101
|
Cox TC, Lidral AC, McCoy JC, Liu H, Cox LL, Zhu Y, Anderson RD, Moreno Uribe LM, Anand D, Deng M, Richter CT, Nidey NL, Standley JM, Blue EE, Chong JX, Smith JD, Kirk EP, Venselaar H, Krahn KN, van Bokhoven H, Zhou H, Cornell RA, Glass IA, Bamshad MJ, Nickerson DA, Murray JC, Lachke SA, Thompson TB, Buckley MF, Roscioli T. Mutations in GDF11 and the extracellular antagonist, Follistatin, as a likely cause of Mendelian forms of orofacial clefting in humans. Hum Mutat 2019; 40:1813-1825. [PMID: 31215115 DOI: 10.1002/humu.23793] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 12/30/2022]
Abstract
Cleft lip with or without cleft palate (CL/P) is generally viewed as a complex trait with multiple genetic and environmental contributions. In 70% of cases, CL/P presents as an isolated feature and/or deemed nonsyndromic. In the remaining 30%, CL/P is associated with multisystem phenotypes or clinically recognizable syndromes, many with a monogenic basis. Here we report the identification, via exome sequencing, of likely pathogenic variants in two genes that encode interacting proteins previously only linked to orofacial clefting in mouse models. A variant in GDF11 (encoding growth differentiation factor 11), predicting a p.(Arg298Gln) substitution at the Furin protease cleavage site, was identified in one family that segregated with CL/P and both rib and vertebral hypersegmentation, mirroring that seen in Gdf11 knockout mice. In the second family in which CL/P was the only phenotype, a mutation in FST (encoding the GDF11 antagonist, Follistatin) was identified that is predicted to result in a p.(Cys56Tyr) substitution in the region that binds GDF11. Functional assays demonstrated a significant impact of the specific mutated amino acids on FST and GDF11 function and, together with embryonic expression data, provide strong evidence for the importance of GDF11 and Follistatin in the regulation of human orofacial development.
Collapse
Affiliation(s)
- Timothy C Cox
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, Washington.,Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington.,Department of Oral & Craniofacial Science, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri
| | | | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio
| | - Huan Liu
- Department of Anatomy and Cell Biology and Anatomy, University of Iowa, Iowa City, Iowa
| | - Liza L Cox
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, Washington.,Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington.,Department of Oral & Craniofacial Science, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri.,Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ying Zhu
- New South Wales Health Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia.,Genetics of Learning Disability Service, Hunter Genetics, Waratah, New South Wales, Australia
| | - Ryan D Anderson
- Department of Oral & Craniofacial Science, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri
| | - Lina M Moreno Uribe
- Department of Orthodontics & the Iowa Institute for Oral Health Research, University of Iowa, Iowa City, Iowa
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Mei Deng
- Birth Defects Research Laboratory, University of Washington, Seattle, Washington
| | - Chika T Richter
- Department of Orthodontics & the Iowa Institute for Oral Health Research, University of Iowa, Iowa City, Iowa
| | - Nichole L Nidey
- Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | | | - Elizabeth E Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | - Jessica X Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Joshua D Smith
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Edwin P Kirk
- New South Wales Health Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital, New South Wales, Australia
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Katy N Krahn
- UVA Center for Advanced Medical Analytics, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Cognitive Neurosciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Robert A Cornell
- Department of Anatomy and Cell Biology and Anatomy, University of Iowa, Iowa City, Iowa
| | - Ian A Glass
- Birth Defects Research Laboratory, University of Washington, Seattle, Washington.,Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Michael J Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington.,Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | | | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio
| | - Michael F Buckley
- New South Wales Health Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Tony Roscioli
- New South Wales Health Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia.,Neuroscience Research Australia (NeuRA), University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
102
|
Suh J, Eom JH, Kim NK, Woo KM, Baek JH, Ryoo HM, Lee SJ, Lee YS. Growth differentiation factor 11 locally controls anterior-posterior patterning of the axial skeleton. J Cell Physiol 2019; 234:23360-23368. [PMID: 31183862 PMCID: PMC6772169 DOI: 10.1002/jcp.28904] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022]
Abstract
Growth and differentiation factor 11 (GDF11) is a transforming growth factor β family member that has been identified as the central player of anterior-posterior (A-P) axial skeletal patterning. Mice homozygous for Gdf11 deletion exhibit severe anterior homeotic transformations of the vertebrae and craniofacial defects. During early embryogenesis, Gdf11 is expressed predominantly in the primitive streak and tail bud regions, where new mesodermal cells arise. On the basis of this expression pattern of Gdf11 and the phenotype of Gdf11 mutant mice, it has been suggested that GDF11 acts to specify positional identity along the A-P axis either by local changes in levels of signaling as development proceeds or by acting as a morphogen. To further investigate the mechanism of action of GDF11 in the vertebral specification, we used a Cdx2-Cre transgene to generate mosaic mice in which Gdf11 expression is removed in posterior regions including the tail bud, but not in anterior regions. The skeletal analysis revealed that these mosaic mice display patterning defects limited to posterior regions where Gdf11 expression is deficient, whereas displaying normal skeletal phenotype in anterior regions where Gdf11 is normally expressed. Specifically, the mosaic mice exhibited seven true ribs, a pattern observed in wild-type (wt) mice (vs. 10 true ribs in Gdf11-/- mice), in the anterior axis and nine lumbar vertebrae, a pattern observed in Gdf11 null mice (vs. six lumbar vertebrae in wt mice), in the posterior axis. Our findings suggest that GDF11, rather than globally acting as a morphogen secreted from the tail bud, locally regulates axial vertebral patterning.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Je-Hyun Eom
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Na-Kyung Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Kyung Mi Woo
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Se-Jin Lee
- The Jackson Laboratory, Farmington, Connecticut.,Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut, Farmington, Connecticut
| | - Yun-Sil Lee
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
103
|
Gerardo-Ramírez M, Lazzarini-Lechuga R, Hernández-Rizo S, Jiménez-Salazar JE, Simoni-Nieves A, García-Ruiz C, Fernández-Checa JC, Marquardt JU, Coulouarn C, Gutiérrez-Ruiz MC, Pérez-Aguilar B, Gomez-Quiroz LE. GDF11 exhibits tumor suppressive properties in hepatocellular carcinoma cells by restricting clonal expansion and invasion. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1540-1554. [PMID: 30890427 DOI: 10.1016/j.bbadis.2019.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Growth differentiation factor 11 (GDF11) has been characterized as a key regulator of differentiation in cells that retain stemness features, despite some controversies in age-related studies. GDF11 has been poorly investigated in cancer, particularly in those with stemness capacity, such as hepatocellular carcinoma (HCC), one of the most aggressive cancers worldwide. Here, we focused on investigating the effects of GDF11 in liver cancer cells. GDF11 treatment significantly reduced proliferation, colony and spheroid formation in HCC cell lines. Consistently, down-regulation of CDK6, cyclin D1, cyclin A, and concomitant upregulation of p27 was observed after 24 h of treatment. Interestingly, cell viability was unchanged, but cell functionality was compromised. These effects were potentially induced by the expression of E-cadherin and occludin, as well as Snail and N-cadherin repression, in a time-dependent manner. Furthermore, GDF11 treatment for 72 h induced that cells were incapable of sustaining colony and sphere capacity in the absent of GDF11, up to 5 days, indicating that the effect of GDF11 on self-renewal capacity is not transient. Finally, in vivo invasion studies revealed a significant decrease in cell migration of hepatocellular carcinoma cells treated with GDF11 associated to a decreased proliferation judged by Ki67 staining. Data show that exogenous GDF11 displays tumor suppressor properties in HCC cells.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Bone Morphogenetic Proteins/pharmacology
- Cadherins/genetics
- Cadherins/metabolism
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Chick Embryo
- Chorioallantoic Membrane/blood supply
- Chorioallantoic Membrane/drug effects
- Cyclin A/genetics
- Cyclin A/metabolism
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Cyclin-Dependent Kinase 6/genetics
- Cyclin-Dependent Kinase 6/metabolism
- Cyclin-Dependent Kinase Inhibitor p27/genetics
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Gene Expression Regulation, Neoplastic
- Growth Differentiation Factors/genetics
- Growth Differentiation Factors/metabolism
- Growth Differentiation Factors/pharmacology
- Hep G2 Cells
- Humans
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Occludin/genetics
- Occludin/metabolism
- Signal Transduction
- Snail Family Transcription Factors/genetics
- Snail Family Transcription Factors/metabolism
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
Collapse
Affiliation(s)
- Monserrat Gerardo-Ramírez
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Roberto Lazzarini-Lechuga
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Sharik Hernández-Rizo
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | | | - Arturo Simoni-Nieves
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Liver Unit, Hospital Clinic, IDIBPAS and CIBERehd, Barcelona, Spain
| | - José Carlos Fernández-Checa
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Liver Unit, Hospital Clinic, IDIBPAS and CIBERehd, Barcelona, Spain
| | - Jens U Marquardt
- 1st Department of Medicine, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Cedric Coulouarn
- INSERM, Inra, University of Rennes, UMR 1241, Nutrition Metabolisms and Cancer, Rennes, France
| | - María Concepción Gutiérrez-Ruiz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Benjamín Pérez-Aguilar
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Luis E Gomez-Quiroz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico.
| |
Collapse
|
104
|
Egerman MA, Glass DJ. The role of GDF11 in aging and skeletal muscle, cardiac and bone homeostasis. Crit Rev Biochem Mol Biol 2019; 54:174-183. [DOI: 10.1080/10409238.2019.1610722] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marc A. Egerman
- Age-Related Disorders, Department of Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - David J. Glass
- Age-Related Disorders, Department of Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| |
Collapse
|
105
|
Jin Q, Qiao C, Li J, Xiao B, Li J, Xiao X. A GDF11/myostatin inhibitor, GDF11 propeptide-Fc, increases skeletal muscle mass and improves muscle strength in dystrophic mdx mice. Skelet Muscle 2019; 9:16. [PMID: 31133057 PMCID: PMC6537384 DOI: 10.1186/s13395-019-0197-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/10/2019] [Indexed: 01/27/2023] Open
Abstract
Background Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor β superfamily. The GDF11 propeptide, which is derived from the GDF11 precursor protein, blocks the activity of GDF11 and its homolog, myostatin, which are both potent inhibitors of muscle growth. Thus, treatment with GDF11 propeptide may be a potential therapeutic strategy for diseases associated with muscle atrophy like sarcopenia and the muscular dystrophies. Here, we evaluate the impact of GDF11 propeptide-Fc (GDF11PRO-Fc) gene delivery on skeletal muscle in normal and dystrophic adult mice. Methods A pull-down assay was used to obtain physical confirmation of a protein-protein interaction between GDF11PRO-Fc and GDF11 or myostatin. Next, differentiated C2C12 myotubes were treated with AAV6-GDF11PRO-Fc and challenged with GDF11 or myostatin to determine if GDF11PRO-Fc could block GDF11/myostatin-induced myotube atrophy. Localized expression of GDF11PRO-Fc was evaluated via a unilateral intramuscular injection of AAV9-GDF11PRO-Fc into the hindlimb of C57BL/6J mice. In mdx mice, intravenous injection of AAV9-GDF11PRO-Fc was used to achieve systemic expression. The impact of GDF11PRO-Fc on muscle mass, function, and pathological features were assessed. Results GDF11PRO-Fc was observed to bind both GDF11 and myostatin. In C2C12 myotubes, expression of GDF11PRO-Fc was able to mitigate GDF11/myostatin-induced atrophy. Following intramuscular injection in C57BL/6J mice, increased grip strength and localized muscle hypertrophy were observed in the injected hindlimb after 10 weeks. In mdx mice, systemic expression of GDF11PRO-Fc resulted in skeletal muscle hypertrophy without a significant change in cardiac mass after 12 weeks. In addition, grip strength and rotarod latency time were improved. Intramuscular fibrosis was also reduced in treated mdx mice; however, there was no change seen in central nucleation, membrane permeability to serum IgG or serum creatine kinase levels. Conclusions GDF11PRO-Fc induces skeletal muscle hypertrophy and improvements in muscle strength via inhibition of GDF11/myostatin signaling. However, GDF11PRO-Fc does not significantly improve the dystrophic pathology in mdx mice. Electronic supplementary material The online version of this article (10.1186/s13395-019-0197-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quan Jin
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | - Chunping Qiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jianbin Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Bin Xiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Juan Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Xiao Xiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
106
|
Zhang XJ, Tan H, Shi ZF, Li N, Jia Y, Hao Z. Growth differentiation factor 11 is involved in isoproterenol‑induced heart failure. Mol Med Rep 2019; 19:4109-4118. [PMID: 30942402 PMCID: PMC6471622 DOI: 10.3892/mmr.2019.10077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/02/2019] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the potential effects of growth differentiation factor 11 (GDF11) on isoproterenol (ISO)-induced heart failure (HF) and identify the underlying molecular mechanisms. A rat model of HF was induced in vivo by intraperitoneally administering ISO (5 mg/kg/day) for 7 days. After 4 weeks following establishment of the HF model, hemodynamic analysis demonstrated that ISO induced a significant increase in the left ventricular end-diastolic pressure and a decrease in the left ventricular systolic pressure and maximum contraction velocity. The plasma levels of myocardial injury markers, including lactate dehydrogenase (LDH), creatine kinase (CK), CK-muscle/brain which were determined using the corresponding assay kits and plasma brain natriuretic peptide which was detected by an ELISA kit, an important biomarker of HF, increased following ISO treatment. Furthermore, levels of GDF11 expression and protein, which were estimated using reverse transcription-quantitative polymerase chain reaction and an ELISA kit in plasma and western blotting in the heart tissue, respectively, significantly increased following ISO treatment. To demonstrate the effects of ISO on GDF11 production in cardiomyocytes, H9C2 cells (a cardiomyoblast cell line derived from embryonic rat heart tissue) were treated with ISO (50 nM) for 24 h in vitro; it was revealed that GDF11 protein and mRNA expression levels significantly increased following ISO treatment. In addition, recombinant GDF11 (rGDF11) administered to ISO-treated H9C2 cells resulted in decreased proliferation, which was detected via a CCK-8 assay, and increased LDH levels and cell apoptosis of cells, which was determined using Caspase-3 activity and Hoechst 33258 staining. Additionally, rGDF11 increased the levels of reactive oxygen species and malondialdehyde due to the upregulation of nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) following rGDF11 treatment. Conversely, GDF11 knockdown reduced ISO-induced apoptosis by inhibiting oxidative stress injury. The results suggested that GDF11 production was upregulated in ISO-induced rats with HF and in ISO-treated H9C2 cells, and that rGDF11 treatment increased ISO-induced oxidative stress injury by upregulating Nox4 in H9C2 cells.
Collapse
Affiliation(s)
- Xiu-Jing Zhang
- The First Department of Cadres Health Care, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Hua Tan
- The First Department of Cadres Health Care, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhi-Fang Shi
- The Second Department of Cadres Health Care, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Na Li
- The First Department of Cadres Health Care, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Ying Jia
- The First Department of Cadres Health Care, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhe Hao
- The First Department of Cadres Health Care, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
107
|
Li W, Wang W, Liu L, Qu R, Chen X, Qiu C, Li J, Hayball J, Liu L, Chen J, Wang X, Pan X, Zhao Y. GDF11 antagonizes TNF-α-induced inflammation and protects against the development of inflammatory arthritis in mice. FASEB J 2019; 33:3317-3329. [PMID: 30407878 DOI: 10.1096/fj.201801375rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Growth differentiation factor 11 (GDF11), a key member of the TGF-β superfamily, plays critical roles in various medical conditions. Recently, GDF11 was found to suppress the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway and protect against inflammation. This study aimed to investigate the role of GDF11 in the development of rheumatoid arthritis (RA). We demonstrated that GDF11 treatment antagonized TNF-α-induced inflammation in macrophages. Moreover, GDF11 inhibited the development of arthritis in the collagen-induced arthritis and collagen antibody-induced arthritis models. Local gene transfer of GDF11 via adeno-associated virus exerted therapeutic effects, while local knockdown of GDF11 exaggerated inflammation in our collagen-induced arthritis model, as detected by expression levels of inflammatory biomarkers and the destruction of joint structures. Additionally, the results from both in vitro experiments and luciferase reporter gene mouse experiments implied that the NF-κB pathway might play a critical role in the therapeutic effect of GDF11 in RA. This study presents GDF11 as a potential target for the treatment of inflammatory arthritis, including RA.-Li, W., Wang, W., Liu, L., Qu, R., Chen, X., Qiu, C., Li, J., Hayball, J., Liu, L., Chen, J., Wang, X., Pan, X., Zhao, Y. GDF11 antagonizes TNF-α-induced inflammation and protects against the development of inflammatory arthritis in mice.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Wenhan Wang
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, China.,Medical School of Shandong University, Jinan, China
| | - Long Liu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Ruize Qu
- Medical School of Shandong University, Jinan, China
| | - Xiaomin Chen
- Medical School of Shandong University, Jinan, China
| | - Cheng Qiu
- Medical School of Shandong University, Jinan, China
| | - Jiayi Li
- Medical School of Shandong University, Jinan, China
| | - John Hayball
- School of Pharmacy and Medical Sciences, Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia.,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; and
| | - Liang Liu
- School of Pharmacy and Medical Sciences, Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia.,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; and
| | - Jianying Chen
- Institute of Biopharmaceuticals of Shandong Province, Jinan, China
| | - Xia Wang
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, China
| | - Xin Pan
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, China
| | - Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
108
|
McCoy JC, Walker RG, Murray NH, Thompson TB. Crystal structure of the WFIKKN2 follistatin domain reveals insight into how it inhibits growth differentiation factor 8 (GDF8) and GDF11. J Biol Chem 2019; 294:6333-6343. [PMID: 30814254 DOI: 10.1074/jbc.ra118.005831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/26/2019] [Indexed: 11/06/2022] Open
Abstract
Growth differentiation factor 8 (GDF8; also known as myostatin) and GDF11 are closely related members of the transforming growth factor β (TGF-β) family. GDF8 strongly and negatively regulates skeletal muscle growth, and GDF11 has been implicated in various age-related pathologies such as cardiac hypertrophy. GDF8 and GDF11 signaling activities are controlled by the extracellular protein antagonists follistatin; follistatin-like 3 (FSTL3); and WAP, follistatin/kazal, immunoglobulin, Kunitz, and netrin domain-containing (WFIKKN). All of these proteins contain a follistatin domain (FSD) important for ligand binding and antagonism. Here, we investigated the structure and function of the FSD from murine WFIKKN2 and compared it with the FSDs of follistatin and FSTL3. Using native gel shift and surface plasmon resonance analyses, we determined that the WFIKKN2 FSD can interact with both GDF8 and GDF11 and block their interactions with the type II receptor activin A receptor type 2B (ActRIIB). Further, we solved the crystal structure of the WFIKKN2 FSD to 1.39 Å resolution and identified surface-exposed residues that, when substituted with alanine, reduce antagonism of GDF8 in full-length WFIKKN2. Comparison of the WFIKKN2 FSD with those of follistatin and FSTL3 revealed differences in both the FSD structure and position of residues within the domain that are important for ligand antagonism. Taken together, our results indicate that both WFIKKN and follistatin utilize their FSDs to block the type II receptor but do so via different binding interactions.
Collapse
Affiliation(s)
- Jason C McCoy
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Ryan G Walker
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Nathan H Murray
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Thomas B Thompson
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| |
Collapse
|
109
|
The influence of GDF11 on brain fate and function. GeroScience 2019; 41:1-11. [PMID: 30729414 DOI: 10.1007/s11357-019-00054-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) is a transforming growth factor β (TGFβ) protein that regulates aspects of central nervous system (CNS) formation and health throughout the lifespan. During development, GDF11 influences CNS patterning and the genesis, differentiation, maturation, and activity of new cells, which may be primarily dependent on local production and action. In the aged brain, exogenous, peripherally delivered GDF11 may enhance neurogenesis and angiogenesis, as well as improve neuropathological outcomes. This is in contrast to a predominantly negative influence on neurogenesis in the developing CNS. Seemingly antithetical effects may correspond to the cell types and mechanisms activated by local versus circulating concentrations of GDF11. Yet undefined, distinct mechanisms of action in young and aged brains may also play a role, which could include differential receptor and binding partner interactions. Exogenously increasing circulating GDF11 concentrations may be a viable approach for improving deleterious aspects of brain aging and neuropathology. Caution is warranted, however, since GDF11 appears to negatively influence muscle health and body composition. Nevertheless, an expanding understanding of GDF11 biology suggests that it is an important regulator of CNS formation and fate, and its manipulation may improve aspects of brain health in older organisms.
Collapse
|
110
|
Administration of rGDF11 retards the aging process in male mice via action of anti-oxidant system. Biogerontology 2019; 20:433-443. [PMID: 30726519 DOI: 10.1007/s10522-019-09799-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
One of the most studied and widely accepted conjectures of aging process is the oxidative stress theory. Current studies have generated disputes on the effects of GDF11 and GDF8, a closely related member of GDF11, on rejuvenation and anti-aging properties. In this study, we first demonstrated that when recombinant GDF8 (rGDF8) and GDF11 (rGDF11) of the fish Nothobranchius guentheri were injected into 20-month-old male mice, their serum GDF8 and GDF11 levels were clearly increased. We also showed that injection of rGDF8 and rGDF11 had little influences on the body weight and serological parameters of the mice, indicating their general condition and physiology were not affected. Based on these findings, we started to test the effects of administration of piscine rGDF11 and rGDF8 on the aging process of male mice and to explore the underlying mechanisms. It was found that rGDF11 was able to reduce the levels of AGEs, protein oxidation and lipid peroxidation, and to slow down the accumulation of age-related histological markers, while rGDF8 was not. Moreover, rGDF11 significantly prevented the decrease in CAT, GPX and SOD activities, but rGDF8 did not. Collectively, these results suggest that it is GDF11 but not GDF8 that can exert rejuvenation and anti-aging activities via the action of antioxidant system. It is also the first report that shows the activity of GDF11 is not species-specific, implicating potential usefulness of piscine GDF11 in prolonging the lifespan of the elderly.
Collapse
|
111
|
Aires R, de Lemos L, Nóvoa A, Jurberg AD, Mascrez B, Duboule D, Mallo M. Tail Bud Progenitor Activity Relies on a Network Comprising Gdf11, Lin28, and Hox13 Genes. Dev Cell 2019; 48:383-395.e8. [DOI: 10.1016/j.devcel.2018.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/18/2018] [Accepted: 12/12/2018] [Indexed: 12/31/2022]
|
112
|
Ueda S, Cordeiro IR, Moriyama Y, Nishimori C, Kai KI, Yu R, Nakato R, Shirahige K, Tanaka M. Cux2 refines the forelimb field by controlling expression of Raldh2 and Hox genes. Biol Open 2019; 8:bio.040584. [PMID: 30651234 PMCID: PMC6398465 DOI: 10.1242/bio.040584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In vertebrates, two pairs of buds that give rise to the fore- and hindlimbs form at discrete positions along the rostral-caudal axis of the body. The mechanism responsible for the positioning of the limb buds is still largely unknown. Here we show a novel function for Cut homeobox transcription factor 2 (Cux2), the ortholog of Drosophila cut, in refining the forelimb field during chick development. Cux2 is expressed in the forelimb field before the emergence of the limb buds. Knocking down the expression of Cux2 using small interfering RNA (siRNA) resulted in a caudal shift of the forelimb bud, whereas misexpression of Cux2 or the constitutively active Cux2-VP16 caused a rostral shift of the forelimb bud or reduction of the forelimb field along the anterior-posterior axis. Further functional analyses revealed that expression of Hoxb genes and retinaldehyde dehydrogenase 2 (Raldh2), which are involved in limb positioning, are directly activated by Cux2 in the lateral plate mesoderm. Our data suggest that Cux2 in the lateral plate mesoderm refines the forelimb field via regulation of Raldh2 and Hoxb genes in chicken embryos. Summary: Cux2 in the lateral plate mesoderm refines the forelimb field via regulation of Raldh2 and Hoxb genes in chicken embryos.
Collapse
Affiliation(s)
- Shogo Ueda
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Ingrid Rosenburg Cordeiro
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Yuuta Moriyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Chika Nishimori
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Kei-Ichi Kai
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Reiko Yu
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Ryoichiro Nakato
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Mikiko Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
113
|
Abstract
IMPACT STATEMENT By compiling findings from recent studies, this review will garner novel insight on the dynamic and complex role of BMP signaling in diseases of inflammation, highlighting the specific roles played by both individual ligands and endogenous antagonists. Ultimately, this summary will help inform the high therapeutic value of targeting this pathway for modulating diseases of inflammation.
Collapse
Affiliation(s)
- David H Wu
- Division of Cardiovascular Medicine, Department of
Medicine and Department of Cell & Developmental Biology, Vanderbilt
University Medical Center, Nashville, TN 37232, USA
| | - Antonis K Hatzopoulos
- Division of Cardiovascular Medicine, Department of
Medicine and Department of Cell & Developmental Biology, Vanderbilt
University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
114
|
Magga J, Vainio L, Kilpiö T, Hulmi JJ, Taponen S, Lin R, Räsänen M, Szabó Z, Gao E, Rahtu-Korpela L, Alakoski T, Ulvila J, Laitinen M, Pasternack A, Koch WJ, Alitalo K, Kivelä R, Ritvos O, Kerkelä R. Systemic Blockade of ACVR2B Ligands Protects Myocardium from Acute Ischemia-Reperfusion Injury. Mol Ther 2019; 27:600-610. [PMID: 30765322 PMCID: PMC6404100 DOI: 10.1016/j.ymthe.2019.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
Activin A and myostatin, members of the transforming growth factor (TGF)-β superfamily of secreted factors, are potent negative regulators of muscle growth, but their contribution to myocardial ischemia-reperfusion (IR) injury is not known. The aim of this study was to investigate if activin 2B (ACVR2B) receptor ligands contribute to myocardial IR injury. Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) and subjected to myocardial ischemia followed by reperfusion for 6 or 24 h. Systemic blockade of ACVR2B ligands by ACVR2B-Fc was protective against cardiac IR injury, as evidenced by reduced infarcted area, apoptosis, and autophagy and better preserved LV systolic function following IR. ACVR2B-Fc modified cardiac metabolism, LV mitochondrial respiration, as well as cardiac phenotype toward physiological hypertrophy. Similar to its protective role in IR injury in vivo, ACVR2B-Fc antagonized SMAD2 signaling and cell death in cardiomyocytes that were subjected to hypoxic stress. ACVR2B ligand myostatin was found to exacerbate hypoxic stress. In addition to acute cardioprotection in ischemia, ACVR2B-Fc provided beneficial effects on cardiac function in prolonged cardiac stress in cardiotoxicity model. By blocking myostatin, ACVR2B-Fc potentially reduces cardiomyocyte death and modifies cardiomyocyte metabolism for hypoxic conditions to protect the heart from IR injury.
Collapse
Affiliation(s)
- Johanna Magga
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland; Biocenter Oulu, University of Oulu, 90220 Oulu, Finland.
| | - Laura Vainio
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland
| | - Teemu Kilpiö
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland
| | - Juha J Hulmi
- Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Saija Taponen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland
| | - Ruizhu Lin
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90220 Oulu, Finland
| | - Markus Räsänen
- Wihuri Research Institute and Translational Cancer Biology Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Zoltán Szabó
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Lea Rahtu-Korpela
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland
| | - Tarja Alakoski
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland
| | - Johanna Ulvila
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland
| | - Mika Laitinen
- Department of Medicine, University of Helsinki, 00029 Helsinki, Finland; Department of Medicine, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Walter J Koch
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Riikka Kivelä
- Wihuri Research Institute and Translational Cancer Biology Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90220 Oulu, Finland
| |
Collapse
|
115
|
Zheng R, Xie L, Liu W, Guo Y, Wang Y, Wu Y, Liu Y, Luo H, Kang N, Yuan Q. Recombinant growth differentiation factor 11 impairs fracture healing through inhibiting chondrocyte differentiation. Ann N Y Acad Sci 2018; 1440:54-66. [PMID: 30575056 DOI: 10.1111/nyas.13994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/05/2018] [Accepted: 11/14/2018] [Indexed: 02/05/2023]
Abstract
Growth differentiation factor 11 (GDF11), a secreted member of the transforming growth factor-β (TGF-β) superfamily, has been reported to have the capacity to reverse age-related pathologic changes and regulate organ regeneration after injury; however, the role of GDF11 in fracture healing and bone repair is still unclear. Here, we established a fracture model in 12-week-old male mice to observe two healing states: the cartilaginous callus and bony callus formation phases. Our results showed that recombinant GDF11 (rGDF11) injection inhibits cartilaginous callus maturation and hard callus formation, thereby impairing fracture healing in vivo. In vitro, rGDF11 administration inhibited chondrocyte differentiation and maturation by phosphorylating SMAD2/3 protein and inhibiting RUNX2 expression. Notably, inhibition of TGF-β activity by a SMAD-specific inhibitor attenuated GDF11 effects. Thus, our study demonstrates that, rather than acting as a rejuvenating agent, rGDF11 impairs fracture healing by inhibiting chondrocyte differentiation and maturation.
Collapse
Affiliation(s)
- Rixin Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weiqing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunshu Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongke Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Kang
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
116
|
Reassessing the Role of Hox Genes during Vertebrate Development and Evolution. Trends Genet 2018; 34:209-217. [PMID: 29269261 DOI: 10.1016/j.tig.2017.11.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
Since their discovery Hox genes have been at the core of the established models explaining the development and evolution of the vertebrate body plan as well as its paired appendages. Recent work brought new light to their role in the patterning processes along the main body axis. These studies show that Hox genes do not control the basic layout of the vertebrate body plan but carry out region-specific patterning instructions loaded on the derivatives of axial progenitors by Hox-independent processes. Furthermore, the finding that Hox clusters are embedded in functional chromatin domains, which critically impacts their expression, has significantly altered our understanding of the mechanisms of Hox gene regulation. This new conceptual framework has broadened our understanding of both limb development and the evolution of vertebrate paired appendages.
Collapse
|
117
|
Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Malka G, Vergely C. Regenerative Capacity of Endogenous Factor: Growth Differentiation Factor 11; a New Approach of the Management of Age-Related Cardiovascular Events. Int J Mol Sci 2018; 19:ijms19123998. [PMID: 30545044 PMCID: PMC6321079 DOI: 10.3390/ijms19123998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
Aging is a complicated pathophysiological process accompanied by a wide array of biological adaptations. The physiological deterioration correlates with the reduced regenerative capacity of tissues. The rejuvenation of tissue regeneration in aging organisms has also been observed after heterochronic parabiosis. With this model, it has been shown that exposure to young blood can rejuvenate the regenerative capacity of peripheral tissues and brain in aged animals. An endogenous compound called growth differentiation factor 11 (GDF11) is a circulating negative regulator of cardiac hypertrophy, suggesting that raising GDF11 levels could potentially treat or prevent cardiac diseases. The protein GDF11 is found in humans as well as animals. The existence of endogenous regulators of regenerative capacity, such as GDF11, in peripheral tissues and brain has now been demonstrated. It will be important to investigate the mechanisms with therapeutic promise that induce the regenerative effects of GDF11 for a variety of age-related diseases.
Collapse
Affiliation(s)
- Luc Rochette
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne-Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Alexandre Meloux
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne-Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Eve Rigal
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne-Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Marianne Zeller
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne-Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Yves Cottin
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne-Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
- Service de Cardiologie-CHU-Dijon, 21 000 Dijon, France.
| | - Gabriel Malka
- Institut de formation en biotechnologie et ingénierie biomédicale (IFR2B), Université Mohammed VI Polytechnique, 43 150 Ben-Guerir, Morocco.
| | - Catherine Vergely
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne-Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| |
Collapse
|
118
|
Zhou Y, Ni S, Song L, Wang X, Zhang Y, Zhang S. Late-onset administration of GDF11 extends life span and delays development of age-related markers in the annual fish Nothobranchius guentheri. Biogerontology 2018; 20:225-239. [DOI: 10.1007/s10522-018-09789-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023]
|
119
|
Wang L, Wang Y, Wang Z, Qi Y, Zong B, Liu M, Li X, Zhang X, Liu C, Cao R, Ma Y. Growth differentiation factor 11 ameliorates experimental colitis by inhibiting NLRP3 inflammasome activation. Am J Physiol Gastrointest Liver Physiol 2018; 315:G909-G920. [PMID: 30188752 DOI: 10.1152/ajpgi.00159.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Growth differentiation factor 11 (GDF11) has an anti-inflammatory effect in the mouse model of atherosclerosis and Alzheimer's disease, but how GDF11 regulates intestinal inflammation during ulcerative colitis (UC) is poorly defined. The Nod-like receptor family pyrin domain-1 containing 3 (NLRP3) inflammasome is closely associated with intestinal inflammation because of its ability to increase IL-1β secretion. Our aim is to determine whether GDF11 has an effect on attenuating experimental colitis in mice. In this study, using a dextran sodium sulfate (DSS)-induced acute colitis mouse model, we reported that GDF11 treatment attenuated loss of body weight, the severity of the disease activity index, shortening of the colon, and histological changes in the colon. GDF11 remarkably suppressed IL-1β secretion and NLRP3 inflammasome activation in colon samples and RAW 264.7 cells, such as the levels of NLRP3 and activated caspase-1. Furthermore, we found that GDF11 inhibited NLRP3 inflammasome activation by downregulating the Toll-like receptor 4/NF-κB p65 pathway and reactive oxygen species production via the typical Smad2/3 pathway. Thus, our research shows that GDF11 alleviates DSS-induced colitis by inhibiting NLRP3 inflammasome activation, providing some basis for its potential use in the treatment of UC. NEW & NOTEWORTHY Here, we identify a new role for growth differentiation factor 11 (GDF11), which ameliorates dextran sodium sulfate-induced acute colitis. Meanwhile, we discover a new phenomenon of GDF11 inhibiting IL-1β secretion and Nod-like receptor family pyrin domain-1 containing 3 (NLRP3) inflammasome activation. These findings reveal that GDF11 is a new potential candidate for the treatment of ulcerative colitis patients with a hyperactive NLRP3 inflammasome.
Collapse
Affiliation(s)
- Lanju Wang
- School of Basic Medical Sciences, Zhengzhou University , Zhengzhou, Henan , China
| | - Yaohui Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Zhenfeng Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Yu Qi
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Beibei Zong
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Meichen Liu
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Xuefang Li
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Xingkun Zhang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Chengguo Liu
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Run Cao
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Yuanfang Ma
- School of Basic Medical Sciences, Zhengzhou University , Zhengzhou, Henan , China.,Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| |
Collapse
|
120
|
Aires R, Dias A, Mallo M. Deconstructing the molecular mechanisms shaping the vertebrate body plan. Curr Opin Cell Biol 2018; 55:81-86. [DOI: 10.1016/j.ceb.2018.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
|
121
|
Liu Y, Shao L, Chen K, Wang Z, Wang J, Jing W, Hu M. GDF11 restrains tumor growth by promoting apoptosis in pancreatic cancer. Onco Targets Ther 2018; 11:8371-8379. [PMID: 30568460 PMCID: PMC6267626 DOI: 10.2147/ott.s181792] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Growth differentiation factor (GDF) acted as a factor that regulated proliferation, apoptosis and differentiation in several tumors. However, the effects of growth differentiation factor (GDF11) in pancreatic cancer remain unclear. Purpose To investigate the expression and significance of GDF11 in pancreatic cancer. Patients and methods Pancreatic cancer and corresponding paracancerous tissues (n=28) were collected from the Department of Hepatobiliary and Pancreatic Surgical Oncology of Chinese PLA General Hospital. Tissue microarray was obtained from Outdo Biotech Co., Ltd. (Shanghai, People’s Republic of China). GDF11 mRNA and protein expressions in pancreatic cancer samples and cell lines were detected using qRT-PCR, Western-Blot and immunohistochemistry. Overexpression and knockdown of GDF11 were performed with lentiviral transduction system and siRNA technique in PANC-1 cell line and CFPAC-1 cell line. Proliferation, migration and invasion of pancreatic cancer cell lines were examinated by MTS and transwell assay, respectively. Flow cytometry was used for cell apoptosis analysis. Results The results of this study indicated that GDF11 was significantly down-regulated in pancreatic cancer tissues compared with adjacent tissues of pancreatic cancer. GDF11 was also associated with low expression in pancreatic cancer cell lines when compared with normal pancreatic cell line. In a cohort of 63 pancreatic cancer patients, high GDF11 expression levels was associated with favorable perineural invasion, T classification, N classification and overall survival (OS). Cox proportional hazards model revealed that high GDF11 expression was an independent predictor of favorable prognosis (HR: 0.496; 95% CI: 0.255–0.967; P=0.040). Overexpression of GDF11 in PANC-1 cells repressed the proliferation, migration and invasion abilities in vitro. Inhibition of GDF11 in CFPAC-1 showed inverse results. Furthermore, enhanced GDF11 expression promoted apoptosis and down-regulated GDF11 expression inhibited apoptosis in pancreatic cancer cell lines. Conclusion These findings suggested that GDF11 acted as a tumor suppressor gene for pancreatic cancer.
Collapse
Affiliation(s)
- Yanzhe Liu
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Chinese PLA General Hospital, Beijing, People's Republic of China,
| | - Lijuan Shao
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, People's Republic of China
| | - Kuang Chen
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Chinese PLA General Hospital, Beijing, People's Republic of China,
| | - Zizheng Wang
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Chinese PLA General Hospital, Beijing, People's Republic of China,
| | - Jin Wang
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Chinese PLA General Hospital, Beijing, People's Republic of China,
| | - Wei Jing
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, People's Republic of China,
| | - Minggen Hu
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Chinese PLA General Hospital, Beijing, People's Republic of China,
| |
Collapse
|
122
|
Kim YJ, Seo DH, Lee SH, Lee SH, An GH, Ahn HJ, Kwon D, Seo KW, Kang KS. Conditioned media from human umbilical cord blood-derived mesenchymal stem cells stimulate rejuvenation function in human skin. Biochem Biophys Rep 2018; 16:96-102. [PMID: 30417126 PMCID: PMC6205340 DOI: 10.1016/j.bbrep.2018.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/04/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023] Open
Abstract
Developing treatments that inhibit skin aging is an important research project. Rejuvenation, which focuses on prevention of skin aging, is one of the major issues. Recent studies suggested that mesenchymal stem cells (MSCs) secrete many cytokines, which are important in wound healing. In this study, we investigated the effect of human umbilical cord blood-derived mesenchymal stem cells conditioned media (USC-CM) in cutaneous wound healing and collagen synthesis. We found that USC-CM has many useful growth factors associated with skin rejuvenation, such as Epithelial Growth Factor (EGF), basic Fibroblast Growth Factor (bFGF), Platelet Derived Growth Factor (PDGF), Hepatocyte Growth Factor (HGF), Collagen type 1, and especially, one of the rejuvenation factors, the growth differentiation factor-11 (GDF-11). Our in vitro results showed that USC-CM stimulate growth and extracellular matrix (ECM) production of Human Dermal Fibroblasts (HDFs) compared to those of other MSCs conditioned media (CM) from different origins. Moreover, we evaluated the roles of GDF-11. The results showed that GDF-11 accelerates growth, migration and ECM production of HDFs. Our In vivo results showed that topical treatment of USC-CM showed anti-wrinkle effect and significantly increased dermal density in women. In conclusion, USC-CM has various useful growth factors including GDF-11 that can stimulate skin rejuvenation by increasing growth and ECM production of HDFs. USC-CM has various growth factors associated with skin rejuvenation including GDF-11 that strongly promoted HDFs migration, collagen synthesis in vitro compared with HDF- and AD-MSC-CM. USC-CM increased dermal density and decreased skin wrinkle in human.
Collapse
Affiliation(s)
- Yoon-Jin Kim
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dong Hee Seo
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seung Hee Lee
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sung-Hoon Lee
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Geun-Ho An
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hee-Jin Ahn
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Daekee Kwon
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kwang-Won Seo
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyung-Sun Kang
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.,Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
123
|
Davidson AJ, Lewis P, Przepiorski A, Sander V. Turning mesoderm into kidney. Semin Cell Dev Biol 2018; 91:86-93. [PMID: 30172050 DOI: 10.1016/j.semcdb.2018.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
The intermediate mesoderm is located between the somites and the lateral plate mesoderm and gives rise to renal progenitors that contribute to the three mammalian kidney types (pronephros, mesonephros and metanephros). In this review, focusing largely on murine kidney development, we examine how the intermediate mesoderm forms during gastrulation/axis elongation and how it progressively gives rise to distinct renal progenitors along the rostro-caudal axis. We highlight some of the potential signalling cues and core transcription factor circuits that direct these processes, up to the point of early metanephric kidney formation.
Collapse
Affiliation(s)
- Alan J Davidson
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical & Health Sciences, The University of Auckland, Private Bag 921019, Auckland 1142, New Zealand.
| | - Paula Lewis
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical & Health Sciences, The University of Auckland, Private Bag 921019, Auckland 1142, New Zealand
| | - Aneta Przepiorski
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical & Health Sciences, The University of Auckland, Private Bag 921019, Auckland 1142, New Zealand
| | - Veronika Sander
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical & Health Sciences, The University of Auckland, Private Bag 921019, Auckland 1142, New Zealand
| |
Collapse
|
124
|
Bigford GE, Darr AJ, Bracchi-Ricard VC, Gao H, Nash MS, Bethea JR. Effects of ursolic acid on sub-lesional muscle pathology in a contusion model of spinal cord injury. PLoS One 2018; 13:e0203042. [PMID: 30157245 PMCID: PMC6114926 DOI: 10.1371/journal.pone.0203042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022] Open
Abstract
Spinal Cord Injury (SCI) results in severe sub-lesional muscle atrophy and fiber type transformation from slow oxidative to fast glycolytic, both contributing to functional deficits and maladaptive metabolic profiles. Therapeutic countermeasures have had limited success and muscle-related pathology remains a clinical priority. mTOR signaling is known to play a critical role in skeletal muscle growth and metabolism, and signal integration of anabolic and catabolic pathways. Recent studies show that the natural compound ursolic acid (UA) enhances mTOR signaling intermediates, independently inhibiting atrophy and inducing hypertrophy. Here, we examine the effects of UA treatment on sub-lesional muscle mTOR signaling, catabolic genes, and functional deficits following severe SCI in mice. We observe that UA treatment significantly attenuates SCI induced decreases in activated forms of mTOR, and signaling intermediates PI3K, AKT, and S6K, and the upregulation of catabolic genes including FOXO1, MAFbx, MURF-1, and PSMD11. In addition, UA treatment improves SCI induced deficits in body and sub-lesional muscle mass, as well as functional outcomes related to muscle function, motor coordination, and strength. These findings provide evidence that UA treatment may be a potential therapeutic strategy to improve muscle-specific pathological consequences of SCI.
Collapse
Affiliation(s)
- Gregory E. Bigford
- The Miami Project to Cure Paralysis, Miami, Florida, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Andrew J. Darr
- Department of Health Sciences Education, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | | | - Han Gao
- The Miami Project to Cure Paralysis, Miami, Florida, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mark S. Nash
- The Miami Project to Cure Paralysis, Miami, Florida, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Rehabilitation Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
125
|
Affiliation(s)
- Buel D Rodgers
- From the Washington Center for Muscle Biology, Washington State University, Pullman.
| |
Collapse
|
126
|
Pons M, Koniaris LG, Moe SM, Gutierrez JC, Esquela-Kerscher A, Zimmers TA. GDF11 induces kidney fibrosis, renal cell epithelial-to-mesenchymal transition, and kidney dysfunction and failure. Surgery 2018; 164:262-273. [PMID: 29731246 DOI: 10.1016/j.surg.2018.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND GDF11 modulates embryonic patterning and kidney organogenesis. Herein, we sought to define GDF11 function in the adult kidney and in renal diseases. METHODS In vitro renal cell lines, genetic, and murine in vivo renal injury models were examined. RESULTS Among tissues tested, Gdf11 was highest in normal adult mouse kidney. Expression was increased acutely after 5/6 nephrectomy, ischemia-reperfusion injury, kanamycin toxicity, or unilateral ureteric obstruction. Systemic, high-dose GDF11 administration in adult mice led to renal failure, with accompanying kidney atrophy, interstitial fibrosis, epithelial-to-mesenchymal transition of renal tubular cells, and eventually death. These effects were associated with phosphorylation of SMAD2 and could be blocked by follistatin. In contrast, Gdf11 heterozygous mice showed reduced renal Gdf11 expression, renal fibrosis, and expression of fibrosis-associated genes both at baseline and after unilateral ureteric obstruction compared with wild-type littermates. The kidney-specific consequences of GDF11 dose modulation are direct effects on kidney cells. GDF11 induced proliferation and activation of NRK49f renal fibroblasts and also promoted epithelial-to-mesenchymal transition of IMCD-3 tubular epithelial cells in a SMAD3-dependent manner. CONCLUSION Taken together, these data suggest that GDF11 and its downstream signals are critical in vivo mediators of renal injury. These effects are through direct actions of GDF11 on renal tubular cells and fibroblasts. Thus, regulation of GDF11 presents a therapeutic target for diseases involving renal fibrosis and impaired tubular function.
Collapse
Affiliation(s)
- Marianne Pons
- Department of Surgery, Indiana University School of Medicine, Indianapolis
| | | | - Sharon M Moe
- Department of Medicine, Indiana University School of Medicine, Indianapolis; Roudebush Veterans Administration Medical Center, Indianapolis, IN
| | | | - Aurora Esquela-Kerscher
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk
| | - Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis; Departments of Anatomy and Cell Biology, Biochemistry and Molecular Biology and Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis; IU Simon Cancer Center, Indianapolis, IN
| |
Collapse
|
127
|
Tanaka R, Sugiura H, Yamada M, Ichikawa T, Koarai A, Fujino N, Yanagisawa S, Onodera K, Numakura T, Sato K, Kyogoku Y, Sano H, Yamanaka S, Okazaki T, Tamada T, Miura M, Takahashi T, Ichinose M. Physical inactivity is associated with decreased growth differentiation factor 11 in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2018; 13:1333-1342. [PMID: 29731621 PMCID: PMC5927187 DOI: 10.2147/copd.s157035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Growth differentiation factor 11 (GDF11) is reported to possess anti-aging and rejuvenating effects, including muscle regeneration and to be highly expressed in skeletal muscle. Recently, we demonstrated that the levels of plasma GDF11 were decreased in COPD. However, the effect of decreased circulating GDF11 in the pathophysiology of COPD remains unknown. The aim of this study is to investigate the association between the plasma GDF11 levels and various clinical parameters in patients with COPD. PATIENTS AND METHODS Eighteen ex-smokers as control subjects and 70 COPD patients participated in the current study. We measured the levels of plasma GDF11 using immunoblotting, lung function, physical activity using a triaxial accelerometer, quadriceps strength, exercise capacity, and systemic inflammatory markers. We investigated the association between the levels of plasma GDF11 and these clinical parameters. RESULTS The levels of plasma GDF11 in the COPD patients had significant positive correlations with the data of lung function. Furthermore, the levels of plasma GDF11 were significantly correlated with the physical activity, quadriceps strength, and exercise capacity. Moreover, the levels of plasma GDF11 were significantly correlated with the data of inflammatory markers. Although various factors were related to GDF11, the multiple regression analysis showed that physical activity was significantly associated with the levels of plasma GDF11. CONCLUSION Physical inactivity was significantly related to the decreased GDF11 levels in COPD, which might be useful for understanding the pathogenesis of COPD. Clarifying the relationships between the physical inactivity and GDF11 may reveal a potentially attractive therapeutic approach in COPD via increasing the plasma levels of GDF11.
Collapse
Affiliation(s)
- Rie Tanaka
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Tomohiro Ichikawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Satoru Yanagisawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Katsuhiro Onodera
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Kei Sato
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Yorihiko Kyogoku
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Hirohito Sano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Shun Yamanaka
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Tatsuma Okazaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Motohiko Miura
- Department of Respiratory Medicine, Tohoku Rosai Hospital, Aoba-ku, Sendai, Japan
| | - Tsuneyuki Takahashi
- Department of Internal Medicine, Tohoku Medical and Pharmaceutical University Wakabayashi Hospital, Wakabayashi-ku, Sendai, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| |
Collapse
|
128
|
Liu A, Dong W, Peng J, Dirsch O, Dahmen U, Fang H, Zhang C, Sun J. Growth differentiation factor 11 worsens hepatocellular injury and liver regeneration after liver ischemia reperfusion injury. FASEB J 2018; 32:5186-5198. [DOI: 10.1096/fj.201800195r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anding Liu
- Experimental Medicine CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei Dong
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jing Peng
- Department of Clinical LaboratoryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Olaf Dirsch
- Institute of PathologyKlinikum ChemnitzChemnitzGermany
| | - Uta Dahmen
- Experimental Transplantation SurgeryDepartment of Generalm, Visceral, and Vascular SurgeryFriedrich-Schiller-University JenaJenaGermany
| | - Haoshu Fang
- Department of PathophysiologyAnhui Medical UniversityHefeiChina
| | - Cuntai Zhang
- Department of GeriatricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jian Sun
- Department of Biliopancreatic Surgery Sun Yat-sen Memorial HospitalSun Yat-sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat-sen Memorial HospitalSun Yat-sen UniversityGuangzhouChina
| |
Collapse
|
129
|
Hayashi Y, Mikawa S, Masumoto K, Katou F, Sato K. GDF11 expression in the adult rat central nervous system. J Chem Neuroanat 2018; 89:21-36. [PMID: 29448002 DOI: 10.1016/j.jchemneu.2018.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/16/2017] [Accepted: 02/10/2018] [Indexed: 01/12/2023]
Abstract
Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP11), is a member of the transforming growth factor β (TGF-β) superfamily. Although GDF11 plays pivotal roles during development, including anterior/posterior patterning, formation of the kidney, stomach, spleen and endocrine pancreas, little information is available for GDF11 expression in the adult central nervous system (CNS). We, thus, investigated GDF11 expression in the adult rat CNS using immunohistochemistry. GDF11 was intensely expressed in most neurons and their axons. Furthermore, we found that astrocytes and ependymal cells also express GDF11 protein. These data indicate that GDF11 is widely expressed throughout the adult CNS, and its abundant expression in the adult brain strongly supports the idea that GDF11 plays important roles in the adult brain.
Collapse
Affiliation(s)
- Yutaro Hayashi
- Department of Dentistry and Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan; Department of Organ & Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Sumiko Mikawa
- Department of Organ & Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kazuma Masumoto
- Department of Dentistry and Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Fuminori Katou
- Department of Dentistry and Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kohji Sato
- Department of Organ & Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
130
|
Jin Q, Qiao C, Li J, Li J, Xiao X. Neonatal Systemic AAV-Mediated Gene Delivery of GDF11 Inhibits Skeletal Muscle Growth. Mol Ther 2018; 26:1109-1117. [PMID: 29503194 DOI: 10.1016/j.ymthe.2018.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Growth and differentiation factor 11 (GDF11; BMP11) is a circulating cytokine in the transforming growth factor beta (TGF-β) superfamily. Treatment with recombinant GDF11 (rGDF11) protein has previously been shown to reverse skeletal muscle dysfunction in aged mice. However, the actions of GDF11 in skeletal muscle are still not fully understood. Because GDF11 activates the TGF-β-SMAD2/3 pathway, we hypothesized that GDF11 overexpression would inhibit skeletal muscle growth. To test this hypothesis, we generated recombinant adeno-associated virus serotype 9 (AAV9) vectors harboring the gene for either human GDF11 (AAV9-GDF11) or human IgG1 Fc-fused GDF11 propeptide (AAV9-GDF11Pro-Fc-1) to study the effects of GDF11 overexpression or blockade on skeletal muscle growth and function in vivo. After intravenous administration of AAV9-GDF11 into neonatal C57BL/6J mice, we observed sustained limb muscle growth inhibition along with reductions in forelimb grip strength and treadmill running endurance at 16 weeks. Conversely, treatment with AAV9-GDF11Pro-Fc-1 led to increased limb muscle mass and forelimb grip strength after 28 weeks, although a difference in the total body mass/muscle mass ratio was not observed between treatment and control groups. In sum, our results suggest GDF11 overexpression has an inhibitory effect on skeletal muscle growth.
Collapse
Affiliation(s)
- Quan Jin
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chunping Qiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jianbin Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juan Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiao Xiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
131
|
Hoac B, Susan-Resiga D, Essalmani R, Marcinkiweicz E, Seidah NG, McKee MD. Osteopontin as a novel substrate for the proprotein convertase 5/6 (PCSK5) in bone. Bone 2018; 107:45-55. [PMID: 29126984 DOI: 10.1016/j.bone.2017.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/30/2022]
Abstract
Seven proprotein convertases cleave the basic amino acid consensus sequence K/R-Xn-K/R↓ (where n=0, 2, 4 or 6 variable amino acids) to activate precursor proteins. Despite similarities in substrate specificity, basic amino acid-specific proprotein convertases have a distinct tissue distribution allowing for enzymatic actions on tissue-resident substrates. Proprotein convertase 5/6 (PC5/6) has two splice variants - soluble PC5/6A and membrane-bound PC5/6B - and is expressed during mouse development in many tissues including bone and tooth, but little is known about the substrates for PC5/6 therein. Osteopontin (OPN) is an abundant bone extracellular matrix protein with roles in mineralization, cell adhesion and cell migration, and it has putative consensus sequence sites for cleavage by PC5/6, which may modify its function in bone. Since PC5/6-knockout mouse embryos show developmental abnormalities, and reduced overall mineralization, we designed this study to determine whether OPN is a substrate of PC5/6. In silico analysis of OPN protein sequences identified four potential PC5/6 consensus cleavage sites in human OPN, and three sites - including a noncanonical sequence - in mouse OPN. Ex vivo co-transfections with human OPN revealed complete OPN cleavage reducing full-length OPN (~70kDa) to an N-terminal fragment migrating at ~50kDa and two C-terminal fragments at ~18kDa and ~16kDa. Direct cleavage of OPN by PC5/6A - the predominant isoform expressed in human osteoblast cells - was confirmed by cell-free enzyme-substrate assays and by mass spectrometry. The latter was also used to investigate potential cleavage sites. Co-transfections of PC5/6 and mouse OPN showed partial cleavage of OPN into a C-terminal OPN fragment migrating at ~30kDa and an N-terminal fragment migrating at ~29kDa. Micro-computed tomography of PC5/6-knockout embryos at E18.5 confirmed a reduction in mineralized bone, and in situ hybridization performed on cryo-sections of normal mouse bone using Pcsk5 and Opn anti-sense and control-sense cRNA probes indicated the co-localization of the expression of these genes in bone cells. This mRNA expression profile was supported by semi-quantitative RT-PCR using osteoblast primary cultures, and cultured MC3T3-E1 osteoblast and MLO-Y4 osteocyte cell lines. Immunoblotting for OPN from mouse bone extracts showed altered OPN processing in PC5/6-knockout mice compared to wildtype mice. OPN fragments migrated at ~25kDa and ~16kDa in wildtype bone and were not present in PC5/6-deficient bone. In conclusion, this study demonstrates that Pcsk5 is expressed in bone-forming cells, and that OPN is a novel substrate for PC5/6. Cleavage of OPN by PC5/6 may modify the function of OPN in bone and/or modulate other enzymatic cleavages of OPN, leading to alterations in the bone phenotype.
Collapse
Affiliation(s)
- Betty Hoac
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, Affiliated with the University of Montreal, Montreal, QC, Canada
| | - Rachid Essalmani
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, Affiliated with the University of Montreal, Montreal, QC, Canada
| | - Edwige Marcinkiweicz
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, Affiliated with the University of Montreal, Montreal, QC, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, Affiliated with the University of Montreal, Montreal, QC, Canada
| | - Marc D McKee
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
132
|
Supraphysiologic Administration of GDF11 Induces Cachexia in Part by Upregulating GDF15. Cell Rep 2018; 22:1522-1530. [DOI: 10.1016/j.celrep.2018.01.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/30/2017] [Accepted: 01/15/2018] [Indexed: 12/25/2022] Open
|
133
|
Past, Present, and Future Perspective of Targeting Myostatin and Related Signaling Pathways to Counteract Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:153-206. [DOI: 10.1007/978-981-13-1435-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
134
|
Bajikar SS, Wang CC, Borten MA, Pereira EJ, Atkins KA, Janes KA. Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer. Dev Cell 2017; 43:418-435.e13. [PMID: 29161592 DOI: 10.1016/j.devcel.2017.10.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/18/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous carcinoma in which various tumor-suppressor genes are lost by mutation, deletion, or silencing. Here we report a tumor-suppressive mode of action for growth-differentiation factor 11 (GDF11) and an unusual mechanism of its inactivation in TNBC. GDF11 promotes an epithelial, anti-invasive phenotype in 3D triple-negative cultures and intraductal xenografts by sustaining expression of E-cadherin and inhibitor of differentiation 2 (ID2). Surprisingly, clinical TNBCs retain the GDF11 locus and expression of the protein itself. GDF11 bioactivity is instead lost because of deficiencies in its convertase, proprotein convertase subtilisin/kexin type 5 (PCSK5), causing inactive GDF11 precursor to accumulate intracellularly. PCSK5 reconstitution mobilizes the latent TNBC reservoir of GDF11 in vitro and suppresses triple-negative mammary cancer metastasis to the lung of syngeneic hosts. Intracellular GDF11 retention adds to the concept of tumor-suppressor inactivation and reveals a cell-biological vulnerability for TNBCs lacking therapeutically actionable mutations.
Collapse
Affiliation(s)
- Sameer S Bajikar
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Chun-Chao Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Institute of Molecular Medicine & Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Michael A Borten
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Elizabeth J Pereira
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Kristen A Atkins
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
135
|
Taguchi A, Nishinakamura R. Higher-Order Kidney Organogenesis from Pluripotent Stem Cells. Cell Stem Cell 2017; 21:730-746.e6. [PMID: 29129523 DOI: 10.1016/j.stem.2017.10.011] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/27/2017] [Accepted: 10/20/2017] [Indexed: 11/30/2022]
Abstract
Organogenesis generates higher-order structures containing functional subunits, connective components, and progenitor niches. Despite recent advances in organoid-based modeling of tissue development, recapitulating these complex configurations from pluripotent stem cells (PSCs) has remained challenging. In this study, we report assembly of kidney organoids that recapitulate embryonic branching morphogenesis. By studying the distinct origins and developmental processes of the ureteric bud, which contains epithelial kidney progenitors that undergo branching morphogenesis and thereby plays a central role in orchestrating organ geometry, and neighboring mesenchymal nephron progenitors, we established a protocol for differential induction of each lineage from mouse and human PSCs. Importantly, reassembled organoids developed the inherent architectures of the embryonic kidney, including the peripheral progenitor niche and internally differentiated nephrons that were interconnected by a ramified ureteric epithelium. This selective induction and reassembly strategy will be a powerful approach to recapitulate organotypic architecture in PSC-derived organoids.
Collapse
Affiliation(s)
- Atsuhiro Taguchi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan.
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan.
| |
Collapse
|
136
|
Leal F, Cohn MJ. Developmental, genetic, and genomic insights into the evolutionary loss of limbs in snakes. Genesis 2017; 56. [DOI: 10.1002/dvg.23077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Francisca Leal
- Howard Hughes Medical Institute, UF Genetics Institute, University of Florida; Gainesville FL 32610
- Department of Biology; University of Florida; Gainesville FL 32610
| | - Martin J. Cohn
- Department of Biology; University of Florida; Gainesville FL 32610
- Department of Molecular Genetics and Microbiology; University of Florida; Gainesville FL 32610
| |
Collapse
|
137
|
Hammers DW, Merscham-Banda M, Hsiao JY, Engst S, Hartman JJ, Sweeney HL. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med 2017; 9:531-544. [PMID: 28270449 PMCID: PMC5376753 DOI: 10.15252/emmm.201607231] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Growth and differentiation factor (GDF) 11 is a member of the transforming growth factor β superfamily recently identified as a potential therapeutic for age‐related cardiac and skeletal muscle decrements, despite high homology to myostatin (Mstn), a potent negative regulator of muscle mass. Though several reports have refuted these data, the in vivo effects of GDF11 on skeletal muscle mass have not been addressed. Using in vitro myoblast culture assays, we first demonstrate that GDF11 and Mstn have similar activities/potencies on activating p‐SMAD2/3 and induce comparable levels of differentiated myotube atrophy. We further demonstrate that adeno‐associated virus‐mediated systemic overexpression of GDF11 in C57BL/6 mice results in substantial atrophy of skeletal and cardiac muscle, inducing a cachexic phenotype not seen in mice expressing similar levels of Mstn. Greater cardiac expression of Tgfbr1 may explain this GDF11‐specific cardiac phenotype. These data indicate that bioactive GDF11 at supraphysiological levels cause wasting of both skeletal and cardiac muscle. Rather than a therapeutic agent, GDF11 should be viewed as a potential deleterious biomarker in muscle wasting diseases.
Collapse
Affiliation(s)
- David W Hammers
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Melissa Merscham-Banda
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | - H Lee Sweeney
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA .,Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
138
|
Thompson NE, Almécija S. The evolution of vertebral formulae in Hominoidea. J Hum Evol 2017; 110:18-36. [DOI: 10.1016/j.jhevol.2017.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 01/06/2023]
|
139
|
Role of growth differentiation factor 11 in development, physiology and disease. Oncotarget 2017; 8:81604-81616. [PMID: 29113418 PMCID: PMC5655313 DOI: 10.18632/oncotarget.20258] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/28/2017] [Indexed: 12/31/2022] Open
Abstract
Growth differentiation factor (GDF11) is a member of TGF-β/BMP superfamily that activates Smad and non-Smad signaling pathways and regulates expression of its target nuclear genes. Since its discovery in 1999, studies have shown the involvement of GDF11 in normal physiological processes, such as embryonic development and erythropoiesis, as well as in the pathophysiology of aging, cardiovascular disease, diabetes mellitus, and cancer. In addition, there are contradictory reports regarding the role of GDF11 in aging, cardiovascular disease, diabetes mellitus, osteogenesis, skeletal muscle development, and neurogenesis. In this review, we describe the GDF11 signaling pathway and its potential role in development, physiology and disease.
Collapse
|
140
|
De Domenico E, D'Arcangelo G, Faraoni I, Palmieri M, Tancredi V, Graziani G, Grimaldi P, Tentori L. Modulation of GDF11 expression and synaptic plasticity by age and training. Oncotarget 2017; 8:57991-58002. [PMID: 28938532 PMCID: PMC5601628 DOI: 10.18632/oncotarget.19854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/25/2017] [Indexed: 01/26/2023] Open
Abstract
The Growth Differentiation Factor 11 (GDF11) has been controversially involved in the aging/rejuvenation process. To clarify whether GDF11 is differently expressed during aging, we have evaluated GDF11 levels in skeletal muscles and hippocampi of young and old mice, sedentary or subjected to a 12-weeks triweekly training protocol. The results of real-time PCR and Western blot analyses indicate that skeletal muscles of sedentary old mice express higher levels of GDF11 compared to young animals (p < 0.05). Conversely, in hippocampi no significant differences of GDF11 expression are detected. Analysis of long-term potentiation, a synaptic plasticity phenomenon, reveals that population spikes in response to a tetanic stimulus are significantly higher in sedentary young mice than in old animals (p < 0.01). Training induces a significant improvement of long-term potentiation in both young and old animals (p < 0.05), an increase (p < 0.05) of skeletal muscle GDF11 levels in young mice and a reduction of GDF11 expression in hippocampi of old mice (p < 0.05). Overall, data suggest that GDF11 can be considered an aging biomarker for skeletal muscles. Moreover, physical exercise has a positive impact on long-term potentiation in both young and old mice, while it has variable effects on GDF11 expression depending on age and on the tissue analyzed.
Collapse
Affiliation(s)
- Emanuela De Domenico
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Isabella Faraoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mattia Palmieri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Grimaldi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Lucio Tentori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
141
|
Matsubara Y, Hirasawa T, Egawa S, Hattori A, Suganuma T, Kohara Y, Nagai T, Tamura K, Kuratani S, Kuroiwa A, Suzuki T. Anatomical integration of the sacral-hindlimb unit coordinated by GDF11 underlies variation in hindlimb positioning in tetrapods. Nat Ecol Evol 2017; 1:1392-1399. [PMID: 29046533 DOI: 10.1038/s41559-017-0247-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/22/2017] [Indexed: 11/09/2022]
Abstract
Elucidating how body parts from different primordia are integrated during development is essential for understanding the nature of morphological evolution. In tetrapod evolution, while the position of the hindlimb has diversified along with the vertebral formula, the mechanism responsible for this coordination has not been well understood. However, this synchronization suggests the presence of an evolutionarily conserved developmental mechanism that coordinates the positioning of the hindlimb skeleton derived from the lateral plate mesoderm with that of the sacral vertebrae derived from the somites. Here we show that GDF11 secreted from the posterior axial mesoderm is a key factor in the integration of sacral vertebrae and hindlimb positioning by inducing Hox gene expression in two different primordia. Manipulating the onset of GDF11 activity altered the position of the hindlimb in chicken embryos, indicating that the onset of Gdf11 expression is responsible for the coordinated positioning of the sacral vertebrae and hindlimbs. Through comparative analysis with other vertebrate embryos, we also show that each tetrapod species has a unique onset timing of Gdf11 expression, which is tightly correlated with the anteroposterior levels of the hindlimb bud. We conclude that the evolutionary diversity of hindlimb positioning resulted from heterochronic shifts in Gdf11 expression, which led to coordinated shifts in the sacral-hindlimb unit along the anteroposterior axis.
Collapse
Affiliation(s)
- Yoshiyuki Matsubara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | | | - Shiro Egawa
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Ayumi Hattori
- Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku Sendai, 980-8575, Japan
| | - Takaya Suganuma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yuhei Kohara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Tatsuya Nagai
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | | | - Atsushi Kuroiwa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
| | - Takayuki Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
| |
Collapse
|
142
|
Li H, Li Y, Xiang L, Zhang J, Zhu B, Xiang L, Dong J, Liu M, Xiang G. GDF11 Attenuates Development of Type 2 Diabetes via Improvement of Islet β-Cell Function and Survival. Diabetes 2017; 66:1914-1927. [PMID: 28450417 DOI: 10.2337/db17-0086] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/18/2017] [Indexed: 11/13/2022]
Abstract
Growth differentiation factor 11 (GDF11) has been implicated in the regulation of islet development and a variety of aging conditions, but little is known about the physiological functions of GDF11 in adult pancreatic islets. Here, we showed that systematic replenishment of GDF11 not only preserved insulin secretion but also improved the survival and morphology of β-cells and improved glucose metabolism in both nongenetic and genetic mouse models of type 2 diabetes (T2D). Conversely, anti-GDF11 monoclonal antibody treatment caused β-cell failure and lethal T2D. In vitro treatment of isolated murine islets and MIN6 cells with recombinant GDF11 attenuated glucotoxicity-induced β-cell dysfunction and apoptosis. Mechanistically, the GDF11-mediated protective effects could be attributed to the activation of transforming growth factor-β/Smad2 and phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT-FoxO1 signaling. These findings suggest that GDF11 repletion may improve β-cell function and mass and thus may lead to a new therapeutic approach for T2D.
Collapse
Affiliation(s)
- Huan Li
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Yixiang Li
- Radiation-Diagnostic/Oncology School of Medicine, Emory University, Atlanta, GA
| | - Lingwei Xiang
- Mathematics and Statistics Department, Georgia State University, Atlanta, GA
| | - JiaJia Zhang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Biao Zhu
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Lin Xiang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Jing Dong
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Min Liu
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Guangda Xiang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| |
Collapse
|
143
|
Abstract
In addition to its roles in embryonic development, Growth and Differentiation Factor 11 (GDF 11) has recently drawn much interest about its roles in other processes, such as aging. GDF 11 has been shown to play pivotal roles in the rescue of the proliferative and regenerative capabilities of skeletal muscle, neural stem cells and cardiomyocytes. We would be remiss not to point that some controversy exists regarding the role of GDF 11 in biological processes and whether it will serve as a therapeutic agent. The latest studies have shown that the level of circulating GDF 11 correlates with the outcomes of patients with cardiovascular diseases, cancer and uremia. Based on these studies, GDF 11 is a promising candidate to serve as a novel biomarker of diseases. This brief review gives a detailed and concise view of the regulation and functions of GDF 11 and its roles in development, neurogenesis and erythropoiesis as well as the prospect of using this protein as an indicator of cardiac health and aging.
Collapse
Affiliation(s)
- A Jamaiyar
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA; School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - W Wan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, China
| | - D M Janota
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - M K Enrick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - W M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - L Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
144
|
Zimmers TA, Jiang Y, Wang M, Liang TW, Rupert JE, Au ED, Marino FE, Couch ME, Koniaris LG. Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting. Basic Res Cardiol 2017. [PMID: 28647906 DOI: 10.1007/s00395-017-0639-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Growth differentiation factor 11 (GDF11), a TGF-beta superfamily member, is highly homologous to myostatin and essential for embryonic patterning and organogenesis. Reports of GDF11 effects on adult tissues are conflicting, with some describing anti-aging and pro-regenerative activities on the heart and skeletal muscle while others opposite or no effects. Herein, we sought to determine the in vivo cardiac and skeletal muscle effects of excess GDF11. Mice were injected with GDF11 secreting cells, an identical model to that used to initially identify the in vivo effects of myostatin. GDF11 exposure in mice induced whole body wasting and profound loss of function in cardiac and skeletal muscle over a 14-day period. Loss of cardiac mass preceded skeletal muscle loss. Cardiac histologic and echocardiographic evaluation demonstrated loss of ventricular muscle wall thickness, decreased cardiomyocyte size, and decreased cardiac function 10 days following initiation of GDF11 exposure. Changes in skeletal muscle after GDF11 exposure were manifest at day 13 and were associated with wasting, decreased fiber size, and reduced strength. Changes in cardiomyocytes and skeletal muscle fibers were associated with activation of SMAD2, the ubiquitin-proteasome pathway and autophagy. Thus, GDF11 over administration in vivo results in cardiac and skeletal muscle loss, dysfunction, and death. Here, serum levels of GDF11 by Western blotting were 1.5-fold increased over controls. Although GDF11 effects in vivo are likely dose, route, and duration dependent, its physiologic changes are similar to myostatin and other Activin receptors ligands. These data support that GDF11, like its other closely related TGF-beta family members, induces loss of cardiac and skeletal muscle mass and function.
Collapse
Affiliation(s)
- Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Drive, Emerson 511, Indianapolis, IN, 46202, USA. .,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,IUPUI Center for Cachexia Research, Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,IU Simon Cancer Center, Indiana University School of Medicine, 980 W. Walnut Street, R3-C518, Indianapolis, IN, 46202, USA.
| | - Yanling Jiang
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Drive, Emerson 511, Indianapolis, IN, 46202, USA
| | - Meijing Wang
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Drive, Emerson 511, Indianapolis, IN, 46202, USA
| | - Tiffany W Liang
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Drive, Emerson 511, Indianapolis, IN, 46202, USA
| | - Joseph E Rupert
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Drive, Emerson 511, Indianapolis, IN, 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ernie D Au
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Drive, Emerson 511, Indianapolis, IN, 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Francesco E Marino
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Drive, Emerson 511, Indianapolis, IN, 46202, USA
| | - Marion E Couch
- Otolaryngology, Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,IUPUI Center for Cachexia Research, Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,IU Simon Cancer Center, Indiana University School of Medicine, 980 W. Walnut Street, R3-C518, Indianapolis, IN, 46202, USA
| | - Leonidas G Koniaris
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Drive, Emerson 511, Indianapolis, IN, 46202, USA. .,IUPUI Center for Cachexia Research, Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,IU Simon Cancer Center, Indiana University School of Medicine, 980 W. Walnut Street, R3-C518, Indianapolis, IN, 46202, USA.
| |
Collapse
|
145
|
Hooper JE, Feng W, Li H, Leach SM, Phang T, Siska C, Jones KL, Spritz RA, Hunter LE, Williams T. Systems biology of facial development: contributions of ectoderm and mesenchyme. Dev Biol 2017; 426:97-114. [PMID: 28363736 PMCID: PMC5530582 DOI: 10.1016/j.ydbio.2017.03.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
The rapid increase in gene-centric biological knowledge coupled with analytic approaches for genomewide data integration provides an opportunity to develop systems-level understanding of facial development. Experimental analyses have demonstrated the importance of signaling between the surface ectoderm and the underlying mesenchyme are coordinating facial patterning. However, current transcriptome data from the developing vertebrate face is dominated by the mesenchymal component, and the contributions of the ectoderm are not easily identified. We have generated transcriptome datasets from critical periods of mouse face formation that enable gene expression to be analyzed with respect to time, prominence, and tissue layer. Notably, by separating the ectoderm and mesenchyme we considerably improved the sensitivity compared to data obtained from whole prominences, with more genes detected over a wider dynamic range. From these data we generated a detailed description of ectoderm-specific developmental programs, including pan-ectodermal programs, prominence- specific programs and their temporal dynamics. The genes and pathways represented in these programs provide mechanistic insights into several aspects of ectodermal development. We also used these data to identify co-expression modules specific to facial development. We then used 14 co-expression modules enriched for genes involved in orofacial clefts to make specific mechanistic predictions about genes involved in tongue specification, in nasal process patterning and in jaw development. Our multidimensional gene expression dataset is a unique resource for systems analysis of the developing face; our co-expression modules are a resource for predicting functions of poorly annotated genes, or for predicting roles for genes that have yet to be studied in the context of facial development; and our analytic approaches provide a paradigm for analysis of other complex developmental programs.
Collapse
Affiliation(s)
- Joan E Hooper
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Computational Bioscience Program, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Weiguo Feng
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Department of Craniofacial Biology, University of Colorado School of Dental Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Sonia M Leach
- Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.
| | - Tzulip Phang
- Computational Bioscience Program, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Department of Medicine, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Charlotte Siska
- Computational Bioscience Program, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Richard A Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, 12800 E 17th Avenue, Aurora, CO 80045, USA.
| | - Lawrence E Hunter
- Computational Bioscience Program, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Trevor Williams
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Department of Craniofacial Biology, University of Colorado School of Dental Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
146
|
Riley LA, Esser KA. The Role of the Molecular Clock in Skeletal Muscle and What It Is Teaching Us About Muscle-Bone Crosstalk. Curr Osteoporos Rep 2017; 15:222-230. [PMID: 28421465 PMCID: PMC5442191 DOI: 10.1007/s11914-017-0363-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW This review summarizes what has been learned about the interaction between skeletal muscle and bone from mouse models in which BMAL1, a core molecular clock protein has been deleted. Additionally, we highlight several genes which change following loss of BMAL1. The protein products from these genes are secreted from muscle and have a known effect on bone homeostasis. RECENT FINDINGS Circadian rhythms have been implicated in regulating systems homeostasis through a series of transcriptional-translational feedback loops termed the molecular clock. Recently, skeletal muscle-specific disruption of the molecular clock has been shown to disrupt skeletal muscle metabolism. Additionally, loss of circadian rhythms only in adult muscle has an effect on other tissue systems including bone. Our finding that the expression of a subset of skeletal muscle-secreted proteins changes following BMAL1 knockout combined with the current knowledge of muscle-bone crosstalk suggests that skeletal muscle circadian rhythms are important for maintenance of musculoskeletal homeostasis. Future research on this topic may be important for understanding the role of the skeletal muscle molecular clock in a number of diseases such as sarcopenia and osteoporosis.
Collapse
Affiliation(s)
- Lance A Riley
- Myology Institute, University of Florida, 1345 Center Dr., M552, Gainesville, FL, USA
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 1345 Center Dr., M552, Gainesville, FL, USA
| | - Karyn A Esser
- Myology Institute, University of Florida, 1345 Center Dr., M552, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 1345 Center Dr., M552, Gainesville, FL, USA.
| |
Collapse
|
147
|
Fan X, Gaur U, Sun L, Yang D, Yang M. The Growth Differentiation Factor 11 (GDF11) and Myostatin (MSTN) in tissue specific aging. Mech Ageing Dev 2017; 164:108-112. [PMID: 28472635 DOI: 10.1016/j.mad.2017.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 01/24/2023]
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (MSTN) are evolutionarily conserved homologues proteins which are closely related members of the transforming growth factor β superfamily. They are often perceived to serve similar or overlapping roles. Recently, GDF11 has been identified as playing a role during aging, however there are conflicting reports as to the nature of this role. In this review, we will discuss the literature regarding functions of GDF11 and myostatin in the heart, brain, and skeletal muscle during aging. Consequently we expect to develop a deeper understanding about the function of these two proteins in organismal aging and disease.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University Chengdu, 611130, PR China
| | - Uma Gaur
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University Chengdu, 611130, PR China
| | - Lin Sun
- Jiangsu Vocational College of Medicine, Yancheng, 224000, PR China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University Chengdu, 611130, PR China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University Chengdu, 611130, PR China.
| |
Collapse
|
148
|
Onodera K, Sugiura H, Yamada M, Koarai A, Fujino N, Yanagisawa S, Tanaka R, Numakura T, Togo S, Sato K, Kyogoku Y, Hashimoto Y, Okazaki T, Tamada T, Kobayashi S, Yanai M, Miura M, Hoshikawa Y, Okada Y, Suzuki S, Ichinose M. Decrease in an anti-ageing factor, growth differentiation factor 11, in chronic obstructive pulmonary disease. Thorax 2017; 72:893-904. [PMID: 28455454 DOI: 10.1136/thoraxjnl-2016-209352] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/03/2017] [Accepted: 04/01/2017] [Indexed: 11/04/2022]
Abstract
RATIONALE Cellular senescence is observed in the lungs of patients with COPD and may contribute to the disease pathogenesis. Growth differentiation factor 11 (GDF11) belongs to the transforming growth factor β superfamily and was recently reported to be a circulating protein that may have rejuvenating effects in mice. We aimed to investigate the amounts of GDF11 in the plasma and the lungs of patients with COPD and elucidate the possible roles of GDF11 in cellular senescence. METHODS The plasma levels of GDF11 were investigated in two separate cohorts by western blotting. The localisation and expression of GDF11 in the lungs were investigated by immunohistochemistry and quantitative reverse transcription PCR, respectively. The effects of GDF11 on both cigarette smoke extract (CSE)-induced cellular senescence in vitro and on elastase-induced cellular senescence in vivo were investigated. RESULTS The levels of plasma GDF11 in the COPD group were decreased compared with the control groups in the two independent cohorts. The levels of plasma GDF11 were significantly positively correlated with pulmonary function data. The mRNA expression of GDF11 in mesenchymal cells from the COPD group was decreased. Chronic exposure to CSE decreased the production of GDF11. Treatment with GDF11 significantly inhibited CSE-induced cellular senescence and upregulation of inflammatory mediators, partly through Smad2/3 signalling in vitro. Daily GDF11 treatment attenuated cellular senescence and airspace enlargement in an elastase-induced mouse model of emphysema. CONCLUSIONS The decrease in GDF11 may be involved in the cellular senescence observed in COPD.
Collapse
Affiliation(s)
- Katsuhiro Onodera
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoru Yanagisawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rie Tanaka
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinsaku Togo
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei Sato
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yorihiko Kyogoku
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuichiro Hashimoto
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuma Okazaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seiichi Kobayashi
- Department of Respiratory Medicine, Japanese Red Cross Ishinomaki Hospital, Ishinomaki, Japan
| | - Masaru Yanai
- Department of Respiratory Medicine, Japanese Red Cross Ishinomaki Hospital, Ishinomaki, Japan
| | - Motohiko Miura
- Department of Respiratory Medicine, Tohoku Rosai Hospital, Sendai, Japan
| | - Yasushi Hoshikawa
- Department of Thoracic Surgery, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Satoshi Suzuki
- Department of Thoracic Surgery, Japanese Red Cross Ishinomaki Hospital, Ishinomaki, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
149
|
Qin X, Kuang H, Chen L, Wei S, Yu D, Liang F. Coexpression of growth differentiation factor 11 and reactive oxygen species in metastatic oral cancer and its role in inducing the epithelial to mesenchymal transition. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 123:697-706. [PMID: 28478937 DOI: 10.1016/j.oooo.2017.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/05/2017] [Accepted: 03/07/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The aim of this study was to investigate growth differentiation factor 11 (GDF11) and reactive oxygen species (ROS) expression in metastatic oral cancer and explored their roles in inducing epithelial to mesenchymal transition (EMT). STUDY DESIGN The expression of GDF11, ROS, and EMT-related markers was evaluated in primary tumor tissues from patients with oral squamous cell carcinoma (OSCC). SCC-9 cells, a human tongue carcinoma cell line, were treated with recombinant GDF11. Induction of EMT, expression of EMT-related markers, and the effect of ROS on EMT in SCC-9 cells were analyzed. RESULTS Overexpression of GDF11 and ROS was observed in patients with metastatic oral cancer. Downregulated expression of E-cadherin and upregulated expression of vimentin, δ-EF1, SIP-1, MMP-2, and MMP-9 were observed in patients with metastatic oral cancer, relative to the expression of these factors in patients with nonmetastatic oral cancer. With recombinant GDF11 treatment, obvious spindle-shaped cells appeared, and gene expressions of EMT-related markers were altered in SCC-9 cells. Treatment with the powerful antioxidant N-acetylcysteine inhibited GDF11-induced EMT and cell migration. CONCLUSIONS GDF11 induces EMT and cell migration with ROS involvement in SCC-9 cells. Overexpression of GDF11 and ROS is associated with metastatic oral cancer. GDF11 and ROS may participate in metastasis of oral cancer through EMT.
Collapse
Affiliation(s)
- Xiangming Qin
- Graduate School, Guangxi Medical University, Nanning, Guangxi, China
| | - Hai Kuang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Lei Chen
- Graduate School, Guangxi Medical University, Nanning, Guangxi, China
| | - Shanliang Wei
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Dahai Yu
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Feixin Liang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
150
|
Walker RG, Czepnik M, Goebel EJ, McCoy JC, Vujic A, Cho M, Oh J, Aykul S, Walton KL, Schang G, Bernard DJ, Hinck AP, Harrison CA, Martinez-Hackert E, Wagers AJ, Lee RT, Thompson TB. Structural basis for potency differences between GDF8 and GDF11. BMC Biol 2017; 15:19. [PMID: 28257634 PMCID: PMC5336696 DOI: 10.1186/s12915-017-0350-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/18/2017] [Indexed: 01/11/2023] Open
Abstract
Background Growth/differentiation factor 8 (GDF8) and GDF11 are two highly similar members of the transforming growth factor β (TGFβ) family. While GDF8 has been recognized as a negative regulator of muscle growth and differentiation, there are conflicting studies on the function of GDF11 and whether GDF11 has beneficial effects on age-related dysfunction. To address whether GDF8 and GDF11 are functionally identical, we compared their signaling and structural properties. Results Here we show that, despite their high similarity, GDF11 is a more potent activator of SMAD2/3 and signals more effectively through the type I activin-like receptor kinase receptors ALK4/5/7 than GDF8. Resolution of the GDF11:FS288 complex, apo-GDF8, and apo-GDF11 crystal structures reveals unique properties of both ligands, specifically in the type I receptor binding site. Lastly, substitution of GDF11 residues into GDF8 confers enhanced activity to GDF8. Conclusions These studies identify distinctive structural features of GDF11 that enhance its potency, relative to GDF8; however, the biological consequences of these differences remain to be determined. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0350-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan G Walker
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Magdalena Czepnik
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Ana Vujic
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Miook Cho
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02115, USA
| | - Juhyun Oh
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02115, USA
| | - Senem Aykul
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kelly L Walton
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Physiology, Monash University, Clayton, Australia
| | - Gauthier Schang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Craig A Harrison
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Physiology, Monash University, Clayton, Australia
| | - Erik Martinez-Hackert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Amy J Wagers
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02115, USA
| | - Richard T Lee
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA. .,University of Cincinnati, 231 Albert Sabin Way ML 0524, Cincinnati, OH, 45267, USA.
| |
Collapse
|