101
|
Schaefer M. Homo- and heteromeric assembly of TRP channel subunits. Pflugers Arch 2005; 451:35-42. [PMID: 15971080 DOI: 10.1007/s00424-005-1467-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2005] [Accepted: 05/07/2005] [Indexed: 12/29/2022]
Abstract
Mammalian homologues of the Drosophila melanogaster transient receptor potential (TRP) channels are the second largest cation channel family within the superfamily of hexahelical cation channels. Most mammalian TRP channels function as homooligomers and mediate mono- or divalent cation entry upon activation by a variety of stimuli. Because native TRP channels may be multimeric proteins of possibly complex composition, it is difficult to compare cation conductances in native tissues to those of clearly defined homomeric TRP channel complexes in living cells. Therefore, the possibility of heteromeric TRP channel assembly has been investigated in recent years by several groups. As a major conclusion of these studies, most heteromeric TRP channel complexes appear to consist of subunit combinations only within relatively narrow confines of phylogenetic subfamilies. Although the general capability of heteromer formation between closely related TRP channel subunits is now clearly established, we are only beginning to understand whether these heteromeric complexes are of physiological significance. This review summarizes the current knowledge on the promiscuity and specificity of the assembly of channel complexes composed of TRPC-, TRPV- and TRPM-subunits of mammalian TRP channels.
Collapse
Affiliation(s)
- Michael Schaefer
- Institut für Pharmakologie, Charité, Universitätsmedizin Berlin, Campus Benjamin Franklin, Thielallee 67-73, 14195 Berlin, Germany.
| |
Collapse
|
102
|
Wang G, Shahidullah M, Rocha CA, Strang C, Pfaffinger PJ, Covarrubias M. Functionally active t1-t1 interfaces revealed by the accessibility of intracellular thiolate groups in kv4 channels. ACTA ACUST UNITED AC 2005; 126:55-69. [PMID: 15955876 PMCID: PMC2266617 DOI: 10.1085/jgp.200509288] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gating of voltage-dependent K(+) channels involves movements of membrane-spanning regions that control the opening of the pore. Much less is known, however, about the contributions of large intracellular channel domains to the conformational changes that underlie gating. Here, we investigated the functional role of intracellular regions in Kv4 channels by probing relevant cysteines with thiol-specific reagents. We find that reagent application to the intracellular side of inside-out patches results in time-dependent irreversible inhibition of Kv4.1 and Kv4.3 currents. In the absence or presence of Kv4-specific auxiliary subunits, mutational and electrophysiological analyses showed that none of the 14 intracellular cysteines is essential for channel gating. C110, C131, and C132 in the intersubunit interface of the tetramerization domain (T1) are targets responsible for the irreversible inhibition by a methanethiosulfonate derivative (MTSET). This result is surprising because structural studies of Kv4-T1 crystals predicted protection of the targeted thiolate groups by constitutive high-affinity Zn(2+) coordination. Also, added Zn(2+) or a potent Zn(2+) chelator (TPEN) does not significantly modulate the accessibility of MTSET to C110, C131, or C132; and furthermore, when the three critical cysteines remained as possible targets, the MTSET modification rate of the activated state is approximately 200-fold faster than that of the resting state. Biochemical experiments confirmed the chemical modification of the intact alpha-subunit and the purified tetrameric T1 domain by MTS reagents. These results conclusively demonstrate that the T1--T1 interface of Kv4 channels is functionally active and dynamic, and that critical reactive thiolate groups in this interface may not be protected by Zn(2+) binding.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College of thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
103
|
Huang X, Dong F, Zhou HX. Electrostatic Recognition and Induced Fit in the κ-PVIIA Toxin Binding to Shaker Potassium Channel. J Am Chem Soc 2005; 127:6836-49. [PMID: 15869307 DOI: 10.1021/ja042641q] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brownian dynamics (BD) and molecular dynamics (MD) simulations and electrostatic calculations were performed to study the binding process of kappa-PVIIA to the Shaker potassium channel and the structure of the resulting complex. BD simulations, guided by electrostatic interactions, led to an initial alignment between the toxin and the channel protein. MD simulations were then carried out to allow for rearrangements from this initial structure. After approximately 4 ns, a critical "induced fit" process was observed to last for approximately 2 ns. In this process, the interface was reorganized, and side chains were moved so that favorable atomic contacts were formed or strengthened, while unfavorable contacts were eliminated. The final complex structure was stabilized through electrostatic interactions with the positively charged side chain of Lys7 of kappa-PVIIA deeply inserted into the channel pore and other hydrogen bonds and by hydrophobic interactions involving Phe9 and Phe23 of the toxin. The validity of the predicted structure for the complex was assessed by calculating the effects of mutating charged and polar residues of both the toxin and the channel protein, with the calculated effects correlating reasonably well with experimental data. The present study suggests a general binding mechanism, whereby proteins are pre-aligned in their diffusional encounter by long-range electrostatic attraction, and nanosecond-scale rearrangements within the initial complex then lead to a specifically bound complex.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Institute of Molecular Biophysics and School of Computational Science, Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| | | | | |
Collapse
|
104
|
Abstract
A recent electron paramagnetic resonance study of KvAP, a prokaryotic voltage-gated channel, in its lipid native environment has revealed the location of the transmembrane segments, the connecting loops and the relative position of the voltage-sensing charges. The results confirm that the previously reported crystal structure does not represent a native conformation and give us structural constraints that will help in determining the molecular structure of the voltage sensor.
Collapse
Affiliation(s)
- Francisco Bezanilla
- Department of Physiology, D. Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
105
|
Jerng HH, Pfaffinger PJ, Covarrubias M. Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol Cell Neurosci 2005; 27:343-69. [PMID: 15555915 DOI: 10.1016/j.mcn.2004.06.011] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 05/22/2004] [Accepted: 06/08/2004] [Indexed: 11/23/2022] Open
Abstract
The somatodendritic subthreshold A-type K+ current (ISA) in nerve cells is a critical component of the ensemble of voltage-gated ionic currents that determine somatodendritic signal integration. The underlying K+ channel belongs to the Shal subfamily of voltage-gated K+ channels. Most Shal channels across the animal kingdom share a high degree of structural conservation, operate in the subthreshold range of membrane potentials, and exhibit relatively fast inactivation and recovery from inactivation. Mammalian Shal K+ channels (Kv4) undergo preferential closed-state inactivation with features that are generally inconsistent with the classical mechanisms of inactivation typical of Shaker K+ channels. Here, we review (1) the physiological and genetic properties of ISA, 2 the molecular mechanisms of Kv4 inactivation and its remodeling by a family of soluble calcium-binding proteins (KChIPs) and a membrane-bound dipeptidase-like protein (DPPX), and (3) the modulation of Kv4 channels by protein phosphorylation.
Collapse
Affiliation(s)
- Henry H Jerng
- Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
106
|
Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M. Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 2005; 118:917-28. [PMID: 15713749 DOI: 10.1242/jcs.01675] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vanilloid receptor-related TRP channels (TRPV1-6) mediate thermosensation, pain perception and epithelial Ca(2+) entry. As the specificity of TRPV channel heteromerization and determinants governing the assembly of TRPV subunits were largely elusive, we investigated the TRPV homo- and heteromultimerization. To analyze the assembly of TRPV subunits in living cells, we generated fluorescent fusion proteins or FLAG-tagged TRPV channel subunits. The interaction between TRPV subunits was assessed by analysis of the subcellular colocalization, fluorescence resonance energy transfer and coimmunoprecipitation. Our results demonstrate that TRPV channel subunits do not combine arbitrarily. With the exception of TRPV5 and TRPV6, TRPV channel subunits preferentially assemble into homomeric complexes. Truncation of TRPV1, expression of cytosolic termini of TRPV1 or TRPV4 and construction of chimeric TRPV channel subunits revealed that the specificity and the affinity of the subunit interaction is synergistically provided by interaction modules located in the transmembrane domains and in the cytosolic termini. The relative contribution of intramolecularly linked interaction modules presumably controls the overall affinity and the specificity of TRPV channel assembly.
Collapse
Affiliation(s)
- Nicole Hellwig
- Institut für Pharmakologie, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Thielallee 67-73, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
107
|
Liu HL, Chen CW, Lin JC. Homology Models of the Tetramerization Domain of Six Eukaryotic Voltage-gated Potassium Channels Kv1.1-Kv1.6. J Biomol Struct Dyn 2005; 22:387-98. [PMID: 15588103 DOI: 10.1080/07391102.2005.10507011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The homology models of the tetramerization (T1) domain of six eukaryotic potassium channels, Kv1.1-Kv1.6, were constructed based on the crystal structure of the Shaker T1 domain. The results of amino acid sequence alignment indicate that the T1 domains of these K+ channels are highly conserved, with the similarities varying from 77% between Shaker and Kv1.6 to 93% between Kv1.2 and Kv1.3. The homology models reveal that the T1 domains of these Kv channels exhibit similar folds as those of Shaker K+ channel. These models also show that each T1 monomer consists of three distinct layers, with N-terminal layer 1 and C-terminal layer 3 facing the cytoplasm and the membrane, respectively. Layer 2 exhibits the highest structural conservation because it is located around the central hydrophobic core. For each Kv channel, four identical subunits assemble into the homotetramer architecture around a four-fold axis through the hydrogen bonds and salt bridges formed by 15 highly conserved polar residues. The narrowest opening of the pore is formed by the four conserved residues corresponding to R115 of the Shaker T1 domain. The homology models of these Kv T1 domains provide particularly attractive targets for further structure-based studies.
Collapse
Affiliation(s)
- Hsuan-Liang Liu
- Department of Chemical Engineering and Graduate Institute of Biotechnology, National Taipei University of Technology, No. 1 Sec. 3 Chung-Hsiao E. Rd., Taipei, Taiwan 10608.
| | | | | |
Collapse
|
108
|
Abstract
Ca(2+) is an essential ion in all organisms, where it plays a crucial role in processes ranging from the formation and maintenance of the skeleton to the temporal and spatial regulation of neuronal function. The Ca(2+) balance is maintained by the concerted action of three organ systems, including the gastrointestinal tract, bone, and kidney. An adult ingests on average 1 g Ca(2+) daily from which 0.35 g is absorbed in the small intestine by a mechanism that is controlled primarily by the calciotropic hormones. To maintain the Ca(2+) balance, the kidney must excrete the same amount of Ca(2+) that the small intestine absorbs. This is accomplished by a combination of filtration of Ca(2+) across the glomeruli and subsequent reabsorption of the filtered Ca(2+) along the renal tubules. Bone turnover is a continuous process involving both resorption of existing bone and deposition of new bone. The above-mentioned Ca(2+) fluxes are stimulated by the synergistic actions of active vitamin D (1,25-dihydroxyvitamin D(3)) and parathyroid hormone. Until recently, the mechanism by which Ca(2+) enter the absorptive epithelia was unknown. A major breakthrough in completing the molecular details of these pathways was the identification of the epithelial Ca(2+) channel family consisting of two members: TRPV5 and TRPV6. Functional analysis indicated that these Ca(2+) channels constitute the rate-limiting step in Ca(2+)-transporting epithelia. They form the prime target for hormonal control of the active Ca(2+) flux from the intestinal lumen or urine space to the blood compartment. This review describes the characteristics of epithelial Ca(2+) transport in general and highlights in particular the distinctive features and the physiological relevance of the new epithelial Ca(2+) channels accumulating in a comprehensive model for epithelial Ca(2+) absorption.
Collapse
Affiliation(s)
- Joost G J Hoenderop
- Department of Physiology, Nijmegen Center for Moecular Life Sciences, University Medical Center Nijmegen, The Netherlands
| | | | | |
Collapse
|
109
|
Robinson JM, Deutsch C. Coupled Tertiary Folding and Oligomerization of the T1 Domain of Kv Channels. Neuron 2005; 45:223-32. [PMID: 15664174 DOI: 10.1016/j.neuron.2004.12.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 12/01/2004] [Accepted: 12/17/2004] [Indexed: 11/17/2022]
Abstract
Acquisition of secondary, tertiary, and quaternary structure is critical to the fabrication, assembly, and function of ion channels, yet the relationship between these biogenic events remains unclear. We now address this issue in voltage-gated K(+) channels (Kv) for the T1 domain, an N-terminal Kv recognition domain that is responsible for subfamily-specific, efficient assembly of Kv subunits. This domain forms a 4-fold symmetric tetramer. We have identified residues along the axial T1-T1 interface that are critical for tertiary and quaternary structure, shown that mutations at one end of the axial T1 interface can perturb the crosslinking of an intersubunit cysteine pair at the other end, and demonstrated that tertiary folding and tetramerization of this Kv domain are coupled. A threshold level of tertiary folding is required for monomers to oligomerize. Coupling between tertiary and quaternary structure formation may be a common feature in the biogenesis of multimeric proteins.
Collapse
Affiliation(s)
- John M Robinson
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
110
|
Kosolapov A, Tu L, Wang J, Deutsch C. Structure acquisition of the T1 domain of Kv1.3 during biogenesis. Neuron 2004; 44:295-307. [PMID: 15473968 DOI: 10.1016/j.neuron.2004.09.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/26/2004] [Accepted: 09/06/2004] [Indexed: 12/11/2022]
Abstract
The T1 recognition domains of voltage-gated K(+) (Kv) channel subunits form tetramers and acquire tertiary structure while still attached to their individual ribosomes. Here we ask when and in which compartment secondary and tertiary structures are acquired. We answer this question using biogenic intermediates and recently developed folding and accessibility assays to evaluate the status of the nascent Kv peptide both inside and outside of the ribosome. A compact structure (likely helical) that corresponds to a region of helicity in the mature structure is already manifest in the nascent protein within the ribosomal tunnel. The T1 domain acquires tertiary structure only after emerging from the ribosomal exit tunnel and complete synthesis of the T1-S1 linker. These measurements of ion channel folding within the ribosomal tunnel and its exit port bear on basic principles of protein folding and pave the way for understanding the molecular basis of protein misfolding, a fundamental cause of channelopathies.
Collapse
Affiliation(s)
- Andrey Kosolapov
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
111
|
Chang Q, Gyftogianni E, van de Graaf SFJ, Hoefs S, Weidema FA, Bindels RJM, Hoenderop JGJ. Molecular Determinants in TRPV5 Channel Assembly. J Biol Chem 2004; 279:54304-11. [PMID: 15489237 DOI: 10.1074/jbc.m406222200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The epithelial Ca(2+) channels TRPV5 and TRPV6 mediate the Ca(2+) influx in 1,25-dihydroxyvitamin D(3)-responsive epithelia and are therefore essential in the maintenance of the body Ca(2+) balance. These Ca(2+) channels assemble in (hetero)tetrameric channel complexes with different functional characteristics regarding Ca(2+)-dependent inactivation, ion selectivity, and pharmacological block. Glutathione S-transferase pull-downs and co-immunoprecipitations demonstrated an essential role of the intracellular N- and C-tails in TRPV5 channel assembly by physical interactions between N-N tails, C-C tails, and N-C-tails. Patch clamp analysis in human embryonic kidney (HEK293) cells and (45)Ca(2+) uptake experiments in Xenopus laevis oocytes co-expressing TRPV5 wild-type and truncated proteins indicated that TRPV5 Delta N (deleted N-tail) and TRPV5 Delta C (deleted C-tail) decreased channel activity of wild-type TRPV5 in a dominant-negative manner, whereas TRPV5 Delta N Delta C (deleted N-tail/C-tail) did not affect TRPV5 activity. Oocytes co-expressing wild-type TRPV5 and TRPV5 Delta N or TRPV5 Delta C showed virtually no wild-type TRPV5 expression on the plasma membrane, whereas co-expression of wild-type TRPV5 and TRPV5 Delta N Delta C displayed normal channel surface expression. This indicates that TRPV5 trafficking toward the plasma membrane was disturbed by assembly with TRPV5 Delta N or TRPV5 Delta C but not with TRPV5 Delta N Delta C. TRPV5 channel assembly signals were refined between amino acid positions 64-77 and 596-601 in the N-tail and C-tail, respectively. Pull-down assays and co-immunoprecipitations demonstrated that N- or C-tail mutants lacking these critical assembly domains were unable to interact with tails of TRPV5. In conclusion, two domains in the N-tail (residues 64-77) and C-tail (residues 596-601) of TRPV5 are important for channel subunit assembly, subsequent trafficking of the TRPV5 channel complex to the plasma membrane, and channel activity.
Collapse
Affiliation(s)
- Qing Chang
- Department of Physiology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, NL-6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
112
|
Treptow W, Maigret B, Chipot C, Tarek M. Coupled motions between pore and voltage-sensor domains: a model for Shaker B, a voltage-gated potassium channel. Biophys J 2004; 87:2365-79. [PMID: 15454436 PMCID: PMC1304659 DOI: 10.1529/biophysj.104.039628] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 06/23/2004] [Indexed: 11/18/2022] Open
Abstract
A high-resolution crystal structure of KvAP, an archeabacterial voltage-gated potassium (Kv) channel, complexed with a monoclonal Fab fragment has been recently determined. Based on this structure, a mechanism for the activation (opening) of Kv channels has been put forward. This mechanism has since been criticized, suggesting that the resolved structure is not representative of the family of voltage-gated potassium channels. Here, we propose a model of the transmembrane domain of Shaker B, a well-characterized Kv channel, built by homology modeling and docking calculations. In this model, the positively charged S4 helices are oriented perpendicular to the membrane and localized in the groove between segments S5 and S6 of adjacent subunits. The structure and the dynamics of the full atomistic model embedded in a hydrated lipid bilayer were investigated by means of two large-scale molecular dynamics simulations under transmembrane-voltage conditions known to induce, respectively, the resting state (closed) and the activation (opening) of voltage-gated channels. Upon activation, the model undergoes conformational changes that lead to an increase of the hydration of the charged S4 helices, correlated with an upward translation and a tilting of the latter, concurrently with movements of the S5 helices and the activation gate. Although small, these conformational changes ultimately result in an alteration of the ion-conduction pathway. Our findings support the transporter model devised by Bezanilla and collaborators, and further underline the crucial role played by internal hydration in the activation of the channel.
Collapse
Affiliation(s)
- Werner Treptow
- Equipe de Dynamique des Assemblages Membranaires, Unité Mixte de Recherche, Centre National de la Recherche Scientifique/Université Henri Poincaré 7565, Nancy, France
| | | | | | | |
Collapse
|
113
|
Zelter A, Bencina M, Bowman BJ, Yarden O, Read ND. A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal Genet Biol 2004; 41:827-41. [PMID: 15288019 DOI: 10.1016/j.fgb.2004.05.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 05/20/2004] [Indexed: 10/26/2022]
Abstract
A large number of Ca2+ -signaling proteins have been previously identified and characterized in Saccharomyces cerevisiae but relatively few have been discovered in filamentous fungi. In this study, a detailed, comparative genomic analysis of Ca2+ -signaling proteins in Neurospora crassa, Magnaporthe grisea, and S. cerevisiae has been made. Our BLAST analysis identified 48, 42, and 40 Ca2+ -signaling proteins in N. crassa, M. grisea, and S. cerevisiae, respectively. In N. crassa, M. grisea, and S. cerevisiae, 79, 100, and 13% of these proteins, respectively, were previously unknown. For N. crassa, M. grisea, and S. cerevisiae, respectively, we have identified: three Ca2+ -permeable channels in each species; 9, 12, and 5 Ca2+/cation-ATPases; eight, six, and four Ca2+ -exchangers; four, four, and two phospholipase C's; one calmodulin in each species; and 23, 21, and 29 Ca2+/calmodulin-regulated proteins. Homologs of a number of key proteins involved in the release of Ca2+ from intracellular stores, and in the sensing of extracellular Ca2+, in animal and plant cells, were not identified. The greater complexity of the Ca2+ -signaling machinery in N. crassa and M. grisea over that in S. cerevisiae probably reflects their more complex cellular organization and behavior, and the greater range of external signals which filamentous fungi have to respond to in their natural habitats. To complement the data presented in this paper, a comprehensive web-based database resource (http://www.fungalcell.org/fdf/) of all Ca2+ -signaling proteins identified in N. crassa, M. grisea, and S. cerevisiae has been provided.
Collapse
Affiliation(s)
- Alex Zelter
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, UK
| | | | | | | | | |
Collapse
|
114
|
Yu FH, Catterall WA. The VGL-Chanome: A Protein Superfamily Specialized for Electrical Signaling and Ionic Homeostasis. Sci Signal 2004; 2004:re15. [PMID: 15467096 DOI: 10.1126/stke.2532004re15] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Complex multicellular organisms require rapid and accurate transmission of information among cells and tissues and tight coordination of distant functions. Electrical signals and resulting intracellular calcium transients, in vertebrates, control contraction of muscle, secretion of hormones, sensation of the environment, processing of information in the brain, and output from the brain to peripheral tissues. In nonexcitable cells, calcium transients signal many key cellular events, including secretion, gene expression, and cell division. In epithelial cells, huge ion fluxes are conducted across tissue boundaries. All of these physiological processes are mediated in part by members of the voltage-gated ion channel protein superfamily. This protein superfamily of 143 members is one of the largest groups of signal transduction proteins, ranking third after the G protein-coupled receptors and the protein kinases in number. Each member of this superfamily contains a similar pore structure, usually covalently attached to regulatory domains that respond to changes in membrane voltage, intracellular signaling molecules, or both. Eight families are included in this protein superfamily-voltage-gated sodium, calcium, and potassium channels; calcium-activated potassium channels; cyclic nucleotide-modulated ion channels; transient receptor potential (TRP) channels; inwardly rectifying potassium channels; and two-pore potassium channels. This article identifies all of the members of this protein superfamily in the human genome, reviews the molecular and evolutionary relations among these ion channels, and describes their functional roles in cell physiology.
Collapse
Affiliation(s)
- Frank H Yu
- Department of Pharmacology, Mailstop 357280, University of Washington, Seattle, WA 98195-7280, USA
| | | |
Collapse
|
115
|
Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA. Structure and function of Kv4-family transient potassium channels. Physiol Rev 2004; 84:803-33. [PMID: 15269337 DOI: 10.1152/physrev.00039.2003] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Shal-type (Kv4.x) K(+) channels are expressed in a variety of tissue, with particularly high levels in the brain and heart. These channels are the primary subunits that contribute to transient, voltage-dependent K(+) currents in the nervous system (A currents) and the heart (transient outward current). Recent studies have revealed an enormous degree of complexity in the regulation of these channels. In this review, we describe the surprisingly large number of ancillary subunits and scaffolding proteins that can interact with the primary subunits, resulting in alterations in channel trafficking and kinetic properties. Furthermore, we discuss posttranslational modification of Kv4.x channel function with an emphasis on the role of kinase modulation of these channels in regulating membrane properties. This concept is especially intriguing as Kv4.2 channels may integrate a variety of intracellular signaling cascades into a coordinated output that dynamically modulates membrane excitability. Finally, the pathophysiology that may arise from dysregulation of these channels is also reviewed.
Collapse
Affiliation(s)
- Shari G Birnbaum
- Div. of Neuroscience, S607, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
116
|
Simard CF, Brunet GM, Daigle ND, Montminy V, Caron L, Isenring P. Self-interacting domains in the C terminus of a cation-Cl- cotransporter described for the first time. J Biol Chem 2004; 279:40769-77. [PMID: 15280386 DOI: 10.1074/jbc.m406458200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first isoform of the Na+-K+-Cl- cotransporter (NKCC1), a widely distributed member of the cation-Cl- cotransporter superfamily, plays key roles in many physiological processes by regulating the ion and water content of animal cells and by sustaining electrolyte secretion across various epithelia. Indirect studies have led to the prediction that NKCC1 operates as a dimer assembled through binding domains that are distal to the amino portion of the carrier. In this study, evidence is presented that NKCC1 possesses self-interacting properties that result in the formation of a large complex between the proximal and the distal segment of the cytosolic C terminus. Elaborate mapping studies of these segments showed that the contact sites are dispersed along the entire C terminus, and they also led to the identification of a critical interacting residue that belongs to a putative forkhead-associated binding domain. In conjunction with previous findings, our results indicate that the uncovered interacting domains are probably a major determinant of the NKCC1 conformational landscape and assembly into a high order structure. A model is proposed in which the carrier could alternate between monomeric and homo-oligomeric units via chemical- or ligand-dependent changes in conformational dynamics.
Collapse
Affiliation(s)
- Charles F Simard
- Nephrology Research Group, Department of Medicine, Faculty of Medicine, Laval University, Québec, Québec G1R 2J6, Canada
| | | | | | | | | | | |
Collapse
|
117
|
Abstract
Potassium channels have a very wide distribution of single-channel conductance, with BK type Ca2+-activated K+ channels having by far the largest. Even though crystallographic views of K+ channel pores have become available, the structural basis underlying BK channels' large conductance has not been completely understood. In this study we use intracellularly applied quaternary ammonium compounds to probe the pore of BK channels. We show that molecules as large as decyltriethylammonium (C10) and tetrabutylammonium (TBA) have much faster block and unblock rates in BK channels when compared with any other tested K+ channel types. Additionally, our results suggest that at repolarization large QA molecules may be trapped inside blocked BK channels without slowing the overall process of deactivation. Based on these findings we propose that BK channels may differ from other K+ channels in its geometrical design at the inner mouth, with an enlarged cavity and inner pore providing less spatially restricted access to the cytoplasmic solution. These features could potentially contribute to the large conductance of BK channels.
Collapse
Affiliation(s)
- Weiyan Li
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
118
|
Sokolova O. Structure of cation channels, revealed by single particle electron microscopy. FEBS Lett 2004; 564:251-6. [PMID: 15111105 DOI: 10.1016/s0014-5793(04)00254-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 02/23/2004] [Indexed: 11/18/2022]
Abstract
A large barrier in the way to obtaining high-resolution structures of eukaryotic ion channels remains the expression and purification of sufficient amounts of channel protein to carry out crystallization trials. In the absence of crystals, the main available source of structural information has been electron microscopy (EM), which is well suited to the visualization of isolated macromolecular complexes and their conformational changes. The recently published EM structures outline native conformations of eukaryotic cation channels that until now have eluded crystallization. According to these results, homo-tetrameric K(+) channels have a distinct two-layer architecture with connectors conjoining the two layers, while the pseudo-tetrameric Ca(2+) or Na(+) channels are more globular and have flexible surface loops, which makes the identification of subunits complicated. Subunits can be identified using atomic structure docking into the EM maps, labeling, or deletion studies.
Collapse
Affiliation(s)
- Olga Sokolova
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA.
| |
Collapse
|
119
|
Abstract
The clustering of neurotransmitter receptors at the postsynaptic terminals is a critical requirement for efficient neurotransmission and neuronal communication. This process is facilitated by adaptor proteins, which bridge the postsynaptic receptors and the underlying cytoskeleton. One such molecule, the GABAA receptor-associated protein, GABARAP, was identified as a potential linker between GABAA receptors and microtubules. GABARAP belongs to an expanding family of proteins that are implicated in a variety of intracellular transport processes. GABARAP has been shown to interact with myriad binding partners, including the gamma2 subunit of the GABAA receptor, tubulin and microtubules, the N-ethyl maleimide sensitive factor, gephyrin, and the transferin receptor. The recent determination of the GABARAP crystal structure has revealed individual GABARAP domains, motifs, and surface regions involved in specific protein-protein interactions. Currently, a more general role is emerging for GABARAP, including shipping GABAA receptors to and from the cell surface, organizing them into postsynaptic clusters, and regulating the steady-state receptor density.
Collapse
Affiliation(s)
- Joseph E Coyle
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
120
|
Scannevin RH, Wang K, Jow F, Megules J, Kopsco DC, Edris W, Carroll KC, Lü Q, Xu W, Xu Z, Katz AH, Olland S, Lin L, Taylor M, Stahl M, Malakian K, Somers W, Mosyak L, Bowlby MR, Chanda P, Rhodes KJ. Two N-terminal domains of Kv4 K(+) channels regulate binding to and modulation by KChIP1. Neuron 2004; 41:587-98. [PMID: 14980207 DOI: 10.1016/s0896-6273(04)00049-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 11/21/2003] [Accepted: 12/15/2003] [Indexed: 10/26/2022]
Abstract
The family of calcium binding proteins called KChIPs associates with Kv4 family K(+) channels and modulates their biophysical properties. Here, using mutagenesis and X-ray crystallography, we explore the interaction between Kv4 subunits and KChIP1. Two regions in the Kv4.2 N terminus, residues 7-11 and 71-90, are necessary for KChIP1 modulation and interaction with Kv4.2. When inserted into the Kv1.2 N terminus, residues 71-90 of Kv4.2 are also sufficient to confer association with KChIP1. To provide a structural framework for these data, we solved the crystal structures of Kv4.3N and KChIP1 individually. Taken together with the mutagenesis data, the individual structures suggest that that the Kv4 N terminus is required for stable association with KChIP1, perhaps through a hydrophobic surface interaction, and that residues 71-90 in Kv4 subunits form a contact loop that mediates the specific association of KChIPs with Kv4 subunits.
Collapse
Affiliation(s)
- Robert H Scannevin
- Neuroscience Discovery Research, Wyeth Research CN-8000, Princeton, NJ 08543, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Kim LA, Furst J, Gutierrez D, Butler MH, Xu S, Goldstein SAN, Grigorieff N. Three-dimensional structure of I(to); Kv4.2-KChIP2 ion channels by electron microscopy at 21 Angstrom resolution. Neuron 2004; 41:513-9. [PMID: 14980201 DOI: 10.1016/s0896-6273(04)00050-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 01/16/2004] [Accepted: 01/22/2004] [Indexed: 01/16/2023]
Abstract
Regulatory KChIP2 subunits assemble with pore-forming Kv4.2 subunits in 4:4 complexes to produce native voltage-gated potassium (Kv) channels like cardiac I(to) and neuronal I(A) subtypes. Here, negative stain electron microscopy (EM) and single particle averaging reveal KChIP2 to create a novel approximately 35 x 115 x 115 Angstrom, intracellular fenestrated rotunda: four peripheral columns that extend down from the membrane-embedded portion of the channel to enclose the Kv4.2 "hanging gondola" (a platform held beneath the transmembrane conduction pore by four internal columns). To reach the pore from the cytosol, ions traverse one of four external fenestrae to enter the rotundal vestibule and then cross one of four internal windows in the gondola.
Collapse
Affiliation(s)
- Leo A Kim
- Department of Pediatrics, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06535, USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
Human peripheral blood T lymphocytes possess two types of K(+) channels: the voltage-gated Kv1.3 and the calcium-activated IKCa1 channels. The use of peptidyl inhibitors of Kv1.3 and IKCa1 indicated that these channels are involved in the maintenance of membrane potential and that they play a crucial role in Ca(2+) signaling during T-cell activation. Thus, in vitro blockade of Kv1.3 and IKCa1 leads to inhibition of cytokine production and lymphocyte proliferation. These observations prompted several groups of investigators in academia and pharmaceutical companies to characterize the expression of Kv1.3 and IKCa1 in different subsets of human T lymphocytes and to evaluate their potential as novel targets for immunosuppression. Recent in vivo studies showed that chronically activated T lymphocytes involved in the pathogenesis of multiple sclerosis present unusually high expression of Kv1.3 channels and that the treatment with selective Kv1.3 inhibitors can either prevent or ameliorate the symptoms of the disease. In this model of multiple sclerosis, blockade of IKCa1 channels had no effect alone, but improved the response to Kv1.3 inhibitors. In addition, the expression of Kv1.3 and IKCa1 channels in human cells is very restricted, which makes them attractive targets for a more cell-specific and less harmful action than what is typically obtained with classical immunosuppressants. Studies using high-throughput toxin displacement, (86)Rb-efflux screening or membrane potential assays led to the identification of non-peptidyl small molecules with high affinity for Kv1.3 or IKCa1 channels. Analysis of structure-function relationships in Kv1.3 and IKCa1 channels helped define the binding sites for channel blockers, allowing the design of a new generation of small molecules with selectivity for either Kv1.3 or IKCa1, which could help the development of new drugs for safer treatment of auto-immune diseases.
Collapse
Affiliation(s)
- Rosane Vianna-Jorge
- Divisão de Farmacologia, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.
| | | |
Collapse
|
123
|
Varshney A, Chanda B, Mathew MK. Arranging the elements of the potassium channel: the T1 domain occludes the cytoplasmic face of the channel. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2003; 33:370-6. [PMID: 14669060 DOI: 10.1007/s00249-003-0372-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Revised: 09/13/2003] [Accepted: 10/22/2003] [Indexed: 10/26/2022]
Abstract
The voltage-gated potassium channel is currently one of the few membrane proteins where functional roles have been mapped onto specific segments of sequence. Although high-resolution structures of the transmembrane portions of three bacterial potassium channels, the tetramerization domain and the cytoplasmic "ball" are available, their relative spatial arrangement in mammalian channels remains a matter of ongoing debate. Cryo-electron microscopic images of the six transmembrane voltage-gated Kv channel have been reconstructed at up to 18 A resolution, revealing that the T1 domain tetramerizes and is suspended below the transmembrane segments. However, the resolution of these images is insufficient to reveal the location of the third piece of the puzzle, the inactivating ball domain. We have used the aberrant interactions observed in a series of chimaeric channels to establish that an assembled T1 domain restricts access to the cytoplasmic face of the channel, suggesting that the N-terminal "ball and chain" may be confined in the space between the T1 domain and the transmembrane portion of the channel.
Collapse
Affiliation(s)
- Anurag Varshney
- National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, 560 065 Bangalore, India
| | | | | |
Collapse
|
124
|
Ahmad KF, Melnick A, Lax S, Bouchard D, Liu J, Kiang CL, Mayer S, Takahashi S, Licht JD, Privé GG. Mechanism of SMRT Corepressor Recruitment by the BCL6 BTB Domain. Mol Cell 2003; 12:1551-64. [PMID: 14690607 DOI: 10.1016/s1097-2765(03)00454-4] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BCL6 encodes a transcription factor that represses genes necessary for the terminal differentiation of lymphocytes within germinal centers, and the misregulated expression of this factor is strongly implicated in several types of B cell lymphoma. The homodimeric BTB domain of BCL6 (also known as the POZ domain) is required for the repression activity of the protein and interacts directly with the SMRT and N-CoR corepressors that are found within large multiprotein histone deacetylase-containing complexes. We have identified a 17 residue fragment from SMRT that binds to the BCL6 BTB domain, and determined the crystal structure of the complex to 2.2 A. Two SMRT fragments bind symmetrically to the BCL6 BTB homodimer and, in combination with biochemical and in vivo data, the structure provides insight into the basis of transcriptional repression by this critical B cell lymphoma protein.
Collapse
Affiliation(s)
- K Farid Ahmad
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Hatano N, Ohya S, Muraki K, Clark RB, Giles WR, Imaizumi Y. Two arginines in the cytoplasmic C-terminal domain are essential for voltage-dependent regulation of A-type K+ current in the Kv4 channel subfamily. J Biol Chem 2003; 279:5450-9. [PMID: 14645239 DOI: 10.1074/jbc.m302034200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Contributions of the C-terminal domain of Kv4.3 to the voltage-dependent gating of A-type K+ current (IA) were examined by (i) making mutations in this region, (ii) heterologous expression in HEK293 cells, and (iii) detailed voltage clamp analyses. Progressive deletions of the C terminus of rat Kv4.3M (to amino acid 429 from the N terminus) did not markedly change the inactivation time course of IA but shifted the voltage dependence of steady state inactivation in the negative direction to a maximum of -17 mV. Further deletions (to amino acid 420) shifted this parameter in the positive direction, suggesting a critical role for the domain 429-420 in the voltage-dependent regulation of IA. There are four positively charged amino acids in this domain: Lys423, Lys424, Arg426, and Arg429. The replacement of the two arginines with alanines (R2A) resulted in -23 and -13 mV shifts of inactivation and activation, respectively. Additional replacement of the two lysines with alanines did not result in further shifts. Single replacements of R426A or R429A induced -15 and -10 mV shifts of inactivation, respectively. R2A did not significantly change the inactivation rate but did markedly change the voltage dependence of recovery from inactivation. These two arginines are conserved in Kv4 subfamily, and alanine replacement of Arg429 and Arg432 in Kv4.2 gave essentially the same results. These effects of R2A were not modulated by co-expression of the K+ channel beta subunit, KChIPs. In conclusion, the two arginines in the cytosolic C-terminal domain of alpha-subunits of Kv4 subfamily strongly regulate the voltage dependence of channel activation, inactivation, and recovery.
Collapse
Affiliation(s)
- Noriyuki Hatano
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | | | | | | | | | | |
Collapse
|
126
|
Kim LA, Furst J, Butler MH, Xu S, Grigorieff N, Goldstein SAN. Ito channels are octomeric complexes with four subunits of each Kv4.2 and K+ channel-interacting protein 2. J Biol Chem 2003; 279:5549-54. [PMID: 14623880 DOI: 10.1074/jbc.m311332200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian voltage-gated K+ channels are assemblies of pore-forming alpha-subunits and modulating beta-subunits. To operate correctly, Kv4 alpha-subunits in the heart and central nervous system require recently identified beta-subunits of the neuronal calcium sensing protein family called K+ channel-interacting proteins (KChIPs). Here, Kv4.2.KChIP2 channels are purified, integrity of isolated complexes confirmed, molar ratio of the subunits determined, and subunit valence established. A complex has 4 subunits of each type, a stoichiometry expected for other channels employing neuronal calcium sensing beta-subunits.
Collapse
Affiliation(s)
- Leo A Kim
- Department of Pediatrics, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | | | |
Collapse
|
127
|
Parcej DN, Eckhardt-Strelau L. Structural characterisation of neuronal voltage-sensitive K+ channels heterologously expressed in Pichia pastoris. J Mol Biol 2003; 333:103-16. [PMID: 14516746 DOI: 10.1016/j.jmb.2003.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuronal voltage-dependent K(+) channels of the delayed rectifier type consist of multiple Kv alpha subunit variants, which assemble as hetero- or homotetramers, together with four Kv beta auxiliary subunits. Direct structural information on these proteins has not been forthcoming due to the difficulty in isolating the native K(+) channels. We have overexpressed the subunit genes in the yeast Pichia pastoris. The Kv1.2 subunit expressed alone is shown to fold into a native conformation as determined by high-affinity binding of 125I-labelled alpha-dendrotoxin, while co-expressed Kv1.2 and Kv beta 2 subunits co-assembled to form native-like oligomers. Sites of post-translational modifications causing apparent heterogeneity on SDS-PAGE were identified by site-directed mutagenesis. Engineering to include affinity tags and scale-up of production by fermentation allowed routine purification of milligram quantities of homo- and heteroligomeric channels. Single-particle electron microscopy of the purified channels was used to generate a 3D volume to 2.1 nm resolution. Protein domains were assigned by fitting crystal structures of related bacterial proteins. Addition of exogenous lipid followed by detergent dialysis produced well-ordered 2D crystals that exhibited mostly p12(1) symmetry. Projection maps of negatively stained crystals show the constituent molecules to be 4-fold symmetric, as expected for the octameric K(+) channel complex.
Collapse
Affiliation(s)
- David N Parcej
- Department of Structural Biology, Max-Planck-Institute for Biophysics, 60439 Frankfurt am Main, Germany.
| | | |
Collapse
|
128
|
Varshney A, Mathew MK. A tale of two tails: cytosolic termini and K(+) channel function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 83:153-70. [PMID: 12887978 DOI: 10.1016/s0079-6107(03)00054-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The enormous variety of neuronal action potential waveforms can be ascribed, in large part, to the sculpting of their falling phases by currents through voltage-gated potassium channels. These proteins play several additional roles in other tissues such as the regulation of heartbeat and of insulin release from pancreatic cells as well as auditory signal processing in the cochlea. The functional channel is a tetramer with either six or two transmembrane segments per monomer. Selectivity filters, voltage sensors and gating elements have been mapped to residues within the transmembrane region. Cytoplasmic residues, which are accessible targets for signal transduction cascades and provide attractive means of regulation of channel activity, are now seen to be capable of modulating various aspects of channel function. Here we review structural studies on segments of the cytoplasmic tails of K(+) channels, as well as the range of modulatory activities of these tails.
Collapse
Affiliation(s)
- Anurag Varshney
- National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, 560 065 Bangalore, India
| | | |
Collapse
|
129
|
Sokolova O, Accardi A, Gutierrez D, Lau A, Rigney M, Grigorieff N. Conformational changes in the C terminus of Shaker K+ channel bound to the rat Kvbeta2-subunit. Proc Natl Acad Sci U S A 2003; 100:12607-12. [PMID: 14569011 PMCID: PMC240665 DOI: 10.1073/pnas.2235650100] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Indexed: 11/18/2022] Open
Abstract
We studied the structure of the C terminus of the Shaker potassium channel. The 3D structures of the full-length and a C-terminal deletion (Delta C) mutant of Shaker were determined by electron microscopy and single-particle analysis. The difference map between the full-length and the truncated channels clearly shows a compact density, located on the sides of the T1 domain, that corresponds to a large part of the C terminus. We also expressed and purified both WT and Delta C Shaker, assembled with the rat KvBeta2-subunit. By using a difference map between the full-length and truncated Shaker alpha-beta complexes, a conformational change was identified that shifts a large part of the C terminus away from the membrane domain and into close contact with the Beta-subunit. This conformational change, induced by the binding of the KvBeta2-subunit, suggests a possible mechanism for the modulation of the K+ voltage-gated channel function by its Beta-subunit.
Collapse
Affiliation(s)
| | | | | | | | | | - Nikolaus Grigorieff
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02454-9110
| |
Collapse
|
130
|
Strang C, Kunjilwar K, DeRubeis D, Peterson D, Pfaffinger PJ. The role of Zn2+ in Shal voltage-gated potassium channel formation. J Biol Chem 2003; 278:31361-71. [PMID: 12754210 DOI: 10.1074/jbc.m304268200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated potassium channels are formed by the tetramerization of their alpha subunits, in a process that is controlled by their conserved N-terminal T1 domains. The crystal structures of Shaker and Shaw T1 domains reveal interesting differences in structures that are contained within a highly conserved BTB/POZ domain fold. The most surprising difference is that the Shaw T1 domain contains an intersubunit Zn2+ ion that is lacking in the Shaker T1 domain. The Zn2+ coordination motif is conserved in other non-Shaker channels making this the most distinctive difference between these channels and Shaker. In this study we show that Zn2+ is an important co-factor for the tetramerization of isolated Shaw and Shal T1 domains. Addition of Zn2+ increases the amount of tetramer formed, whereas chelation of Zn2+ with phenanthroline blocks tetramerization and causes assembled tetramers to disassemble. Within an intact cell, full-length Shal subunits containing Zn2+ site mutations also fail to form functional channels, with the majority of the protein found to remain monomeric by size exclusion chromatography. Therefore, zinc-mediated tetramerization also is a physiologically important event for full-length functional channel formation.
Collapse
Affiliation(s)
- Candace Strang
- Neuroscience Division, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
131
|
Armstrong CM. Voltage-gated K channels. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:re10. [PMID: 12824476 DOI: 10.1126/stke.2003.188.re10] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ion channels and the electrical properties they confer on cells are involved in every human characteristic that distinguishes us from the stones in a field. Every perception, thought, movement, and heartbeat depends on electrical signals generated by the activity of ion channels. Early views of the relationship between channel structure and function have undergone substantial modification following the cloning of various ion channels and the determination of the structure of a simple bacterial K channel, the KcsA channel. This review focuses on the relationship between the structure and function of voltage-dependent K channels, covering the molecular bases of channel selectivity, conduction, and gating. The evolution of ion channels in bacteria is discussed, as well as the basis of channel selectivity and conduction in the KcsA channel. More complex channels have evolved molecular "gatekeepers," allowing them to respond to appropriate stimuli by opening, closing, and inactivating.
Collapse
Affiliation(s)
- Clay M Armstrong
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
132
|
Kerschensteiner D, Monje F, Stocker M. Structural determinants of the regulation of the voltage-gated potassium channel Kv2.1 by the modulatory α-subunit Kv9.3. J Biol Chem 2003; 278:18154-61. [PMID: 12642579 DOI: 10.1074/jbc.m213117200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated potassium (Kv) channels containing alpha-subunits of the Kv2 subfamily mediate delayed rectifier currents in excitable cells. Channels formed by Kv2.1 alpha-subunits inactivate from open- and closed states with both forms of inactivation serving different physiological functions. Here we show that open- and closed-state inactivation of Kv2.1 can be distinguished by the sensitivity to intracellular tetraethylammonium and extracellular potassium and lead to the same inactivated conformation. The functional properties of Kv2.1 are regulated by its association with modulatory alpha-subunits (Kv5, Kv6, Kv8, and Kv9). For instance, Kv9.3 changes the state preference of Kv2.1 inactivation by accelerating closed-state inactivation and inhibiting open-state inactivation. An N-terminal regulatory domain (NRD) has been suggested to determine the function of the modulatory alpha-subunit Kv8.1. However, when we tested the NRD of Kv9.3, we found that the functional properties of chimeric Kv2.1 channels containing the NRD of Kv9.3 (Kv2.1(NRD)) did not resemble those of Kv2.1/Kv9.3 heteromers, thus questioning the role of the NRD in Kv9 subunits. A further region of interest is a PXP motif in the sixth transmembrane segment. This motif is conserved among all alpha-subunits of the Kv1, Kv2, Kv3, and Kv4 subfamilies, whereas the second proline is not conserved in any modulatory alpha-subunit. Exchanging this proline in Kv2.1 for the corresponding residue of Kv9.3 resulted in channels (Kv2.1-P410T) that show all hallmarks of the regulation of Kv2.1 by Kv9.3. The effect prevailed in heteromeric channels following co-expression of Kv2.1-P410T with Kv2.1. These data suggest that the alteration of the PXP motif is an important determinant of the regulatory function of modulatory alpha-subunits.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Max-Planck Institut für Experimentelle Medizin, Molekulare Biologie Neuronaler Signale, Hermann-Rein Strasse 3, 37075 Göttingen, Germany.
| | | | | |
Collapse
|
133
|
Varshney A, Mathew MK. Inward and outward potassium currents through the same chimeric human Kv channel. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2003; 32:113-21. [PMID: 12734699 DOI: 10.1007/s00249-002-0272-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2002] [Revised: 11/21/2002] [Accepted: 11/21/2002] [Indexed: 11/29/2022]
Abstract
Voltage-gated ion channels are among the most intensely studied membrane proteins today and a variety of techniques has led to a basic mapping of functional roles onto specific regions of their structure. The architecture of the proteins appears to be modular and segments associated with voltage sensing and the pore lining have been identified. However, the means by which movement of the sensor is transduced into channel opening is still unclear. In this communication, we report on a chimeric potassium channel construct which can function in two distinct operating voltage ranges, spanning both inward and outward currents with a non-conducting intervening regime. The observed changes in operating range could be brought about by perturbing either the direction of sensor movement or the process of transducing movements of the sensor into channel opening and closing. The construct could thus provide a means to identify the machinery underlying these processes.
Collapse
Affiliation(s)
- Anurag Varshney
- Laboratory of Membrane Biophysics, National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, Bangalore 560 065, India
| | | |
Collapse
|
134
|
den Dekker E, Hoenderop JGJ, Nilius B, Bindels RJM. The epithelial calcium channels, TRPV5 & TRPV6: from identification towards regulation. Cell Calcium 2003; 33:497-507. [PMID: 12765695 DOI: 10.1016/s0143-4160(03)00065-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The epithelial calcium channels, TRPV5 and TRPV6, have been extensively studied in epithelial tissues controlling the Ca(2+) homeostasis and exhibit a range of distinctive properties that distinguish them from other TRP channels. This review focuses on the tissue distribution, the functional properties, the architecture and the regulation of the expression and activity of the TRPV5 and TRPV6 channel.
Collapse
Affiliation(s)
- Els den Dekker
- Department of Cell Physiology, Nijmegen Center for Molecular Life Sciences, University Medical Center Nijmegen, 160 Cell Physiology, P.O. Box 9101, NL-6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
135
|
Knöpfel T, Tomita K, Shimazaki R, Sakai R. Optical recordings of membrane potential using genetically targeted voltage-sensitive fluorescent proteins. Methods 2003; 30:42-8. [PMID: 12695102 DOI: 10.1016/s1046-2023(03)00006-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Optical imaging of electrical activity using voltage-sensitive dyes has been envisaged for many years as a powerful method to investigate multineuronal representation of information processing in brain tissue. This article describes the advent of novel genetically targeted voltage-sensitive fluorescent proteins. This new class of membrane voltage sensors overcomes previous limitations related to the nonselective staining of membranes associated with conventional voltage-sensitive dyes. Here, we discuss the methodology, applications, and potential advantages of this novel technique.
Collapse
Affiliation(s)
- Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
136
|
Ju M, Stevens L, Leadbitter E, Wray D. The Roles of N- and C-terminal determinants in the activation of the Kv2.1 potassium channel. J Biol Chem 2003; 278:12769-78. [PMID: 12560340 DOI: 10.1074/jbc.m212973200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human and rat forms of the Kv2.1 channel have identical amino acids over the membrane-spanning regions and differ only in the N- and C-terminal intracellular regions. Rat Kv2.1 activates much faster than human Kv2.1. Here we have studied the role of the N- and C-terminal residues that determine this difference in activation kinetics between the two channels. For this, we constructed mutants and chimeras between the two channels, expressed them in oocytes, and recorded currents by two-electrode voltage clamping. In the N-terminal region, mutation Q67E in the rat channel displayed a slowing of activation relative to rat wild type, whereas mutation D75E in the human channel showed faster activation than human wild type. In the C-terminal region, we found that some residues within the region of amino acids 740-853 ("CTA" domain) were also involved in determining activation kinetics. The electrophysiological data also suggested interactions between the N and C termini. Such an interaction was confirmed directly by using a glutathione S-transferase (GST) fusion protein with the N terminus of Kv2.1, which we showed to bind to the C terminus of Kv2.1. Taken together, these data suggest that exposed residues in the T1 domain of the N terminus, as well as the CTA domain in the C terminus, are important in determining channel activation kinetics and that these N- and C-terminal regions interact.
Collapse
Affiliation(s)
- Min Ju
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | |
Collapse
|
137
|
Konstas AA, Korbmacher C, Tucker SJ. Identification of domains that control the heteromeric assembly of Kir5.1/Kir4.0 potassium channels. Am J Physiol Cell Physiol 2003; 284:C910-7. [PMID: 12456399 DOI: 10.1152/ajpcell.00479.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heteromultimerization between different inwardly rectifying (Kir) potassium channel subunits is an important mechanism for the generation of functional diversity. However, little is known about the mechanisms that control this process and that prevent promiscuous interactions in cells that express many different Kir subunits. In this study, we have examined the heteromeric assembly of Kir5.1 with other Kir subunits and have shown that this subunit exhibits a highly selective interaction with members of the Kir4.0 subfamily and does not physically associate with other Kir subunits such as Kir1.1, Kir2.1, and Kir6.2. Furthermore, we have identified regions within the Kir4.1 subunit that appear to govern the specificity of this interaction. These results help us to understand the mechanisms that control Kir subunit recognition and assembly and how cells can express many different Kir channels while maintaining distinct subpopulations of homo- and heteromeric channels within the cell.
Collapse
|
138
|
Abstract
Regulation of intracellular potassium levels is one of the basic functions of all cells, controlling cellular osmolarity and transmitting information. In higher organisms, elaborate control of transmembrane potassium flux has evolved to endow nervous systems with the remarkable ability to transmit electrical signals between cells. Multiple genes, gene splicing, mRNA editing, and selective tetrameric assembly of K channel genes provide the basis for creating distinct electrophysiological properties at varying developmental and cellular stages. This assembly mechanism, primarily governed by the T1 domain, is under the control of intracellular signals. Atomic structures of the isolated T1 domains of Shaker and Shaw subfamilies provided us with valuable structural insights into understanding both channel assembly and functional regulation of the entire channel molecule through conformational changes.
Collapse
Affiliation(s)
- Senyon Choe
- Structural Biology Laboratory, The Salk Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
139
|
Anishkin A, Gendel V, Sharifi NA, Chiang CS, Shirinian L, Guy HR, Sukharev S. On the conformation of the COOH-terminal domain of the large mechanosensitive channel MscL. J Gen Physiol 2003; 121:227-44. [PMID: 12601086 PMCID: PMC2217331 DOI: 10.1085/jgp.20028768] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
COOH-terminal (S3) domains are conserved within the MscL family of bacterial mechanosensitive channels, but their function remains unclear. The X-ray structure of MscL from Mycobacterium tuberculosis (TbMscL) revealed cytoplasmic domains forming a pentameric bundle (Chang, G., R.H. Spencer, A.T. Lee, M.T. Barclay, and D.C. Rees. 1998. SCIENCE: 282:2220-2226). The helices, however, have an unusual orientation in which hydrophobic sidechains face outside while charged residues face inside, possibly due to specific crystallization conditions. Based on the structure of pentameric cartilage protein, we modeled the COOH-terminal region of E. coli MscL to better satisfy the hydrophobicity criteria, with sidechains of conserved aliphatic residues all inside the bundle. Molecular dynamic simulations predicted higher stability for this conformation compared with one modeled after the crystal structure of TbMscL, and suggested distances for disulfide trapping experiments. The single cysteine mutants L121C and I125C formed dimers under ambient conditions and more so in the presence of an oxidant. The double-cysteine mutants, L121C/L122C and L128C/L129C, often cross-link into tetrameric and pentameric structures, consistent with the new model. Patch-clamp examination of these double mutants under moderately oxidizing or reducing conditions indicated that the bundle cross-linking neither prevents the channel from opening nor changes thermodynamic parameters of gating. Destabilization of the bundle by replacing conservative leucines with small polar residues, or complete removal of COOH-terminal domain (Delta110-136 mutation), increased the occupancy of subconducting states but did not change gating parameters substantially. The Delta110-136 truncation mutant was functional in in vivo osmotic shock assays; however, the amount of ATP released into the shock medium was considerably larger than in controls. The data strongly suggest that in contrast to previous gating models (Sukharev, S., M. Betanzos, C.S. Chiang, and H.R. Guy. 2001a. NATURE: 409:720-724.), S3 domains are stably associated in both closed and open conformations. The bundle-like assembly of cytoplasmic helices provides stability to the open conformation, and may function as a size-exclusion filter at the cytoplasmic entrance to the MscL pore, preventing loss of essential metabolites.
Collapse
Affiliation(s)
- Andriy Anishkin
- Department of Biology, University of Maryland College Park, 20742, USA
| | | | | | | | | | | | | |
Collapse
|
140
|
|
141
|
Orlova EV, Papakosta M, Booy FP, van Heel M, Dolly JO. Voltage-gated K+ channel from mammalian brain: 3D structure at 18A of the complete (alpha)4(beta)4 complex. J Mol Biol 2003; 326:1005-12. [PMID: 12589749 DOI: 10.1016/s0022-2836(02)00708-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Voltage-sensitive K(+) channels (Kv) serve numerous important roles, e.g. in the control of neuron excitability and the patterns of synaptic activity. Here, we use electron microscopy (EM) and single particle analysis to obtain the first, complete structure of Kv1 channels, purified from rat brain, which contain four transmembrane channel-forming alpha-subunits and four cytoplasmically-associated beta-subunits. The 18A resolution structure reveals an asymmetric, dumb-bell-shaped complex with 4-fold symmetry, a length of 140A and variable width. By fitting published X-ray data for recombinant components to our EM map, the modulatory (beta)(4) was assigned to the innermost 105A end, the N-terminal (T1)(4) domain of the alpha-subunit to the central 50A moiety and the pore-containing portion to the 125A membrane part. At this resolution, the selectivity filter could not be localised. Direct contact of the membrane component with the central (T1)(4) domain occurs only via peripheral connectors, permitting communication between the channel and beta-subunits for coupling of responses to changes in excitability and metabolic status of neurons.
Collapse
Affiliation(s)
- Elena V Orlova
- Department of Biological Sciences, Imperial College of Science Technology and Medicine, London SW7 2AY, UK
| | | | | | | | | |
Collapse
|
142
|
Hoenderop J, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, Bindels R. Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 2003; 22:776-85. [PMID: 12574114 PMCID: PMC145440 DOI: 10.1093/emboj/cdg080] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The molecular assembly of the epithelial Ca(2+) channels (TRPV5 and TRPV6) was investigated to determine the subunit stoichiometry and composition. Immunoblot analysis of Xenopus laevis oocytes expressing TRPV5 and TRPV6 revealed two specific bands of 75 and 85-100 kDa, corresponding to the core and glycosylated proteins, respectively, for each channel. Subsequently, membranes of these oocytes were sedimented on sucrose gradients. Immuno blotting revealed that TRPV5 and TRPV6 complexes migrate with a mol. wt of 400 kDa, in line with a tetrameric structure. The tetrameric stoichiometry was confirmed in an electrophysiological analysis of HEK293 cells co-expressing concatemeric channels together with a TRPV5 pore mutant that reduced Cd(2+) sensitivity and voltage-dependent gating. Immuno precipitations using membrane fractions from oocytes co-expressing TRPV5 and TRPV6 demonstrated that both channels can form heteromeric complexes. Expression of all possible heterotetrameric TRPV5/6 complexes in HEK293 cells resulted in Ca(2+) channels that varied with respect to Ca(2+)-dependent inactivation, Ba(2+) selectivity and pharmacological block. Thus, Ca(2+)-transporting epithelia co-expressing TRPV5 and TRPV6 can generate a pleiotropic set of functional heterotetrameric channels with different Ca(2+) transport kinetics.
Collapse
Affiliation(s)
| | - T. Voets
- Department of Cell Physiology, Nijmegen Centre for Molecular Life Sciences, University Medical Centre Nijmegen, PO Box 9101, NL-6500 HB Nijmegen, The Netherlands and
Department of Physiology, Campus Gasthuisberg, KU Leuven, Belgium Corresponding author e-mail:
| | | | | | - J. Prenen
- Department of Cell Physiology, Nijmegen Centre for Molecular Life Sciences, University Medical Centre Nijmegen, PO Box 9101, NL-6500 HB Nijmegen, The Netherlands and
Department of Physiology, Campus Gasthuisberg, KU Leuven, Belgium Corresponding author e-mail:
| | - B. Nilius
- Department of Cell Physiology, Nijmegen Centre for Molecular Life Sciences, University Medical Centre Nijmegen, PO Box 9101, NL-6500 HB Nijmegen, The Netherlands and
Department of Physiology, Campus Gasthuisberg, KU Leuven, Belgium Corresponding author e-mail:
| | - R.J.M. Bindels
- Department of Cell Physiology, Nijmegen Centre for Molecular Life Sciences, University Medical Centre Nijmegen, PO Box 9101, NL-6500 HB Nijmegen, The Netherlands and
Department of Physiology, Campus Gasthuisberg, KU Leuven, Belgium Corresponding author e-mail:
| |
Collapse
|
143
|
Higgins MK, Demir M, Tate CG. Calnexin co-expression and the use of weaker promoters increase the expression of correctly assembled Shaker potassium channel in insect cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:124-32. [PMID: 12586386 DOI: 10.1016/s0005-2736(02)00715-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Voltage-gated potassium channels control the membrane potential of excitable cells. To understand their function, knowledge of their structure is essential. However, these channels are scarce in natural sources, and overexpression is necessary to generate material for structural studies. We have compared functional expression of the Drosophila Shaker H4 potassium channel in stable insect cell lines and in baculovirus-infected insect cells, using three different baculovirus promoters. Stable insect cell lines expressed correctly assembled channel, which was glycosylated and found predominantly at, or close to, the cell surface. In comparison, the majority of baculovirus-overexpressed Shaker was intracellular and incorrectly assembled. The proportion of functional Shaker increased, however, if the weaker basic protein promoter was used rather than the stronger p10 or polyhedrin promoters. In addition, co-expression of the molecular chaperone, calnexin, increased the quantity of correctly assembled channel protein, suggesting that calnexin can be used to increase the efficiency of channel expression in insect cells.
Collapse
Affiliation(s)
- Matthew K Higgins
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
144
|
Abstract
Voltage-gated K(+) channels (Kv) are tetramers whose assembly is coordinated in part by a conserved T1 recognition domain. Although T1 achieves its quaternary structure in the ER, nothing is known about its acquisition of tertiary structure. We developed a new folding assay that relies on intramolecular cross-linking of pairs of cysteines engineered at the folded T1 monomer interface. Using this assay, we show directly that the T1 domain is largely folded while the Kv protein is still attached to membrane-bound ribosomes. The ER membrane facilitates both folding and oligomerization of Kv proteins. We show that folding and oligomerization assays can be used to study coupling between these two biogenic events and diagnose defects in assembly of Kv channels.
Collapse
Affiliation(s)
- Andrey Kosolapov
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6085, USA
| | | |
Collapse
|
145
|
Jenke M, Sánchez A, Monje F, Stühmer W, Weseloh RM, Pardo LA. C-terminal domains implicated in the functional surface expression of potassium channels. EMBO J 2003; 22:395-403. [PMID: 12554641 PMCID: PMC140720 DOI: 10.1093/emboj/cdg035] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A short C-terminal domain is required for correct tetrameric assembly in some potassium channels. Here, we show that this domain forms a coiled coil that determines not only the stability but also the selectivity of the multimerization. Synthetic peptides comprising the sequence of this domain in Eag1 and other channels are able to form highly stable tetrameric coiled coils and display selective heteromultimeric interactions. We show that loss of function caused by disruption of this domain in Herg1 can be rescued by introducing the equivalent domain from Eag1, and that this chimeric protein can form heteromultimers with Eag1 while wild-type Erg1 cannot. Additionally, a short endoplasmic reticulum retention sequence closely preceding the coiled coil plays a crucial role for surface expression. Both domains appear to co-operate to form fully functional channels on the cell surface and are a frequent finding in ion channels. Many pathological phenotypes may be attributed to mutations affecting one or both domains.
Collapse
Affiliation(s)
- Marc Jenke
- Max Planck Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
Present address: iOnGen AG, Rudolf Wissell Straße 28, 37079 Göttingen, Germany Present address: Oppenheim Research GmbH, Unter Sachsenlausen 4, 50667 Köln, Germany Corresponding author e-mail:
R.M.Weseloh and L.A.Pardo contributed equally to this work
| | | | | | | | - Rüdiger M. Weseloh
- Max Planck Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
Present address: iOnGen AG, Rudolf Wissell Straße 28, 37079 Göttingen, Germany Present address: Oppenheim Research GmbH, Unter Sachsenlausen 4, 50667 Köln, Germany Corresponding author e-mail:
R.M.Weseloh and L.A.Pardo contributed equally to this work
| | - Luis A. Pardo
- Max Planck Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
Present address: iOnGen AG, Rudolf Wissell Straße 28, 37079 Göttingen, Germany Present address: Oppenheim Research GmbH, Unter Sachsenlausen 4, 50667 Köln, Germany Corresponding author e-mail:
R.M.Weseloh and L.A.Pardo contributed equally to this work
| |
Collapse
|
146
|
Nishida M, MacKinnon R. Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 A resolution. Cell 2002; 111:957-65. [PMID: 12507423 DOI: 10.1016/s0092-8674(02)01227-8] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Inward rectifier K(+) channels govern the resting membrane voltage in many cells. Regulation of these ion channels via G protein-coupled receptor signaling underlies the control of heart rate and the actions of neurotransmitters in the central nervous system. We have determined the protein structure formed by the intracellular N- and C termini of the G protein-gated inward rectifier K(+) channel GIRK1 at 1.8 A resolution. A cytoplasmic pore, conserved among inward rectifier K(+) channels, extends the ion pathway to 60 A, nearly twice the length of a canonical transmembrane K(+) channel. The cytoplasmic pore is lined by acidic and hydrophobic amino acids, creating a favorable environment for polyamines, which block the pore. These results explain in structural and chemical terms the basis of inward rectification, and they also have implications for G protein regulation of GIRK channels.
Collapse
Affiliation(s)
- Motohiko Nishida
- Howard Hughes Medical Institute and Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
147
|
Jahng AW, Strang C, Kaiser D, Pollard T, Pfaffinger P, Choe S. Zinc mediates assembly of the T1 domain of the voltage-gated K channel 4.2. J Biol Chem 2002; 277:47885-90. [PMID: 12372826 DOI: 10.1074/jbc.m208416200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
An intermolecular Zn(2+)-binding site was identified in the structure of the T1 domain of the Shaw-type potassium channels (aKv3.1). T1 is a BTB/POZ-type domain responsible for the ordered assembly of voltage-gated potassium channels and interactions with other macromolecules. In this structure, a Zn(2+) ion was found to be coordinated between each of the four assembly interfaces of the T1 tetramer by three Cys and one His encoded in the sequence motif (HX(5)CX(20)CC) of the T1 domain. This sequence motif is conserved among all non-Shaker-type voltage-dependent potassium (Kv) channels, but not in Shaker-type channels. The presence of this conserved Zn(2+)-binding site is a primary molecular determinant that distinguishes the tetrameric assembly of non-Shaker Kv channel subunits from that of Shaker channels. We report here that tetramerization of the Shal (rKv4.2) T1 in solution requires the presence of Zn(2+), and the addition/removal of Zn(2+) reversibly switches the protein between a stable tetrameric or monomeric state. We further show that the conversion from tetramers to monomers is profoundly pH-dependent: as the solution pH gets lower, the dissociation rate increases significantly. The unfolding energy of the T1 tetramer as a measure of the conformational stability of the structure is also pH-dependent. Surprisingly, at a lower pH we observe a distinctly altered conformational state of the T1 tetramer trapped during the process of unfolding of the T1 tetramer in the presence of Zn(2+). The conformational alteration may be responsible for increased rate of dissociation at lower pH by allowing Zn(2+) to be removed more effectively by EDTA. The ability of the T1 domain to adopt stable alternative conformations may be essential to its function as a protein-protein interaction/signaling domain to modulate the ion conduction properties of intact full-length Kv channels.
Collapse
Affiliation(s)
- Alex W Jahng
- Structural Biology Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
148
|
Abstract
We have investigated the interactions of prototypical PDZ domains with both the C- and N-termini of Kv1.5 and other Kv channels. A combination of in vitro binding and yeast two-hybrid assays unexpectedly showed that PDZ domains derived from PSD95 bind both the C- and N-termini of the channels with comparable avidity. From doubly transfected HEK293 cells, Kv1.5 was found to co-immunoprecipitate with the PDZ protein, irrespective of the presence of the canonical C-terminal PDZ-binding motif in Kv1.5. Imaging analysis of the same HEK cell lines demonstrated that co-localization of Kv1.5 with PSD95 at the cell surface is similarly independent of the canonical PDZ-binding motif. Deletion analysis localized the N-terminal PDZ-binding site in Kv1.5 to the T1 region of the channel. Co-expression of PSD95 with Kv1.5 N- and C-terminal deletions in HEK cells had contrasting effects on the magnitudes of the potassium currents across the membranes of these cells. These findings may have important implications for the regulation of channel expression and function by PDZ proteins like PSD95.
Collapse
Affiliation(s)
- Jodene Eldstrom
- Department of Physiology, University of British Columbia, 2146 Health Sciences Mall, V6T 1Z3, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
149
|
Gagnon E, Forbush B, Flemmer AW, Giménez I, Caron L, Isenring P. Functional and molecular characterization of the shark renal Na-K-Cl cotransporter: novel aspects. Am J Physiol Renal Physiol 2002; 283:F1046-55. [PMID: 12372780 DOI: 10.1152/ajprenal.00107.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Na-K-Cl cotransporter isoform 1 (NKCC1) has been isolated from several species, including Squalus acanthias. A second kidney-specific isoform (NKCC2) has been cloned mainly from higher vertebrates. Here, we have isolated the S. acanthias NKCC2 and found that it is produced in at least four spliced variants (saNKCC2A, saNKCC2F, saNKCC2AF, and saNKCC2AFno8) of approximately 1,090 residues. Expression of these transcripts in Xenopus laevis oocytes revealed that only the A and F variants are functional and that they are more active after incubation in low-Cl or hyperosmolar media. Rates of activation after exposure to these media were exceptionally rapid, demonstrating for the first time that the NKCC2 itself represents an important site of regulation by Cl and that extracellular domains are involved. Another remarkable finding in this study was the failure to identify NKCC2B, a variant found in the kidney of higher vertebrates and expressed specifically in macula densa cells. This result, in conjunction with the fact that the shark kidney lacks a well-developed juxtaglomerular apparatus, suggests that the B exon evolved as a result of selective pressure (presumably by exon duplication) and that a restricted relationship exists between NKCC2B and macula densa.
Collapse
Affiliation(s)
- Edith Gagnon
- Groupe de Recherche en Néphrologie, Department of Medicine, Faculty of Medicine, Laval University, Laval, Quebec, Canada G1R 2J6
| | | | | | | | | | | |
Collapse
|
150
|
Sansom MSP, Shrivastava IH, Bright JN, Tate J, Capener CE, Biggin PC. Potassium channels: structures, models, simulations. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1565:294-307. [PMID: 12409202 DOI: 10.1016/s0005-2736(02)00576-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Potassium channels have been studied intensively in terms of the relationship between molecular structure and physiological function. They provide an opportunity to integrate structural and computational studies in order to arrive at an atomic resolution description of mechanism. We review recent progress in K channel structural studies, focussing on the bacterial channel KcsA. Structural studies can be extended via use of computational (i.e. molecular simulation) approaches in order to provide a perspective on aspects of channel function such as permeation, selectivity, block and gating. Results from molecular dynamics simulations are shown to be in good agreement with recent structural studies of KcsA in terms of the interactions of K(+) ions with binding sites within the selectivity filter of the channel, and in revealing the importance of filter flexibility in channel function. We discuss how the KcsA structure may be used as a template for developing structural models of other families of K channels. Progress in this area is explored via two examples: inward rectifier (Kir) and voltage-gated (Kv) potassium channels. A brief account of structural studies of ancillary domains and subunits of K channels is provided.
Collapse
Affiliation(s)
- Mark S P Sansom
- Laboratory of Molecular Biophysics, Department of Biochemistry, The University of Oxford, The Rex Richards Building, South Parks Road, Oxford, UK.
| | | | | | | | | | | |
Collapse
|