101
|
Alfei F, Kanev K, Hofmann M, Wu M, Ghoneim HE, Roelli P, Utzschneider DT, von Hoesslin M, Cullen JG, Fan Y, Eisenberg V, Wohlleber D, Steiger K, Merkler D, Delorenzi M, Knolle PA, Cohen CJ, Thimme R, Youngblood B, Zehn D. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 2019; 571:265-269. [DOI: 10.1038/s41586-019-1326-9] [Citation(s) in RCA: 396] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
|
102
|
Yao C, Sun HW, Lacey NE, Ji Y, Moseman EA, Shih HY, Heuston EF, Kirby M, Anderson S, Cheng J, Khan O, Handon R, Reilley J, Fioravanti J, Hu J, Gossa S, Wherry EJ, Gattinoni L, McGavern DB, O'Shea JJ, Schwartzberg PL, Wu T. Single-cell RNA-seq reveals TOX as a key regulator of CD8 + T cell persistence in chronic infection. Nat Immunol 2019; 20:890-901. [PMID: 31209400 PMCID: PMC6588409 DOI: 10.1038/s41590-019-0403-4] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/16/2019] [Indexed: 02/06/2023]
Abstract
Progenitor-like CD8+ T cells mediate long-term immunity to chronic infection and cancer and respond potently to immune checkpoint blockade. These cells share transcriptional regulators with memory precursor cells, including TCF1, but it is unclear whether they adopt distinct programs to adapt to the immunosuppressive environment. By comparing single-cell transcriptomes and epigenetic profiles of CD8+ T cells responding to acute and chronic viral infections, we found that progenitor-like CD8+ T cells became distinct from memory precursors before the peak of the T-cell response. We discovered a co-expression gene module containing Tox that exhibited higher transcriptional activity associated with more abundant active histone marks in progenitor-like cells than memory precursors. Moreover, TOX promoted persistence of antiviral CD8+ T cells and was required for the programming of progenitor-like CD8+ T cells. Thus, long-term CD8+ T-cell immunity to chronic viral infection requires unique transcriptional and epigenetic programs associated with the transcription factor TOX.
Collapse
Affiliation(s)
- Chen Yao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hong-Wei Sun
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neal E Lacey
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yun Ji
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Cellular Biomedicine Group, Gaithersburg, MD, USA
| | - E Ashley Moseman
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Han-Yu Shih
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elisabeth F Heuston
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martha Kirby
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stacie Anderson
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun Cheng
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Omar Khan
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
| | - Robin Handon
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julie Reilley
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jessica Fioravanti
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jinhui Hu
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Selamawit Gossa
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
| | - Luca Gattinoni
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - John J O'Shea
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Pamela L Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. .,National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Tuoqi Wu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. .,National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. .,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
103
|
Stromnes IM, Burrack AL, Hulbert A, Bonson P, Black C, Brockenbrough JS, Raynor JF, Spartz EJ, Pierce RH, Greenberg PD, Hingorani SR. Differential Effects of Depleting versus Programming Tumor-Associated Macrophages on Engineered T Cells in Pancreatic Ductal Adenocarcinoma. Cancer Immunol Res 2019; 7:977-989. [PMID: 31028033 PMCID: PMC6548612 DOI: 10.1158/2326-6066.cir-18-0448] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/05/2018] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy resistant to therapies, including immune-checkpoint blockade. We investigated two distinct strategies to modulate tumor-associated macrophages (TAM) to enhance cellular therapy targeting mesothelin in an autochthonous PDA mouse model. Administration of an antibody to colony-stimulating factor (anti-Csf1R) depleted Ly6Clow protumorigenic TAMs and significantly enhanced endogenous T-cell intratumoral accumulation. Despite increasing the number of endogenous T cells at the tumor site, as previously reported, TAM depletion had only minimal impact on intratumoral accumulation and persistence of T cells engineered to express a murine mesothelin-specific T-cell receptor (TCR). TAM depletion interfered with the antitumor activity of the infused T cells in PDA, evidenced by reduced tumor cell apoptosis. In contrast, TAM programming with agonistic anti-CD40 increased both Ly6Chigh TAMs and the intratumoral accumulation and longevity of TCR-engineered T cells. Anti-CD40 significantly increased the frequency and number of proliferating and granzyme B+ engineered T cells, and increased tumor cell apoptosis. However, anti-CD40 failed to rescue intratumoral engineered T-cell IFNγ production. Thus, although functional modulation, rather than TAM depletion, enhanced the longevity of engineered T cells and increased tumor cell apoptosis, ultimately, anti-CD40 modulation was insufficient to rescue key effector defects in tumor-reactive T cells. This study highlights critical distinctions between how endogenous T cells that evolve in vivo, and engineered T cells with previously acquired effector activity, respond to modifications of the tumor microenvironment.
Collapse
Affiliation(s)
- Ingunn M Stromnes
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota.
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Adam L Burrack
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ayaka Hulbert
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Patrick Bonson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Cheryl Black
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - J Scott Brockenbrough
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jackson F Raynor
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ellen J Spartz
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Robert H Pierce
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Philip D Greenberg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Sunil R Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
104
|
Wu J, Ma S, Sandhoff R, Ming Y, Hotz-Wagenblatt A, Timmerman V, Bonello-Palot N, Schlotter-Weigel B, Auer-Grumbach M, Seeman P, Löscher WN, Reindl M, Weiss F, Mah E, Weisshaar N, Madi A, Mohr K, Schlimbach T, Velasco Cárdenas RMH, Koeppel J, Grünschläger F, Müller L, Baumeister M, Brügger B, Schmitt M, Wabnitz G, Samstag Y, Cui G. Loss of Neurological Disease HSAN-I-Associated Gene SPTLC2 Impairs CD8 + T Cell Responses to Infection by Inhibiting T Cell Metabolic Fitness. Immunity 2019; 50:1218-1231.e5. [PMID: 30952607 DOI: 10.1016/j.immuni.2019.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 01/07/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022]
Abstract
Patients with the neurological disorder HSAN-I suffer frequent infections, attributed to a lack of pain sensation and failure to seek care for minor injuries. Whether protective CD8+ T cells are affected in HSAN-I patients remains unknown. Here, we report that HSAN-I-associated mutations in serine palmitoyltransferase subunit SPTLC2 dampened human T cell responses. Antigen stimulation and inflammation induced SPTLC2 expression, and murine T-cell-specific ablation of Sptlc2 impaired antiviral-T-cell expansion and effector function. Sptlc2 deficiency reduced sphingolipid biosynthetic flux and led to prolonged activation of the mechanistic target of rapamycin complex 1 (mTORC1), endoplasmic reticulum (ER) stress, and CD8+ T cell death. Protective CD8+ T cell responses in HSAN-I patient PBMCs and Sptlc2-deficient mice were restored by supplementing with sphingolipids and pharmacologically inhibiting ER stress-induced cell death. Therefore, SPTLC2 underpins protective immunity by translating extracellular stimuli into intracellular anabolic signals and antagonizes ER stress to promote T cell metabolic fitness.
Collapse
Affiliation(s)
- Jingxia Wu
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sicong Ma
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group (G131), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yanan Ming
- Internal Medicine IV, University Heidelberg Hospital, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Core Facility Omics IT and Data Management, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, B-2610, University of Antwerp, Antwerpen, Belgium
| | - Nathalie Bonello-Palot
- Department of Medical Genetics, Children Timone Hospital, 264 Rue Saint Pierre & Aix Marseille University, INSERM, MMG, U1251, 13385 Marseille, France
| | - Beate Schlotter-Weigel
- Friedrich-Baur-Institut, Neurologische Klinik and Poliklinik Ludwig-Maximilians-Universität, 80336 München, Germany
| | - Michaela Auer-Grumbach
- Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Pavel Seeman
- DNA Laboratory, Department of Child Neurology, 2nd Medical School, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Wolfgang N Löscher
- Clinical Department of Neurology, Medical University Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Florian Weiss
- Department of Psychiatry and Psychotherapy, University Hospital of Psychiatry, Bolligenstrasse 111, 3000 Bern, Germany
| | - Eric Mah
- School of Medicine, UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nina Weisshaar
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Alaa Madi
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Kerstin Mohr
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Tilo Schlimbach
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Rubí M-H Velasco Cárdenas
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jonas Koeppel
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Florian Grünschläger
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lisann Müller
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Maren Baumeister
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Michael Schmitt
- Internal Medicine V, University Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Guido Wabnitz
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Guoliang Cui
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
105
|
Kurup SP, Anthony SM, Hancox LS, Vijay R, Pewe LL, Moioffer SJ, Sompallae R, Janse CJ, Khan SM, Harty JT. Monocyte-Derived CD11c + Cells Acquire Plasmodium from Hepatocytes to Prime CD8 T Cell Immunity to Liver-Stage Malaria. Cell Host Microbe 2019; 25:565-577.e6. [PMID: 30905437 DOI: 10.1016/j.chom.2019.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/04/2018] [Accepted: 02/07/2019] [Indexed: 01/16/2023]
Abstract
Plasmodium sporozoites inoculated by mosquitoes migrate to the liver and infect hepatocytes prior to release of merozoites that initiate symptomatic blood-stage malaria. Plasmodium parasites are thought to be restricted to hepatocytes throughout this obligate liver stage of development, and how liver-stage-expressed antigens prime productive CD8 T cell responses remains unknown. We found that a subset of liver-infiltrating monocyte-derived CD11c+ cells co-expressing F4/80, CD103, CD207, and CSF1R acquired parasites during the liver stage of malaria, but only after initial hepatocyte infection. These CD11c+ cells found in the infected liver and liver-draining lymph nodes exhibited transcriptionally and phenotypically enhanced antigen-presentation functions and primed protective CD8 T cell responses against Plasmodium liver-stage-restricted antigens. Our findings highlight a previously unrecognized aspect of Plasmodium biology and uncover the fundamental mechanism by which CD8 T cell responses are primed against liver-stage malaria antigens.
Collapse
Affiliation(s)
- Samarchith P Kurup
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Scott M Anthony
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Lisa S Hancox
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Lecia L Pewe
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Steven J Moioffer
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Ramakrishna Sompallae
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center (LUMC), 2333ZA Leiden, the Netherlands
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center (LUMC), 2333ZA Leiden, the Netherlands
| | - John T Harty
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
106
|
Osborn JF, Hobbs SJ, Mooster JL, Khan TN, Kilgore AM, Harbour JC, Nolz JC. Central memory CD8+ T cells become CD69+ tissue-residents during viral skin infection independent of CD62L-mediated lymph node surveillance. PLoS Pathog 2019; 15:e1007633. [PMID: 30875408 PMCID: PMC6420010 DOI: 10.1371/journal.ppat.1007633] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/11/2019] [Indexed: 01/22/2023] Open
Abstract
Memory CD8+ T cells in the circulation rapidly infiltrate non-lymphoid tissues following infection and provide protective immunity in an antigen-specific manner. However, the subsequent fate of memory CD8+ T cells after entering non-lymphoid tissues such as the skin during a secondary infection is largely unknown. Furthermore, because expression of CD62L is often used to identify the central memory (TCM) CD8+ T cell subset, uncoupling the physical requirement for CD62L-mediated lymph node homing versus other functional attributes of TCM CD8+ T cells remains unresolved. Here, we show that in contrast to naïve CD8+ T cells, memory CD8+ T cells traffic into the skin independent of CD62L-mediated lymph node re-activation and provide robust protective immunity against Vaccinia virus (VacV) infection. TCM, but not effector memory (TEM), CD8+ T cells differentiated into functional CD69+/CD103- tissue residents following viral clearance, which was also dependent on local recognition of antigen in the skin microenvironment. Finally, we found that memory CD8+ T cells expressed granzyme B after trafficking into the skin and utilized cytolysis to provide protective immunity against VacV infection. Collectively, these findings demonstrate that TCM CD8+ T cells become cytolytic following rapid infiltration of the skin to protect against viral infection and subsequently differentiate into functional CD69+ tissue-residents.
Collapse
Affiliation(s)
- Jossef F. Osborn
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Samuel J. Hobbs
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jana L. Mooster
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Tahsin N. Khan
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Augustus M. Kilgore
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jake C. Harbour
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jeffrey C. Nolz
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon, United States of America
- Radiation Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
107
|
Christoffersson G, Chodaczek G, Ratliff SS, Coppieters K, von Herrath MG. Suppression of diabetes by accumulation of non-islet-specific CD8 + effector T cells in pancreatic islets. Sci Immunol 2018; 3:3/21/eaam6533. [PMID: 29572238 DOI: 10.1126/sciimmunol.aam6533] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 09/11/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022]
Abstract
The inflammatory lesion at the pancreatic islet in type 1 diabetes (T1D) contains a heterogeneous infiltrate of T cells. In human and mouse studies, a large majority (98 to 99%) of the cytotoxic CD8+ T cells (CTLs) within islets are not specific to any islet antigen and are thought to passively add to tissue damage. We show by intravital confocal microscopy the opposite, immune-regulatory function of this cohort of CTLs. Diabetes did not develop in mice with islets showing high levels of infiltration of non-islet-specific CTLs not recognizing local antigens. Accumulation of such CTLs resulted in lower activation and proliferation of islet-specific CTLs, leading them to enter a state of unresponsiveness due to limited access to antigens at the inflammatory lesion. This nonspecific suppression by nonautoreactive CTLs was recapitulated in a model of viral meningitis, may explain viral interference in autoimmunity, and provides insight into the regulation of organ-specific autoimmune responses.
Collapse
Affiliation(s)
- Gustaf Christoffersson
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Grzegorz Chodaczek
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Wroclaw Research Centre EIT+, Wroclaw, Poland
| | - Sowbarnika S Ratliff
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Ken Coppieters
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Novo Nordisk Diabetes Research and Development Center, Seattle, WA 98109, USA
| | - Matthias G von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. .,Novo Nordisk Diabetes Research and Development Center, Seattle, WA 98109, USA
| |
Collapse
|
108
|
Straub T, Freudenberg MA, Schleicher U, Bogdan C, Gasteiger G, Pircher H. Bacterial coinfection restrains antiviral CD8 T-cell response via LPS-induced inhibitory NK cells. Nat Commun 2018; 9:4117. [PMID: 30297690 PMCID: PMC6175863 DOI: 10.1038/s41467-018-06609-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/12/2018] [Indexed: 12/30/2022] Open
Abstract
Infection of specific pathogen-free mice with lymphocytic choriomeningitis virus (LCMV) is a widely used model to study antiviral T-cell immunity. Infections in the real world, however, are often accompanied by coinfections with unrelated pathogens. Here we show that in mice, systemic coinfection with E. coli suppresses the LCMV-specific cytotoxic T-lymphocyte (CTL) response and virus elimination in a NK cell- and TLR2/4-dependent manner. Soluble TLR4 ligand LPS also induces NK cell-mediated negative CTL regulation during LCMV infection. NK cells in LPS-treated mice suppress clonal expansion of LCMV-specific CTLs by a NKG2D- or NCR1-independent but perforin-dependent mechanism. These results suggest a TLR4-mediated immunoregulatory role of NK cells during viral-bacterial coinfections.
Collapse
Affiliation(s)
- Tobias Straub
- Institute for Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Marina A Freudenberg
- Institute for Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Department of Pneumology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Georg Gasteiger
- Institute of Systems Immunology, University of Wuerzburg, 97078 Wuerzburg, Germany
- Institute for Medical Microbiology and Hygiene, University of Freiburg Medical Center, 79104 Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
109
|
Roediger B, Lee Q, Tikoo S, Cobbin JCA, Henderson JM, Jormakka M, O'Rourke MB, Padula MP, Pinello N, Henry M, Wynne M, Santagostino SF, Brayton CF, Rasmussen L, Lisowski L, Tay SS, Harris DC, Bertram JF, Dowling JP, Bertolino P, Lai JH, Wu W, Bachovchin WW, Wong JJL, Gorrell MD, Shaban B, Holmes EC, Jolly CJ, Monette S, Weninger W. An Atypical Parvovirus Drives Chronic Tubulointerstitial Nephropathy and Kidney Fibrosis. Cell 2018; 175:530-543.e24. [PMID: 30220458 PMCID: PMC6800251 DOI: 10.1016/j.cell.2018.08.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 11/19/2022]
Abstract
The occurrence of a spontaneous nephropathy with intranuclear inclusions in laboratory mice has puzzled pathologists for over 4 decades, because its etiology remains elusive. The condition is more severe in immunodeficient animals, suggesting an infectious cause. Using metagenomics, we identify the causative agent as an atypical virus, termed "mouse kidney parvovirus" (MKPV), belonging to a divergent genus of Parvoviridae. MKPV was identified in animal facilities in Australia and North America, is transmitted via a fecal-oral or urinary-oral route, and is controlled by the adaptive immune system. Detailed analysis of the clinical course and histopathological features demonstrated a stepwise progression of pathology ranging from sporadic tubular inclusions to tubular degeneration and interstitial fibrosis and culminating in renal failure. In summary, we identify a widely distributed pathogen in laboratory mice and establish MKPV-induced nephropathy as a new tool for elucidating mechanisms of tubulointerstitial fibrosis that shares molecular features with chronic kidney disease in humans.
Collapse
Affiliation(s)
- Ben Roediger
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia.
| | - Quintin Lee
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Shweta Tikoo
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Joanna C A Cobbin
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - James M Henderson
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Mika Jormakka
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Matthew B O'Rourke
- Mass Spectrometry Core Facility, University of Sydney, Sydney, NSW 2006, Australia; Proteomics Core Facility, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Natalia Pinello
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Marisa Henry
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; Laboratory Animal Services, University of Sydney, Sydney, NSW 2006, Australia
| | - Maria Wynne
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; Laboratory Animal Services, University of Sydney, Sydney, NSW 2006, Australia
| | - Sara F Santagostino
- Laboratory of Comparative Pathology, Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, NY 10065, USA
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Leszek Lisowski
- Children's Medical Research Institute, University of Sydney, Sydney, NSW 2006, Australia; Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Centre, Puławy 24-100, Poland
| | - Szun S Tay
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - David C Harris
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, NSW 2006, Australia
| | - John F Bertram
- Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - John P Dowling
- Department of Anatomical Pathology, Monash Medical Centre, Clayton, VIC 3168, Australia
| | - Patrick Bertolino
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Jack H Lai
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Wengen Wu
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - William W Bachovchin
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Justin J-L Wong
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Mark D Gorrell
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Babak Shaban
- Australian Genomics Research Facility, Parkville, VIC 3000, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Christopher J Jolly
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Sébastien Monette
- Laboratory of Comparative Pathology, Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, NY 10065, USA
| | - Wolfgang Weninger
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; Discipline of Dermatology, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
110
|
CD8+ T Cell Activation Leads to Constitutive Formation of Liver Tissue-Resident Memory T Cells that Seed a Large and Flexible Niche in the Liver. Cell Rep 2018; 25:68-79.e4. [DOI: 10.1016/j.celrep.2018.08.094] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/23/2018] [Accepted: 08/30/2018] [Indexed: 01/27/2023] Open
|
111
|
Presa M, Racine JJ, Dwyer JR, Lamont DJ, Ratiu JJ, Sarsani VK, Chen YG, Geurts A, Schmitz I, Stearns T, Allocco J, Chapman HD, Serreze DV. A Hypermorphic Nfkbid Allele Contributes to Impaired Thymic Deletion of Autoreactive Diabetogenic CD8 + T Cells in NOD Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1907-1917. [PMID: 30127089 PMCID: PMC6143397 DOI: 10.4049/jimmunol.1800465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/23/2018] [Indexed: 11/19/2022]
Abstract
In both NOD mice and humans, the development of type 1 diabetes (T1D) is dependent in part on autoreactive CD8+ T cells recognizing pancreatic β cell peptides presented by often quite common MHC class I variants. Studies in NOD mice previously revealed that the common H2-Kd and/or H2-Db class I molecules expressed by this strain aberrantly lose the ability to mediate the thymic deletion of pathogenic CD8+ T cell responses through interactions with T1D susceptibility genes outside the MHC. A gene(s) mapping to proximal chromosome 7 was previously shown to be an important contributor to the failure of the common class I molecules expressed by NOD mice to mediate the normal thymic negative selection of diabetogenic CD8+ T cells. Using an inducible model of thymic negative selection and mRNA transcript analyses, we initially identified an elevated Nfkbid expression variant as a likely NOD-proximal chromosome 7 region gene contributing to impaired thymic deletion of diabetogenic CD8+ T cells. CRISPR/Cas9-mediated genetic attenuation of Nfkbid expression in NOD mice resulted in improved negative selection of autoreactive diabetogenic AI4 and NY8.3 CD8+ T cells. These results indicated that allelic variants of Nfkbid contribute to the efficiency of intrathymic deletion of diabetogenic CD8+ T cells. However, although enhancing thymic deletion of pathogenic CD8+ T cells, ablating Nfkbid expression surprisingly accelerated T1D onset that was associated with numeric decreases in both regulatory T and B lymphocytes in NOD mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aron Geurts
- Medical College of Wisconsin, Milwaukee, WI 53226
| | - Ingo Schmitz
- Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
112
|
Lymphocytes Negatively Regulate NK Cell Activity via Qa-1b following Viral Infection. Cell Rep 2018; 21:2528-2540. [PMID: 29186689 DOI: 10.1016/j.celrep.2017.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/02/2017] [Accepted: 10/30/2017] [Indexed: 01/26/2023] Open
Abstract
NK cells can reduce anti-viral T cell immunity during chronic viral infections, including infection with the lymphocytic choriomeningitis virus (LCMV). However, regulating factors that maintain the equilibrium between productive T cell and NK cell immunity are poorly understood. Here, we show that a large viral load resulted in inhibition of NK cell activation, which correlated with increased expression of Qa-1b, a ligand for inhibitory NK cell receptors. Qa-1b was predominantly upregulated on B cells following LCMV infection, and this upregulation was dependent on type I interferons. Absence of Qa-1b resulted in increased NK cell-mediated regulation of anti-viral T cells following viral infection. Consequently, anti-viral T cell immunity was reduced in Qa-1b- and NKG2A-deficient mice, resulting in increased viral replication and immunopathology. NK cell depletion restored anti-viral immunity and virus control in the absence of Qa-1b. Taken together, our findings indicate that lymphocytes limit NK cell activity during viral infection in order to promote anti-viral T cell immunity.
Collapse
|
113
|
Urata S, Kenyon E, Nayak D, Cubitt B, Kurosaki Y, Yasuda J, de la Torre JC, McGavern DB. BST-2 controls T cell proliferation and exhaustion by shaping the early distribution of a persistent viral infection. PLoS Pathog 2018; 14:e1007172. [PMID: 30028868 PMCID: PMC6080785 DOI: 10.1371/journal.ppat.1007172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 08/07/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022] Open
Abstract
The interferon inducible protein, BST-2 (or, tetherin), plays an important role in the innate antiviral defense system by inhibiting the release of many enveloped viruses. Consequently, viruses have evolved strategies to counteract the anti-viral activity of this protein. While the mechanisms by which BST-2 prevents viral dissemination have been defined, less is known about how this protein shapes the early viral distribution and immunological defense against pathogens during the establishment of persistence. Using the lymphocytic choriomeningitis virus (LCMV) model of infection, we sought insights into how the in vitro antiviral activity of this protein compared to the immunological defense mounted in vivo. We observed that BST-2 modestly reduced production of virion particles from cultured cells, which was associated with the ability of BST-2 to interfere with the virus budding process mediated by the LCMV Z protein. Moreover, LCMV does not encode a BST-2 antagonist, and viral propagation was not significantly restricted in cells that constitutively expressed BST-2. In contrast to this very modest effect in cultured cells, BST-2 played a crucial role in controlling LCMV in vivo. In BST-2 deficient mice, a persistent strain of LCMV was no longer confined to the splenic marginal zone at early times post-infection, which resulted in an altered distribution of LCMV-specific T cells, reduced T cell proliferation / function, delayed viral control in the serum, and persistence in the brain. These data demonstrate that BST-2 is important in shaping the anatomical distribution and adaptive immune response against a persistent viral infection in vivo.
Collapse
Affiliation(s)
- Shuzo Urata
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Immunology and Microbial Science IMM-6, The Scripps Research Institute, La Jolla, California, United States of America
| | - Elizabeth Kenyon
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Debasis Nayak
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Center for Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Beatrice Cubitt
- Department of Immunology and Microbial Science IMM-6, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yohei Kurosaki
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Jiro Yasuda
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Juan C. de la Torre
- Department of Immunology and Microbial Science IMM-6, The Scripps Research Institute, La Jolla, California, United States of America
| | - Dorian B. McGavern
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
114
|
Loo CP, Nelson NA, Lane RS, Booth JL, Loprinzi Hardin SC, Thomas A, Slifka MK, Nolz JC, Lund AW. Lymphatic Vessels Balance Viral Dissemination and Immune Activation following Cutaneous Viral Infection. Cell Rep 2018; 20:3176-3187. [PMID: 28954233 DOI: 10.1016/j.celrep.2017.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/28/2017] [Accepted: 08/31/2017] [Indexed: 01/22/2023] Open
Abstract
Lymphatic vessels lie at the interface between peripheral sites of pathogen entry, adaptive immunity, and the systemic host. Though the paradigm is that their open structure allows for passive flow of infectious particles from peripheral tissues to lymphoid organs, virus applied to skin by scarification does not spread to draining lymph nodes. Using cutaneous infection by scarification, we analyzed the effect of viral infection on lymphatic transport and evaluated its role at the host-pathogen interface. We found that, in the absence of lymphatic vessels, canonical lymph-node-dependent immune induction was impaired, resulting in exacerbated pathology and compensatory, systemic priming. Furthermore, lymphatic vessels decouple fluid and cellular transport in an interferon-dependent manner, leading to viral sequestration while maintaining dendritic cell transport for immune induction. In conclusion, we found that lymphatic vessels balance immune activation and viral dissemination and act as an "innate-like" component of tissue host viral defense.
Collapse
Affiliation(s)
- Christopher P Loo
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nicholas A Nelson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ryan S Lane
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jamie L Booth
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sofia C Loprinzi Hardin
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Archana Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jeffrey C Nolz
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA; Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA; Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
115
|
Osborn JF, Mooster JL, Hobbs SJ, Munks MW, Barry C, Harty JT, Hill AB, Nolz JC. Enzymatic synthesis of core 2 O-glycans governs the tissue-trafficking potential of memory CD8 + T cells. Sci Immunol 2018; 2:2/16/eaan6049. [PMID: 29030501 DOI: 10.1126/sciimmunol.aan6049] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022]
Abstract
Trafficking of memory CD8+ T cells out of the circulation is essential to provide protective immunity against intracellular pathogens in nonlymphoid tissues. However, the molecular mechanisms that dictate the trafficking potential of diverse memory CD8+ T cell populations are not completely defined. We show that after infection or inflammatory challenge, central memory (TCM) CD8+ T cells rapidly traffic into nonlymphoid tissues, whereas most effector memory cells remain in the circulation. Furthermore, we demonstrate that cellular migration of memory CD8+ T cells into nonlymphoid tissues is driven by interleukin-15 (IL-15)-stimulated enzymatic synthesis of core 2 O-glycans, which generates functional ligands for E- and P-selectins. Given that IL-15-stimulated expression of glycosyltransferase enzymes is largely a feature of TCM CD8+ T cells, this allows TCM to selectively migrate out of the circulation and into nonlymphoid tissues. Collectively, our data indicate that entry of memory CD8+ T cells into inflamed, nonlymphoid tissues is primarily restricted to TCM cells that have the capacity to synthesize core 2 O-glycans.
Collapse
Affiliation(s)
- Jossef F Osborn
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jana L Mooster
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Samuel J Hobbs
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Michael W Munks
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Conrad Barry
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - John T Harty
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Ann B Hill
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jeffrey C Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA. .,Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA.,Department of Radiation Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
116
|
Rollings CM, Sinclair LV, Brady HJM, Cantrell DA, Ross SH. Interleukin-2 shapes the cytotoxic T cell proteome and immune environment-sensing programs. Sci Signal 2018; 11:11/526/eaap8112. [PMID: 29666307 DOI: 10.1126/scisignal.aap8112] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interleukin-2 (IL-2) and Janus kinases (JAKs) regulate transcriptional programs and protein synthesis to promote the differentiation of effector CD8+ cytotoxic T lymphocytes (CTLs). Using high-resolution mass spectrometry, we generated an in-depth characterization of how IL-2 and JAKs configure the CTL proteome to control CTL function. We found that IL-2 signaling through JAK1 and JAK3 (JAK1/3) increased the abundance of a key subset of proteins to induce the accumulation of critical cytokines and effector molecules in T cells. Moreover, IL-2 maintained the concentration of proteins that support core metabolic processes essential for cellular fitness. One fundamental insight was the dominant role for IL-2 in stimulating effector T cells to detect microenvironmental cues. IL-2-JAK1/3 signaling pathways thus increased the abundance of nutrient transporters, nutrient sensors, and critical oxygen-sensing molecules. These data provide key insights into how IL-2 promotes T cell function and highlight signaling mechanisms and transcription factors that integrate oxygen sensing to transcriptional control of CD8+ T cell differentiation.
Collapse
Affiliation(s)
- Christina M Rollings
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Linda V Sinclair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Hugh J M Brady
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Sarah H Ross
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
117
|
Acetylation of the Cd8 Locus by KAT6A Determines Memory T Cell Diversity. Cell Rep 2018; 16:3311-3321. [PMID: 27653692 DOI: 10.1016/j.celrep.2016.08.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/21/2016] [Accepted: 08/17/2016] [Indexed: 11/20/2022] Open
Abstract
How functionally diverse populations of pathogen-specific killer T cells are generated during an immune response remains unclear. Here, we propose that fine-tuning of CD8αβ co-receptor levels via histone acetylation plays a role in lineage fate. We show that lysine acetyltransferase 6A (KAT6A) is responsible for maintaining permissive Cd8 gene transcription and enabling robust effector responses during infection. KAT6A-deficient CD8(+) T cells downregulated surface CD8 co-receptor expression during clonal expansion, a finding linked to reduced Cd8α transcripts and histone-H3 lysine 9 acetylation of the Cd8 locus. Loss of CD8 expression in KAT6A-deficient T cells correlated with reduced TCR signaling intensity and accelerated contraction of the effector-like memory compartment, whereas the long-lived memory compartment appeared unaffected, a result phenocopied by the removal of the Cd8 E8I enhancer element. These findings suggest a direct role of CD8αβ co-receptor expression and histone acetylation in shaping functional diversity within the cytotoxic T cell pool.
Collapse
|
118
|
Hilmenyuk T, Ruckstuhl CA, Hayoz M, Berchtold C, Nuoffer JM, Solanki S, Keun HC, Beavis PA, Riether C, Ochsenbein AF. T cell inhibitory mechanisms in a model of aggressive Non-Hodgkin's Lymphoma. Oncoimmunology 2018; 7:e1365997. [PMID: 29296517 DOI: 10.1080/2162402x.2017.1365997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/16/2017] [Accepted: 08/05/2017] [Indexed: 12/30/2022] Open
Abstract
A reduced immune surveillance due to immune deficiency or treatment with immunosuppressive drugs is associated with a higher risk to develop aggressive Non-Hodgkin's lymphoma (NHL). Nevertheless, NHL also develops in immunocompetent patients indicating an escape from the immune system. T cell function in advanced aggressive lymphoma is not well characterized and the molecular mechanisms how malignant B cells influence T cell function are ill-defined. We therefore studied T cell function in Eμ-myc transgenic mice that develop an aggressive B cell lymphoma with some similarities to human Burkitt-lymphoma (BL). In advanced lymphoma, the number of T cells was severely reduced and the remaining CD4+ and CD8+ T cells lost the capacity to produce effector cytokines and expand upon re-stimulation. T cells in lymphoma-bearing mice were characterized by the expression of the immune inhibitory molecules programmed death (PD)-1, 2B4 and lymphocyte activation protein (LAG)-3. The proto-oncogene c-Myc not only drives cell proliferation and disease progression but also induces apoptosis of the malignant cells. We found that apoptotic lymphoma cells release purine metabolites that inhibit T cell function. Taken together, our data document that the characteristic high cell turnover and apoptotic rate in aggressive NHL induce a severe T cell dysfunction mediated by several immune-inhibitory mechanisms including ligation of inhibitory ligands and purine metabolites. Blocking a single mechanism only partially restored T cell function and did not increase survival of lymphoma mice.
Collapse
Affiliation(s)
- Tamara Hilmenyuk
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Carla A Ruckstuhl
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Michael Hayoz
- Institute of Clinical Chemistry, University Hospital and University of Bern, Bern, Switzerland
| | - Christian Berchtold
- Institute of Clinical Chemistry, University Hospital and University of Bern, Bern, Switzerland
| | - Jean-Marc Nuoffer
- Institute of Clinical Chemistry, University Hospital and University of Bern, Bern, Switzerland
| | - Shyam Solanki
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, London, UK
| | - Hector C Keun
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, London, UK
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Carsten Riether
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Adrian F Ochsenbein
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
119
|
Youngblood B, Hale JS, Kissick HT, Ahn E, Xu X, Wieland A, Araki K, West EE, Ghoneim HE, Fan Y, Dogra P, Davis CW, Konieczny BT, Antia R, Cheng X, Ahmed R. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 2017; 552:404-409. [PMID: 29236683 PMCID: PMC5965677 DOI: 10.1038/nature25144] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/17/2017] [Indexed: 01/20/2023]
Abstract
Memory CD8 T cells that circulate in the blood and are present in lymphoid organs are an essential component of long-lived T cell immunity. These memory CD8 T cells remain poised to rapidly elaborate effector functions upon re-exposure to pathogens, but also have many properties in common with naive cells, including pluripotency and the ability to migrate to the lymph nodes and spleen. Thus, memory cells embody features of both naive and effector cells, fuelling a long-standing debate centred on whether memory T cells develop from effector cells or directly from naive cells. Here we show that long-lived memory CD8 T cells are derived from a subset of effector T cells through a process of dedifferentiation. To assess the developmental origin of memory CD8 T cells, we investigated changes in DNA methylation programming at naive and effector cell-associated genes in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection in mice. Methylation profiling of terminal effector versus memory-precursor CD8 T cell subsets showed that, rather than retaining a naive epigenetic state, the subset of cells that gives rise to memory cells acquired de novo DNA methylation programs at naive-associated genes and became demethylated at the loci of classically defined effector molecules. Conditional deletion of the de novo methyltransferase Dnmt3a at an early stage of effector differentiation resulted in reduced methylation and faster re-expression of naive-associated genes, thereby accelerating the development of memory cells. Longitudinal phenotypic and epigenetic characterization of the memory-precursor effector subset of virus-specific CD8 T cells transferred into antigen-free mice revealed that differentiation to memory cells was coupled to erasure of de novo methylation programs and re-expression of naive-associated genes. Thus, epigenetic repression of naive-associated genes in effector CD8 T cells can be reversed in cells that develop into long-lived memory CD8 T cells while key effector genes remain demethylated, demonstrating that memory T cells arise from a subset of fate-permissive effector T cells.
Collapse
Affiliation(s)
- Ben Youngblood
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - J. Scott Hale
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Haydn T. Kissick
- Department of Urology, Emory University School of Medicine, Atlanta, GA 30322
| | - Eunseon Ahn
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Xiaojin Xu
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Andreas Wieland
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Koichi Araki
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Erin E. West
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Hazem E. Ghoneim
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Pranay Dogra
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Carl W. Davis
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Bogumila T. Konieczny
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Rustom Antia
- Department of Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
120
|
A STAT3-dependent transcriptional circuitry inhibits cytotoxic gene expression in T cells. Proc Natl Acad Sci U S A 2017; 114:13236-13241. [PMID: 29180433 DOI: 10.1073/pnas.1711160114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CD8+ T cells are preprogrammed for cytotoxic differentiation in the thymus as they acquire expression of the transcription factor Runx3. However, a subset of effector CD8+ T cells (Tc17) produce IL-17 and fail to express cytotoxic genes. Here, we show that the transcription factors directing IL-17 production, STAT3 and RORγt, inhibit cytotoxicity despite persistent Runx3 expression. Cytotoxic gene repression did not require the transcription factor Thpok, which in CD4+ T cells restrains Runx3 functions and cytotoxicity; and STAT3 restrained cytotoxic gene expression in CD8+ T cells responding to viral infection in vivo. STAT3-induced RORγt represses cytotoxic genes by inhibiting the functions but not the expression of the "cytotoxic" transcription factors T-bet and Eomesodermin. Thus, the transcriptional circuitry directing IL-17 expression inhibits cytotoxic functions. However, by allowing expression of activators of the cytotoxic program, this inhibitory mechanism contributes to the instability of IL-17-producing T cells.
Collapse
|
121
|
Carty SA, Gohil M, Banks LB, Cotton RM, Johnson ME, Stelekati E, Wells AD, Wherry EJ, Koretzky GA, Jordan MS. The Loss of TET2 Promotes CD8 + T Cell Memory Differentiation. THE JOURNAL OF IMMUNOLOGY 2017; 200:82-91. [PMID: 29150566 DOI: 10.4049/jimmunol.1700559] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022]
Abstract
T cell differentiation requires appropriate regulation of DNA methylation. In this article, we demonstrate that the methylcytosine dioxygenase ten-eleven translocation (TET)2 regulates CD8+ T cell differentiation. In a murine model of acute viral infection, TET2 loss promotes early acquisition of a memory CD8+ T cell fate in a cell-intrinsic manner without disrupting Ag-driven cell expansion or effector function. Upon secondary recall, TET2-deficient memory CD8+ T cells demonstrate superior pathogen control. Genome-wide methylation analysis identified a number of differentially methylated regions in TET2-deficient versus wild-type CD8+ T cells. These differentially methylated regions did not occur at the loci of differentially expressed memory markers; rather, several hypermethylated regions were identified in known transcriptional regulators of CD8+ T cell memory fate. Together, these data demonstrate that TET2 is an important regulator of CD8+ T cell fate decisions.
Collapse
Affiliation(s)
- Shannon A Carty
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mercy Gohil
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lauren B Banks
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Renee M Cotton
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Erietta Stelekati
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Andrew D Wells
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,The Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - E John Wherry
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Gary A Koretzky
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; .,Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Martha S Jordan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
122
|
IRF9 Prevents CD8 + T Cell Exhaustion in an Extrinsic Manner during Acute Lymphocytic Choriomeningitis Virus Infection. J Virol 2017; 91:JVI.01219-17. [PMID: 28878077 DOI: 10.1128/jvi.01219-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/27/2017] [Indexed: 12/13/2022] Open
Abstract
Effective CD8+ T cell responses play an important role in determining the course of a viral infection. Overwhelming antigen exposure can result in suboptimal CD8+ T cell responses, leading to chronic infection. This altered CD8+ T cell differentiation state, termed exhaustion, is characterized by reduced effector function, upregulation of inhibitory receptors, and altered expression of transcription factors. Prevention of overwhelming antigen exposure to limit CD8+ T cell exhaustion is of significant interest for the control of chronic infection. The transcription factor interferon regulatory factor 9 (IRF9) is a component of type I interferon (IFN-I) signaling downstream of the IFN-I receptor (IFNAR). Using acute infection of mice with lymphocytic choriomeningitis virus (LCMV) strain Armstrong, we show here that IRF9 limited early LCMV replication by regulating expression of interferon-stimulated genes and IFN-I and by controlling levels of IRF7, a transcription factor essential for IFN-I production. Infection of IRF9- or IFNAR-deficient mice led to a loss of early restriction of viral replication and impaired antiviral responses in dendritic cells, resulting in CD8+ T cell exhaustion and chronic infection. Differences in the antiviral activities of IRF9- and IFNAR-deficient mice and dendritic cells provided further evidence of IRF9-independent IFN-I signaling. Thus, our findings illustrate a CD8+ T cell-extrinsic function for IRF9, as a signaling factor downstream of IFNAR, in preventing overwhelming antigen exposure resulting in CD8+ T cell exhaustion and, ultimately, chronic infection.IMPORTANCE During early viral infection, overwhelming antigen exposure can cause functional exhaustion of CD8+ T cells and lead to chronic infection. Here we show that the transcription factor interferon regulatory factor 9 (IRF9) plays a decisive role in preventing CD8+ T cell exhaustion. Using acute infection of mice with LCMV strain Armstrong, we found that IRF9 limited early LCMV replication by regulating expression of interferon-stimulated genes and Irf7, encoding a transcription factor crucial for type I interferon (IFN-I) production, as well as by controlling the levels of IFN-I. Infection of IRF9-deficient mice led to a chronic infection that was accompanied by CD8+ T cell exhaustion due to defects extrinsic to T cells. Our findings illustrate an essential role for IRF9, as a mediator downstream of IFNAR, in preventing overwhelming antigen exposure causing CD8+ T cell exhaustion and leading to chronic viral infection.
Collapse
|
123
|
FOXO1 opposition of CD8 + T cell effector programming confers early memory properties and phenotypic diversity. Proc Natl Acad Sci U S A 2017; 114:E8865-E8874. [PMID: 28973925 DOI: 10.1073/pnas.1618916114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The factors and steps controlling postinfection CD8+ T cell terminal effector versus memory differentiation are incompletely understood. Whereas we found that naive TCF7 (alias "Tcf-1") expression is FOXO1 independent, early postinfection we report bimodal, FOXO1-dependent expression of the memory-essential transcription factor TCF7 in pathogen-specific CD8+ T cells. We determined the early postinfection TCF7high population is marked by low TIM3 expression and bears memory signature hallmarks before the appearance of established memory precursor marker CD127 (IL-7R). These cells exhibit diminished TBET, GZMB, mTOR signaling, and cell cycle progression. Day 5 postinfection, TCF7high cells express higher memory-associated BCL2 and EOMES, as well as increased accumulation potential and capacity to differentiate into memory phenotype cells. TCF7 retroviral transduction opposes GZMB expression and the formation of KLRG1pos phenotype cells, demonstrating an active role for TCF7 in extinguishing the effector program and forestalling terminal differentiation. Past the peak of the cellular immune response, we report a gradient of FOXO1 and TCF7 expression, which functions to oppose TBET and orchestrate a continuum of effector-to-memory phenotypes.
Collapse
|
124
|
Kurachi M, Kurachi J, Chen Z, Johnson J, Khan O, Bengsch B, Stelekati E, Attanasio J, McLane LM, Tomura M, Ueha S, Wherry EJ. Optimized retroviral transduction of mouse T cells for in vivo assessment of gene function. Nat Protoc 2017; 12:1980-1998. [PMID: 28858287 PMCID: PMC6020692 DOI: 10.1038/nprot.2017.083] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Retroviral (RV) expression of genes of interest (GOIs) is an invaluable tool and has formed the foundation of cellular engineering for adoptive cell therapy in cancer and other diseases. However, monitoring of transduced T cells long term (weeks to months) in vivo remains challenging because of the low frequency and often poor durability of transduced T cells over time when transferred without enrichment. Traditional methods often require additional overnight in vitro culture after transduction. Moreover, in vitro-generated effector CD8+ T cells enriched by sorting often have reduced viability, making it difficult to monitor the fate of transferred cells in vivo. Here, we describe an optimized mouse CD8+ T-cell RV transduction protocol that uses simple and rapid Percoll density centrifugation to enrich RV-susceptible activated CD8+ T cells. Percoll density centrifugation is simple, can be done on the day of transduction, requires minimal time, has low reagent costs and improves cell recovery (up to 60%), as well as the frequency of RV-transduced cells (∼sixfold over several weeks in vivo as compared with traditional methods). We have used this protocol to assess the long-term stability of CD8+ T cells after RV transduction by comparing the durability of T cells transduced with retroviruses expressing each of six commonly used RV reporter genes. Thus, we provide an optimized enrichment and transduction approach that allows long-term in vivo assessment of RV-transduced T cells. The overall procedure from T-cell isolation to RV transduction takes 2 d, and enrichment of activated T cells can be done in 1 h.
Collapse
Affiliation(s)
- Makoto Kurachi
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Junko Kurachi
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zeyu Chen
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Johnson
- Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Omar Khan
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bertram Bengsch
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erietta Stelekati
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Attanasio
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura M McLane
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Satoshi Ueha
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - E John Wherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
125
|
Gerner MY, Casey KA, Kastenmuller W, Germain RN. Dendritic cell and antigen dispersal landscapes regulate T cell immunity. J Exp Med 2017; 214:3105-3122. [PMID: 28847868 PMCID: PMC5626399 DOI: 10.1084/jem.20170335] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/16/2017] [Accepted: 08/01/2017] [Indexed: 01/01/2023] Open
Abstract
Gerner et al. show that spatial compartmentalization in lymph nodes of DCs specialized for MHC I versus MHC II presentation determines the amount of antigen these cells capture after immunization and regulates the relative generation of CD4+ versus CD8+ T cell responses. Dendritic cell (DC) subsets with biased capacity for CD4+ and CD8+ T cell activation are asymmetrically distributed in lymph nodes (LNs), but how this affects adaptive responses has not been extensively studied. Here we used quantitative imaging to examine the relationships among antigen dispersal, DC positioning, and T cell activation after protein immunization. Antigens rapidly drained into LNs and formed gradients extending from the lymphatic sinuses, with reduced abundance in the deep LN paracortex. Differential localization of DCs specialized for major histocompatibility complex I (MHC I) and MHC II presentation resulted in preferential activation of CD8+ and CD4+ T cells within distinct LN regions. Because MHC I–specialized DCs are positioned in regions with limited antigen delivery, modest reductions in antigen dose led to a substantially greater decline in CD8+ compared with CD4+ T cell activation, expansion, and clonal diversity. Thus, the collective action of antigen dispersal and DC positioning regulates the extent and quality of T cell immunity, with important implications for vaccine design.
Collapse
Affiliation(s)
| | - Kerry A Casey
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, LLC, Gaithersburg, MD
| | | | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
126
|
Holland T, Wohlleber D, Marx S, Kreutzberg T, Vento-Asturias S, Schmitt-Mbamunyo C, Welz M, Janas M, Komander K, Eickhoff S, Brewitz A, Hasenberg M, Männ L, Gunzer M, Wilhelm C, Kastenmüller W, Knolle P, Abdullah Z, Kurts C, Garbi N. Rescue of T-cell function during persistent pulmonary adenoviral infection by Toll-like receptor 9 activation. J Allergy Clin Immunol 2017; 141:416-419.e10. [PMID: 28826775 DOI: 10.1016/j.jaci.2017.06.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/06/2017] [Accepted: 06/29/2017] [Indexed: 11/17/2022]
Affiliation(s)
- Tristan Holland
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, Munich, Germany
| | - Samira Marx
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Thomas Kreutzberg
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | | | | | - Meike Welz
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Marianne Janas
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, Munich, Germany
| | - Karl Komander
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Sarah Eickhoff
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Anna Brewitz
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Mike Hasenberg
- Institute of Experimental Immunology and Imaging, University Duisburg-Essen, Duisburg-Essen, Germany
| | - Linda Männ
- Institute of Experimental Immunology and Imaging, University Duisburg-Essen, Duisburg-Essen, Germany
| | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University Duisburg-Essen, Duisburg-Essen, Germany
| | - Christoph Wilhelm
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | | | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, Munich, Germany
| | - Zeinab Abdullah
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Natalio Garbi
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany.
| |
Collapse
|
127
|
Dong M, Artusa P, Kelly SA, Fournier M, Baldwin TA, Mandl JN, Melichar HJ. Alterations in the Thymic Selection Threshold Skew the Self-Reactivity of the TCR Repertoire in Neonates. THE JOURNAL OF IMMUNOLOGY 2017; 199:965-973. [PMID: 28659353 DOI: 10.4049/jimmunol.1602137] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/02/2017] [Indexed: 12/19/2022]
Abstract
Neonatal and adult T cells differ in their effector functions. Although it is known that cell-intrinsic differences in mature T cells contribute to this phenomenon, the factors involved remain unclear. Given emerging evidence that the binding strength of a TCR for self-peptide presented by MHC (self-pMHC) impacts T cell function, we sought to determine whether altered thymic selection influences the self-reactivity of the TCR repertoire during ontogeny. We found that conventional and regulatory T cell subsets in the thymus of neonates and young mice expressed higher levels of cell surface CD5, a surrogate marker for TCR avidity for self-pMHC, as compared with their adult counterparts, and this difference in self-reactivity was independent of the germline bias of the neonatal TCR repertoire. The increased binding strength of the TCR repertoire for self-pMHC in neonates was not solely due to reported defects in clonal deletion. Rather, our data suggest that thymic selection is altered in young mice such that thymocytes bearing TCRs with low affinity for self-peptide are not efficiently selected into the neonatal repertoire, and stronger TCR signals accompany both conventional and regulatory T cell selection. Importantly, the distinct levels of T cell self-reactivity reflect physiologically relevant differences based on the preferential expansion of T cells from young mice to fill a lymphopenic environment. Therefore, differences in thymic selection in young versus adult mice skew the TCR repertoire, and the relatively higher self-reactivity of the T cell pool may contribute to the distinct immune responses observed in neonates.
Collapse
Affiliation(s)
- Mengqi Dong
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada.,Department of Microbiology, Infectious Diseases, and Immunology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Patricio Artusa
- Department of Physiology and McGill Research Centre for Complex Traits, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Stephanie A Kelly
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; and
| | - Marilaine Fournier
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; and
| | - Judith N Mandl
- Department of Physiology and McGill Research Centre for Complex Traits, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Heather J Melichar
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; .,Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
128
|
Systems-guided forward genetic screen reveals a critical role of the replication stress response protein ETAA1 in T cell clonal expansion. Proc Natl Acad Sci U S A 2017; 114:E5216-E5225. [PMID: 28607084 DOI: 10.1073/pnas.1705795114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
T-cell immunity requires extremely rapid clonal proliferation of rare, antigen-specific T lymphocytes to form effector cells. Here we identify a critical role for ETAA1 in this process by surveying random germ line mutations in mice using exome sequencing and bioinformatic annotation to prioritize mutations in genes of unknown function with potential effects on the immune system, followed by breeding to homozygosity and testing for immune system phenotypes. Effector CD8+ and CD4+ T-cell formation following immunization, lymphocytic choriomeningitis virus (LCMV) infection, or herpes simplex virus 1 (HSV1) infection was profoundly decreased despite normal immune cell development in adult mice homozygous for two different Etaa1 mutations: an exon 2 skipping allele that deletes Gly78-Leu119, and a Cys166Stop truncating allele that eliminates most of the 877-aa protein. ETAA1 deficiency decreased clonal expansion cell autonomously within the responding T cells, causing no decrease in their division rate but increasing TP53-induced mRNAs and phosphorylation of H2AX, a marker of DNA replication stress induced by the ATM and ATR kinases. Homozygous ETAA1-deficient adult mice were otherwise normal, healthy, and fertile, although slightly smaller, and homozygotes were born at lower frequency than expected, consistent with partial lethality after embryonic day 12. Taken together with recently reported evidence in human cancer cell lines that ETAA1 activates ATR kinase through an exon 2-encoded domain, these findings reveal a surprisingly specific requirement for this ATR activator in adult mice restricted to rapidly dividing effector T cells. This specific requirement may provide new ways to suppress pathological T-cell responses in transplantation or autoimmunity.
Collapse
|
129
|
Daley SR, Teh C, Hu DY, Strasser A, Gray DH. Cell death and thymic tolerance. Immunol Rev 2017; 277:9-20. [DOI: 10.1111/imr.12532] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Stephen R. Daley
- Infection and Immunity Program; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology; Monash University; Melbourne VIC Australia
| | - Charis Teh
- The Walter and Eliza Hall Institute of Medical Research; Melbourne VIC Australia
- Department of Medical Biology; The University of Melbourne; Parkville VIC Australia
| | | | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research; Melbourne VIC Australia
- Department of Medical Biology; The University of Melbourne; Parkville VIC Australia
| | - Daniel H.D. Gray
- The Walter and Eliza Hall Institute of Medical Research; Melbourne VIC Australia
- Department of Medical Biology; The University of Melbourne; Parkville VIC Australia
| |
Collapse
|
130
|
Gray SM, Amezquita RA, Guan T, Kleinstein SH, Kaech SM. Polycomb Repressive Complex 2-Mediated Chromatin Repression Guides Effector CD8 + T Cell Terminal Differentiation and Loss of Multipotency. Immunity 2017; 46:596-608. [PMID: 28410989 DOI: 10.1016/j.immuni.2017.03.012] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 11/24/2022]
Abstract
Understanding immunological memory formation depends on elucidating how multipotent memory precursor (MP) cells maintain developmental plasticity and longevity to provide long-term immunity while other effector cells develop into terminally differentiated effector (TE) cells with limited survival. Profiling active (H3K27ac) and repressed (H3K27me3) chromatin in naive, MP, and TE CD8+ T cells during viral infection revealed increased H3K27me3 deposition at numerous pro-memory and pro-survival genes in TE relative to MP cells, indicative of fate restriction, but permissive chromatin at both pro-memory and pro-effector genes in MP cells, indicative of multipotency. Polycomb repressive complex 2 deficiency impaired clonal expansion and TE cell differentiation, but minimally impacted CD8+ memory T cell maturation. Abundant H3K27me3 deposition at pro-memory genes occurred late during TE cell development, probably from diminished transcription factor FOXO1 expression. These results outline a temporal model for loss of memory cell potential through selective epigenetic silencing of pro-memory genes in effector T cells.
Collapse
Affiliation(s)
- Simon M Gray
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Robert A Amezquita
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Tianxia Guan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA; Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
131
|
Exhaustion-associated regulatory regions in CD8 + tumor-infiltrating T cells. Proc Natl Acad Sci U S A 2017. [PMID: 28283662 DOI: 10.1073/pnas.1620498114.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T-cell exhaustion is a progressive loss of effector function and memory potential due to persistent antigen exposure, which occurs in chronic viral infections and cancer. Here we investigate the relation between gene expression and chromatin accessibility in CD8+ tumor-infiltrating lymphocytes (TILs) that recognize a model tumor antigen and have features of both activation and functional exhaustion. By filtering out accessible regions observed in bystander, nonexhausted TILs and in acutely restimulated CD8+ T cells, we define a pattern of chromatin accessibility specific for T-cell exhaustion, characterized by enrichment for consensus binding motifs for Nr4a and NFAT transcription factors. Anti-PD-L1 treatment of tumor-bearing mice results in cessation of tumor growth and partial rescue of cytokine production by the dysfunctional TILs, with only limited changes in gene expression and chromatin accessibility. Our studies provide a valuable resource for the molecular understanding of T-cell exhaustion in cancer and other inflammatory settings.
Collapse
|
132
|
Progression of type 1 diabetes from the prediabetic stage is controlled by interferon-α signaling. Proc Natl Acad Sci U S A 2017; 114:3708-3713. [PMID: 28325871 DOI: 10.1073/pnas.1700878114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Blockade of IFN-α but not IFN-β signaling using either an antibody or a selective S1PR1 agonist, CYM-5442, prevented type 1 diabetes (T1D) in the mouse Rip-LCMV T1D model. First, treatment with antibody or CYM-5442 limited the migration of autoimmune "antiself" T cells to the external boundaries around the islets and prevented their entry into the islets so they could not be positioned to engage, kill, and thus remove insulin-producing β cells. Second, CYM-5442 induced an exhaustion signature in antiself T cells by up-regulating the negative immune regulator receptor genes Pdcd1, Lag3, Ctla4, Tigit, and Btla, thereby limiting their killing ability. By such means, insulin production was preserved and glucose regulation maintained, and a mechanism for S1PR1 immunomodulation described.
Collapse
|
133
|
Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Haining WN, Freeman GJ, Sharpe AH. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med 2017; 214:895-904. [PMID: 28302645 PMCID: PMC5379970 DOI: 10.1084/jem.20160801] [Citation(s) in RCA: 601] [Impact Index Per Article: 75.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 12/12/2016] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Both tumor- and host-derived PD-L1 can play critical roles in immunosuppression; differences in tumor immunogenicity appear to underlie their relative contributions. Juneja et al. show that in immunogenic MC38 tumors, PD-L1 on tumor cells dominates in suppressing tumor immunity by inhibiting CD8 T cell cytotoxicity. It is unclear whether PD-L1 on tumor cells is sufficient for tumor immune evasion or simply correlates with an inflamed tumor microenvironment. We used three mouse tumor models sensitive to PD-1 blockade to evaluate the significance of PD-L1 on tumor versus nontumor cells. PD-L1 on nontumor cells is critical for inhibiting antitumor immunity in B16 melanoma and a genetically engineered melanoma. In contrast, PD-L1 on MC38 colorectal adenocarcinoma cells is sufficient to suppress antitumor immunity, as deletion of PD-L1 on highly immunogenic MC38 tumor cells allows effective antitumor immunity. MC38-derived PD-L1 potently inhibited CD8+ T cell cytotoxicity. Wild-type MC38 cells outcompeted PD-L1–deleted MC38 cells in vivo, demonstrating tumor PD-L1 confers a selective advantage. Thus, both tumor- and host-derived PD-L1 can play critical roles in immunosuppression. Differences in tumor immunogenicity appear to underlie their relative importance. Our findings establish reduced cytotoxicity as a key mechanism by which tumor PD-L1 suppresses antitumor immunity and demonstrate that tumor PD-L1 is not just a marker of suppressed antitumor immunity.
Collapse
Affiliation(s)
- Vikram R Juneja
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115.,Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Kathleen A McGuire
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115.,Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Robert T Manguso
- Division of Medical Sciences, Harvard Medical School, Boston, MA 02115.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Martin W LaFleur
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115.,Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Natalie Collins
- Division of Hematology/Oncology, Children's Hospital, Harvard Medical School, Boston, MA 02115.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115.,Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - W Nicholas Haining
- Division of Hematology/Oncology, Children's Hospital, Harvard Medical School, Boston, MA 02115.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115.,Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 .,Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| |
Collapse
|
134
|
Exhaustion-associated regulatory regions in CD8 + tumor-infiltrating T cells. Proc Natl Acad Sci U S A 2017; 114:E2776-E2785. [PMID: 28283662 DOI: 10.1073/pnas.1620498114] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
T-cell exhaustion is a progressive loss of effector function and memory potential due to persistent antigen exposure, which occurs in chronic viral infections and cancer. Here we investigate the relation between gene expression and chromatin accessibility in CD8+ tumor-infiltrating lymphocytes (TILs) that recognize a model tumor antigen and have features of both activation and functional exhaustion. By filtering out accessible regions observed in bystander, nonexhausted TILs and in acutely restimulated CD8+ T cells, we define a pattern of chromatin accessibility specific for T-cell exhaustion, characterized by enrichment for consensus binding motifs for Nr4a and NFAT transcription factors. Anti-PD-L1 treatment of tumor-bearing mice results in cessation of tumor growth and partial rescue of cytokine production by the dysfunctional TILs, with only limited changes in gene expression and chromatin accessibility. Our studies provide a valuable resource for the molecular understanding of T-cell exhaustion in cancer and other inflammatory settings.
Collapse
|
135
|
Ono N, Murakami K, Chan O, Hall H, Elford AR, Yen P, Calzascia T, Spencer DM, Ohashi PS, Dhanji S. Exposure to sequestered self-antigens in vivo is not sufficient for the induction of autoimmune diabetes. PLoS One 2017; 12:e0173176. [PMID: 28257518 PMCID: PMC5336264 DOI: 10.1371/journal.pone.0173176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 02/16/2017] [Indexed: 11/18/2022] Open
Abstract
Although the role of T cells in autoimmunity has been explored for many years, the mechanisms leading to the initial priming of an autoimmune T cell response remain enigmatic. The 'hit and run' model suggests that self-antigens released upon cell death can provide the initial signal for a self-sustaining autoimmune response. Using a novel transgenic mouse model where we could induce the release of self-antigens via caspase-dependent apoptosis. We tracked the fate of CD8+ T cells specific for the self-antigen. Our studies demonstrated that antigens released from apoptotic cells were cross-presented by CD11c+ cells in the draining lymph node. This cross-presentation led to proliferation of self-antigen specific T cells, followed by a transient ability to produce IFN-γ, but did not lead to the development of autoimmune diabetes. Using this model we examined the consequences on T cell immunity when apoptosis was combined with dendritic cell maturation signals, an autoimmune susceptible genetic background, and the deletion of Tregs. The results of our study demonstrate that autoimmune diabetes cannot be initiated by the presentation of antigens released from apoptotic cells in vivo even in the presence of factors known to promote autoimmunity.
Collapse
Affiliation(s)
- Nobuyuki Ono
- Department of Rheumatology, Faculty of Medicine, Saga University, Saga, Japan
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Kiichi Murakami
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Olivia Chan
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Håkan Hall
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Alisha R. Elford
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Patty Yen
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Thomas Calzascia
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - David M. Spencer
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Medical Center, Houston, Texas, United States of America
- Bellicum Pharmaceuticals, Inc. Houston, Texas, United States of America
| | - Pamela S. Ohashi
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Salim Dhanji
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| |
Collapse
|
136
|
Martinic MM, Caminschi I, O'Keeffe M, Thinnes TC, Grumont R, Gerondakis S, McKay DB, Nemazee D, Gavin AL. The Bacterial Peptidoglycan-Sensing Molecules NOD1 and NOD2 Promote CD8 + Thymocyte Selection. THE JOURNAL OF IMMUNOLOGY 2017; 198:2649-2660. [PMID: 28202617 DOI: 10.4049/jimmunol.1601462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/22/2017] [Indexed: 12/12/2022]
Abstract
Nucleotide-binding and oligomerization domain (NOD)-like receptors NOD1 and NOD2 are cytosolic innate immune receptors that recognize microbial peptidoglycans. Although studies have addressed the role of NOD proteins in innate immune responses, little attention has been given to their impact on the developing adaptive immune system. We have assessed the roles of NOD1 and NOD2 deficiency on T cell development in mice. Our results demonstrate that NOD1 and NOD2 promote the positive selection/maturation of CD8 single-positive thymocytes in a thymocyte-intrinsic manner. TCR-mediated ERK phosphorylation is significantly reduced in the absence of NOD proteins, but receptor-interacting protein 2 is not involved in CD8 single-positive thymocyte selection or ERK signaling. Commensal bacteria-free animals have thymocyte maturation defects, and exogenous NOD ligands can enhance thymocyte maturation in culture. These results raise the intriguing possibility that abnormal lymphocyte responses observed in NOD-dependent inflammatory diseases are not driven solely by microbial signals in the gut, but may also involve intrinsic lymphocyte defects resulting from impaired CD8 T cell thymic development.
Collapse
Affiliation(s)
- Marianne M Martinic
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Irina Caminschi
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; and
| | - Meredith O'Keeffe
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Therese C Thinnes
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | | | | | - Dianne B McKay
- Division of Nephrology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - David Nemazee
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Amanda L Gavin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037; .,Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia
| |
Collapse
|
137
|
Honke N, Shaabani N, Teijaro JR, Christen U, Hardt C, Bezgovsek J, Lang PA, Lang KS. Presentation of Autoantigen in Peripheral Lymph Nodes Is Sufficient for Priming Autoreactive CD8 + T Cells. Front Immunol 2017; 8:113. [PMID: 28239381 PMCID: PMC5301005 DOI: 10.3389/fimmu.2017.00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 01/24/2017] [Indexed: 11/13/2022] Open
Abstract
Peripheral tolerance is an important mechanism by which the immune system can guarantee a second line of defense against autoreactive T and B cells. One autoimmune disease that is related to a break of peripheral tolerance is diabetes mellitus type 1. Using the RIP-GP mouse model, we analyzed the role of the spleen and lymph nodes (LNs) in priming CD8+ T cells and breaking peripheral tolerance. We found that diabetes developed in splenectomized mice infected with the lymphocytic choriomeningitis virus (LCMV), a finding showing that the spleen was not necessary in generating autoimmunity. By contrast, the absence of LNs prevented the priming of LCMV-specific CD8+ T cells, and diabetes did not develop in these mice. Additionally, we found that dendritic cells are responsible for the distribution of virus in secondary lymphoid organs, when LCMV was administered intravenously. Preventing this distribution with the sphingosine-1-phosphate receptor antagonist FTY720 inhibits the transport of antigen to peripheral LNs and consequently prevented the onset of diabetes. However, in case of subcutaneous infection, administration of FTY720 could not inhibit the onset of diabetes because the viral antigen is already presented in the peripheral LNs. These findings demonstrate the importance of preventing the presence of antigen in LNs for maintaining tolerance.
Collapse
Affiliation(s)
- Nadine Honke
- Medical Faculty, Institute of Immunology, University of Duisburg-Essen, Essen, Germany; Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Namir Shaabani
- Medical Faculty, Institute of Immunology, University of Duisburg-Essen, Essen, Germany; Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Teijaro
- Department of Immunology and Microbial Science, The Scripps Research Institute , La Jolla, CA , USA
| | - Urs Christen
- Pharmazentrum Frankfurt, Goethe University Hospital Frankfurt , Frankfurt am Main , Germany
| | - Cornelia Hardt
- Medical Faculty, Institute of Immunology, University of Duisburg-Essen , Essen , Germany
| | - Judith Bezgovsek
- Medical Faculty, Institute of Immunology, University of Duisburg-Essen , Essen , Germany
| | - Philipp A Lang
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany; Medical Faculty, Department of Molecular Medicine II, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Karl S Lang
- Medical Faculty, Institute of Immunology, University of Duisburg-Essen, Essen, Germany; Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
138
|
Abstract
T cells play critical roles in controlling hepatotropic viral infections and liver tumors. The protective capacity of these cells is mediated by antigen-experienced effector cells and depends on their ability to migrate to and traffic within the liver, recognize pathogen- or tumor-derived antigens, get activated and deploy effector functions.While some of the rules that characterize T cell behavior in the healthy and cancerous antigen-expressing liver have been characterized at the population level, we have only limited knowledge of the precise dynamics of T cell interactions with different kinds of liver cells at the single-cell level. Here, we describe in detail an intravital microscopy technique that allows the analysis of T cell dynamic behavior in the liver of anesthetized mice at high spatial and temporal resolution. A detailed understanding of the spatiotemporal dynamics of T cells within the liver is important for the rational design of targeted immunotherapeutic approaches for chronic liver infections and tumors.
Collapse
Affiliation(s)
- Alexandre Pierre Benechet
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Lucia Ganzer
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
- Vita-Salute San Raffaele University, 20132, Milan, Italy.
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
| |
Collapse
|
139
|
Wu T, Ji Y, Moseman EA, Xu HC, Manglani M, Kirby M, Anderson SM, Handon R, Kenyon E, Elkahloun A, Wu W, Lang PA, Gattinoni L, McGavern DB, Schwartzberg PL. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci Immunol 2016; 1. [PMID: 28018990 DOI: 10.1126/sciimmunol.aai8593] [Citation(s) in RCA: 424] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During chronic viral infections and in cancer, T cells become dysfunctional, a state known as T cell exhaustion. Although it is well recognized that memory CD8 T cells account for the persistence of CD8 T cell immunity after acute infection, how exhausted T cells persist remains less clear. Using chronic infection with lymphocytic choriomeningitis virus clone 13 and tumor samples, we demonstrate that CD8 T cells differentiate into a less exhausted TCF1high and a more exhausted TCF1low population. Virus-specific TCF1high CD8 T cells, which resemble T follicular helper (TFH) cells, persist and recall better than do TCF1low cells and act as progenitor cells to replenish TCF1low cells. We show that TCF1 is both necessary and sufficient to support this progenitor-like CD8 subset, whereas cell-intrinsic type I interferon signaling suppresses their differentiation. Accordingly, cell-intrinsic TCF1 deficiency led to a loss of these progenitor CD8 T cells, sharp contraction of virus-specific T cells, and uncontrolled viremia. Mechanistically, TCF1 repressed several pro-exhaustion factors and induced Bcl6 in CD8 T cells, which promoted the progenitor fate. We propose that the TCF1-Bcl6 axis counteracts type I interferon to repress T cell exhaustion and maintain T cell stemness, which is critical for persistent antiviral CD8 T cell responses in chronic infection. These findings provide insight into the requirements for persistence of T cell immune responses in the face of exhaustion and suggest mechanisms by which effective T cell-mediated immunity may be enhanced during chronic infections and cancer.
Collapse
Affiliation(s)
- Tuoqi Wu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yun Ji
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - E Ashley Moseman
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Monica Manglani
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martha Kirby
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stacie M Anderson
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robin Handon
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth Kenyon
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abdel Elkahloun
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weiwei Wu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Luca Gattinoni
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pamela L Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
140
|
Woyciechowski S, Hofmann M, Pircher H. α 4 β 1 integrin promotes accumulation of tissue-resident memory CD8 + T cells in salivary glands. Eur J Immunol 2016; 47:244-250. [PMID: 27861803 DOI: 10.1002/eji.201646722] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/19/2016] [Accepted: 11/09/2016] [Indexed: 01/05/2023]
Abstract
The salivary glands (SGs) of virus-immune mice contain substantial numbers of tissue-resident memory CD8+ T cells (TRM cells) that can provide immunity to local infections. Integrins regulate entry of activated T cells into nonlymphoid tissues but the molecules that mediate migration of virus-specific CD8+ T cells to the SGs have not yet been defined. Here, we found that polyinosinic-polycytidylic acid (poly(I:C)) strongly promoted the accumulation of P14 TCR-transgenic CD8+ TRM cells in SGs in an α4 β1 integrin-dependent manner. After infection with lymphocytic choriomeningitis virus, accumulation of P14 TRM cells in SGs and intestine but not in kidney was also α4 integrin dependent. Blockade of α4 β7 by monoclonal antibodies (mAbs) inhibited lymphocytic choriomeningitis virus-induced accumulation of P14 TRM cells in the intestine but not in SGs. In conclusion, our data reveal that α4 β1 integrin mediates CD8+ TRM accumulation in SGs and that poly(I:C) can be used to direct activated CD8+ T cells to this organ.
Collapse
Affiliation(s)
- Sandra Woyciechowski
- Institute for Immunology, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Institute for Immunology, University Medical Center Freiburg, Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
141
|
Swanson PA, Hart GT, Russo MV, Nayak D, Yazew T, Peña M, Khan SM, Janse CJ, Pierce SK, McGavern DB. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. PLoS Pathog 2016; 12:e1006022. [PMID: 27907215 PMCID: PMC5131904 DOI: 10.1371/journal.ppat.1006022] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/25/2016] [Indexed: 01/01/2023] Open
Abstract
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM), we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8+ T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs) from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8+ T cells interacted with the lumen of brain vascular endothelial cells (ECs), where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8+ T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4) therapy prevented fatal disease by rapidly displacing luminal CD8+ T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8+ T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen-dependent interactions with cerebrovasculature. Cerebral malaria (CM) is a severe and potentially fatal complication of malaria in humans that results in swelling and bleeding within the brain. The mechanisms that cause this fatal disease in humans are not completely understood. We studied an animal model known as experimental cerebral malaria to learn more about the factors that drive this disease process. Using a technique referred to as intravital microscopy, we captured movies of immune cells operating in the living brain as the disease developed. At the peak of disease, we observed evidence of immune cells interacting with and aggregating along blood vessels throughout the brain. These interactions were directly associated vascular leakage. This caused the brain to swell, which gave rise to an unsustainable pressure that ultimately killed neurons responsible for heart and lung function. The fatal swelling was induced by immune cells (referred to as T cells) interacting with bits of parasite presented by blood vessels in the brain. Removal of this parasite presentation protected the mice from fatal disease. We also evaluated a straightforward therapy that involved intravenous administration of antibodies that interfered with T cell sticking to blood vessels. Our movies revealed that this therapeutic approach rapidly displaced T cells from the blood vessels in the brain and prevented fatal disease.
Collapse
Affiliation(s)
- Phillip A. Swanson
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Geoffrey T. Hart
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Matthew V. Russo
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Debasis Nayak
- Center for Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh, India
| | - Takele Yazew
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mirna Peña
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Shahid M. Khan
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Dorian B. McGavern
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
142
|
Shaabani N, Duhan V, Khairnar V, Gassa A, Ferrer-Tur R, Häussinger D, Recher M, Zelinskyy G, Liu J, Dittmer U, Trilling M, Scheu S, Hardt C, Lang PA, Honke N, Lang KS. CD169 + macrophages regulate PD-L1 expression via type I interferon and thereby prevent severe immunopathology after LCMV infection. Cell Death Dis 2016; 7:e2446. [PMID: 27809306 PMCID: PMC5260878 DOI: 10.1038/cddis.2016.350] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022]
Abstract
Upon infection with persistence-prone virus, type I interferon (IFN-I) mediates antiviral activity and also upregulates the expression of programmed death ligand 1 (PD-L1), and this upregulation can lead to CD8+ T-cell exhaustion. How these very diverse functions are regulated remains unknown. This study, using the lymphocytic choriomeningitis virus, showed that a subset of CD169+ macrophages in murine spleen and lymph nodes produced high amounts of IFN-I upon infection. Absence of CD169+ macrophages led to insufficient production of IFN-I, lower antiviral activity and persistence of virus. Lack of CD169+ macrophages also limited the IFN-I-dependent expression of PD-L1. Enhanced viral replication in the absence of PD-L1 led to persistence of virus and prevented CD8+ T-cell exhaustion. As a consequence, mice exhibited severe immunopathology and died quickly after infection. Therefore, CD169+ macrophages are important contributors to the IFN-I response and thereby influence antiviral activity, CD8+ T-cell exhaustion and immunopathology.
Collapse
Affiliation(s)
- Namir Shaabani
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Vikas Duhan
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Vishal Khairnar
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Asmae Gassa
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rita Ferrer-Tur
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Mike Recher
- Clinic for Primary Immunodeficiency, Medical Outpatient Unit and Immunodeficiency Laboratory, Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Gennadiy Zelinskyy
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mirko Trilling
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Cornelia Hardt
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Philipp A Lang
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nadine Honke
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
143
|
Fallet B, Narr K, Ertuna YI, Remy M, Sommerstein R, Cornille K, Kreutzfeldt M, Page N, Zimmer G, Geier F, Straub T, Pircher H, Larimore K, Greenberg PD, Merkler D, Pinschewer DD. Interferon-driven deletion of antiviral B cells at the onset of chronic infection. Sci Immunol 2016; 1:eaah6817. [PMID: 27872905 PMCID: PMC5115616 DOI: 10.1126/sciimmunol.aah6817] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inadequate antibody responses and perturbed B cell compartments represent hallmarks of persistent microbial infections, but the mechanisms whereby persisting pathogens suppress humoral immunity remain poorly defined. Using adoptive transfer experiments in the context of a chronic lymphocytic choriomeningitis virus (LCMV) infection of mice, we have documented rapid depletion of virus-specific B cells that coincided with the early type I interferon response to infection. We found that the loss of activated B cells was driven by type I interferon (IFN-I) signaling to several cell types including dendritic cells, T cells and myeloid cells. Intriguingly, this process was independent of B cell-intrinsic IFN-I sensing and resulted from biased differentiation of naïve B cells into short-lived antibody-secreting cells. The ability to generate robust B cell responses was restored upon IFN-I receptor blockade or, partially, when experimentally depleting myeloid cells or the IFN-I-induced cytokines interleukin 10 and tumor necrosis factor alpha. We have termed this IFN-I-driven depletion of B cells "B cell decimation". Strategies to counter "B cell decimation" should thus help us better leverage humoral immunity in the combat against persistent microbial diseases.
Collapse
Affiliation(s)
- Benedict Fallet
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| | - Kerstin Narr
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| | - Yusuf I. Ertuna
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| | - Melissa Remy
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| | - Rami Sommerstein
- Department of Pathology and Immunology, Geneva Faculty of Medicine, 1211 Geneva 4, Switzerland
| | - Karen Cornille
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Geneva Faculty of Medicine, 1211 Geneva 4, Switzerland
- Division of Clinical Pathology, University Hospital Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, Geneva Faculty of Medicine, 1211 Geneva 4, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland
| | - Florian Geier
- Department of Biomedicine, Bioinformatics Core Facility, University Hospital Basel, 4031 Basel, Switzerland
| | - Tobias Straub
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - Kevin Larimore
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, Washington, WA 98109, USA
| | - Philip D. Greenberg
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, Washington, WA 98109, USA
| | - Doron Merkler
- Department of Pathology and Immunology, Geneva Faculty of Medicine, 1211 Geneva 4, Switzerland
- Division of Clinical Pathology, University Hospital Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Daniel D. Pinschewer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| |
Collapse
|
144
|
Moseman EA, Wu T, de la Torre JC, Schwartzberg PL, McGavern DB. Type I interferon suppresses virus-specific B cell responses by modulating CD8 + T cell differentiation. Sci Immunol 2016; 1:eaah3565. [PMID: 27812556 PMCID: PMC5089817 DOI: 10.1126/sciimmunol.aah3565] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2024]
Abstract
Studies have established a role for T cells in resolving persistent viral infections, yet emerging evidence indicates that both T and B cells are required to control some viruses. During persistent infection, a marked lag or failure to generate neutralizing antibodies is commonly observed and likely contributes to an inability to control certain pathogens. Using lymphocytic choriomeningitis virus (LCMV) as a model, we have examined how a persistent viral infection can suppress neutralizing humoral immunity. By tracking the fate of virus-specific B cells in vivo, we report that LCMV-specific B cells were rapidly deleted within a few days of persistent infection, and this deletion was completely reversed by blockade of type I interferon (IFN-I) signaling. Early interference with IFN-I signaling promoted survival and differentiation of LCMV-specific B cells, which accelerated the generation of neutralizing antibodies. This marked improvement in antiviral humoral immunity did not rely on the cessation of IFN-I signaling in B cells but on alterations in the virus-specific CD8+ T cell response. Using two-photon microscopy and in vivo calcium imaging, we observed that cytotoxic T lymphocytes (CTLs) productively engaged and killed LCMV-specific B cells in a perforin-dependent manner within the first few days of infection. Blockade of IFN-I signaling protected LCMV-specific B cells by promoting CTL dysfunction. Therapeutic manipulation of this pathway may facilitate efforts to promote humoral immunity during persistent viral infection in humans. Our findings illustrate how events that occur early after infection can disturb the resultant adaptive response and contribute to viral persistence.
Collapse
Affiliation(s)
- E. Ashley Moseman
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tuoqi Wu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Pamela L. Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dorian B. McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
145
|
Boddupalli CS, Nair S, Gray SM, Nowyhed HN, Verma R, Gibson JA, Abraham C, Narayan D, Vasquez J, Hedrick CC, Flavell RA, Dhodapkar KM, Kaech SM, Dhodapkar MV. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells. J Clin Invest 2016; 126:3905-3916. [PMID: 27617863 DOI: 10.1172/jci85329] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 08/04/2016] [Indexed: 12/16/2022] Open
Abstract
Immune surveillance in tissues is mediated by a long-lived subset of tissue-resident memory T cells (Trm cells). A putative subset of tissue-resident long-lived stem cells is characterized by the ability to efflux Hoechst dyes and is referred to as side population (SP) cells. Here, we have characterized a subset of SP T cells (Tsp cells) that exhibit a quiescent (G0) phenotype in humans and mice. Human Trm cells in the gut and BM were enriched in Tsp cells that were predominantly in the G0 stage of the cell cycle. Moreover, in histone 2B-GFP mice, the 2B-GFP label was retained in Tsp cells, indicative of a slow-cycling phenotype. Human Tsp cells displayed a distinct gene-expression profile that was enriched for genes overexpressed in Trm cells. In mice, proteins encoded by Tsp signature genes, including nuclear receptor subfamily 4 group A member 1 (NR4A1) and ATP-binding cassette (ABC) transporters, influenced the function and differentiation of Trm cells. Responses to adoptive transfer of human Tsp cells into immune-deficient mice and plerixafor therapy suggested that human Tsp cell mobilization could be manipulated as a potential cellular therapy. These data identify a distinct subset of human T cells with a quiescent/slow-cycling phenotype, propensity for tissue enrichment, and potential to mobilize into circulation, which may be harnessed for adoptive cellular therapy.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Adoptive Transfer
- Animals
- Cells, Cultured
- Humans
- Immunologic Memory
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Organ Specificity
- Resting Phase, Cell Cycle
- T-Lymphocytes/metabolism
- Transcriptome
Collapse
|
146
|
Phosphoproteomic Analyses of Interleukin 2 Signaling Reveal Integrated JAK Kinase-Dependent and -Independent Networks in CD8(+) T Cells. Immunity 2016; 45:685-700. [PMID: 27566939 PMCID: PMC5040828 DOI: 10.1016/j.immuni.2016.07.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/03/2016] [Accepted: 07/08/2016] [Indexed: 12/20/2022]
Abstract
Interleukin-2 (IL-2) is a fundamental cytokine that controls proliferation and differentiation of T cells. Here, we used high-resolution mass spectrometry to generate a comprehensive and detailed map of IL-2 protein phosphorylations in cytotoxic T cells (CTL). The data revealed that Janus kinases (JAKs) couple IL-2 receptors to the coordinated phosphorylation of transcription factors, regulators of chromatin, mRNA translation, GTPases, vesicle trafficking, and the actin and microtubule cytoskeleton. We identified an IL-2-JAK-independent SRC family Tyr-kinase-controlled signaling network that regulates ∼10% of the CTL phosphoproteome, the production of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), and the activity of the serine/threonine kinase AKT. These data reveal a signaling framework wherein IL-2-JAK-controlled pathways coordinate with IL-2-independent networks of kinase activity and provide a resource toward the further understanding of the networks of protein phosphorylation that program CTL fate.
Collapse
|
147
|
Hilpert C, Sitte S, Matthies A, Voehringer D. Dendritic Cells Are Dispensable for T Cell Priming and Control of Acute Lymphocytic Choriomeningitis Virus Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:2780-6. [PMID: 27549169 DOI: 10.4049/jimmunol.1502582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/22/2016] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are considered to be the major APCs with potent activity for priming of naive CD4 and CD8 T cells. However, T cell priming can also be achieved by other APCs including macrophages, B cells, or even nonhematopoietic cell types. Systemic low-dose infection of mice with lymphocytic choriomeningitis virus (LCMV) results in massive expansion of virus-specific CD4 and CD8 T cells. To determine the role of DCs as APCs and source of type I IFNs in this infection model, we used ΔDC mice in which DCs are constitutively ablated because of expression of the diphtheria toxin α subunit within developing DCs. ΔDC mice showed lower serum concentrations of IFN-β and IL-12p40, but normal IFN-α levels during the first days postinfection. No differences were found for proliferation of transferred TCR-transgenic cells during the early phase of infection, suggesting that T cell priming occurred with the same efficiency in wild-type and ΔDC mice. Expansion and cytokine expression of endogenous LCMV-specific T cells was comparable between wild-type and ΔDC mice during primary infection and upon rechallenge of memory mice. In both strains of infected mice the viral load was reduced below the limit of detection with the same kinetic. Further, germinal center formation and LCMV-specific Ab responses were not impaired in ΔDC mice. This indicates that DCs are dispensable as APCs for protective immunity against LCMV infection.
Collapse
Affiliation(s)
- Cornelia Hilpert
- Department of Infection Biology, University Hospital Erlangen and Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Selina Sitte
- Department of Infection Biology, University Hospital Erlangen and Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Alexander Matthies
- Department of Infection Biology, University Hospital Erlangen and Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| |
Collapse
|
148
|
Kim MT, Kurup SP, Starbeck-Miller GR, Harty JT. Manipulating Memory CD8 T Cell Numbers by Timed Enhancement of IL-2 Signals. THE JOURNAL OF IMMUNOLOGY 2016; 197:1754-61. [PMID: 27439516 DOI: 10.4049/jimmunol.1600641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/27/2016] [Indexed: 01/06/2023]
Abstract
As a result of the growing burden of tumors and chronic infections, manipulating CD8 T cell responses for clinical use has become an important goal for immunologists. In this article, we show that dendritic cell (DC) immunization coupled with relatively early (days 1-3) or late (days 4-6) administration of enhanced IL-2 signals increase peak effector CD8 T cell numbers, but only early IL-2 signals enhance memory numbers. IL-2 signals delivered at relatively late time points drive terminal differentiation and marked Bim-mediated contraction and do not increase memory T cell numbers. In contrast, early IL-2 signals induce effector cell metabolic profiles that are more conducive to memory formation. Of note, downregulation of CD80 and CD86 was observed on DCs in vivo following early IL-2 treatment. Mechanistically, early IL-2 treatment enhanced CTLA-4 expression on regulatory T cells, and CTLA-4 blockade alongside IL-2 treatment in vivo prevented the decrease in CD80 and CD86, supporting a cell-extrinsic role for CTLA-4 in downregulating B7 ligand expression on DCs. Finally, DC immunization followed by early IL-2 treatment and anti-CTLA-4 blockade resulted in lower memory CD8 T cell numbers compared with the DC+early IL-2 treatment group. These data suggest that curtailed signaling through the B7-CD28 costimulatory axis during CD8 T cell activation limits terminal differentiation and preserves memory CD8 T cell formation; thus, it should be considered in future T cell-vaccination strategies.
Collapse
Affiliation(s)
- Marie T Kim
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Samarchith P Kurup
- Department of Microbiology, University of Iowa, Iowa City, IA 52242; and
| | | | - John T Harty
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; Department of Microbiology, University of Iowa, Iowa City, IA 52242; and Department of Pathology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
149
|
Steinbach K, Vincenti I, Kreutzfeldt M, Page N, Muschaweckh A, Wagner I, Drexler I, Pinschewer D, Korn T, Merkler D. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection. J Exp Med 2016; 213:1571-87. [PMID: 27377586 PMCID: PMC4986533 DOI: 10.1084/jem.20151916] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/20/2016] [Indexed: 11/25/2022] Open
Abstract
During viral infections, brain tissue–resident memory T cells (bTRM) prevent fatal brain infection after acquiring perforin- and IFN-γ–dependent effector functions through a pathway that involves presentation of cognate antigen on MHC-I. Tissue-resident memory T cells (TRM) persist at sites of prior infection and have been shown to enhance pathogen clearance by recruiting circulating immune cells and providing bystander activation. Here, we characterize the functioning of brain-resident memory T cells (bTRM) in an animal model of viral infection. bTRM were subject to spontaneous homeostatic proliferation and were largely refractory to systemic immune cell depletion. After viral reinfection in mice, bTRM rapidly acquired cytotoxic effector function and prevented fatal brain infection, even in the absence of circulating CD8+ memory T cells. Presentation of cognate antigen on MHC-I was essential for bTRM-mediated protective immunity, which involved perforin- and IFN-γ–dependent effector mechanisms. These findings identify bTRM as an organ-autonomous defense system serving as a paradigm for TRM functioning as a self-sufficient first line of adaptive immunity.
Collapse
Affiliation(s)
- Karin Steinbach
- Departement de Pathologie et Immunologie, Centre Medical Universitaire, University of Geneva, 1211 Geneva, Switzerland
| | - Ilena Vincenti
- Departement de Pathologie et Immunologie, Centre Medical Universitaire, University of Geneva, 1211 Geneva, Switzerland
| | - Mario Kreutzfeldt
- Departement de Pathologie et Immunologie, Centre Medical Universitaire, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Page
- Departement de Pathologie et Immunologie, Centre Medical Universitaire, University of Geneva, 1211 Geneva, Switzerland
| | - Andreas Muschaweckh
- Klinikum rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, 81675 Munich, Germany
| | - Ingrid Wagner
- Departement de Pathologie et Immunologie, Centre Medical Universitaire, University of Geneva, 1211 Geneva, Switzerland
| | - Ingo Drexler
- Institute of Virology, University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Daniel Pinschewer
- Department of Biomedicine, University of Basel, 4056 Basel, Switzerland
| | - Thomas Korn
- Klinikum rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, 81675 Munich, Germany Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Doron Merkler
- Departement de Pathologie et Immunologie, Centre Medical Universitaire, University of Geneva, 1211 Geneva, Switzerland Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| |
Collapse
|
150
|
Abstract
Genetics tools, and especially the ability to enforce, by transgenesis, or disrupt, by homologous recombination, gene expression in a cell-specific manner, have revolutionized the study of immunology and propelled the laboratory mouse as the main model to study immune responses. Perhaps more than any other aspect of immunology, the study of T cell development has benefited from these technologies. This brief chapter summarizes genetic tools specific to T cell development studies, focusing on mouse strains with lineage- and stage-specific expression of the Cre recombinase, or expressing unique antigen receptor specificities. It ends with a broader discussion of strategies to enforce ectopic lineage and stage-specific gene expression.
Collapse
Affiliation(s)
- Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|