101
|
Endogenous tissue factor pathway inhibitor in vascular smooth muscle cells inhibits arterial thrombosis. Front Med 2017; 11:403-409. [PMID: 28550640 DOI: 10.1007/s11684-017-0522-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/23/2017] [Indexed: 12/29/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) is the main inhibitor of tissue factor-mediated coagulation. TFPI is expressed by endothelial and smooth muscle cells in the vasculature. Endothelium-derived TFPI has been reported to play a regulatory role in arterial thrombosis. However, the role of endogenous TFPI in vascular smooth muscle cells (VSMCs) in thrombosis and vascular disease development has yet to be elucidated. In this TFPIFlox mice crossbred with Sma-Cre mice were utilized to establish TFPI conditional knockout mice and to examine the effects of VSMC-directed TFPI deletion on development, hemostasis, and thrombosis. The mice with deleted TFPI in VSMCs (TFPISma) reproduced viable offspring. Plasma TFPI concentration was reduced 7.2% in the TFPISma mice compared with TFPIFlox littermate controls. Plasma TFPI concentration was also detected in the TFPITie2 (mice deleted TFPI in endothelial cells and cells of hematopoietic origin) mice. Plasma TFPI concentration of the TFPITie2 mice was 80.4% lower (P < 0.001) than that of the TFPIFlox mice. No difference in hemostatic measures (PT, APTT, and tail bleeding) was observed between TFPISma and TFPIFlox mice. However, TFPISma mice had increased ferric chloride-induced arterial thrombosis compared with TFPIFlox littermate controls. Taken together, these data indicated that endogenous TFPI from VSMCs inhibited ferric chloride-induced arterial thrombosis without causing hemostatic effects.
Collapse
|
102
|
p45 NF-E2 regulates syncytiotrophoblast differentiation by post-translational GCM1 modifications in human intrauterine growth restriction. Cell Death Dis 2017; 8:e2730. [PMID: 28383551 PMCID: PMC5477575 DOI: 10.1038/cddis.2017.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 01/21/2023]
Abstract
Placental insufficiency jeopardizes prenatal development, potentially leading to intrauterine growth restriction (IUGR) and stillbirth. Surviving fetuses are at an increased risk for chronic diseases later in life. IUGR is closely linked with altered trophoblast and placental differentiation. However, due to a paucity of mechanistic insights, suitable biomarkers and specific therapies for IUGR are lacking. The transcription factor p45 NF-E2 (nuclear factor erythroid derived 2) has been recently found to regulate trophoblast differentiation in mice. The absence of p45 NF-E2 in trophoblast cells causes IUGR and placental insufficiency in mice, but mechanistic insights are incomplete and the relevance of p45 NF-E2 for human syncytiotrophoblast differentiation remains unknown. Here we show that p45 NF-E2 negatively regulates human syncytiotrophoblast differentiation and is associated with IUGR in humans. Expression of p45 NF-E2 is reduced in human placentae complicated with IUGR compared with healthy controls. Reduced p45 NF-E2 expression is associated with increased syncytiotrophoblast differentiation, enhanced glial cells missing-1 (GCM1) acetylation and GCM1 desumoylation in IUGR placentae. Induction of syncytiotrophoblast differentiation in BeWo and primary villous trophoblast cells with 8-bromo-adenosine 3',5'-cyclic monophosphate (8-Br-cAMP) reduces p45 NF-E2 expression. Of note, p45 NF-E2 knockdown is sufficient to increase syncytiotrophoblast differentiation and GCM1 expression. Loss of p45 NF-E2 using either approach resulted in CBP-mediated GCM1 acetylation and SENP-mediated GCM1 desumoylation, demonstrating that p45 NF-E2 regulates post-translational modifications of GCM1. Functionally, reduced p45 NF-E2 expression is associated with increased cell death and caspase-3 activation in vitro and in placental tissues samples. Overexpression of p45 NF-E2 is sufficient to repress GCM1 expression, acetylation and desumoylation, even in 8-Br-cAMP exposed BeWo cells. These results suggest that p45 NF-E2 negatively regulates differentiation and apoptosis activation of human syncytiotrophoblast by modulating GCM1 acetylation and sumoylation. These studies identify a new pathomechanism related to IUGR in humans and thus provide new impetus for future studies aiming to identify new biomarkers and/or therapies of IUGR.
Collapse
|
103
|
Claushuis TAM, de Stoppelaar SF, Stroo I, Roelofs JJTH, Ottenhoff R, van der Poll T, Van't Veer C. Thrombin contributes to protective immunity in pneumonia-derived sepsis via fibrin polymerization and platelet-neutrophil interactions. J Thromb Haemost 2017; 15:744-757. [PMID: 28092405 DOI: 10.1111/jth.13625] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 01/20/2023]
Abstract
Essentials Immunity and coagulation are linked during sepsis but the role of thrombin is not fully elucidated. We investigated the effect of thrombin inhibition on murine Klebsiella pneumosepsis outcome. Thrombin is crucial for survival and limiting bacterial growth in pneumonia derived sepsis. Thrombin improves host defense via fibrin and enhancement of platelet-neutrophil interactions. SUMMARY Background Innate immunity and coagulation are closely linked during sepsis. Their interaction can be detrimental to the outcome because of microvascular failure but can also enhance host defense. The role of thrombin therein has not been fully elucidated. Objective We aimed to investigate the contribution of thrombin to the host response during pneumonia-derived sepsis. Methods Mice treated with the specific thrombin inhibitor dabigatran or control chow were infected with the common human sepsis pathogen Klebsiella (K.) pneumoniae via the airways. In subsequent infection experiments, mice were additionally treated with ancrod to deplete fibrinogen. Ex vivo Klebsiella growth was assessed by incubating human whole blood or specific blood components in various conditions with Klebsiella. Results Thrombin inhibition by dabigatran enhanced bacterial outgrowth and spreading, and accelerated mortality. Thrombin inhibition did not influence neutrophil recruitment to the lung or activation or neutrophil extracellular trap formation. Dabigatran reduced D-dimer formation and fibrin deposition in the lung. Fibrin depletion also enhanced bacterial outgrowth and spreading, and thrombin inhibition had no additional effect. Both thrombin and fibrin polymerization inhibited ex vivo Klebsiella outgrowth in human whole blood, which was neutrophil dependent, and the effect of thrombin required the presence of platelets and platelet protease activated receptor-1. In vivo thrombin inhibition reduced platelet-neutrophil complex formation and endothelial cell activation, but did not prevent sepsis-induced thrombocytopenia or organ damage. Conclusions These results suggest that thrombin plays an important role in protective immunity during pneumonia-derived sepsis by fibrin polymerization and enhancement of platelet-neutrophil interactions.
Collapse
Affiliation(s)
- T A M Claushuis
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - S F de Stoppelaar
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - I Stroo
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - J J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - R Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - T van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - C Van't Veer
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
104
|
Li C, Zhao R, Xie M, Guo Z, Sun W. Proteomics analysis of liver proteins from rats with spleen-deficiency syndrome induced by chronic improper diet consumption and fatigue. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2017. [DOI: 10.1016/j.jtcms.2017.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
105
|
Kassassir H, Siewiera K, Talar M, Przygodzki T, Watala C. Flow cytometry analysis reveals different activation profiles of thrombin- or TRAP-stimulated platelets in db/db mice. The regulatory role of PAR-3. Blood Cells Mol Dis 2017; 65:16-22. [PMID: 28460264 DOI: 10.1016/j.bcmd.2017.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Recent studies have shown that it may be the concentration of thrombin, which is discriminative in determining of the mechanism of platelet activation via protease activated receptors (PARs). Whether the observed phenomenon of differentiated responses of mouse platelets to various thrombin concentrations in non-diabetic db/+ and diabetic db/db mice depends upon the concerted action of various PARs, remains to be established. RESULTS We found elevated reactivity of platelets, as well as the enhanced PAR-3 expression in response to both the used concentrations of AYPGKF in db/db mice, as compared to db/+ heterozygotes. At low concentration of thrombin platelets from diabetic mice demonstrated hyperreactivity, reflected by higher expression of PAR-3. For higher thrombin concentration, blood platelets from db/db mice appeared hyporeactive, compared to db/+ animals, while no significant differences in PAR-3 expression were observed between diabetic and non-diabetic mice. CONCLUSIONS The novel and previously unreported finding resulting from our study is that the increased expression of PAR-3 in response to either TRAP for PAR-4 or low thrombin (when PAR-4 is not the efficient thrombin receptor) may be one of the key events contributing to higher reactivity of platelets in db/db mice.
Collapse
Affiliation(s)
- Hassan Kassassir
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, 6/8 Mazowiecka str., 92-215 Lodz, Poland.
| | - Karolina Siewiera
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, 6/8 Mazowiecka str., 92-215 Lodz, Poland
| | - Marcin Talar
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, 6/8 Mazowiecka str., 92-215 Lodz, Poland
| | - Tomasz Przygodzki
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, 6/8 Mazowiecka str., 92-215 Lodz, Poland
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, 6/8 Mazowiecka str., 92-215 Lodz, Poland
| |
Collapse
|
106
|
Thrombin Generation in Acute Ischaemic Stroke. Stroke Res Treat 2016; 2016:7940680. [PMID: 28116215 PMCID: PMC5220518 DOI: 10.1155/2016/7940680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/28/2016] [Indexed: 01/21/2023] Open
Abstract
Introduction. Stroke remains a global leading cause of death and disability. Traditional description of plasma biology in the aftermath of acute ischaemic stroke favours development of hypercoagulability, resulting from complex interplay between plasma and endothelial factors. However, no single assay measures the overall global coagulation process. We postulate that thrombin generation would assist in identifying coagulation abnormalities after acute stroke. Aim. To investigate the coagulation abnormalities after acute ischaemic stroke using thrombin generation. Methods. We evaluated thrombin generation, measured with calibrated automated thrombography in stroke of different aetiological types (n = 170) within 48 hours of symptoms onset (baseline) and in the second week (time 2) and in normal healthy volunteers (n = 71). Results. Two-point thrombin generation assays showed prolonged lag time and time to peak at baseline (3.3 (2.9, 4.0) versus 3.6 (3.2, 4.7); p = 0.005) and (3.3 (2.9, 4.0) versus 3.6 (3.2, 4.7); p = 0.002), respectively, and at time 2 (3.5 (2.9, 4.2) versus 4.0 (3.1, 4.9); p = 0.004) and (5.9 (5.3, 6.6) versus 6.8 (5.8, 7.7) p = 0.05), respectively, in cardioembolic stroke (n = 39), when compared to noncardioembolic stroke (n = 117). The result was reproduced in multiple comparisons between acute ischaemic stroke subgroups and normal healthy volunteers. Endogenous thrombin potential and peak thrombin did not indicate hypercoagulability after acute ischaemic stroke, and thrombolytic therapy did not affect thrombin generation assays. Conclusion. Our findings suggest that thrombin generation in platelet poor plasma is not useful in defining hypercoagulability in acute ischaemic stroke. This is similar to observed trend in coronary artery disease and contrary to other hypercoagulable states.
Collapse
|
107
|
Alexander ET, Minton AR, Peters MC, van Ryn J, Gilmour SK. Thrombin inhibition and cisplatin block tumor progression in ovarian cancer by alleviating the immunosuppressive microenvironment. Oncotarget 2016; 7:85291-85305. [PMID: 27852034 PMCID: PMC5356737 DOI: 10.18632/oncotarget.13300] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022] Open
Abstract
Cancer is often associated with an increased risk of thrombotic complications which can be aggravated by treatment with chemotherapeutics such as cisplatin. Multiple lines of evidence suggest that thrombin activity promotes tumor growth and metastasis. We examined the effect of co-treatment with dabigatran etexilate, a direct thrombin inhibitor, and cisplatin using the murine ID8 ovarian cancer model. Mice receiving co-treatment with both dabigatran etexilate and low dose cisplatin had significantly smaller tumors, developed less ascites and had lower levels of circulating activated platelets and tissue factor (TF) positive microparticles than those treated with dabigatran etexilate or cisplatin alone. Co-treatment with dabigatran etexilate and cisplatin significantly decreased the number of Gr1+/CD11b+ myeloid derived suppresser cells and CD11b+/CD11c+ dendritic cells in the ascites of ID8 tumor-bearing mice. Co-treatment also significantly reduced levels of pro-tumorigenic cytokines including TGF-β, VEGF, IL-6, IL-10, and MCP-1 in the ascites while increasing IFN-γ production by CD8+ effector T cells in the tumor ascites. These results demonstrate that co-treatment with dabigatran etexilate significantly augments the anti-tumor activity of cisplatin in ovarian tumor progression by alleviating the immunosuppressive microenvironment, suggesting that thrombin may be a potential therapeutic target for treatment of ovarian cancer.
Collapse
Affiliation(s)
| | | | - Molly C. Peters
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| | - Joanne van Ryn
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Susan K. Gilmour
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| |
Collapse
|
108
|
Doni A, Garlanda C, Mantovani A. Innate immunity, hemostasis and matrix remodeling: PTX3 as a link. Semin Immunol 2016; 28:570-577. [PMID: 27881292 DOI: 10.1016/j.smim.2016.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 12/20/2022]
Abstract
Innate immunity is evolutionarily connected with hemostasis. PTX3 is an essential fluid-phase pattern recognition molecule of the innate immune system that acts as a functional ancestor of antibodies. PTX3 by interacting with defense collagens and fibrinogens amplifies effector functions of the innate immune system. At wound sites, PTX3 regulates the injury-induced thrombotic response and promotes wound healing by favoring timely fibrinolysis. Therefore, PTX3 interacts with ancestral domains conserved in innate immunity, hemostasis and extracellular matrix and exerts functions related to both antimicrobial resistance and tissue repair. These findings strengthen the connection between innate immune system and hemostasis, and suggest that recognition of microbes and extracellular matrix are evolutionarily conserved and integrated functions of the innate immune system.
Collapse
Affiliation(s)
- Andrea Doni
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy.
| | - Cecilia Garlanda
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy; Humanitas University, via Manzoni 113, 20089 Rozzano, Italy
| | - Alberto Mantovani
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy; Humanitas University, via Manzoni 113, 20089 Rozzano, Italy
| |
Collapse
|
109
|
Abstract
Multiple functions of platelets in various physiological and pathological conditions have prompted considerable attention on understanding how platelets are generated and activated. Of the adaptor proteins that are expressed in megakaryocytes and platelets, Disabled-2 (Dab2) has been demonstrated in the past decades as a key regulator of platelet signaling. Dab2 has two alternative splicing isoforms p82 and p59. However, the mode of Dab2’s action remains to be clearly defined. In this review, we highlight the current understanding of Dab2 expression and function in megakaryocytic differentiation, platelet activation and integrin signaling. Accordingly, Dab2 is upregulated when the human K562 cells, human CD34+ hematopoietic stem cells, and murine embryonic stem cells were undergone megakaryocytic differentiation. Appropriate level of Dab2 expression is essential for fate determination of mesodermal and megakaryocytic differentiation. Dab2 is also shown to regulate cell-cell and cell-fibrinogen adhesion, integrin αIIbβ3 activation, fibrinogen uptake, and intracellular signaling of the megakaryocytic cells. In human platelets, p82 is the sole Dab2 isoform present in the cytoplasm and α-granules. Dab2 is released from the α-granules and forms two pools of Dab2 on the outer surface of the platelet plasma membrane, one at the sulfatide-bound and the other at integrin αIIbβ3-bound forms. The balance between these two pools of Dab2 controls the extent of clotting reaction, platelet-fibrinogen interactions and outside-in signaling. In murine platelets, p59 is the only Dab2 isoform and is required for platelet aggregation, fibrinogen uptake, RhoA-ROCK activation, adenosine diphosphate release and integrin αIIbβ3 activation stimulated by low concentration of thrombin. As a result, the bleeding time is prolonged and thrombus formation is impaired for the megakaryocyte lineage-restricted Dab2 deficient mouse. Although discrepancies of Dab2 function and isoform expression are noted between human and murine platelets, the studies up-to-date define Dab2 playing a pivotal role in integrin signaling and platelet activation. With the new tools such as CRISPR and TALEN in the generation of genetically modified animals, the progress in gaining new insights into the functions of Dab2 in megakaryocyte and platelet biology is expected to accelerate.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, Collage of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, Republic of China ; Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, Republic of China
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, Collage of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, Republic of China ; Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, Republic of China ; Graduate Institute of Biomedical Science, Collage of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, Republic of China ; Department of Laboratory Medicine, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan, Republic of China
| |
Collapse
|
110
|
DeRosa F, Guild B, Karve S, Smith L, Love K, Dorkin JR, Kauffman KJ, Zhang J, Yahalom B, Anderson DG, Heartlein MW. Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system. Gene Ther 2016; 23:699-707. [PMID: 27356951 PMCID: PMC5059749 DOI: 10.1038/gt.2016.46] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/06/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022]
Abstract
DNA-based gene therapy has considerable therapeutic potential, but the challenges associated with delivery continue to limit progress. Messenger RNA (mRNA) has the potential to provide for transient production of therapeutic proteins, without the need for nuclear delivery and without the risk of insertional mutagenesis. Here we describe the sustained delivery of therapeutic proteins in vivo in both rodents and non-human primates via nanoparticle-formulated mRNA. Nanoparticles formulated with lipids and lipid-like materials were developed for delivery of two separate mRNA transcripts encoding either human erythropoietin (hEPO) or factor IX (hFIX) protein. Dose-dependent protein production was observed for each mRNA construct. Upon delivery of hEPO mRNA in mice, serum EPO protein levels reached several orders of magnitude (>125 000-fold) over normal physiological values. Further, an increase in hematocrit (Hct) was established, demonstrating that the exogenous mRNA-derived protein maintained normal activity. The capacity of producing EPO in non-human primates via delivery of formulated mRNA was also demonstrated as elevated EPO protein levels were observed over a 72-h time course. Exemplifying the possible broad utility of mRNA drugs, therapeutically relevant amounts of human FIX (hFIX) protein were achieved upon a single intravenous dose of hFIX mRNA-loaded lipid nanoparticles in mice. In addition, therapeutic value was established within a hemophilia B (FIX knockout (KO)) mouse model by demonstrating a marked reduction in Hct loss following injury (incision) to FIX KO mice.
Collapse
Affiliation(s)
- F DeRosa
- Shire Pharmaceuticals, Lexington, MA, USA
| | - B Guild
- Shire Pharmaceuticals, Lexington, MA, USA
| | - S Karve
- Shire Pharmaceuticals, Lexington, MA, USA
| | - L Smith
- Shire Pharmaceuticals, Lexington, MA, USA
| | - K Love
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J R Dorkin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K J Kauffman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Zhang
- Shire Pharmaceuticals, Lexington, MA, USA
| | - B Yahalom
- Biomedical Research Models, Inc., Worcester, MA, USA
| | - D G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
111
|
Bode MF, Mackman N. A combined deficiency of tissue factor and PAR-4 is associated with fatal pulmonary hemorrhage in mice. Thromb Res 2016; 146:46-50. [PMID: 27586081 DOI: 10.1016/j.thromres.2016.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/05/2016] [Accepted: 08/20/2016] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Mice with a complete absence of tissue factor (TF) die during embryonic development whereas mice with low levels of TF (Low-TF mice) survive to adulthood. Low-TF mice exhibit spontaneous hemorrhage in various organs, including the lung. In contrast, mice can survive without protease-activated receptor (PAR)-4, which is the major thrombin receptor on mouse platelets. We determined the effect of combining a deficiency PAR-4 (primary hemostasis) with a deficiency in TF (secondary hemostasis) on embryonic development and survival of adult mice. MATERIALS AND METHODS Low-TF mice (mTF-/-, hTF+/+) were crossed with PAR-4-/- mice to generate heterozygous mice (mTF+/-, hTF+/-, PAR-4+/-). These mice were intercrossed to generate Low-TF mice lacking PAR-4. Mice surviving to wean were genotyped and survival was monitored for 6months. RESULTS We observed the expected number of Low-TF,PAR-4-/- mice at wean indicating survival in utero and after birth. However, an absence of PAR-4 was associated with premature death of all Low-TF,PAR-4-/- mice in the 6month observational period. This compares with 40% death of the Low-TF,PAR-4+/+ mice (p=0.003). Low-TF,PAR-4+/- mice had an intermediate phenotype with 55% of the mice dying within 6months. The primary cause of mortality of Low-TF,PAR-4-/- mice was pulmonary hemorrhage. CONCLUSIONS Low-TF,PAR-4-/- mice survive into adulthood, but combining a deficiency of primary hemostasis (PAR-4 deficiency) with secondary hemostasis (low levels of TF) leads to premature death primarily due to pulmonary hemorrhage.
Collapse
Affiliation(s)
- Michael F Bode
- University of North Carolina, Division of Cardiology, Department of Medicine; 160 Dental Circle, CB #7075, 6025 Burnett-Womack-Bldg., Chapel Hill, NC 27514-7075, USA.
| | - Nigel Mackman
- University of North Carolina, Division of Hematology and Oncology, Department of Medicine; McAllister Heart Institute, 111 Mason Farm Road, 2312C Medical Biomolecular Research Bldg., CB #7126, Chapel Hill, NC 27599-7126, USA.
| |
Collapse
|
112
|
French SL, Arthur JF, Lee H, Nesbitt WS, Andrews RK, Gardiner EE, Hamilton JR. Inhibition of protease-activated receptor 4 impairs platelet procoagulant activity during thrombus formation in human blood. J Thromb Haemost 2016; 14:1642-54. [PMID: 26878340 DOI: 10.1111/jth.13293] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/26/2016] [Indexed: 01/11/2023]
Abstract
UNLABELLED Essentials The platelet thrombin receptor, PAR4, is an emerging anti-thrombotic drug target. We examined the anti-platelet & anti-thrombotic effects of PAR4 inhibition in human blood. PAR4 inhibition impaired platelet procoagulant activity in isolated cells and during thrombosis. Our study shows PAR4 is required for platelet procoagulant function & thrombosis in human blood. SUMMARY Background Thrombin-induced platelet activation is important for arterial thrombosis. Thrombin activates human platelets predominantly via protease-activated receptor (PAR)1 and PAR4. PAR1 has higher affinity for thrombin, and the first PAR1 antagonist, vorapaxar, was recently approved for use as an antiplatelet agent. However, vorapaxar is contraindicated in a significant number of patients, owing to adverse bleeding events. Consequently, there is renewed interest in the role of platelet PAR4 in the setting of thrombus formation. Objectives To determine the specific antiplatelet effects of inhibiting PAR4 function during thrombus formation in human whole blood. Methods and Results We developed a rabbit polyclonal antibody against the thrombin cleavage site of PAR4, and showed it to be a highly specific inhibitor of PAR4-mediated platelet function. This function-blocking anti-PAR4 antibody was used to probe for PAR4-dependent platelet functions in human isolated platelets in the absence and presence of concomitant PAR1 inhibition. The anti-PAR4 antibody alone was sufficient to abolish the sustained elevation of cytosolic calcium level and consequent phosphatidylserine exposure induced by thrombin, but did not significantly inhibit integrin αII b β3 activation, α-granule secretion, or aggregation. In accord with these in vitro experiments on isolated platelets, selective inhibition of PAR4, but not of PAR1, impaired thrombin activity (fluorescence resonance energy transfer-based thrombin sensor) and fibrin formation (anti-fibrin antibody) in an ex vivo whole blood flow thrombosis assay. Conclusions These findings demonstrate that PAR4 is required for platelet procoagulant function during thrombus formation in human blood, and suggest PAR4 inhibition as a potential target for the prevention of arterial thrombosis.
Collapse
Affiliation(s)
- S L French
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - J F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - H Lee
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - W S Nesbitt
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Microplatforms Research Group, School of Engineering, RMIT University, Melbourne, Australia
| | - R K Andrews
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - E E Gardiner
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - J R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
113
|
Inhibition of PAR-4 and P2Y12 receptor-mediated platelet activation produces distinct hepatic pathologies in experimental xenobiotic-induced cholestatic liver disease. Toxicology 2016; 365:9-16. [PMID: 27475285 DOI: 10.1016/j.tox.2016.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 02/07/2023]
Abstract
Emerging evidence supports a protective effect of platelets in experimental cholestatic liver injury and cholangiofibrosis. Coagulation-mediated platelet activation has been shown to inhibit experimental chronic cholestatic liver necrosis and biliary fibrosis. This occurs through thrombin-mediated activation of protease activated receptor-4 (PAR-4) in mice. However, it is not known whether other pathways of platelet activation, such as adenosine diphosphate (ADP)-mediated receptor P2Y12 activation is also protective. We tested the hypothesis that inhibition of P2Y12-mediated platelet activation exacerbates hepatic injury and cholangiofibrosis, and examined the impact of P2Y12 inhibition in both the presence and absence of PAR-4. Treatment of wild-type mice with the P2Y12 receptor antagonist clopidogrel increased biliary hyperplasia and cholangiofibrosis in wild-type mice exposed to the xenobiotic alpha-naphthylisothiocyanate (ANIT) for 4 weeks compared to vehicle-treated mice exposed to ANIT. Interestingly, this effect of clopidogrel occurred without a corresponding increase in hepatocellular necrosis. Whereas biliary hyperplasia and cholangiofibrosis were increased in PAR-4(-/-) mice, clopidogrel treatment failed to further increase these pathologies in PAR-4(-/-) mice. The results indicate that inhibition of receptor P2Y12-mediated platelet activation exacerbates bile duct fibrosis in ANIT-exposed mice, independent of hepatocellular necrosis. Moreover, the lack of an added effect of clopidogrel administration on the exaggerated pathology in ANIT-exposed PAR-4(-/-) mice reinforces the prevailing importance of coagulation-mediated platelet activation in limiting this unique liver pathology.
Collapse
|
114
|
SePARating thrombosis and hemostasis? Thromb Res 2016; 145:140-2. [PMID: 27470324 DOI: 10.1016/j.thromres.2016.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 11/23/2022]
|
115
|
Abstract
INTRODUCTION Despite advances in antiplatelet therapy, the optimum antithrombotic regimen during percutaneous coronary intervention (PCI) remains to be determined. Cangrelor is an intravenous, reversibly-binding platelet P2Y12 receptor antagonist with ultra-rapid onset and offset of action that is approved in Europe and United States for use in patients undergoing PCI. This article describes the background for the development of cangrelor, the biology, pharmacology and clinical evidence supporting its use, and its likely position in the future. AREAS COVERED The role of the platelet P2Y12 receptor in platelet biology and the implications of this for atherothrombotic disease are described. Currently unmet needs in antithrombotic management during and after PCI are discussed followed by a description of the chemistry, pharmacokinetics and pharmacodynamics of cangrelor, including its interactions with oral thienopyridines. Subsequently, the clinical trial evidence supporting its adoption into clinical practice is reviewed, including the evidence indicating its superiority over a strategy based on clopidogrel treatment alone. Expert commentary: The current status and future potential of cangrelor is discussed, including a view of its place in current clinical practice.
Collapse
Affiliation(s)
- Robert F Storey
- a Department of Infection, Immunity and Cardiovascular Disease , University of Sheffield , Sheffield , UK
| | - Akanksha Sinha
- a Department of Infection, Immunity and Cardiovascular Disease , University of Sheffield , Sheffield , UK
| |
Collapse
|
116
|
Wickham LA, Sitko G, Stranieri-Michener M, Handt L, Basso A, Fried S, Chu L, Maderia M, Owens K, Castriota G, Chen Z, Metzger JM, Imbriglio J, Wang X, Cai TQ. Differential anti-thrombotic benefit and bleeding risk profiles of antagonists of protease-activated receptor 1 and 4 in Cynomolgus Macaques. Thromb Res 2016; 145:133-9. [PMID: 27318768 DOI: 10.1016/j.thromres.2016.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/24/2016] [Accepted: 06/08/2016] [Indexed: 11/30/2022]
Abstract
Platelet activation plays a crucial role in hemostasis and thrombosis. Thrombin, the most potent stimulus of platelet activation, mediates platelet activation via the protease activated receptors (PARs). The platelet PAR repertoire in mediating thrombin's action differs across species. Only nonhuman primate (NHP) platelet activation is known to be similar to humans, mediated by PAR1 and PAR4, hence limiting translational in vivo studies of PAR's role in thrombosis and hemostasis to NHPs. Earlier studies have demonstrated a range of distinct in vitro activities of PAR1 and 4 in platelet activation yet the implications of these events in vivo is unclear. The objective of this study is to investigate and compare the roles of PAR1 and PAR4 in hemostasis and thrombosis in a relevant animal species. NHP models for pharmacokinetic, ex vivo platelet aggregation responses, FeCI3 injury-mediated arterial thrombosis and template bleeding were developed in Cynomolgus Macaques. Potent and selective small molecule antagonists of PAR1 and PAR4 were characterized in an array of in vitro assays, and subsequently examined head-to-head in the NHP models. Treatment of NHPs with antagonists of PAR1 or PAR4 both resulted in strong inhibition of ex vivo platelet aggregation. At doses that led to similar inhibition of platelet aggregation, animals treated with the PAR4 antagonist showed similar levels of anti-thrombotic efficacy, but longer bleeding times, compared to animals treated with the PAR1 antagonist. These findings suggest that PAR1 antagonism will likely produce a larger therapeutic index (ie. a larger anti-thrombotic efficacy over bleeding risk margin) than PAR4 antagonism.
Collapse
Affiliation(s)
- L Alexandra Wickham
- Department of In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Gary Sitko
- Department of Safety, Merck Research Laboratories, Kenilworth, NJ, USA
| | | | - Larry Handt
- Department of Safety, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Andrea Basso
- Department of In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Steven Fried
- Department of In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Lin Chu
- Department of Formulation, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Maria Maderia
- Department of Drug Metabolism, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Karen Owens
- Department of Drug Metabolism, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Gino Castriota
- Department of Cardiometabolic Diseases, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Zhu Chen
- Department of Cardiometabolic Diseases, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Joseph M Metzger
- Department of In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Jason Imbriglio
- Department of Medicinal Chemistry, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Xinkang Wang
- Department of Cardiometabolic Diseases, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Tian-Quan Cai
- Department of In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, NJ, USA.
| |
Collapse
|
117
|
Limiting prothrombin activation to meizothrombin is compatible with survival but significantly alters hemostasis in mice. Blood 2016; 128:721-31. [PMID: 27252233 DOI: 10.1182/blood-2015-11-680280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/24/2016] [Indexed: 01/08/2023] Open
Abstract
Thrombin-mediated proteolysis is central to hemostatic function but also plays a prominent role in multiple disease processes. The proteolytic conversion of fII to α-thrombin (fIIa) by the prothrombinase complex occurs through 2 parallel pathways: (1) the inactive intermediate, prethrombin; or (2) the proteolytically active intermediate, meizothrombin (fIIa(MZ)). FIIa(MZ) has distinct catalytic properties relative to fIIa, including diminished fibrinogen cleavage and increased protein C activation. Thus, fII activation may differentially influence hemostasis and disease depending on the pathway of activation. To determine the in vivo physiologic and pathologic consequences of restricting thrombin generation to fIIa(MZ), mutations were introduced into the endogenous fII gene, resulting in expression of prothrombin carrying 3 amino acid substitutions (R157A, R268A, and K281A) to limit activation events to yield only fIIa(MZ) Homozygous fII(MZ) mice are viable, express fII levels comparable with fII(WT) mice, and have reproductive success. Although in vitro studies revealed delayed generation of fIIa(MZ) enzyme activity, platelet aggregation by fII(MZ) is similar to fII(WT) Consistent with prior analyses of human fIIa(MZ), significant prolongation of clotting times was observed for fII(MZ) plasma. Adult fII(MZ) animals displayed significantly compromised hemostasis in tail bleeding assays, but did not demonstrate overt bleeding. More notably, fII(MZ) mice had 2 significant phenotypic advantages over fII(WT) animals: protection from occlusive thrombosis after arterial injury and markedly diminished metastatic potential in a setting of experimental tumor metastasis to the lung. Thus, these novel animals will provide a valuable tool to assess the role of both fIIa and fIIa(MZ) in vivo.
Collapse
|
118
|
Tsantes AE, Kyriakou E, Ikonomidis I, Katogiannis K, Papadakis I, Douramani P, Kopterides P, Kapsimali V, Lekakis J, Tsangaris I, Bonovas S. Comparative Assessment of the Anticoagulant Activity of Rivaroxaban and Dabigatran in Patients With Nonvalvular Atrial Fibrillation: A Noninterventional Study. Medicine (Baltimore) 2016; 95:e3037. [PMID: 27057830 PMCID: PMC4998746 DOI: 10.1097/md.0000000000003037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
There is a shortage of data in everyday clinical practice about the anticoagulant effects caused by the new oral anticoagulants (NOAs). Our aim was to estimate the intensity of anticoagulant activity induced by rivaroxaban 20 mg qd and dabigatran 110 mg bid among patients with nonvalvular atrial fibrillation (NV-AF).We studied 20 patients with NV-AF treated with dabigatran, and 20 patients treated with rivaroxaban. We performed conventional coagulation tests, thrombin generation (TG) test, thromboelastometry (ROTEM), and epinephrine-induced light transmission aggregometry (LTA) in all 40 patients and 20 controls. Hemoclot Thrombin Inhibitors (HTI) and Factor Xa Direct Inhibitor (DiXaI) assay were used to measure dabigatran and rivaroxaban plasma levels, respectively.Measurements of all assays estimating anticoagulant activity across the 2 patient groups were similar, except for aPTT. Patients on dabigatran exhibited statistically significantly prolonged aPTT values (P < 0.001). In LTA, patients on dabigatran also showed decreased aggregation compared to those on rivaroxaban (P = 0.045). Regarding the TG test, there was no association between endogenous thrombin potential (ETP) and rivaroxaban plasma levels (P = 0.33) as opposed to dabigatran levels (P < 0.001), but significant correlations were observed between rivaroxaban plasma concentrations and kinetic parameters of TG assay (Tlag, P = 0.045; Tmax, P = 0.016; and Cmax, P = 0.003).Based on ROTEM and TG assays, the anticoagulant effects induced by the 2 drugs given in the specific dose regimens in real-world patients were comparable. Only platelet aggregation was found to be more affected by dabigatran as compared to rivaroxaban.
Collapse
Affiliation(s)
- Argirios E Tsantes
- From the Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital(AET, EK, PD); Second Cardiology Department, "Attiko" Hospital(II, KK, IP, JL); Second Department of Critical Care Medicine, "Attiko" Hospital(PK, IT); Department of Microbiology (VK), School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; and Humanitas Clinical and Research Center (SB), Rozzano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
French SL, Hamilton JR. Protease-activated receptor 4: from structure to function and back again. Br J Pharmacol 2016; 173:2952-65. [PMID: 26844674 DOI: 10.1111/bph.13455] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Protease-activated receptors are a family of four GPCRs (PAR1-PAR4) with a number of unique attributes. Nearly two and a half decades after the discovery of the first PAR, an antagonist targeting this receptor has been approved for human use. The first-in-class PAR1 antagonist, vorapaxar, was approved for use in the USA in 2014 for the prevention of thrombotic cardiovascular events in patients with a history of myocardial infarction or with peripheral arterial disease. These recent developments indicate the clinical potential of manipulating PAR function. While much work has been aimed at uncovering the function of PAR1 and, to a lesser extent, PAR2, comparatively little is known regarding the pharmacology and physiology of PAR3 and PAR4. Recent studies have begun to develop the pharmacological and genetic tools required to study PAR4 function in detail, and there is now emerging evidence for the function of PAR4 in disease settings. In this review, we detail the discovery, structure, pharmacology, physiological significance and therapeutic potential of PAR4. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Shauna L French
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia.
| |
Collapse
|
120
|
Johansen PB, Tranholm M, Haaning J, Knudsen T. Development of a tail vein transection bleeding model in fully anaesthetized haemophilia A mice - characterization of two novel FVIII molecules. Haemophilia 2016; 22:625-31. [DOI: 10.1111/hae.12907] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 01/18/2023]
Affiliation(s)
| | - M. Tranholm
- Global Research; Novo Nordisk A/S; Måløv Denmark
| | - J. Haaning
- Global Development; Novo Nordisk A/S; Måløv Denmark
| | - T. Knudsen
- Global Research; Novo Nordisk A/S; Måløv Denmark
| |
Collapse
|
121
|
Novel pharmaceutical treatments for minimal traumatic brain injury and evaluation of animal models and methodologies supporting their development. J Neurosci Methods 2016; 272:69-76. [PMID: 26868733 DOI: 10.1016/j.jneumeth.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The need for effective pharmaceuticals within animal models of traumatic brain injury (TBI) continues to be paramount, as TBI remains the major cause of brain damage for children and young adults. While preventative measures may act to reduce the incidence of initial blunt trauma, well-tolerated drugs are needed to target the neurologically damaging internal cascade of molecular mechanisms that follow. Such processes, known collectively as the secondary injury phase, include inflammation, excitotoxicity, and apoptosis among other changes still subject to research. In this article positive treatment findings to mitigate this secondary injury in rodent TBI models will be overviewed, and include recent studies on Exendin-4, N-Acetyl-l-cycteine, Salubrinal and Thrombin. CONCLUSIONS These studies provide representative examples of methodologies that can be combined with widely available in vivo rodent models to evaluate therapeutic approaches of translational relevance, as well as drug targets and biochemical cascades that may slow or accelerate the degenerative processes induced by TBI. They employ well-characterized tests such as the novel object recognition task for assessing cognitive deficits. The application of such methodologies provides both decision points and a gateway for implementation of further translational studies to establish the feasibility of clinical efficacy of potential therapeutic interventions.
Collapse
|
122
|
Schaff M, Gachet C, Mangin PH. [Anti-platelets without a bleeding risk: novel targets and strategies]. Biol Aujourdhui 2016; 209:211-28. [PMID: 26820829 DOI: 10.1051/jbio/2015023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 01/29/2023]
Abstract
Anti-platelet agents such as aspirin, clopidogrel and antagonists of integrin αIIbβ3 allowed to efficiently reduce morbidity and mortality associated with arterial thrombosis. A major limit of these drugs is that they increase the risk of bleeding. During the last few years, several innovative anti-thrombotic strategies with a potentially low bleeding risk were proposed. These approaches target the collagen receptor glycoprotein (GP) VI, the GPIb/von Willebrand factor axis, the thrombin receptor PAR-1, the activated form of integrin αIIbβ3 or the ADP receptor P2Y1. While an antagonist of PAR-1 was recently marketed, the clinical proofs of the efficiency and safety of the other agents remain to be established. This review evaluates these new anti-platelet approaches toward safer anti-thrombotic therapies.
Collapse
Affiliation(s)
- Mathieu Schaff
- Atherothrombosis and Vascular Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australie
| | - Christian Gachet
- UMR_S949, INSERM, Etablissement Français du Sang (EFS)-Alsace, Université de Strasbourg, Strasbourg, France
| | - Pierre Henri Mangin
- UMR_S949, INSERM, Etablissement Français du Sang (EFS)-Alsace, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
123
|
Karachaliou N, Pilotto S, Bria E, Rosell R. Platelets and their role in cancer evolution and immune system. Transl Lung Cancer Res 2016; 4:713-20. [PMID: 26798580 DOI: 10.3978/j.issn.2218-6751.2015.10.09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platelets are anucleate fragments formed from the cytoplasm of megakaryocytes and represent the smallest circulating hematopoietic cells. Thought for almost a century to possess solely hemostatic potentials, platelets actually play a much wider role in tissue regeneration and repair and interact intimately with tumor cells. On the one hand, tumor cells induce platelet aggregation, known to act as the trigger of cancer-associated thrombosis and on the other hand, platelets recruited to the tumor microenvironment interact directly with tumor cells favoring proliferation, and indirectly through the release of angiogenic and mitogenic proteins. Furthermore, platelets are immunosuppressive cells that protect metastatic cancer cells from surveillance by killer cells, nullifying the effects of immunotherapy.
Collapse
Affiliation(s)
- Niki Karachaliou
- 1 Instituto Oncológico Dr Rosell, Quiron-Dexeus University Hospital, Barcelona, Spain ; 2 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 3 Pangaea Biotech, Barcelona, Spain ; 4 Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 5 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Spain
| | - Sara Pilotto
- 1 Instituto Oncológico Dr Rosell, Quiron-Dexeus University Hospital, Barcelona, Spain ; 2 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 3 Pangaea Biotech, Barcelona, Spain ; 4 Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 5 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Spain
| | - Emilio Bria
- 1 Instituto Oncológico Dr Rosell, Quiron-Dexeus University Hospital, Barcelona, Spain ; 2 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 3 Pangaea Biotech, Barcelona, Spain ; 4 Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 5 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Spain
| | - Rafael Rosell
- 1 Instituto Oncológico Dr Rosell, Quiron-Dexeus University Hospital, Barcelona, Spain ; 2 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 3 Pangaea Biotech, Barcelona, Spain ; 4 Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 5 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Spain
| |
Collapse
|
124
|
Tian T, Song Y, Wang J, Fu B, He Z, Xu X, Li A, Zhou X, Wang S, Zhou X. Small-Molecule-Triggered and Light-Controlled Reversible Regulation of Enzymatic Activity. J Am Chem Soc 2016; 138:955-61. [DOI: 10.1021/jacs.5b11532] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tian Tian
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies,
Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei
Province, China
| | - Yanyan Song
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies,
Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei
Province, China
| | - Jiaqi Wang
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies,
Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei
Province, China
| | - Boshi Fu
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies,
Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei
Province, China
| | - Zhiyong He
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies,
Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei
Province, China
| | - Xianqun Xu
- Zhongnan
Hospital, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Anling Li
- Zhongnan
Hospital, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xin Zhou
- Zhongnan
Hospital, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Shaoru Wang
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies,
Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei
Province, China
| | - Xiang Zhou
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies,
Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei
Province, China
| |
Collapse
|
125
|
Ma L, Cheng C, Nie C, He C, Deng J, Wang L, Xia Y, Zhao C. Anticoagulant sodium alginate sulfates and their mussel-inspired heparin-mimetic coatings. J Mater Chem B 2016; 4:3203-3215. [DOI: 10.1039/c6tb00636a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We synthesized novel sodium alginate sulfates (SASs) with different sulfation degrees. All the SASs, DA-g-SASs, and coated substrates had good anticoagulant properties and biocompatibilit.
Collapse
Affiliation(s)
- Lang Ma
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jie Deng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lingren Wang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Yi Xia
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
126
|
Abstract
Proteolytic processing events in adhesion GPCRs. aGPCRs can undergo multiple autoproteolytic (red asterisks) and proteolytic processing events by exogenous proteases (yellow asterisks) that may be involved in signaling events of the receptors. Proteolytic processing is an unusual property of adhesion family G protein-coupled receptors (aGPCRs) that was observed upon their cloning and biochemical characterization.Ever since, much effort has been dedicated to delineate the mechanisms and requirements for cleavage events in the control of aGPCR function. Most notably, all aGPCRs possess a juxtamembrane protein fold, the GPCR autoproteolysis-inducing (GAIN) domain, which operates as an autoprotease for many aGPCR homologs investigated thus far. Analysis of its autoproteolytic reaction, the consequences for receptor fate and function, and the allocation of physiological effects to this peculiar feature of aGPCRs has occupied the experimental agenda of the aGPCR field and shaped our current understanding of the signaling properties and cell biological effects of aGPCRs. Interestingly, individual aGPCRs may undergo additional proteolytic steps, one of them resulting in shedding of the entire ectodomain that is secreted and can function independently. Here, we summarize the current state of knowledge on GAIN domain-mediated and GAIN domain-independent aGPCR cleavage events and their significance for the pharmacological and cellular actions of aGPCRs. Further, we compare and contrast the proteolytic profile of aGPCRs with known signaling routes that are governed through proteolysis of surface molecules such as the Notch and ephrin pathways.
Collapse
|
127
|
Dolatshad NF, Hellen N, Jabbour RJ, Harding SE, Földes G. G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells: Implications for Disease Modeling. Front Cell Dev Biol 2015; 3:76. [PMID: 26697426 PMCID: PMC4673467 DOI: 10.3389/fcell.2015.00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cell derivatives show promise as an in vitro platform to study a range of human cardiovascular diseases. A better understanding of the biology of stem cells and their cardiovascular derivatives will help to understand the strengths and limitations of this new model system. G-protein coupled receptors (GPCRs) are key regulators of stem cell maintenance and differentiation and have an important role in cardiovascular cell signaling. In this review, we will therefore describe the state of knowledge concerning the regulatory role of GPCRs in both the generation and function of pluripotent stem cell derived-cardiomyocytes, -endothelial, and -vascular smooth muscle cells. We will consider how far the in vitro disease models recapitulate authentic GPCR signaling and provide a useful basis for discovery of disease mechanisms or design of therapeutic strategies.
Collapse
Affiliation(s)
- Nazanin F Dolatshad
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Nicola Hellen
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Richard J Jabbour
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Sian E Harding
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Gabor Földes
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK ; The Heart and Vascular Center of Semmelweis University, Semmelweis University Budapest, Hungary
| |
Collapse
|
128
|
Protease-activated receptor 4 deficiency offers cardioprotection after acute ischemia reperfusion injury. J Mol Cell Cardiol 2015; 90:21-9. [PMID: 26643815 DOI: 10.1016/j.yjmcc.2015.11.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/19/2015] [Accepted: 11/27/2015] [Indexed: 12/24/2022]
Abstract
Protease-activated receptor (PAR)4 is a low affinity thrombin receptor with less understood function relative to PAR1. PAR4 is involved in platelet activation and hemostasis, but its specific actions on myocyte growth and cardiac function remain unknown. This study examined the role of PAR4 deficiency on cardioprotection after myocardial ischemia-reperfusion (IR) injury in mice. When challenged by in vivo or ex vivo IR, PAR4 knockout (KO) mice exhibited increased tolerance to injury, which was manifest as reduced infarct size and a more robust functional recovery compared to wild-type mice. PAR4 KO mice also showed reduced cardiomyocyte apoptosis and putative signaling shifts in survival pathways in response to IR. Inhibition of PAR4 expression in isolated cardiomyocytes by shRNA offered protection against thrombin and PAR4-agonist peptide-induced apoptosis, while overexpression of wild-type PAR4 significantly enhanced the susceptibility of cardiomyocytes to apoptosis, even under low thrombin concentrations. Further studies implicate Src- and epidermal growth factor receptor-dependent activation of JNK on the proapoptotic effect of PAR4 in cardiomyocytes. These findings reveal a pivotal role for PAR4 as a regulator of cardiomyocyte survival and point to PAR4 inhibition as a therapeutic target offering cardioprotection after acute IR injury.
Collapse
|
129
|
Fu Q, Cheng J, Gao Y, Zhang Y, Chen X, Xie J. Protease-activated receptor 4: a critical participator in inflammatory response. Inflammation 2015; 38:886-95. [PMID: 25120239 DOI: 10.1007/s10753-014-9999-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protease-activated receptors (PARs) are G protein-coupled receptors of which four members PAR1, PAR2, PAR3, and PAR4 have been identified, characterized by a typical mechanism of activation involving various related proteases. The amino-terminal sequence of PARs is cleaved by a broad array of proteases, leading to specific proteolytic cleavage which forms endogenous tethered ligands to induce agonist-biased PAR activation. The biological effect of PARs activated by coagulation proteases to regulate hemostasis and thrombosis plays an enormous role in the cardiovascular system, while PAR4 can also be activated by trypsin, cathepsin G, the activated factor X of the coagulation cascade, and trypsin IV. Irrespective of its role in thrombin-induced platelet aggregation, PAR4 activation is believed to be involved in inflammatory lesions, as show by investigations that have unmasked the effects of PAR4 on neutrophil recruitment, the regulation of edema, and plasma extravasation. This review summarizes the roles of PAR4 in coagulation and other extracellular protease pathways, which activate PAR4 to participate in normal regulation and disease.
Collapse
Affiliation(s)
- Qiang Fu
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | | | | | | | | | | |
Collapse
|
130
|
Signaling-mediated cooperativity between glycoprotein Ib-IX and protease-activated receptors in thrombin-induced platelet activation. Blood 2015; 127:626-36. [PMID: 26585954 DOI: 10.1182/blood-2015-04-638387] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/12/2015] [Indexed: 11/20/2022] Open
Abstract
Thrombin-induced cellular response in platelets not only requires protease-activated receptors (PARs), but also involves another thrombin receptor, the glycoprotein Ib-IX complex (GPIb-IX). It remains controversial how thrombin binding to GPIb-IX stimulates platelet responses. It was proposed that GPIb-IX serves as a dock that facilitates thrombin cleavage of protease-activated receptors, but there are also reports suggesting that thrombin binding to GPIb-IX induces platelet activation independent of PARs. Here we show that GPIb is neither a passive thrombin dock nor a PAR-independent signaling receptor. We demonstrate a novel signaling-mediated cooperativity between PARs and GPIb-IX. Low-dose thrombin-induced PAR-dependent cell responses require the cooperativity of GPIb-IX signaling, and conversely, thrombin-induced GPIb-IX signaling requires cooperativity of PARs. This mutually dependent cooperativity requires a GPIb-IX-specific 14-3-3-Rac1-LIMK1 signaling pathway, and activation of this pathway also requires PAR signaling. The cooperativity between GPIb-IX signaling and PAR signaling thus drives platelet activation at low concentrations of thrombin, which are important for in vivo thrombosis.
Collapse
|
131
|
Hou Y, Carrim N, Wang Y, Gallant RC, Marshall A, Ni H. Platelets in hemostasis and thrombosis: Novel mechanisms of fibrinogen-independent platelet aggregation and fibronectin-mediated protein wave of hemostasis. J Biomed Res 2015; 29:437. [PMID: 26541706 PMCID: PMC4662204 DOI: 10.7555/jbr.29.20150121] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022] Open
Abstract
Platelets are small anucleate cells generated from megakaryocytes in the bone marrow. Although platelet generation, maturation, and clearance are still not fully understood, significant progress has been made in the last 1-2 decades. In blood circulation, platelets can quickly adhere and aggregate at sites of vascular injury, forming the platelet plug (i.e. the first wave of hemostasis). Activated platelets can also provide negatively charged phosphatidylserinerich membrane surface that enhances cell-based thrombin generation, which facilitates blood coagulation (i.e. the second wave of hemostasis). Platelets therefore play central roles in hemostasis. However, the same process of hemostasis may also cause thrombosis and vessel occlusion, which are the most common mechanisms leading to heart attack and stroke following ruptured atherosclerotic lesions. In this review, we will introduce the classical mechanisms and newly discovered pathways of platelets in hemostasis and thrombosis, including fibrinogen-independent platelet aggregation and thrombosis, and the plasma fibronectin-mediated "protein wave" of hemostasis that precedes the classical first wave of hemostasis. Furthermore, we briefly discuss the roles of platelets in inflammation and atherosclerosis and the potential strategies to control atherothrombosis.
Collapse
Affiliation(s)
- Yan Hou
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
- Jilin Provincial Center for Disease Control and Prevention, Changchun, Jilin, 130062 China
| | - Naadiya Carrim
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Canadian Blood Services, Toronto, Ontario M5B 1W8, Canada
| | - Yiming Wang
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Canadian Blood Services, Toronto, Ontario M5B 1W8, Canada
| | - Reid C Gallant
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Alexandra Marshall
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Department of Medicine and Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada.
| |
Collapse
|
132
|
Zaid Y, Senhaji N, Naya A, Fadainia C, Kojok K. PKCs in thrombus formation. ACTA ACUST UNITED AC 2015; 63:268-71. [PMID: 26476932 DOI: 10.1016/j.patbio.2015.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/01/2015] [Indexed: 10/22/2022]
Abstract
The protein kinase C (PKC) family has been implicated in several physiological processes regulating platelet activation. Each isoform of PKC expressed on platelets, may have a positive and/or negative role depending on the nature and concentration of the agonist. Mice lacking PKCα show much reduced thrombus formation in vivo, while PKCθ(-/-) showed inhibition of aggregation in response to PAR4. On the other hand, PKCδ by associating with Fyn, inhibits platelet aggregation. In addition, PKCβ by interacting with its receptor RACK1 has been implicated in the primary phases of signaling via the αIIbβ3 and finally PKCɛ appears to be involved in platelet function downstream GPVI. The present review discusses the latest observations relevant to the role of individual PKC isoforms in platelet activation and thrombus formation.
Collapse
Affiliation(s)
- Y Zaid
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, H1T 1C8 Quebec, Canada.
| | - N Senhaji
- Laboratory of Genetic and Molecular Pathology (LGPM), Medical School, Hassan II University, Casablanca, Morocco
| | - A Naya
- Laboratory of Physiology and Molecular Genetic, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - C Fadainia
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, H1T 1C8 Quebec, Canada
| | - K Kojok
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, H1T 1C8 Quebec, Canada
| |
Collapse
|
133
|
Coagulation factor V mediates inhibition of tissue factor signaling by activated protein C in mice. Blood 2015; 126:2415-23. [PMID: 26341257 DOI: 10.1182/blood-2015-05-644401] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/31/2015] [Indexed: 01/20/2023] Open
Abstract
The key effector molecule of the natural protein C pathway, activated protein C (aPC), exerts pleiotropic effects on coagulation, fibrinolysis, and inflammation. Coagulation-independent cell signaling by aPC appears to be the predominant mechanism underlying its highly reproducible therapeutic efficacy in most animal models of injury and infection. In this study, using a mouse model of Staphylococcus aureus sepsis, we demonstrate marked disease stage-specific effects of the anticoagulant and cell signaling functions of aPC. aPC resistance of factor (f)V due to the R506Q Leiden mutation protected against detrimental anticoagulant effects of aPC therapy but also abrogated the anti-inflammatory and mortality-reducing effects of the signaling-selective 5A-aPC variant that has minimal anticoagulant function. We found that procofactor V (cleaved by aPC at R506) and protein S were necessary cofactors for the aPC-mediated inhibition of inflammatory tissue-factor signaling. The anti-inflammatory cofactor function of fV involved the same structural features that govern its cofactor function for the anticoagulant effects of aPC, yet its anti-inflammatory activities did not involve proteolysis of activated coagulation factors Va and VIIIa. These findings reveal a novel biological function and mechanism of the protein C pathway in which protein S and the aPC-cleaved form of fV are cofactors for anti-inflammatory cell signaling by aPC in the context of endotoxemia and infection.
Collapse
|
134
|
Kaplan ZS, Zarpellon A, Alwis I, Yuan Y, McFadyen J, Ghasemzadeh M, Schoenwaelder SM, Ruggeri ZM, Jackson SP. Thrombin-dependent intravascular leukocyte trafficking regulated by fibrin and the platelet receptors GPIb and PAR4. Nat Commun 2015. [PMID: 26204458 DOI: 10.1038/ncomms8835] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thrombin is a central regulator of leukocyte recruitment and inflammation at sites of vascular injury, a function thought to involve primarily endothelial PAR cleavage. Here we demonstrate the existence of a distinct leukocyte-trafficking mechanism regulated by components of the haemostatic system, including platelet PAR4, GPIbα and fibrin. Utilizing a mouse endothelial injury model we show that thrombin cleavage of platelet PAR4 promotes leukocyte recruitment to sites of vascular injury. This process is negatively regulated by GPIbα, as seen in mice with abrogated thrombin-platelet GPIbα binding (hGPIbα(D277N)). In addition, we demonstrate that fibrin limits leukocyte trafficking by forming a physical barrier to intravascular leukocyte migration. These studies demonstrate a distinct 'checkpoint' mechanism of leukocyte trafficking involving balanced thrombin interactions with PAR4, GPIbα and fibrin. Dysregulation of this checkpoint mechanism is likely to contribute to the development of thromboinflammatory disorders.
Collapse
Affiliation(s)
- Zane S Kaplan
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Alessandro Zarpellon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Imala Alwis
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Heart Research Institute &Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yuping Yuan
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - James McFadyen
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Mehran Ghasemzadeh
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Simone M Schoenwaelder
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Heart Research Institute &Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaverio M Ruggeri
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Shaun P Jackson
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.,Heart Research Institute &Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
135
|
Abstract
BACKGROUND We sought to evaluate the potential enhanced fibrinolytic and antiplatelet activity of dabigatran etexilate (DE) due to decreased thrombin levels in patients with stroke or transient ischemic attack and non-valvular atrial fibrillation (NVAF). METHODS Consecutive patients with cerebrovascular diseases and NVAF that were treated with DE in a tertiary university hospital. Fibrinolysis and platelet function were assessed by thromboelastometry (ROTEM) and platelet function analyzer (PFA)-100, respectively, before and after treatment with DE. Conventional coagulation tests, endogenous thrombin potential (ETP) and hemoclot thrombin inhibitors (HTI), were also performed in order to detect any possible correlation between dabigatran plasma levels, its anticoagulant activity and the intensity of platelet dysfunction or fibrinolysis. RESULTS A total of nineteen patients fulfilled our inclusion criteria (mean age 62.3±7.2years; 47% males; median CHADS2-score: 3; interquartile range: 2-4). DE treatment was associated with a significant reduction of the lysis index (LI60) at 60min (p=0.036), and prolongation of the PFA-100 CEPI closure time (p=0.024). After dabigatran treatment, abnormal PFA-100 results were obtained in two patients (11%, 95% CI: 2%-33%). DE levels (determined by HTI) were strongly inversely correlated (rho=-0.85; p<0.001) with the area under the curve (AUC) values in ETP assay. Νo association was found between HTI and PFA-100 CEPI CT (p=0.64), or LI60 measurements (p=0.60). CONCLUSIONS Our findings indicate that DE might affect platelet function and fibrinolysis and highlight the potential role of ETP as an alternative option in DE monitoring. The intensity and clinical relevance of DE antiplatelet and fibrinolytic effects require further investigation.
Collapse
|
136
|
Platelets and protease-activated receptor-4 contribute to acetaminophen-induced liver injury in mice. Blood 2015; 126:1835-43. [PMID: 26179083 DOI: 10.1182/blood-2014-09-598656] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 07/13/2015] [Indexed: 12/15/2022] Open
Abstract
Acetaminophen (APAP)-induced liver injury in humans is associated with robust coagulation cascade activation and thrombocytopenia. However, it is not known whether coagulation-driven platelet activation participates in APAP hepatotoxicity. Here, we found that APAP overdose in mice caused liver damage accompanied by significant thrombocytopenia and accumulation of platelets in the liver. These changes were attenuated by administration of the direct thrombin inhibitor lepirudin. Platelet depletion with an anti-CD41 antibody also significantly reduced APAP-mediated liver injury and thrombin generation, indicated by the concentration of thrombin-antithrombin (TAT) complexes in plasma. Compared with APAP-treated wild-type mice, biomarkers of hepatocellular and endothelial damage, plasma TAT concentration, and hepatic platelet accumulation were reduced in mice lacking protease-activated receptor (PAR)-4, which mediates thrombin signaling in mouse platelets. However, selective hematopoietic cell PAR-4 deficiency did not affect APAP-induced liver injury or plasma TAT levels. These results suggest that interconnections between coagulation and hepatic platelet accumulation promote APAP-induced liver injury, independent of platelet PAR-4 signaling. Moreover, the results highlight a potential contribution of nonhematopoietic cell PAR-4 signaling to APAP hepatotoxicity.
Collapse
|
137
|
Abstract
Protein kinase Cθ (PKCθ) is a key enzyme in T-lymphocytes where it plays an important role in signal transduction downstream of the activated T-cell receptor (TCR) and the CD28 co-stimulatory receptor. Antigenic stimulation of T-cells triggers PKCθ translocation to the centre of the immunological synapse (IS) at the contact site between antigen-specific T-cells and antigen-presenting cells (APCs). The IS-residing PKCθ phosphorylates and activates effector molecules that transduce signals into distinct subcellular compartments and activate the transcription factors, nuclear factor κB (NF-κB), nuclear factor of activated T-cells (NFAT) and activating protein 1 (AP-1), which are essential for the induction of T-cell-mediated responses. Besides its major biological role in T-cells, PKCθ is expressed in several additional cell types and is involved in a variety of distinct physiological and pathological phenomena. For example, PKCθ is expressed at high levels in platelets where it regulates signal transduction from distinct surface receptors, and is required for optimal platelet activation and aggregation, as well as haemostasis. In addition, PKCθ is involved in physiological processes regulating insulin resistance and susceptibility to obesity, and is expressed at high levels in gastrointestinal stromal tumours (GISTs), although the functional importance of PKCθ in these processes and cell types is not fully clear. The present article briefly reviews selected topics relevant to the biological roles of PKCθ in health and disease.
Collapse
|
138
|
Tang J, Fang Y, Han Y, Bai X, Yan X, Zhang Y, Lai R, Zhang Z. YY-39, a tick anti-thrombosis peptide containing RGD domain. Peptides 2015; 68:99-104. [PMID: 25152502 DOI: 10.1016/j.peptides.2014.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/14/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Ticks are obligatory blood feeding ectoparasites, which continuously attach to their hosts for 1-2 weeks. There are many biologically active compounds in tick salivary glands interfering host haemostatic system and to successfully obtain blood meal. Several platelet aggregation inhibitors have been identified from ticks. A family of conserved peptides, which were identified from transcriptome analysis of many tick salivary glands, were found to contain unique primary structure including predicted mature peptides of 39-47 amino acid residues in length and a Pro/Glu(P/E)-Pro/His(P/H)-Lys-Gly-Asp(RGD) domain. Given their unique structure and RGD domain, they are considered a novel family of disintegrins that inhibit platelet aggregation. One of them (YY-39) was tested for its effects on platelets and thrombosis in vivo. YY-39 was found effectively to inhibit platelet aggregation induced by adenosine diphosphate (ADP), thrombin and thromboxane A2 (TXA2). Furthermore, YY-39 blocked platelet adhesion to soluble collagen and bound to purified GPIIb/IIIa in a dose-dependent manner. In in vivo experiments, YY-39 reduced thrombus weight effectively in a rat arteriovenous shunt model and inhibited thrombosis in a carrageenan-induced mouse tail thrombosis model. Combined with their prevalence in ticks and platelet inhibitory functions, this family of peptides might be conserved tick anti-haemostatic molecules.
Collapse
Affiliation(s)
- Jing Tang
- Life Sciences College of Nanjing Agricultural University, 1st Weigang, Nanjing, Jiangsu 210095, China
| | - Yaqun Fang
- Life Sciences College of Nanjing Agricultural University, 1st Weigang, Nanjing, Jiangsu 210095, China
| | - Yajun Han
- Life Sciences College of Nanjing Agricultural University, 1st Weigang, Nanjing, Jiangsu 210095, China
| | - Xuewei Bai
- Life Sciences College of Nanjing Agricultural University, 1st Weigang, Nanjing, Jiangsu 210095, China
| | - Xiuwen Yan
- Life Sciences College of Nanjing Agricultural University, 1st Weigang, Nanjing, Jiangsu 210095, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China
| | - Ren Lai
- Life Sciences College of Nanjing Agricultural University, 1st Weigang, Nanjing, Jiangsu 210095, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
| | - Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100009, China.
| |
Collapse
|
139
|
Kerschen E, Hernandez I, Zogg M, Maas M, Weiler H. Survival advantage of heterozygous factor V Leiden carriers in murine sepsis. J Thromb Haemost 2015; 13:1073-80. [PMID: 25690763 PMCID: PMC4542152 DOI: 10.1111/jth.12876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/28/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND The high allelic frequency of the prothrombotic Leiden polymorphism in human blood coagulation factor V (FV) has been speculated to reflect positive selection during evolution. Heterozygous Leiden carriers enrolled in the placebo arm of the PROWESS sepsis trial and heterozygous Leiden mice challenged with endotoxin both showed reduced mortality, whereas homozygous Leiden mice were not protected from lethal endotoxemia. Follow-up analyses of clinical outcomes and of mouse models of infection with various pathogens remained inconclusive. OBJECTIVE To establish whether activated protein C resistance of FV Leiden modifies the outcome of bacterial infection in murine sepsis models. METHODS Homozygous and heterozygous FV Leiden mice were subjected to gram-positive (S. aureus) or gram-negative (Y. pestis; E. coli) septic peritonitis or polymicrobial, focal septic peritonitis induced by cecal ligation and puncture. The effect of FV Leiden on 7-day survival and bacterial dissemination was assessed. Outcomes were compared with the sepsis survival of mice with genetically impaired hemostasis (hemophilia A, thrombocytopenia, thrombin receptor PAR4 [protease activated receptor 4] deficiency, endothelial protein C receptor [ProcR/EPCR] deficiency). RESULTS Heterozygous, but not homozygous, Leiden mice were protected from lethal infection with highly virulent S. aureus and Y. pestis strains. FV Leiden did not affect the outcome of sepsis induced by cecal ligation and puncture, staphylokinase-deficient S. aureus, Pla-deficient Y. pestis, or E. coli. Thrombocytopenia, deficiency of PAR1 or PAR4 did not affect S. aureus sepsis survival, whereas hemophilia A increased mortality. ProcR deficiency selectively abolished the survival advantage of heterozygous Leiden mice. CONCLUSIONS In mice, heterozygous FV Leiden carriers are protected from sepsis mortality after infection with clinically relevant human bacterial pathogens.
Collapse
Affiliation(s)
- Edward Kerschen
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA
| | - Irene Hernandez
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA
| | - Mark Zogg
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA
| | - Matthias Maas
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hartmut Weiler
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
140
|
A balance between TFPI and thrombin-mediated platelet activation is required for murine embryonic development. Blood 2015; 125:4078-84. [PMID: 25954015 DOI: 10.1182/blood-2015-03-633958] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/03/2015] [Indexed: 11/20/2022] Open
Abstract
Tissue factor pathway inhibitor (TFPI) is a critical anticoagulant protein present in endothelium and platelets. Mice lacking TFPI (Tfpi(-/-)) die in utero from disseminated intravascular coagulation. They are rescued by concomitant tissue factor (TF) deficiency, demonstrating that TFPI modulates TF function in vivo. Recent studies have found TFPI inhibits prothrombinase activity during the initiation of coagulation and limits platelet accumulation during thrombus formation, implicating TFPI in modulating platelet procoagulant activity. To examine whether altered platelet function would compensate for the lack of TFPI and rescue TFPI-null embryonic lethality, Tfpi(+/-) mice lacking the platelet thrombin receptor, protease activated receptor 4 (PAR4; Par4(-/-)), or its coreceptor, PAR3, were mated. PAR3 deficiency did not rescue Tfpi(-/-) embryos, but >40% of expected Tfpi(-/-):Par4(-/-) offspring survived to adulthood. Adult Tfpi(-/-):Par4(-/-) mice did not exhibit overt thrombosis. However, they had focal sterile inflammation with fibrin(ogen) deposition in the liver and elevated plasma thrombin-antithrombin complexes, indicating activation of coagulation at baseline. Tfpi(-/-):Par4(-/-) mice have platelet and fibrin accumulation similar to Par4(-/-) mice following venous electrolytic injury but were more susceptible than Par4(-/-) mice to TF-induced pulmonary embolism. In addition, ∼30% of the Tfpi(-/-):Par4(-/-) mice were born with short tails. Tfpi(-/-):Par4(-/-) mice are the first adult mice described that lack TFPI with unaltered TF. They demonstrate that TFPI physiologically modulates thrombin-dependent platelet activation in a manner that is required for successful embryonic development and identify a role for TFPI in dampening intravascular procoagulant stimuli that lead to thrombin generation, even in the absence of thrombin-mediated platelet activation.
Collapse
|
141
|
Ben Shimon M, Lenz M, Ikenberg B, Becker D, Shavit Stein E, Chapman J, Tanne D, Pick CG, Blatt I, Neufeld M, Vlachos A, Maggio N. Thrombin regulation of synaptic transmission and plasticity: implications for health and disease. Front Cell Neurosci 2015; 9:151. [PMID: 25954157 PMCID: PMC4404867 DOI: 10.3389/fncel.2015.00151] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/01/2015] [Indexed: 11/13/2022] Open
Abstract
Thrombin, a serine protease involved in the blood coagulation cascade has been shown to affect neural function following blood-brain barrier breakdown. However, several lines of evidence exist that thrombin is also expressed in the brain under physiological conditions, suggesting an involvement of thrombin in the regulation of normal brain functions. Here, we review ours’ as well as others’ recent work on the role of thrombin in synaptic transmission and plasticity through direct or indirect activation of Protease-Activated Receptor-1 (PAR1). These studies propose a novel role of thrombin in synaptic plasticity, both in physiology as well as in neurological diseases associated with increased brain thrombin/PAR1 levels.
Collapse
Affiliation(s)
- Marina Ben Shimon
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Maximilian Lenz
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Benno Ikenberg
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Denise Becker
- Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Efrat Shavit Stein
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Joab Chapman
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - David Tanne
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Ilan Blatt
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Miri Neufeld
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel ; Department of Neurology and Epilepsy Unit, The Tel Aviv Sourasky Medical Center Tel Aviv, Israel
| | - Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Nicola Maggio
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Talpiot Medical Leadership Program, The Chaim Sheba Medical Center Tel HaShomer, Israel
| |
Collapse
|
142
|
Isolation and Characterization of a Novel Antithrombotic Peptide from Enzymatic Hydrolysate of Agkistrodon acutus Venom. Int J Pept Res Ther 2015. [DOI: 10.1007/s10989-015-9463-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
143
|
EPCR-dependent PAR2 activation by the blood coagulation initiation complex regulates LPS-triggered interferon responses in mice. Blood 2015; 125:2845-54. [PMID: 25733582 DOI: 10.1182/blood-2014-11-610717] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/23/2015] [Indexed: 01/14/2023] Open
Abstract
Infection and inflammation are invariably associated with activation of the blood coagulation mechanism, secondary to the inflammation-induced expression of the coagulation initiator tissue factor (TF) on innate immune cells. By investigating the role of cell-surface receptors for coagulation factors in mouse endotoxemia, we found that the protein C receptor (ProcR; EPCR) was required for the normal in vivo and in vitro induction of lipopolysaccharide (LPS)-regulated gene expression. In cultured bone marrow-derived myeloid cells and in monocytic RAW264.7 cells, the LPS-induced expression of functionally active TF, assembly of the ternary TF-VIIa-Xa initiation complex of blood coagulation, and the EPCR-dependent activation of protease-activated receptor 2 (PAR2) by the ternary TF-VIIa-Xa complex were required for the normal LPS induction of messenger RNAs encoding the TLR3/4 signaling adaptor protein Pellino-1 and the transcription factor interferon regulatory factor 8. In response to in vivo challenge with LPS, mice lacking EPCR or PAR2 failed to fully initiate an interferon-regulated gene expression program that included the Irf8 target genes Lif, Iigp1, Gbp2, Gbp3, and Gbp6. The inflammation-induced expression of TF and crosstalk with EPCR, PAR2, and TLR4 therefore appear necessary for the normal evolution of interferon-regulated host responses.
Collapse
|
144
|
Stegner D, Dütting S, Nieswandt B. Mechanistic explanation for platelet contribution to cancer metastasis. Thromb Res 2015; 133 Suppl 2:S149-57. [PMID: 24862136 DOI: 10.1016/s0049-3848(14)50025-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer-associated mortality is frequently caused by metastasis, however, our understanding of this process remains incomplete and therapeutic options are limited. Metastasis is a dynamic multi-step process involving intravasation of tumor cells into the host's blood and lymphatic vessels, their dissemination within the circulation, and finally arrest and extravasation in a distant organ where they establish secondary tumors. It is generally conceived that platelets contribute to all steps of hematogenous tumor dissemination. In this review, we provide an overview of the current knowledge of the platelet receptors involved in tumor cell-induced platelet aggregation, an essential immune surveillance escape mechanism of circulating tumor cells. We discuss how platelets prevent immunological attack, contribute to tumor cell extravasation and thereby facilitate colonization of distant organs.
Collapse
Affiliation(s)
- David Stegner
- University of Würzburg Chair of Vascular Medicine University Hospital and Rudolf Virchow Center for Experimental Biomedicine Würzburg, Germany
| | - Sebastian Dütting
- University of Würzburg Chair of Vascular Medicine University Hospital and Rudolf Virchow Center for Experimental Biomedicine Würzburg, Germany
| | - Bernhard Nieswandt
- University of Würzburg Chair of Vascular Medicine University Hospital and Rudolf Virchow Center for Experimental Biomedicine Würzburg, Germany.
| |
Collapse
|
145
|
Lannan KL, Sahler J, Kim N, Spinelli SL, Maggirwar SB, Garraud O, Cognasse F, Blumberg N, Phipps RP. Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles. Front Immunol 2015; 6:48. [PMID: 25762994 PMCID: PMC4327621 DOI: 10.3389/fimmu.2015.00048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/26/2015] [Indexed: 01/15/2023] Open
Abstract
Platelets are small anucleate blood cells derived from megakaryocytes. In addition to their pivotal roles in hemostasis, platelets are the smallest, yet most abundant, immune cells and regulate inflammation, immunity, and disease progression. Although platelets lack DNA, and thus no functional transcriptional activities, they are nonetheless rich sources of RNAs, possess an intact spliceosome, and are thus capable of synthesizing proteins. Previously, it was thought that platelet RNAs and translational machinery were remnants from the megakaryocyte. We now know that the initial description of platelets as "cellular fragments" is an antiquated notion, as mounting evidence suggests otherwise. Therefore, it is reasonable to hypothesize that platelet transcription factors are not vestigial remnants from megakaryocytes, but have important, if only partly understood functions. Proteins play multiple cellular roles to minimize energy expenditure for maximum cellular function; thus, the same can be expected for transcription factors. In fact, numerous transcription factors have non-genomic roles, both in platelets and in nucleated cells. Our lab and others have discovered the presence and non-genomic roles of transcription factors in platelets, such as the nuclear factor kappa β (NFκB) family of proteins and peroxisome proliferator-activated receptor gamma (PPARγ). In addition to numerous roles in regulating platelet activation, functional transcription factors can be transferred to vascular and immune cells through platelet microparticles. This method of transcellular delivery of key immune molecules may be a vital mechanism by which platelet transcription factors regulate inflammation and immunity. At the very least, platelets are an ideal model cell to dissect out the non-genomic roles of transcription factors in nucleated cells. There is abundant evidence to suggest that transcription factors in platelets play key roles in regulating inflammatory and hemostatic functions.
Collapse
Affiliation(s)
- Katie L Lannan
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Julie Sahler
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA ; Department of Biological and Environmental Engineering, Cornell University , Ithaca, NY , USA
| | - Nina Kim
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Sherry L Spinelli
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Olivier Garraud
- Faculté de Médecine, Université de Lyon , Saint-Etienne , France
| | - Fabrice Cognasse
- Faculté de Médecine, Université de Lyon , Saint-Etienne , France ; Etablissement Français du Sang Auvergne-Loire , Saint-Etienne , France
| | - Neil Blumberg
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Richard P Phipps
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA ; Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA ; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| |
Collapse
|
146
|
Joshi N, Kopec AK, O'Brien KM, Towery KL, Cline-Fedewa H, Williams KJ, Copple BL, Flick MJ, Luyendyk JP. Coagulation-driven platelet activation reduces cholestatic liver injury and fibrosis in mice. J Thromb Haemost 2015; 13:57-71. [PMID: 25353084 PMCID: PMC4487795 DOI: 10.1111/jth.12770] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/17/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND The coagulation cascade has been shown to participate in chronic liver injury and fibrosis, but the contribution of various thrombin targets, such as protease activated receptors (PARs) and fibrin(ogen), has not been fully described. Emerging evidence suggests that in some experimental settings of chronic liver injury, platelets can promote liver repair and inhibit liver fibrosis. However, the precise mechanisms linking coagulation and platelet function to hepatic tissue changes following injury remain poorly defined. OBJECTIVES To determine the role of PAR-4, a key thrombin receptor on mouse platelets, and fibrin(ogen) engagement of the platelet αII b β3 integrin (αIIb β3 ) in a model of cholestatic liver injury and fibrosis. METHODS Biliary and hepatic injury was characterized following 4 week administration of the bile duct toxicant α-naphthylisothiocyanate (ANIT) (0.025%) in PAR-4-deficient mice, mice expressing a mutant form of fibrin(ogen) incapable of binding integrin αII b β3 (Fibγ(Δ5) ), and wild-type mice. RESULTS Elevated plasma thrombin-antithrombin and serotonin levels, hepatic fibrin deposition, and platelet accumulation in liver accompanied hepatocellular injury and fibrosis in ANIT-treated wild-type mice. PAR-4 deficiency reduced plasma serotonin levels, increased serum bile acid concentration, and exacerbated ANIT-induced hepatocellular injury and peribiliary fibrosis. Compared with PAR-4-deficient mice, ANIT-treated Fibγ(Δ5) mice displayed more widespread hepatocellular necrosis accompanied by marked inflammation, robust fibroblast activation, and extensive liver fibrosis. CONCLUSIONS Collectively, the results indicate that PAR-4 and fibrin-αII b β3 integrin engagement, pathways coupling coagulation to platelet activation, each exert hepatoprotective effects during chronic cholestasis.
Collapse
MESH Headings
- 1-Naphthylisothiocyanate
- Animals
- Antithrombin III
- Bile Acids and Salts/blood
- Blood Coagulation/genetics
- Blood Platelets/metabolism
- Chemical and Drug Induced Liver Injury/blood
- Chemical and Drug Induced Liver Injury/genetics
- Chemical and Drug Induced Liver Injury/pathology
- Chemical and Drug Induced Liver Injury/prevention & control
- Cholestasis/blood
- Cholestasis/chemically induced
- Cholestasis/genetics
- Cholestasis/pathology
- Cholestasis/prevention & control
- Fibrinogens, Abnormal/genetics
- Fibrinogens, Abnormal/metabolism
- Genotype
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis, Experimental/blood
- Liver Cirrhosis, Experimental/chemically induced
- Liver Cirrhosis, Experimental/genetics
- Liver Cirrhosis, Experimental/pathology
- Liver Cirrhosis, Experimental/prevention & control
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Necrosis
- Peptide Hydrolases/blood
- Phenotype
- Platelet Activation/genetics
- Platelet Glycoprotein GPIIb-IIIa Complex/metabolism
- Receptors, Thrombin/deficiency
- Receptors, Thrombin/genetics
- Serotonin/blood
- Signal Transduction
Collapse
Affiliation(s)
- N Joshi
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA; Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Manne BK, Badolia R, Dangelmaier CA, Kunapuli SP. C-type lectin like receptor 2 (CLEC-2) signals independently of lipid raft microdomains in platelets. Biochem Pharmacol 2014; 93:163-70. [PMID: 25462818 DOI: 10.1016/j.bcp.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
Abstract
C-type lectin like receptor 2 (CLEC-2) has been reported to activate platelets through a lipid raft-dependent manner. Secreted ADP potentiates CLEC-2-mediated platelet aggregation. We have investigated whether the decrease in CLEC-2-mediated platelet aggregation, previously reported in platelets with disrupted rafts, is a result of the loss of agonist potentiation by ADP. We disrupted platelet lipid rafts with methyl-β-cyclodextrin (MβCD) and measured signaling events downstream of CLEC-2 activation. Lipid raft disruption decreases platelet aggregation induced by CLEC-2 agonists. The inhibition of platelet aggregation by the disruption of lipid rafts was rescued by the exogenous addition of epinephrine but not 2-methylthioadenosine diphosphate (2MeSADP), which suggests that lipid raft disruption effects P2Y12-mediated Gi activation but not Gz. Phosphorylation of Syk (Y525/526) and PLCγ2 (Y759), were not affected by raft disruption in CLEC-2 agonist-stimulated platelets. Furthermore, tyrosine phosphorylation of the CLEC-2 hemi-ITAM was not effected when MβCD disrupts lipid rafts. Lipid rafts do not directly contribute to CLEC-2 receptor activation in platelets. The effects of disruption of lipid rafts in in vitro assays can be attributed to inhibition of ADP feedback that potentiates CLEC-2 signaling.
Collapse
Affiliation(s)
- Bhanu Kanth Manne
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA; Sol Sherry Thrombosis Research Center and Temple University School of Medicine, Philadelphia, PA, USA
| | - Rachit Badolia
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA; Sol Sherry Thrombosis Research Center and Temple University School of Medicine, Philadelphia, PA, USA
| | - Carol A Dangelmaier
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA; Sol Sherry Thrombosis Research Center and Temple University School of Medicine, Philadelphia, PA, USA
| | - Satya P Kunapuli
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA; Sol Sherry Thrombosis Research Center and Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
148
|
French SL, Arthur JF, Tran HA, Hamilton JR. Approval of the first protease-activated receptor antagonist: Rationale, development, significance, and considerations of a novel anti-platelet agent. Blood Rev 2014; 29:179-89. [PMID: 25467961 DOI: 10.1016/j.blre.2014.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/27/2014] [Indexed: 12/12/2022]
Abstract
Twenty-three years after the discovery of the first thrombin receptor, now known as protease-activated receptor 1 (PAR1), the first drug targeting this receptor is available for human use. The PAR1 inhibitor, vorapaxar (Zontivity, MSD), was recently approved by the FDA for use in the USA for the prevention of thrombotic cardiovascular events in patients with a history of myocardial infarction or peripheral artery disease. In this review, we detail the rationale, development, as well as the clinical significance and considerations of vorapaxar, the original PAR antagonist and the latest anti-platelet agent in the pharmaco-armoury against arterial thrombosis.
Collapse
Affiliation(s)
- Shauna L French
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia; Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia
| | - Jane F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia; Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia
| | - Huyen A Tran
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia; Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia; Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
149
|
Bynagari-Settipalli YS, Cornelissen I, Palmer D, Duong D, Concengco C, Ware J, Coughlin SR. Redundancy and interaction of thrombin- and collagen-mediated platelet activation in tail bleeding and carotid thrombosis in mice. Arterioscler Thromb Vasc Biol 2014; 34:2563-9. [PMID: 25278288 DOI: 10.1161/atvbaha.114.304244] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Current antiplatelet strategies to prevent myocardial infarction and stroke are limited by bleeding risk. A better understanding of the roles of distinct platelet-activating pathways is needed. We determined whether platelet activation by 2 key primary activators, thrombin and collagen, plays distinct, redundant, or interacting roles in tail bleeding and carotid thrombosis in mice. APPROACH AND RESULTS Platelets from mice deficient for the thrombin receptor protease-activated receptor-4 (Par4) and the collagen receptor glycoprotein VI protein (GPVI) lack responses to thrombin and collagen, respectively. We examined tail bleeding and FeCl3-induced carotid artery occlusion in mice lacking Par4, GPVI, or both. We also examined a series of Par mutants with increasing impairment of thrombin signaling in platelets. Ablation of thrombin signaling alone by Par4 deficiency increased blood loss in the tail bleeding assay and impaired occlusive thrombus formation in the carotid occlusion assay. GPVI deficiency alone had no effect. Superimposing GPVI deficiency on Par4 deficiency markedly increased effect size in both assays. In contrast to complete ablation of thrombin signaling, 9- and 19-fold increases in EC50 for thrombin-induced platelet activation had only modest effects. CONCLUSIONS The observation that loss of Par4 uncovered large effects of GPVI deficiency implies that Par4 and GPVI made independent, partially redundant contributions to occlusive thrombus formation in the carotid and to hemostatic clot formation in the tail under the experimental conditions examined. At face value, these results suggest that thrombin- and collagen-induced platelet activation can play partially redundant roles, despite important differences in how these agonists are made available to platelets.
Collapse
Affiliation(s)
- Yamini S Bynagari-Settipalli
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Ivo Cornelissen
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Daniel Palmer
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Daniel Duong
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Cherry Concengco
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Jerry Ware
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Shaun R Coughlin
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.).
| |
Collapse
|
150
|
Wen W, Young SE, Duvernay MT, Schulte ML, Nance KD, Melancon BJ, Engers J, Locuson CW, Wood MR, Daniels JS, Wu W, Lindsley CW, Hamm HE, Stauffer SR. Substituted indoles as selective protease activated receptor 4 (PAR-4) antagonists: Discovery and SAR of ML354. Bioorg Med Chem Lett 2014; 24:4708-4713. [PMID: 25176330 PMCID: PMC5716344 DOI: 10.1016/j.bmcl.2014.08.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
Herein we report the discovery and SAR of an indole-based protease activated receptor-4 (PAR-4) antagonist scaffold derived from a similarity search of the Vanderbilt HTS collection, leading to MLPCN probe ML354 (VU0099704). Using a novel PAC-1 fluorescent αIIbβ3 activation assay this probe molecule antagonist was found to have an IC50 of 140nM for PAR-4 with 71-fold selectivity versus PAR-1 (PAR-1IC50=10μM).
Collapse
Affiliation(s)
- Wandong Wen
- College of Science, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Summer E Young
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew T Duvernay
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael L Schulte
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kellie D Nance
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Bruce J Melancon
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Julie Engers
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Charles W Locuson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Michael R Wood
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - J Scott Daniels
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Wenjun Wu
- College of Science, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China.
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shaun R Stauffer
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA.
| |
Collapse
|