactions such as pathogen defense. There are many potential applications of NOLDs including the engineering of lipid production in plants and the generation of artificial oil bodies.
Collapse
Affiliation(s)
- Natalie Laibach
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schlossplatz 8, 48143 Münster, Germany.
| | - Janina Post
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schlossplatz 8, 48143 Münster, Germany.
| | | | - Christian Schulze Gronover
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schlossplatz 8, 48143 Münster, Germany.
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schlossplatz 8, 48143 Münster, Germany; Westphalian Wilhelms-University of Münster, Institute of Plant Biology and Biotechnology, Schlossplatz 8, 48143 Münster, Germany.
| |
Collapse
|
117
|
Abstract
Oleosins form a steric barrier surface on lipid droplets in cytoplasm, preventing them from contacting and coalescing with adjacent droplets. Oleosin genes have been detected in numerous plant species. However, the presence of oleosin genes in the most basally diverging lineage of land plants, liverworts, has not been reported previously. Thus we explored whether liverworts have an oleosin gene. In Marchantia polymorpha L., a thalloid liverwort, one predicted sequence was found that could encode oleosin, possessing the hallmark of oleosin, a proline knot (-PX5SPX3P-) motif. The phylogeny of the oleosin gene family in land plants was reconstructed based on both nucleotide and amino acid sequences of oleosins, from 31 representative species covering almost all the main lineages of land plants. Based on our phylogenetic trees, oleosin genes were classified into three groups: M-oleosins (defined here as a novel group distinct from the two previously known groups), low molecular weight isoform (L-oleosin), and high molecular weight isoform (H-oleosin), according to their amino-acid organization, phylogenetic relationships, expression tissues, and immunological characteristics. In liverworts, mosses, lycophytes, and gymnosperms, only M-oleosins have been described. In angiosperms, however, while this isoform remains and is highly expressed in the gametophyte pollen tube, two other isoforms also occur, L-oleosins and H-oleosins. Phylogenetic analyses suggest that the M-oleosin isoform is the precursor to the ancestor of L-oleosins and H-oleosins. The later two isoforms evolved by successive gene duplications in ancestral angiosperms. At the genomic level, most oleosins possess no introns. If introns are present, in both the L-isoform and the M-isoform a single intron inserts behind the central region, while in the H-isoform, a single intron is located at the 5'-terminus. This study fills a major gap in understanding functional gene evolution of oleosin in land plants, shedding new light on evolutionary transitions of lipid storage strategies.
Collapse
Affiliation(s)
- Yuan Fang
- School of Life Science, East China Normal University, Shanghai, China
- University and Jepson Herbaria, and Department of Integrative Biology, University of California, Berkeley, California, United State of America
| | - Rui-Liang Zhu
- School of Life Science, East China Normal University, Shanghai, China
| | - Brent D. Mishler
- University and Jepson Herbaria, and Department of Integrative Biology, University of California, Berkeley, California, United State of America
| |
Collapse
|
118
|
Gwak Y, Hwang YS, Wang B, Kim M, Jeong J, Lee CG, Hu Q, Han D, Jin E. Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in Haematococcus pluvialis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4317-34. [PMID: 24821952 PMCID: PMC4112636 DOI: 10.1093/jxb/eru206] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Haematococcus pluvialis cells predominantly remain in the macrozooid stage under favourable environmental conditions but are rapidly differentiated into haematocysts upon exposure to various environmental stresses. Haematocysts are characterized by massive accumulations of astaxanthin sequestered in cytosolic oil globules. Lipidomic analyses revealed that synthesis of the storage lipid triacylglycerol (TAG) was substantially stimulated under high irradiance. Simultaneously, remodelling of membrane glycerolipids occurred as a result of dramatic reductions in chloroplast membrane glycolipids but remained unchanged or declined slightly in extraplastidic membrane glycerolipids. De novo assembly of transcriptomes revealed the genomic and metabolic features of this unsequenced microalga. Comparative transcriptomic analysis showed that so-called resting cells (haematocysts) may be more active than fast-growing vegetative cells (macrozooids) regarding metabolic pathways and functions. Comparative transcriptomic analyses of astaxanthin biosynthesis suggested that the non-mevalonate pathway mediated the synthesis of isopentenyl diphosphate, as the majority of genes involved in subsequent astaxanthin biosynthesis were substantially up-regulated under high irradiance, with the genes encoding phytoene synthase, phytoene desaturase, and β-carotene hydroxylase identified as the most prominent regulatory components. Accumulation of TAG under high irradiance was attributed to moderate up-regulation of de novo fatty acid biosynthesis at the gene level as well as to moderate elevation of the TAG assembly pathways. Additionally, inferred from transcriptomic differentiation, an increase in reactive oxygen species (ROS) scavenging activity, a decrease in ROS production, and the relaxation of over-reduction of the photosynthetic electron transport chain will work together to protect against photooxidative stress in H. pluvialis under high irradiance.
Collapse
Affiliation(s)
- Yunho Gwak
- Department of Life Science, Research Institute for Natural Science, Hanyang University, Seoul, 133-791, South Korea
| | - Yong-sic Hwang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, South Korea
| | - Baobei Wang
- College of Technology and Innovation, Arizona State University, Mesa, AZ 85212, USA
| | - Minju Kim
- Department of Life Science, Research Institute for Natural Science, Hanyang University, Seoul, 133-791, South Korea
| | - Jooyeon Jeong
- Department of Life Science, Research Institute for Natural Science, Hanyang University, Seoul, 133-791, South Korea
| | - Choul-Gyun Lee
- Department of Biotechnology, Institute of Industrial Biotechnology, Inha University, Incheon, 402-751, South Korea
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Danxiang Han
- College of Technology and Innovation, Arizona State University, Mesa, AZ 85212, USA
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Science, Hanyang University, Seoul, 133-791, South Korea
| |
Collapse
|
119
|
Maeda Y, Sunaga Y, Yoshino T, Tanaka T. Oleosome-associated protein of the oleaginous diatom Fistulifera solaris contains an endoplasmic reticulum-targeting signal sequence. Mar Drugs 2014; 12:3892-903. [PMID: 24983635 PMCID: PMC4113804 DOI: 10.3390/md12073892] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/01/2014] [Accepted: 06/13/2014] [Indexed: 12/21/2022] Open
Abstract
Microalgae tend to accumulate lipids as an energy storage material in the specific organelle, oleosomes. Current studies have demonstrated that lipids derived from microalgal oleosomes are a promising source of biofuels, while the oleosome formation mechanism has not been fully elucidated. Oleosome-associated proteins have been identified from several microalgae to elucidate the fundamental mechanisms of oleosome formation, although understanding their functions is still in infancy. Recently, we discovered a diatom-oleosome-associated-protein 1 (DOAP1) from the oleaginous diatom, Fistulifera solaris JPCC DA0580. The DOAP1 sequence implied that this protein might be transported into the endoplasmic reticulum (ER) due to the signal sequence. To ensure this, we fused the signal sequence to green fluorescence protein. The fusion protein distributed around the chloroplast as like a meshwork membrane structure, indicating the ER localization. This result suggests that DOAP1 could firstly localize at the ER, then move to the oleosomes. This study also demonstrated that the DOAP1 signal sequence allowed recombinant proteins to be specifically expressed in the ER of the oleaginous diatom. It would be a useful technique for engineering the lipid synthesis pathways existing in the ER, and finally controlling the biofuel quality.
Collapse
Affiliation(s)
- Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Yoshihiko Sunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
120
|
Song W, Qin Y, Zhu Y, Yin G, Wu N, Li Y, Hu Y. Delineation of plant caleosin residues critical for functional divergence, positive selection and coevolution. BMC Evol Biol 2014; 14:124. [PMID: 24913827 PMCID: PMC4057654 DOI: 10.1186/1471-2148-14-124] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 06/03/2014] [Indexed: 11/22/2022] Open
Abstract
Background The caleosin genes encode proteins with a single conserved EF hand calcium-binding domain and comprise small gene families found in a wide range of plant species. These proteins may be involved in many cellular and biological processes coupled closely to the synthesis, degradation, or stability of oil bodies. Although previous studies of this protein family have been reported for Arabidopsis and other species, understanding of the evolution of the caleosin gene family in plants remains inadequate. Results In this study, comparative genomic analysis was performed to investigate the phylogenetic relationships, evolutionary history, functional divergence, positive selection, and coevolution of caleosins. First, 84 caleosin genes were identified from five main lineages that included 15 species. Phylogenetic analysis placed these caleosins into five distinct subfamilies (sub I–V), including two subfamilies that have not been previously identified. Among these subfamilies, sub II coincided with the distinct P-caleosin isoform recently identified in the pollen oil bodies of lily; caleosin genes from the same lineage tended to be clustered together in the phylogenetic tree. A special motif was determined to be related with the classification of caleosins, which may have resulted from a deletion in sub I and sub III occurring after the evolutionary divergence of monocot and dicot species. Additionally, several segmentally and tandem-duplicated gene pairs were identified from seven species, and further analysis revealed that caleosins of different species did not share a common expansion model. The ages of each pair of duplications were calculated, and most were consistent with the time of genome-wide duplication events in each species. Functional divergence analysis showed that changes in functional constraints have occurred between subfamilies I/IV, II/IV, and II/V, and some critical amino acid sites were identified during the functional divergence. Additional analyses revealed that caleosins were under positive selection during evolution, and seven candidate amino acid sites (70R, 74G, 88 L, 89G, 100 K, 106A, 107S) for positive selection were identified. Interestingly, the critical amino acid residues of functional divergence and positive selection were mainly located in C-terminal domain. Finally, three groups of coevolved amino acid sites were identified. Among these coevolved sites, seven from group 2 were located in the Ca2+-binding region of crucial importance. Conclusion In this study, the evolutionary and expansion patterns of the caleosin gene family were predicted, and a series of amino acid sites relevant to their functional divergence, adaptive evolution, and coevolution were identified. These findings provide data to facilitate further functional analysis of caleosin gene families in the plant lineage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yingkao Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
121
|
Chen Y, Zhao L, Kong X, Zhang C, Hua Y. The properties and the related protein behaviors of oil bodies in soymilk preparation. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2239-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
122
|
Acevedo F, Rubilar M, Jofré I, Villarroel M, Navarrete P, Esparza M, Romero F, Vilches EA, Acevedo V, Shene C. Oil bodies as a potential microencapsulation carrier for astaxanthin stabilisation and safe delivery. J Microencapsul 2014; 31:488-500. [PMID: 24697185 DOI: 10.3109/02652048.2013.879931] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Astaxanthin (AST) is a valued molecule because of its high antioxidant properties. However, AST is extremely sensitive to oxidation, causing the loss of its bioactive properties. The purposes of this study were to define conditions for microencapsulating AST in oil bodies (OB) from Brassica napus to enhance its oxidative stability, and to test the bioactivity of the microencapsulated AST (AST-M) in cells. Conditions for maximising microencapsulation efficiency (ME) were determined using the Response Surface Methodology, obtaining a high ME (>99%). OB loaded with AST showed a strong electrostatic repulsion in a wide range of pH and ionic strengths. It was found that AST-M exposed to air and light was more stable than free AST. In addition, the protective effect of AST against intracellular ROS production was positively influenced by microencapsulation in OB. These results suggest that OB offer a novel option for stabilising and delivering AST.
Collapse
Affiliation(s)
- Francisca Acevedo
- Agriaquaculture Nutritional Genomic Center, CGNA, Technology and Processes Unit , Temuco , Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Davidi L, Shimoni E, Khozin-Goldberg I, Zamir A, Pick U. Origin of β-carotene-rich plastoglobuli in Dunaliella bardawil. PLANT PHYSIOLOGY 2014; 164:2139-56. [PMID: 24567188 PMCID: PMC3982768 DOI: 10.1104/pp.113.235119] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/20/2014] [Indexed: 05/17/2023]
Abstract
The halotolerant microalgae Dunaliella bardawil accumulates under nitrogen deprivation two types of lipid droplets: plastoglobuli rich in β-carotene (βC-plastoglobuli) and cytoplasmatic lipid droplets (CLDs). We describe the isolation, composition, and origin of these lipid droplets. Plastoglobuli contain β-carotene, phytoene, and galactolipids missing in CLDs. The two preparations contain different lipid-associated proteins: major lipid droplet protein in CLD and the Prorich carotene globule protein in βC-plastoglobuli. The compositions of triglyceride (TAG) molecular species, total fatty acids, and sn-1+3 and sn-2 positions in the two lipid pools are similar, except for a small increase in palmitic acid in plastoglobuli, suggesting a common origin. The formation of CLD TAG precedes that of βC-plastoglobuli, reaching a maximum after 48 h of nitrogen deprivation and then decreasing. Palmitic acid incorporation kinetics indicated that, at early stages of nitrogen deprivation, CLD TAG is synthesized mostly from newly formed fatty acids, whereas in βC-plastoglobuli, a large part of TAG is produced from fatty acids of preformed membrane lipids. Electron microscopic analyses revealed that CLDs adhere to chloroplast envelope membranes concomitant with appearance of small βC-plastoglobuli within the chloroplast. Based on these results, we propose that CLDs in D. bardawil are produced in the endoplasmatic reticulum, whereas βC-plastoglobuli are made, in part, from hydrolysis of chloroplast membrane lipids and in part, by a continual transfer of TAG or fatty acids derived from CLD.
Collapse
|
124
|
López-Ribera I, La Paz JL, Repiso C, García N, Miquel M, Hernández ML, Martínez-Rivas JM, Vicient CM. The evolutionary conserved oil body associated protein OBAP1 participates in the regulation of oil body size. PLANT PHYSIOLOGY 2014; 164:1237-49. [PMID: 24406791 PMCID: PMC3938616 DOI: 10.1104/pp.113.233221] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/06/2014] [Indexed: 05/23/2023]
Abstract
A transcriptomic approach has been used to identify genes predominantly expressed in maize (Zea mays) scutellum during maturation. One of the identified genes is oil body associated protein1 (obap1), which is transcribed during seed maturation predominantly in the scutellum, and its expression decreases rapidly after germination. Proteins similar to OBAP1 are present in all plants, including primitive plants and mosses, and in some fungi and bacteria. In plants, obap genes are divided in two subfamilies. Arabidopsis (Arabidopsis thaliana) genome contains five genes coding for OBAP proteins. Arabidopsis OBAP1a protein is accumulated during seed maturation and disappears after germination. Agroinfiltration of tobacco (Nicotiana benthamiana) epidermal leaf cells with fusions of OBAP1 to yellow fluorescent protein and immunogold labeling of embryo transmission electron microscopy sections showed that OBAP1 protein is mainly localized in the surface of the oil bodies. OBAP1 protein was detected in the oil body cellular fraction of Arabidopsis embryos. Deletion analyses demonstrate that the most hydrophilic part of the protein is responsible for the oil body localization, which suggests an indirect interaction of OBAP1 with other proteins in the oil body surface. An Arabidopsis mutant with a transfer DNA inserted in the second exon of the obap1a gene and an RNA interference line against the same gene showed a decrease in the germination rate, a decrease in seed oil content, and changes in fatty acid composition, and their embryos have few, big, and irregular oil bodies compared with the wild type. Taken together, our findings suggest that OBAP1 protein is involved in the stability of oil bodies.
Collapse
|
125
|
Jiang PL, Pasaribu B, Chen CS. Nitrogen-deprivation elevates lipid levels in Symbiodinium spp. by lipid droplet accumulation: morphological and compositional analyses. PLoS One 2014; 9:e87416. [PMID: 24475285 PMCID: PMC3903884 DOI: 10.1371/journal.pone.0087416] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/20/2013] [Indexed: 11/18/2022] Open
Abstract
Stable cnidarian-dinoflagellate (genus Symbiodinium) endosymbioses depend on the regulation of nutrient transport between Symbiodinium populations and their hosts. It has been previously shown that the host cytosol is a nitrogen-deficient environment for the intracellular Symbiodinium and may act to limit growth rates of symbionts during the symbiotic association. This study aimed to investigate the cell proliferation, as well as ultrastructural and lipid compositional changes, in free-living Symbiodinium spp. (clade B) upon nitrogen (N)-deprivation. The cell proliferation of the N-deprived cells decreased significantly. Furthermore, staining with a fluorescent probe, boron dipyrromethane 493/503 (BODIPY 493/503), indicated that lipid contents progressively accumulated in the N-deprived cells. Lipid analyses further showed that both triacylglycerol (TAG) and cholesterol ester (CE) were drastically enriched, with polyunsaturated fatty acids (PUFA; i.e., docosahexaenoic acid, heneicosapentaenoic acid, and oleic acid) became more abundant. Ultrastructural examinations showed that the increase in concentration of these lipid species was due to the accumulation of lipid droplets (LDs), a cellular feature that have previously shown to be pivotal in the maintenance of intact endosymbioses. Integrity of these stable LDs was maintained via electronegative repulsion and steric hindrance possibly provided by their surface proteins. Proteomic analyses of these LDs identified proteins putatively involved in lipid metabolism, signaling, stress response and energy metabolism. These results suggest that LDs production may be an adaptive response that enables Symbiodinium to maintain sufficient cellular energy stores for survival under the N-deprived conditions in the host cytoplasm.
Collapse
Affiliation(s)
- Pei-Luen Jiang
- Graduate Institute of Marine Biotechnology, National Dong-Hwa University, Pingtung, Taiwan
- Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Buntora Pasaribu
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Chii-Shiarng Chen
- Graduate Institute of Marine Biotechnology, National Dong-Hwa University, Pingtung, Taiwan
- Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
126
|
Nikiforidis CV, Matsakidou A, Kiosseoglou V. Composition, properties and potential food applications of natural emulsions and cream materials based on oil bodies. RSC Adv 2014. [DOI: 10.1039/c4ra00903g] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oil bodies are micron- or submicron-sized organelles found mainly in parts of plants such as seeds, nuts or some fruits and their main role is to function as energy stores.
Collapse
Affiliation(s)
| | - Anthia Matsakidou
- Laboratory of Food Chemistry and Technology
- Department of Chemistry
- Aristotle University
- Thessaloniki, Greece
| | - Vasilios Kiosseoglou
- Laboratory of Food Chemistry and Technology
- Department of Chemistry
- Aristotle University
- Thessaloniki, Greece
| |
Collapse
|
127
|
Gidda SK, Watt SC, Collins-Silva J, Kilaru A, Arondel V, Yurchenko O, Horn PJ, James CN, Shintani D, Ohlrogge JB, Chapman KD, Mullen RT, Dyer JM. Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells. PLANT SIGNALING & BEHAVIOR 2013; 8:e27141. [PMID: 24305619 PMCID: PMC4091607 DOI: 10.4161/psb.27141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/10/2013] [Indexed: 05/20/2023]
Abstract
While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small rubber particle proteins (SRPPs) found in rubber-accumulating plants. Here, we provide additional evidence for a role of LDAPs in lipid accumulation in oil-rich fruit tissues, and further explore the functional relationships between LDAPs and SRPPs. In addition, we propose that the larger LDAP/SRPP protein family plays important roles in the compartmentalization of lipophilic compounds, including triacylglycerols and polyisoprenoids, into lipid droplets within plant cells. Potential roles in lipid droplet biogenesis and function of these proteins also are discussed.
Collapse
Affiliation(s)
- Satinder K Gidda
- Department of Molecular and Cellular Biology; University of Guelph; Guelph, ON Canada
| | | | - Jillian Collins-Silva
- Department of Biochemistry and Molecular Biology; University of Nevada; Reno, NV USA
| | - Aruna Kilaru
- Department of Biological Sciences; East Tennessee State University; Johnson City, TN USA
| | - Vincent Arondel
- CNRS and University of Bordeaux; UMR5200 LBM; BP81; Villenave d’Ornon cedex, France
| | - Olga Yurchenko
- USDA-ARS; US Arid-Land Agricultural Research Center; Maricopa, AZ USA
| | - Patrick J Horn
- Department of Biological Sciences; Center for Plant Lipid Research; University of North Texas; Denton, TX USA
| | - Christopher N James
- Department of Biological Sciences; Center for Plant Lipid Research; University of North Texas; Denton, TX USA
| | | | - John B Ohlrogge
- Department of Plant Biology; Michigan State University; East Lansing, MI USA
| | - Kent D Chapman
- Department of Biological Sciences; Center for Plant Lipid Research; University of North Texas; Denton, TX USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology; University of Guelph; Guelph, ON Canada
| | - John M Dyer
- USDA-ARS; US Arid-Land Agricultural Research Center; Maricopa, AZ USA
- Correspondence to: John M Dyer,
| |
Collapse
|
128
|
Chang MT, Tsai TR, Lee CY, Wei YS, Chen YJ, Chen CR, Tzen JTC. Elevating bioavailability of curcumin via encapsulation with a novel formulation of artificial oil bodies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9666-9671. [PMID: 24020431 DOI: 10.1021/jf4019195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Utilization of curcumin has been limited due to its poor oral bioavailability. Oral bioavailability of hydrophobic compounds might be elevated via encapsulation in artificial seed oil bodies. This study aimed to improve oral bioavailability of curcumin via this encapsulation. Unfortunately, curcumin was indissoluble in various seed oils. A mixed dissolvent formula was used to dissolve curcumin, and the admixture was successfully encapsulated in artificial oil bodies stabilized by recombinant sesame caleosin. The artificial oil bodies of relatively small sizes (150 nm) were stably solidified in the forms of powder and tablet. Oral bioavailability of curcumin with or without encapsulation in artificial oil bodies was assessed in Sprague-Dawley male rats. The results showed that encapsulation of curcumin significantly elevated its bioavailability and provided the highest maximum whole blood concentration (Cmax), 37 ± 28 ng/mL, in the experimental animals 45 ± 17 min (t(max)) after oral administration. Relative bioavailability calculated on the basis of the area under the plasma concentration-time curve (AUC) was increased by 47.7 times when curcumin was encapsulated in the artificial oil bodies. This novel formulation of artificial oil bodies seems to possess great potential to encapsulate hydrophobic drugs for oral administration.
Collapse
Affiliation(s)
- Ming-Tsung Chang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
129
|
Tassinari B, Doherty S, Marison IW. Submicron capsules extracted from rapeseed as novel flocculant agents for the treatment of turbid water. WATER RESEARCH 2013; 47:4957-4965. [PMID: 23850208 DOI: 10.1016/j.watres.2013.05.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 06/02/2023]
Abstract
Flocculation is an important step in water treatment as it is responsible for the separation of suspended solids and colloids. The currently used flocculants have certain limitations with respect to environmental impact and disposal as well as potentially being harmful to human health, which has encouraged the study of natural flocculants originating from oleaginous plants. Oil-bodies are individual small organelles in which oleaginous seeds store triacylglycerols reserves. In this article, the flocculant properties of oil-bodies have been investigated. Oil-bodies flocculate at pH 5, 7 and 9 and high ionic strength (100 mM NaCl) and it was demonstrated that their intact structure is necessary for the flocculation activity as treatment with protease K and diethyl ether, that remove the protein coat and the oil-core, respectively, dramatically decreased the flocculation activity. This study shows that oil-bodies have the potential to be novel, natural, sustainable, environmentally friendly and biodegradable flocculant candidates for water treatment.
Collapse
Affiliation(s)
- B Tassinari
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | |
Collapse
|
130
|
Single cell synchrotron FT-IR microspectroscopy reveals a link between neutral lipid and storage carbohydrate fluxes in S. cerevisiae. PLoS One 2013; 8:e74421. [PMID: 24040242 PMCID: PMC3770668 DOI: 10.1371/journal.pone.0074421] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/01/2013] [Indexed: 12/14/2022] Open
Abstract
In most organisms, storage lipids are packaged into specialized structures called lipid droplets. These contain a core of neutral lipids surrounded by a monolayer of phospholipids, and various proteins which vary depending on the species. Hydrophobic structural proteins stabilize the interface between the lipid core and aqueous cellular environment (perilipin family of proteins, apolipoproteins, oleosins). We developed a genetic approach using heterologous expression in Saccharomyces cerevisiae of the Arabidopsis thaliana lipid droplet oleosin and caleosin proteins AtOle1 and AtClo1. These transformed yeasts overaccumulate lipid droplets, leading to a specific increase in storage lipids. The phenotype of these cells was explored using synchrotron FT-IR microspectroscopy to investigate the dynamics of lipid storage and cellular carbon fluxes reflected as changes in spectral fingerprints. Multivariate statistical analysis of the data showed a clear effect on storage carbohydrates and more specifically, a decrease in glycogen in our modified strains. These observations were confirmed by biochemical quantification of the storage carbohydrates glycogen and trehalose. Our results demonstrate that neutral lipid and storage carbohydrate fluxes are tightly connected and co-regulated.
Collapse
|
131
|
Liu Y, Huang Z, Ao Y, Li W, Zhang Z. Transcriptome analysis of yellow horn (Xanthoceras sorbifolia Bunge): a potential oil-rich seed tree for biodiesel in China. PLoS One 2013; 8:e74441. [PMID: 24040247 PMCID: PMC3770547 DOI: 10.1371/journal.pone.0074441] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/02/2013] [Indexed: 11/27/2022] Open
Abstract
Background Yellow horn (Xanthoceras sorbifolia Bunge) is an oil-rich seed shrub that grows well in cold, barren environments and has great potential for biodiesel production in China. However, the limited genetic data means that little information about the key genes involved in oil biosynthesis is available, which limits further improvement of this species. In this study, we describe sequencing and de novo transcriptome assembly to produce the first comprehensive and integrated genomic resource for yellow horn and identify the pathways and key genes related to oil accumulation. In addition, potential molecular markers were identified and compiled. Methodology/Principal Findings Total RNA was isolated from 30 plants from two regions, including buds, leaves, flowers and seeds. Equal quantities of RNA from these tissues were pooled to construct a cDNA library for 454 pyrosequencing. A total of 1,147,624 high-quality reads with total and average lengths of 530.6 Mb and 462 bp, respectively, were generated. These reads were assembled into 51,867 unigenes, corresponding to a total of 36.1 Mb with a mean length, N50 and median of 696, 928 and 570 bp, respectively. Of the unigenes, 17,541 (33.82%) were unmatched in any public protein databases. We identified 281 unigenes that may be involved in de novo fatty acid (FA) and triacylglycerol (TAG) biosynthesis and metabolism. Furthermore, 6,707 SSRs, 16,925 SNPs and 6,201 InDels with high-confidence were also identified in this study. Conclusions This transcriptome represents a new functional genomics resource and a foundation for further studies on the metabolic engineering of yellow horn to increase oil content and modify oil composition. The potential molecular markers identified in this study provide a basis for polymorphism analysis of Xanthoceras, and even Sapindaceae; they will also accelerate the process of breeding new varieties with better agronomic characteristics.
Collapse
Affiliation(s)
- Yulin Liu
- College of Biological Science and Biotechnology, Beijing Forest University, Beijing, China
| | - Zhedong Huang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forest University, Beijing, China
| | - Yan Ao
- Academy of Forest, Beijing Forest University, Beijing, China
| | - Wei Li
- College of Biological Science and Biotechnology, Beijing Forest University, Beijing, China
- * E-mail: (WL); (ZXZ)
| | - Zhixiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forest University, Beijing, China
- * E-mail: (WL); (ZXZ)
| |
Collapse
|
132
|
Localisation of Storage Reserves in Developing Seeds of Pongamia pinnata (L.) Pierre, a Potential Agroforestry Tree. J AM OIL CHEM SOC 2013. [DOI: 10.1007/s11746-013-2335-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
133
|
Tandem oleosin genes in a cluster acquired in Brassicaceae created tapetosomes and conferred additive benefit of pollen vigor. Proc Natl Acad Sci U S A 2013; 110:14480-5. [PMID: 23940319 DOI: 10.1073/pnas.1305299110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During evolution, genomes expanded via whole-genome, segmental, tandem, and individual-gene duplications, and the emerged redundant paralogs would be eliminated or retained owing to selective neutrality or adaptive benefit and further functional divergence. Here we show that tandem paralogs can contribute adaptive quantitative benefit and thus have been retained in a lineage-specific manner. In Brassicaceae, a tandem oleosin gene cluster of five to nine paralogs encodes ample tapetum-specific oleosins located in abundant organelles called tapetosomes in flower anthers. Tapetosomes coordinate the storage of lipids and flavonoids and their transport to the adjacent maturing pollen as the coat to serve various functions. Transfer-DNA and siRNA mutants of Arabidopsis thaliana with knockout and knockdown of different tandem oleosin paralogs had quantitative and correlated loss of organized structures of the tapetosomes, pollen-coat materials, and pollen tolerance to dehydration. Complementation with the knockout paralog restored the losses. Cleomaceae is the family closest to Brassicaceae. Cleome species did not contain the tandem oleosin gene cluster, tapetum oleosin transcripts, tapetosomes, or pollen tolerant to dehydration. Cleome hassleriana transformed with an Arabidopsis oleosin gene for tapetum expression possessed primitive tapetosomes and pollen tolerant to dehydration. We propose that during early evolution of Brassicaceae, a duplicate oleosin gene mutated from expression in seed to the tapetum. The tapetum oleosin generated primitive tapetosomes that organized stored lipids and flavonoids for their effective transfer to the pollen surface for greater pollen vitality. The resulting adaptive benefit led to retention of tandem-duplicated oleosin genes for production of more oleosin and modern tapetosomes.
Collapse
|
134
|
Nojima D, Yoshino T, Maeda Y, Tanaka M, Nemoto M, Tanaka T. Proteomics analysis of oil body-associated proteins in the oleaginous diatom. J Proteome Res 2013; 12:5293-301. [PMID: 23879348 DOI: 10.1021/pr4004085] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
For biodiesel production from microalgae, it is desirable to understand the entire triacylglycerol (TAG) metabolism. TAG accumulation occurs in oil bodies, and although oil body-associated proteins could play important roles in TAG metabolism, only a few microalgal species have been studied by a comprehensive analysis. Diatoms are microalgae that are promising producers of biodiesel, on which such proteomics analysis has not been conducted to date. Herein, we identified oil body-associated proteins in the oleaginous diatom Fistulifera sp. strain JPCC DA0580. The oil body fraction was separated by cell disruption with beads beating and subsequent ultracentrifugation. Contaminating factors could be removed by comparing proteins from the oil body and the soluble fractions. This novel strategy successfully revealed 15 proteins as oil body-associated protein candidates. Among them, two proteins, which were parts of proteins predicted to have transmembrane domains, were indeed confirmed to specifically localize to the oil bodies in this strain by observation of GFP fusion proteins. One (predicted to be a potassium channel) was also detected from the ER, suggesting that oil bodies might originate from the ER. By utilizing this novel subtraction method, we succeeded in identifying the oil body-associated proteins in the diatom for the first time.
Collapse
Affiliation(s)
- Daisuke Nojima
- Institute of Engineering, Tokyo University of Agriculture and Technology , 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | |
Collapse
|
135
|
Horn PJ, James CN, Gidda SK, Kilaru A, Dyer JM, Mullen RT, Ohlrogge JB, Chapman KD. Identification of a new class of lipid droplet-associated proteins in plants. PLANT PHYSIOLOGY 2013; 162:1926-36. [PMID: 23821652 PMCID: PMC3729771 DOI: 10.1104/pp.113.222455] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/01/2013] [Indexed: 05/12/2023]
Abstract
Lipid droplets in plants (also known as oil bodies, lipid bodies, or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets occur in essentially all plant cell types, many of which may not require oleosin-mediated stabilization. The proteins associated with the surface of nonseed lipid droplets, which are likely to influence the formation, stability, and turnover of this compartment, remain to be elucidated. Here, we have combined lipidomic, proteomic, and transcriptomic studies of avocado (Persea americana) mesocarp to identify two new lipid droplet-associated proteins, which we named LDAP1 and LDAP2. These proteins are highly similar to each other and also to the small rubber particle proteins that accumulate in rubber-producing plants. An Arabidopsis (Arabidopsis thaliana) homolog to LDAP1 and LDAP2, At3g05500, was localized to the surface of lipid droplets after transient expression in tobacco (Nicotiana tabacum) cells that were induced to accumulate triacylglycerols. We propose that small rubber particle protein-like proteins are involved in the general process of binding and perhaps the stabilization of lipid-rich particles in the cytosol of plant cells and that the avocado and Arabidopsis protein members reveal a new aspect of the cellular machinery that is involved in the packaging of triacylglycerols in plant tissues.
Collapse
Affiliation(s)
- Patrick J. Horn
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (P.J.H., C.N.J., K.D.C.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., R.T.M.)
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614 (A.K.)
- United States Department of Agriculture-Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (J.M.D.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (A.K., J.B.O.)
| | - Christopher N. James
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (P.J.H., C.N.J., K.D.C.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., R.T.M.)
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614 (A.K.)
- United States Department of Agriculture-Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (J.M.D.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (A.K., J.B.O.)
| | - Satinder K. Gidda
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (P.J.H., C.N.J., K.D.C.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., R.T.M.)
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614 (A.K.)
- United States Department of Agriculture-Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (J.M.D.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (A.K., J.B.O.)
| | - Aruna Kilaru
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (P.J.H., C.N.J., K.D.C.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., R.T.M.)
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614 (A.K.)
- United States Department of Agriculture-Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (J.M.D.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (A.K., J.B.O.)
| | - John M. Dyer
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (P.J.H., C.N.J., K.D.C.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., R.T.M.)
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614 (A.K.)
- United States Department of Agriculture-Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (J.M.D.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (A.K., J.B.O.)
| | - Robert T. Mullen
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (P.J.H., C.N.J., K.D.C.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., R.T.M.)
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614 (A.K.)
- United States Department of Agriculture-Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (J.M.D.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (A.K., J.B.O.)
| | - John B. Ohlrogge
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (P.J.H., C.N.J., K.D.C.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., R.T.M.)
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614 (A.K.)
- United States Department of Agriculture-Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (J.M.D.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (A.K., J.B.O.)
| | | |
Collapse
|
136
|
Vindigni JD, Wien F, Giuliani A, Erpapazoglou Z, Tache R, Jagic F, Chardot T, Gohon Y, Froissard M. Fold of an oleosin targeted to cellular oil bodies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1881-8. [DOI: 10.1016/j.bbamem.2013.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/26/2013] [Accepted: 04/09/2013] [Indexed: 01/18/2023]
|
137
|
Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation. J Proteomics 2013; 91:23-40. [PMID: 23835435 DOI: 10.1016/j.jprot.2013.06.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 01/16/2023]
Abstract
UNLABELLED To characterize the metabolic signatures of lipid accumulation in Jatropha curcas seeds, comparative proteomic technique was employed to profile protein changes during the seed development. Temporal changes in comparative proteome were examined using gels-based proteomic technique at six developmental stages for lipid accumulation. And 104 differentially expressed proteins were identified by MALDI-TOF/TOF tandem mass spectrometry. These protein species were classified into 10 functional categories, and the results demonstrated that protein species related to energy and metabolism were notably accumulated and involved in the carbon flux to lipid accumulation that occurs primarily from early to late stage in seed development. Glycolysis and oxidative pentose phosphate pathways were the major pathways of producing carbon flux, and the glucose-6-phosphate and triose-phosphate are the major carbon source for fatty acid synthesis. Lipid analysis revealed that fatty acid accumulation initiated 25days after flowering at the late stage of seed development of J. curcas. Furthermore, C16:0 was initially synthesized as the precursor for the elongation to C18:1 and C18:2 in the developing seeds of J. curcas. Together, the metabolic signatures on protein changes in seed development provide profound knowledge and perspective insights into understanding lipid network in J. curcas. BIOLOGICAL SIGNIFICANCE Due to the abundant oil content in seeds, Jatropha curcas seeds are being considered as the ideal materials for biodiesel. Although several studies had carried out the transcriptomic project to study the genes expression profiles in seed development of J. curcas, these ESTs hadn't been confirmed by qRT-PCR. Yet, the seed development of J. curcas had been described for a pool of developing seeds instead of being characterized systematically. Moreover, cellular metabolic events are also controlled by protein-protein interactions, posttranslational protein modifications, and enzymatic activities which cannot be described by transcriptional profiling approaches alone. In this study, within the overall objective of profiling differential protein abundance in developing J. curcas seeds, we provide a setting of physiological data with dynamic proteomic and qRT-PCR analysis to characterize the metabolic pathways and the relationship between mRNA and protein patterns from early stage to seed filling during the seed development of J. curcas. The construction of J. curcas seed development proteome profiles will significantly increase our understanding of the process of seed development and provide a foundation to examine the dynamic changes of the metabolic network during seed development process and certainly suggest some clues to improve the lipid content of J. curcas seeds.
Collapse
|
138
|
Ouyang LL, Chen SH, Li Y, Zhou ZG. Transcriptome analysis reveals unique C4-like photosynthesis and oil body formation in an arachidonic acid-rich microalga Myrmecia incisa Reisigl H4301. BMC Genomics 2013; 14:396. [PMID: 23759028 PMCID: PMC3686703 DOI: 10.1186/1471-2164-14-396] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 06/06/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arachidonic acid (ArA) is important for human health because it is one of the major components of mammalian brain membrane phospholipids. The interest in ArA inspired the search for a new sustainable source, and the green microalga Myrmecia incisa Reisigl H4301 has been found a potential ArA-producer due to a high content of intracellular ArA. To gain more molecular information about metabolism pathways, including the biosynthesis of ArA in the non-model microalga, a transcriptomic analysis was performed. RESULTS The 454 pyrosequencing generated 371,740 high-quality reads, which were assembled into 51,908 unique sequences consisting of 22,749 contigs and 29,159 singletons. A total of 11,873 unique sequences were annotated through BLAST analysis, and 3,733 were assigned to Gene Ontology (GO) categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis uncovered a C4-like photosynthesis pathway in M. incisa. The biosynthesis pathways of lipid particularly those of ArA and triacylglycerol (TAG) were analyzed in detail, and TAG was proposed to be accumulated in oil bodies in the cytosol with the help of caleosin or oil globule-associated proteins. In addition, the carotenoid biosynthesis pathways are discussed. CONCLUSION This transcriptomic analysis of M. incisa enabled a global understanding of mechanisms involved in photosynthesis, de novo biosynthesis of ArA, metabolism of carotenoids, and accumulation of TAG in M. incisa. These findings provided a molecular basis for the research and possibly economic exploitation of this ArA-rich microalga.
Collapse
Affiliation(s)
- Long-Ling Ouyang
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New District, Shanghai 201306, China
| | - Si-Hong Chen
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New District, Shanghai 201306, China
| | - Yan Li
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New District, Shanghai 201306, China
| | - Zhi-Gang Zhou
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New District, Shanghai 201306, China
| |
Collapse
|
139
|
Fahy D, Scheer B, Wallis JG, Browse J. Reducing saturated fatty acids in Arabidopsis seeds by expression of a Caenorhabditis elegans 16:0-specific desaturase. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:480-489. [PMID: 23279079 DOI: 10.1111/pbi.12034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 06/01/2023]
Abstract
Plant oilseeds are a major source of nutritional oils. Their fatty acid composition, especially the proportion of saturated and unsaturated fatty acids, has important effects on human health. Because intake of saturated fats is correlated with the incidence of cardiovascular disease and diabetes, a goal of metabolic engineering is to develop oils low in saturated fatty acids. Palmitic acid (16:0) is the most abundant saturated fatty acid in the seeds of many oilseed crops and in Arabidopsis thaliana. We expressed FAT-5, a membrane-bound desaturase cloned from Caenorhabditis elegans, in Arabidopsis using a strong seed-specific promoter. The FAT-5 enzyme is highly specific to 16:0 as substrate, converting it to 16:1∆9; expression of fat-5 reduced the 16:0 content of the seed by two-thirds. Decreased 16:0 and elevated 16:1 levels were evident both in the storage and membrane lipids of seeds. Regiochemical analysis of phosphatidylcholine showed that 16:1 was distributed at both positions on the glycerolipid backbone, unlike 16:0, which is predominately found at the sn-1 position. Seeds from a plant line homozygous for FAT-5 expression were comparable to wild type with respect to seed set and germination, while oil content and weight were somewhat reduced. These experiments demonstrate that targeted heterologous expression of a desaturase in oilseeds can reduce the level of saturated fatty acids in the oil, significantly improving its nutritional value.
Collapse
Affiliation(s)
- Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | | | | | | |
Collapse
|
140
|
Michalski MC, Genot C, Gayet C, Lopez C, Fine F, Joffre F, Vendeuvre JL, Bouvier J, Chardigny JM, Raynal-Ljutovac K. Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism. Prog Lipid Res 2013; 52:354-73. [PMID: 23624223 DOI: 10.1016/j.plipres.2013.04.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/13/2013] [Accepted: 04/10/2013] [Indexed: 11/18/2022]
Abstract
On a nutritional standpoint, lipids are now being studied beyond their energy content and fatty acid (FA) profiles. Dietary FA are building blocks of a huge diversity of more complex molecules such as triacylglycerols (TAG) and phospholipids (PL), themselves organised in supramolecular structures presenting different thermal behaviours. They are generally embedded in complex food matrixes. Recent reports have revealed that molecular and supramolecular structures of lipids and their liquid or solid state at the body temperature influence both the digestibility and metabolism of dietary FA. The aim of the present review is to highlight recent knowledge on the impact on FA digestion, absorption and metabolism of: (i) the intramolecular structure of TAG; (ii) the nature of the lipid molecules carrying FA; (iii) the supramolecular organization and physical state of lipids in native and formulated food products and (iv) the food matrix. Further work should be accomplished now to obtain a more reliable body of evidence and integrate these data in future dietary recommendations. Additionally, innovative lipid formulations in which the health beneficial effects of either native or recomposed structures of lipids will be taken into account can be foreseen.
Collapse
Affiliation(s)
- M C Michalski
- INRA, USC1235, INSERM U1060, CarMeN laboratory, IMBL, F-69621 Villeurbanne, France; CRNH Rhône-Alpes, CENS, F-69600 Oullins, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Huang NL, Huang MD, Chen TLL, Huang AH. Oleosin of subcellular lipid droplets evolved in green algae. PLANT PHYSIOLOGY 2013; 161:1862-74. [PMID: 23391579 PMCID: PMC3613461 DOI: 10.1104/pp.112.212514] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 02/04/2013] [Indexed: 05/20/2023]
Abstract
In primitive and higher plants, intracellular storage lipid droplets (LDs) of triacylglycerols are stabilized with a surface layer of phospholipids and oleosin. In chlorophytes (green algae), a protein termed major lipid-droplet protein (MLDP) rather than oleosin on LDs was recently reported. We explored whether MLDP was present directly on algal LDs and whether algae had oleosin genes and oleosins. Immunofluorescence microscopy revealed that MLDP in the chlorophyte Chlamydomonas reinhardtii was associated with endoplasmic reticulum subdomains adjacent to but not directly on LDs. In C. reinhardtii, low levels of a transcript encoding an oleosin-like protein (oleolike) in zygotes-tetrads and a transcript encoding oleosin in vegetative cells transferred to an acetate-enriched medium were found in transcriptomes and by reverse transcription-polymerase chain reaction. The C. reinhardtii LD fraction contained minimal proteins with no detectable oleolike or oleosin. Several charophytes (advanced green algae) possessed low levels of transcripts encoding oleosin but not oleolike. In the charophyte Spirogyra grevilleana, levels of oleosin transcripts increased greatly in cells undergoing conjugation for zygote formation, and the LD fraction from these cells contained minimal proteins, two of which were oleosins identified via proteomics. Because the minimal oleolike and oleosins in algae were difficult to detect, we tested their subcellular locations in Physcomitrella patens transformed with the respective algal genes tagged with a Green Fluorescent Protein gene and localized the algal proteins on P. patens LDs. Overall, oleosin genes having weak and cell/development-specific expression were present in green algae. We present a hypothesis for the evolution of oleosins from algae to plants.
Collapse
|
142
|
Chang MT, Chen CR, Liu TH, Lee CP, Tzen JTC. Development of a protocol to solidify native and artificial oil bodies for long-term storage at room temperature. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:1516-1519. [PMID: 22936615 DOI: 10.1002/jsfa.5870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/14/2012] [Accepted: 07/25/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Oil bodies isolated from sesame seeds coalesced to form large oil drops when they were solidified in a drying process commonly used for food products. The aim of this study was to develop a protocol to solidify oil bodies for long-term storage at room temperature. RESULTS On the basis of testing several excipients, the coalescence of oil bodies could be effectively prevented when they were combined with mannitol. Sizes of oil bodies appeared similar under a light microscope before and after powderisation in combination with 70% or more mannitol. Artificial oil bodies were successfully generated with sesame oil, phospholipid and recombinant sesame caleosin. Following the developed protocol, native and artificial oil bodies were stably solidified in tablets. Both native and artificial oil bodies dissolved from the tablets remained stable after an accelerated stress test under a condition of 75% humidity at 40 °C for 4 months. CONCLUSION A protocol was successfully developed for the solidification of native and artificial oil bodies in stable powder and tablet forms. This successful protocol is very likely to expedite the utilisation of artificial oil bodies in their potential applications.
Collapse
Affiliation(s)
- Ming-Tsung Chang
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
143
|
Hyun TK, Kumar D, Cho YY, Hyun HN, Kim JS. Computational identification and phylogenetic analysis of the oil-body structural proteins, oleosin and caleosin, in castor bean and flax. Gene 2013; 515:454-60. [PMID: 23232356 DOI: 10.1016/j.gene.2012.11.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/05/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
Oil bodies (OBs) are the intracellular particles derived from oilseeds. These OBs store lipids as a carbon resource, and have been exploited for a variety of industrial applications including biofuels. Oleosin and caleosin are the common OB structural proteins which are enabling biotechnological enhancement of oil content and OB-based pharmaceutical formations via stabilizing OBs. Although the draft whole genome sequence information for Ricinus communis L. (castor bean) and Linum usitatissimum L. (flax), important oil seed plants, is available in public database, OB-structural proteins in these plants are poorly indentified. Therefore, in this study, we performed a comprehensive bioinformatic analysis including analysis of the genome sequence, conserved domains and phylogenetic relationships to identify OB structural proteins in castor bean and flax genomes. Using comprehensive analysis, we have identified 6 and 15 OB-structural proteins from castor bean and flax, respectively. A complete overview of this gene family in castor bean and flax is presented, including the gene structures, phylogeny and conserved motifs, resulting in the presence of central hydrophobic regions with proline knot motif, providing an evolutionary proof that this central hydrophobic region had evolved from duplications in the primitive eukaryotes. In addition, expression analysis of L-oleosin and caleosin genes using quantitative real-time PCR demonstrated that seed contained their maximum expression, except that RcCLO-1 expressed maximum in cotyledon. Thus, our comparative genomics analysis of oleosin and caleosin genes and their putatively encoded proteins in two non-model plant species provides insights into the prospective usage of gene resources for improving OB-stability.
Collapse
Affiliation(s)
- Tae Kyung Hyun
- Department of Biochemistry, Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | |
Collapse
|
144
|
Furse S, Liddell S, Ortori CA, Williams H, Neylon DC, Scott DJ, Barrett DA, Gray DA. The lipidome and proteome of oil bodies from Helianthus annuus (common sunflower). J Chem Biol 2013; 6:63-76. [PMID: 23532185 PMCID: PMC3606697 DOI: 10.1007/s12154-012-0090-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 12/28/2012] [Indexed: 12/02/2022] Open
Abstract
In this paper we report the molecular profiling, lipidome and proteome, of the plant organelle known as an oil body (OB). The OB is remarkable in that it is able to perform its biological role (storage of triglycerides) whilst resisting the physical stresses caused by changes during desiccation (dehydration) and germination (rehydration). The molecular profile that confers such extraordinary physical stability on OBs was determined using a combination of 31P/1H nuclear magnetic resonance (NMR), high-resolution mass spectrometry and nominal mass-tandem mass spectrometry for the lipidome, and gel-electrophoresis-chromatography-tandem mass spectrometry for the proteome. The integrity of the procedure for isolating OBs was supported by physical evidence from small-angle neutron-scattering experiments. Suppression of lipase activity was crucial in determining the lipidome. There is conclusive evidence that the latter is dominated by phosphatidylcholine (∼60 %) and phosphatidylinositol (∼20 %), with a variety of other head groups (∼20 %). The fatty acid profile of the surface monolayer comprised palmitic, linoleic and oleic acids (2:1:0.25, 1H NMR) with only traces of other fatty acids (C24:0, C22:0, C18:0, C18:3, C16:2; by MS). The proteome is rich in oleosins (78 %) with the remainder being made up of caleosins and steroleosins. These data are sufficiently detailed to inform an update of the understood model of this organelle and can be used to inform the use of such components in a range of molecular biological, biotechnological and food industry applications. The techniques used in this study for profiling the lipidome throw a new light on the lipid profile of plant cellular compartments.
Collapse
Affiliation(s)
- Samuel Furse
- School of Biosciences, University of Nottingham, College Lane, Sutton Bonington, Nottinghamshire, LE12 5RD UK
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Preparation and characterization of composite sodium caseinate edible films incorporating naturally emulsified oil bodies. Food Hydrocoll 2013. [DOI: 10.1016/j.foodhyd.2012.05.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
146
|
Umate P. Comparative genomics of the lipid-body-membrane proteins oleosin, caleosin and steroleosin in magnoliophyte, lycophyte and bryophyte. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 10:345-53. [PMID: 23317702 PMCID: PMC5054715 DOI: 10.1016/j.gpb.2012.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/08/2012] [Accepted: 08/01/2012] [Indexed: 11/17/2022]
Abstract
Lipid bodies store oils in the form of triacylglycerols. Oleosin, caleosin and steroleosin are unique proteins localized on the surface of lipid bodies in seed plants. This study has identified genes encoding lipid body proteins oleosin, caleosin and steroleosin in the genomes of five plants: Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Selaginella moellendorffii and Physcomitrella patens. The protein sequence alignment indicated that each oleosin protein contains a highly-conserved proline knot motif, and proline knob motif is well conserved in steroleosin proteins, while caleosin proteins possess the Dx[D/N]xDG-containing calcium-binding motifs. The identification of motifs (proline knot and knob) and conserved amino acids at active site was further supported by the sequence logos. The phylogenetic analysis revealed the presence of magnoliophyte- and bryophyte-specific subgroups. We analyzed the public microarray data for expression of oleosin, caleosin and steroleosin in Arabidopsis and rice during the vegetative and reproductive stages, or under abiotic stresses. Our results indicated that genes encoding oleosin, caleosin and steroleosin proteins were expressed predominantly in plant seeds. This work may facilitate better understanding of the members of lipid-body-membrane proteins in diverse organisms and their gene expression in model plants Arabidopsis and rice.
Collapse
Affiliation(s)
- Pavan Umate
- Department of Botany, Kakatiya University, Warangal 506009, India.
| |
Collapse
|
147
|
Abstract
Hydrophobic storage neutral lipids are stably preserved in specialized organelles termed oil bodies in the aqueous cytosolic compartment of plant cells via encapsulation with surfactant molecules including phospholipids and integral proteins. To date, three classes of integral proteins, termed oleosin, caleosin, and steroleosin, have been identified in oil bodies of angiosperm seeds. Proposed structures, targeting traffic routes, and biological functions of these three integral oil-body proteins were summarized and discussed. In the viewpoint of evolution, isoforms of oleosin and caleosin are found in oil bodies of pollens as well as those of more primitive species; moreover, caleosin- and steroleosin-like proteins are also present in other subcellular locations besides oil bodies. Technically, artificial oil bodies of structural stability similar to native ones were successfully constituted and seemed to serve as a useful tool for both basic research studies and biotechnological applications.
Collapse
Affiliation(s)
- Jason T. C. Tzen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
148
|
Chen DH, Chyan CL, Jiang PL, Chen CS, Tzen JTC. The same oleosin isoforms are present in oil bodies of rice embryo and aleurone layer while caleosin exists only in those of the embryo. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 60:18-24. [PMID: 22892331 DOI: 10.1016/j.plaphy.2012.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/23/2012] [Indexed: 06/01/2023]
Abstract
Oil bodies of similar sizes were observed in the cells of embryo and aleurone layer of rice seeds, and remained their structural integrity in vitro after isolation. Comparably, two abundant oleosin isoforms were found in both preparations of oil bodies isolated from the embryo and the aleurone layer. Immunological detection and mass spectrometric analyses indicated that the two oleosin isoforms, termed oleosin-H and oleosin-L, in the embryo and those in the aleurone layer were identical proteins encoded by the same genes (BAF12898.1 and BAF15387.1 for oleosin-H and oleosin-L, respectively). In contrast, one caleosin was found in oil bodies isolated from the embryo but not those isolated from the aleurone layer. Immunological staining of rice seeds confirms that oleosin is present in both embryo and aleurone layer while caleosin exists only in embryo. Caleosin extracted from oil bodies of rice embryo migrated faster on SDS-PAGE in the presence of Ca(2+), in a manner identical to caleosin extracted from sesame oil bodies. Similar to other known monocot caleosins, the rice caleosin possesses an N-terminal appendix that is absent in dicotyledonous caleosins.
Collapse
Affiliation(s)
- Da-Huang Chen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | | | | | | | | |
Collapse
|
149
|
Nikiforidis CV, Biliaderis CG, Kiosseoglou V. Rheological characteristics and physicochemical stability of dressing-type emulsions made of oil bodies–egg yolk blends. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
150
|
Species-specific size expansion and molecular evolution of the oleosins in angiosperms. Gene 2012; 509:247-57. [PMID: 22951805 DOI: 10.1016/j.gene.2012.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 08/03/2012] [Accepted: 08/05/2012] [Indexed: 11/23/2022]
Abstract
Oleosins are hydrophobic plant proteins thought to be important for the formation of oil bodies, which supply energy for seed germination and subsequent seedling growth. To better understand the evolutionary history and diversity of the oleosin gene family in plants, especially angiosperms, we systematically investigated the molecular evolution of this family using eight representative angiosperm species. A total of 73 oleosin members were identified, with six members in each of four monocot species and a greater but variable number in the four eudicots. A phylogenetic analysis revealed that the angiosperm oleosin genes belonged to three monophyletic lineages. Species-specific gene duplications, caused mainly by segmental duplication, led to the great expansion of oleosin genes and occurred frequently in eudicots after the monocot-eudicot divergence. Functional divergence analyses indicate that significant amino acid site-specific selective constraints acted on the different clades of oleosins. Adaptive evolution analyses demonstrate that oleosin genes were subject to strong purifying selection after their species-specific duplications and that rapid evolution occurred with a high degree of evolutionary dynamics in the pollen-specific oleosin genes. In conclusion, this study serves as a foundation for genome-wide analyses of the oleosins. These findings provide insight into the function and evolution of this gene family in angiosperms and pave the way for studies in other plants.
Collapse
|