101
|
Perrin S, Magill M. The Inhibition of CD40/CD154 Costimulatory Signaling in the Prevention of Renal Transplant Rejection in Nonhuman Primates: A Systematic Review and Meta Analysis. Front Immunol 2022; 13:861471. [PMID: 35464470 PMCID: PMC9022482 DOI: 10.3389/fimmu.2022.861471] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
The prevention of allograft transplant rejection by inhibition of the CD40/CD40L costimulatory pathway has been described in several species. We searched pubmed for studies reporting the prevention of kidney transplant rejection in nonhuman primates utilizing either anti CD40 or anti CD40L (CD154) treatment. Inclusion of data required treatment with anti CD40 or anti CD154 as monotherapy treatment arms, full text available, studies conducted in nonhuman primate species, the transplant was renal transplantation, sufficient duration of treatment to assess long term rejection, and the reporting of individual graft survival or survival duration. Eleven publications were included in the study. Rejection free survival was calculated using the Kaplan-Meier (KM) life test methods to estimate the survival functions. The 95% CI for the medians was also calculated. A log-rank test was used to test the equality of the survival curves between control and treatment arms (CD40 and CD154). The hazard ratio for CD154 compared to CD40 and 95% CI was calculated using a Cox proportional-hazards model including treatment as the covariate to assess the magnitude of the treatment effect. Both anti CD40 and anti CD154 treatments prevented acute and long term graft rejection. The median (95% CI) rejection free survival was 131 days (84,169 days) in the anti CD40 treated animals and 352 days (173,710 days) in the anti CD154 treated animals. Median survival in the untreated animals was 6 days. The inhibition of transplant rejection was more durable in the anti CD154 group compared to the anti CD40 group after cessation of treatment. The median (95% CI) rejection free survival after cessation of treatment was 60 days (21,80 days) in the anti CD40 treated animals and 230 days (84,552 days) in the anti CD154 treated animals.
Collapse
|
102
|
Characterization of cerebral small vessel disease by neutrophil and platelet activation markers using artificial intelligence. J Neuroimmunol 2022; 367:577863. [DOI: 10.1016/j.jneuroim.2022.577863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
|
103
|
Cognasse F, Duchez AC, Audoux E, Ebermeyer T, Arthaud CA, Prier A, Eyraud MA, Mismetti P, Garraud O, Bertoletti L, Hamzeh-Cognasse H. Platelets as Key Factors in Inflammation: Focus on CD40L/CD40. Front Immunol 2022; 13:825892. [PMID: 35185916 PMCID: PMC8850464 DOI: 10.3389/fimmu.2022.825892] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 12/16/2022] Open
Abstract
Platelets are anucleate cytoplasmic fragments derived from the fragmentation of medullary megakaryocytes. Activated platelets adhere to the damaged endothelium by means of glycoproteins on their surface, forming the platelet plug. Activated platelets can also secrete the contents of their granules, notably the growth factors contained in the α-granules, which are involved in platelet aggregation and maintain endothelial activation, but also contribute to vascular repair and angiogenesis. Platelets also have a major inflammatory and immune function in antibacterial defence, essentially through their Toll-like Receptors (TLRs) and Sialic acid-binding immunoglobulin-type lectin (SIGLEC). Platelet activation also contributes to the extensive release of anti- or pro-inflammatory mediators such as IL-1β, RANTES (Regulated on Activation, Normal T Expressed and Secreted) or CD154, also known as the CD40-ligand. Platelets are involved in the direct activation of immune cells, polynuclear neutrophils (PNNs) and dendritic cells via the CD40L/CD40 complex. As a general rule, all of the studies presented in this review show that platelets are capable of covering most of the stages of inflammation, primarily through the CD40L/CD40 interaction, thus confirming their own role in this pathophysiological condition.
Collapse
Affiliation(s)
- Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Anne Claire Duchez
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Estelle Audoux
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Theo Ebermeyer
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Charles Antoine Arthaud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Amelie Prier
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Marie Ange Eyraud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Patrick Mismetti
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France.,Vascular and Therapeutic Medicine Department, Saint-Etienne University Hospital Center, Saint-Etienne, France
| | - Olivier Garraud
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Laurent Bertoletti
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France.,Vascular and Therapeutic Medicine Department, Saint-Etienne University Hospital Center, Saint-Etienne, France
| | | |
Collapse
|
104
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
105
|
Salvadori M, Tsalouchos A. Innovative immunosuppression in kidney transplantation: A challenge for unmet needs. World J Transplant 2022; 12:27-41. [PMID: 35433332 PMCID: PMC8968476 DOI: 10.5500/wjt.v12.i3.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/27/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Due to the optimal results obtained in kidney transplantation and to the lack of interest of the industries, new innovative drugs in kidney transplantation are difficult to be encountered. The best strategy to find the new drugs recently developed or under development is to search in the sections of kidney transplantation still not completely covered by the drugs on the market. These unmet needs are the prevention of delayed graft function (DGF), the protection of the graft over the long time and the desensitization of preformed anti human leukocyte antigen antibodies and the treatment of the acute antibody-mediated rejection. These needs are particularly relevant due to the expansion of some kind of kidney transplantation as transplantation from non-heart beating donor and in the case of antibody-incompatible grafts. The first are particularly exposed to DGF, the latter need a safe desensitization and a safe treatments of the antibody mediated rejections that often occur. Particular caution is needed in treating these drugs. First, they are described in very recent studies and the follow-up of their effect is of course rather short. Second, some of these drugs are still in an early phase of study, even if in well-conducted randomized controlled trials. Particular caution and a careful check need to be used in trials launched 2 or 3 years ago. Indeed, is always necessary to verify whether the study is still going on or whether and why the study itself was abandoned.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Italy
| | - Aris Tsalouchos
- Division of Nephrology, Santa Maria Annunziata Hospital, Florence 50012, Italy
| |
Collapse
|
106
|
Al-Tamimi AO, Yusuf AM, Jayakumar MN, Ansari AW, Elhassan M, AbdulKarim F, Kannan M, Halwani R, Ahmad F. SARS-CoV-2 infection induces soluble platelet activation markers and PAI-1 in the early moderate stage of COVID-19. Int J Lab Hematol 2022; 44:712-721. [PMID: 35266284 PMCID: PMC9111479 DOI: 10.1111/ijlh.13829] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 03/02/2022] [Indexed: 01/08/2023]
Abstract
Introduction Coagulation dysfunction and thromboembolism emerge as strong comorbidity factors in severe COVID‐19. However, it is unclear when particularly platelet activation markers and coagulation factors dysregulated during the pathogenesis of COVID‐19. Here, we sought to assess the levels of coagulation and platelet activation markers at moderate and severe stages of COVID‐19 to understand the pathogenesis. Methods To understand this, hospitalized COVID‐19 patients with (severe cases that required intensive care) or without pneumonia (moderate cases) were recruited. Phenotypic and molecular characterizations were performed employing basic coagulation tests including prothrombin time (PT), activated partial thromboplastin time (APTT), D‐Dimer, and tissue factor pathway inhibitor (TFPI). The flow cytometry‐based multiplex assays were performed to assess FXI, anti‐thrombin, prothrombin, fibrinogen, FXIII, P‐selectin, sCD40L, plasminogen, tissue plasminogen activator (tPA), plasminogen activator inhibitor‐1 (PAI‐1), and D‐Dimer. Results The investigations revealed induction of plasma P‐selectin and CD40 ligand (sCD40L) in moderate COVID‐19 cases, which were significantly abolished with the progression of COVID‐19 severity. Moreover, a profound reduction in plasma tissue factor pathway inhibitor (TFPI) and FXIII were identified particularly in the severe COVID‐19. Further analysis revealed fibrinogen induction in both moderate and severe patients. Interestingly, an elevated PAI‐1 more prominently in moderate, and tPA particularly in severe COVID‐19 cases were observed. Particularly, the levels of fibrinogen and tPA directly correlated with the severity of the disease. Conclusions In summary, induction of soluble P‐selectin, sCD40L, fibrinogen, and PAI‐1 suggests the activation of platelets and coagulation system at the moderate stage before COVID‐19 patients require intensive care. These findings would help in designing better thromboprophylaxis to limit the COVID‐19 severity.
Collapse
Affiliation(s)
- Abaher O Al-Tamimi
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Ayesha M Yusuf
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Manju N Jayakumar
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Abdul W Ansari
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.,Dermatology Institute, Translational Research Institute, Academic Health Systems, Hamad Medical Corporation, Doha, Qatar
| | - Mona Elhassan
- Department of Internal Medicine, Rashid Hospital, Dubai, UAE
| | | | - Meganathan Kannan
- Blood and Vascular Biology Research Lab, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Rabih Halwani
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Firdos Ahmad
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| |
Collapse
|
107
|
Greve F, Mair O, Aulbach I, Biberthaler P, Hanschen M. Correlation between Platelet Count and Lung Dysfunction in Multiple Trauma Patients-A Retrospective Cohort Analysis. J Clin Med 2022; 11:jcm11051400. [PMID: 35268491 PMCID: PMC8911048 DOI: 10.3390/jcm11051400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Current findings emphasize the potential contribution of platelets to the immunological response after severe trauma. As clinical relevance remains unclear, this study aims to analyze the correlation between platelets and lung dysfunction in severely injured patients. (2) Methods: We retrospectively enrolled all multiple trauma patients presenting to our level 1 trauma center from 2015 to 2016 with an Injury-Severity Score (ISS) ≥ 16. Apart from demographic data, platelet counts and PaO2/FiO2 as an approximate indicator for lung physiology were analyzed and correlated on subsequent days after admission. (3) Results: 83 patients with a median ISS of 22 (IQR 18–36) were included. Compared to day 1, platelet counts were decreased on day 3 (p ≤ 0.001). Platelet counts were significantly lower on day 3 in patients with an ISS ≥ 35 (p = 0.011). There were no differences regarding PaO2/FiO2 index. Correlation analysis revealed a positive link between increased platelet counts and PaO2/FiO2 index on day 1 only in severely injured patients (p = 0.007). (4) Conclusions: This work supports the concept of platelets modulating the posttraumatic immune response by affecting lung dysfunction in the early phase after multiple trauma in dependence of injury severity. Our findings contribute to the understanding of the impact of platelets on systemic processes in multiple trauma patients.
Collapse
Affiliation(s)
- Frederik Greve
- Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (O.M.); (I.A.); (P.B.); (M.H.)
- Correspondence: ; Tel.: +49-89-4140-2126
| | - Olivia Mair
- Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (O.M.); (I.A.); (P.B.); (M.H.)
| | - Ina Aulbach
- Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (O.M.); (I.A.); (P.B.); (M.H.)
- Department of Traumatology and Reconstructive Surgery, Charité-Universitätmedizin Berlin, 12203 Berlin, Germany
| | - Peter Biberthaler
- Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (O.M.); (I.A.); (P.B.); (M.H.)
| | - Marc Hanschen
- Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (O.M.); (I.A.); (P.B.); (M.H.)
| |
Collapse
|
108
|
Wagner M, Uzun G, Bakchoul T, Althaus K. Diagnosis of Platelet Function Disorders: A Challenge for Laboratories. Hamostaseologie 2022; 42:36-45. [PMID: 35196730 DOI: 10.1055/a-1700-7036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In patients with normal plasmatic coagulation and bleeding tendency, platelet function defect can be assumed. Congenital platelet function defects are rare. Much more commonly they are acquired. The clinical bleeding tendency of platelet function defects is heterogeneous, which makes diagnostic approaches difficult. During the years, a large variety of tests for morphological phenotyping and functional analysis have been developed. The diagnosis of platelet function defects is based on standardized bleeding assessment tools followed by a profound morphological evaluation of the platelets. Platelet function assays like light transmission aggregation, luminoaggregometry, and impedance aggregometry followed by flow cytometry are commonly used to establish the diagnosis in these patients. Nevertheless, despite great efforts, standardization of these tests is poor and in most cases, quality control is lacking. In addition, these tests are still limited to specialized laboratories. This review summarizes the approaches to morphologic phenotyping and platelet testing in patients with suspected platelet dysfunction, beginning with a standardized bleeding score and ending with flow cytometry testing. The diagnosis of a functional defect requires a good collaboration between the laboratory and the clinician.
Collapse
Affiliation(s)
- Miriam Wagner
- Transfusion Medicine, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Günalp Uzun
- Centre for Clinical Transfusion Medicine, Tübingen ZKT gGmbH, Tübingen, Germany
| | - Tamam Bakchoul
- Transfusion Medicine, Faculty of Medicine, University of Tübingen, Tübingen, Germany.,Centre for Clinical Transfusion Medicine, Tübingen ZKT gGmbH, Tübingen, Germany
| | - Karina Althaus
- Transfusion Medicine, Faculty of Medicine, University of Tübingen, Tübingen, Germany.,Centre for Clinical Transfusion Medicine, Tübingen ZKT gGmbH, Tübingen, Germany
| |
Collapse
|
109
|
Li W, Syed F, Yu R, Yang J, Xia Y, Relich RF, Russell PM, Zhang S, Khalili M, Huang L, Kacena MA, Zheng X, Yu Q. Soluble Immune Checkpoints Are Dysregulated in COVID-19 and Heavy Alcohol Users With HIV Infection. Front Immunol 2022; 13:833310. [PMID: 35281051 PMCID: PMC8904355 DOI: 10.3389/fimmu.2022.833310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/28/2022] [Indexed: 01/08/2023] Open
Abstract
Immune checkpoints (ICPs) consist of paired receptor-ligand molecules that exert inhibitory or stimulatory effects on immune defense, surveillance, regulation, and self-tolerance. ICPs exist in both membrane and soluble forms in vivo and in vitro. Imbalances between inhibitory and stimulatory membrane-bound ICPs (mICPs) in malignant cells and immune cells in the tumor immune microenvironment (TIME) have been well documented. Blockades of inhibitory mICPs have emerged as an immense breakthrough in cancer therapeutics. However, the origin, structure, production regulation, and biological significance of soluble ICPs (sICPs) in health and disease largely remains elusive. Soluble ICPs can be generated through either alternative mRNA splicing and secretion or protease-mediated shedding from mICPs. Since sICPs are found in the bloodstream, they likely form a circulating immune regulatory system. In fact, there is increasing evidence that sICPs exhibit biological functions including (1) regulation of antibacterial immunity, (2) interaction with their mICP compartments to positively or negatively regulate immune responses, and (3) competition with their mICP compartments for binding to the ICP blocking antibodies, thereby reducing the efficacy of ICP blockade therapies. Here, we summarize current data of sICPs in cancer and infectious diseases. We particularly focus on sICPs in COVID-19 and HIV infection as they are the two ongoing global pandemics and have created the world's most serious public health challenges. A "storm" of sICPs occurs in the peripheral circulation of COVID-19 patients and is associated with the severity of COVID-19. Similarly, sICPs are highly dysregulated in people living with HIV (PLHIV) and some sICPs remain dysregulated in PLHIV on antiretroviral therapy (ART), indicating these sICPs may serve as biomarkers of incomplete immune reconstitution in PLHIV on ART. We reveal that HIV infection in the setting of alcohol misuse exacerbates sICP dysregulation as PLHIV with heavy alcohol consumption have significantly elevated plasma levels of many sICPs. Thus, both stimulatory and inhibitory sICPs are present in the bloodstream of healthy people and their balance can be disrupted under pathophysiological conditions such as cancer, COVID-19, HIV infection, and alcohol misuse. There is an urgent need to study the role of sICPs in immune regulation in health and disease.
Collapse
Affiliation(s)
- Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Fahim Syed
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard Yu
- Department of Internal Medicine, School of Medicine, University of Nevada, Reno, NV, United States
| | - Jing Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ying Xia
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ryan F. Relich
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Patrick M. Russell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shanxiang Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Mandana Khalili
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Laurence Huang
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiaoqun Zheng
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
110
|
Ostermeier B, Soriano-Sarabia N, Maggirwar SB. Platelet-Released Factors: Their Role in Viral Disease and Applications for Extracellular Vesicle (EV) Therapy. Int J Mol Sci 2022; 23:2321. [PMID: 35216433 PMCID: PMC8876984 DOI: 10.3390/ijms23042321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Platelets, which are small anuclear cell fragments, play important roles in thrombosis and hemostasis, but also actively release factors that can both suppress and induce viral infections. Platelet-released factors include sCD40L, microvesicles (MVs), and alpha granules that have the capacity to exert either pro-inflammatory or anti-inflammatory effects depending on the virus. These factors are prime targets for use in extracellular vesicle (EV)-based therapy due to their ability to reduce viral infections and exert anti-inflammatory effects. While there are some studies regarding platelet microvesicle-based (PMV-based) therapy, there is still much to learn about PMVs before such therapy can be used. This review provides the background necessary to understand the roles of platelet-released factors, how these factors might be useful in PMV-based therapy, and a critical discussion of current knowledge of platelets and their role in viral diseases.
Collapse
Affiliation(s)
| | | | - Sanjay B. Maggirwar
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA; (B.O.); (N.S.-S.)
| |
Collapse
|
111
|
Xin Y, Peng J, Hong YY, Chao QC, Na S, Pan S, Zhao LF. Advances in research on the effects of platelet activation in acute lung injury (Review). Biomed Rep 2022; 16:17. [PMID: 35154701 PMCID: PMC8814673 DOI: 10.3892/br.2022.1500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency or failure caused by various factors inside and outside the lungs. ALI is associated with high morbidity and a poor prognosis in hospitalized patients. The lungs serve as a reservoir for platelet precursor megakaryocytes and are closely associated with platelets. Platelets not only play a central role in hemostasis, coagulation and wound healing, but can also act as inflammatory cells capable of stimulating non-hemostatic immune functions under inflammatory conditions, participating in the progression of various inflammatory diseases, and can result in tissue damage. Therefore, it was speculated that platelets may play an important role in the pathogenesis of ALI. In this review, the latest research progress on secretion of bioactive mediators from platelets, platelet activation-related signaling pathways, and the direct contact reactions between platelets and neutrophils with endothelial cells that result in ALI are described, providing evidence to support the importance of the consideration of platelets in the search for ALI interventional targets.
Collapse
Affiliation(s)
- Yuan Xin
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Jiang Peng
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Yu Yun Hong
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Qiao Cong Chao
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Su Na
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Sun Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Lin Fang Zhao
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| |
Collapse
|
112
|
Theuerkauf K, Obach-Schröck C, Staszyk C, Moritz A, Roscher KA. Activated platelets and platelet-leukocyte aggregates in the equine systemic inflammatory response syndrome. J Vet Diagn Invest 2022; 34:448-457. [PMID: 35168432 PMCID: PMC9066687 DOI: 10.1177/10406387221077969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In humans, activated platelets contribute to sepsis complications and to multiple organ failure. In our prospective analytical study of cases of the equine systemic inflammatory response syndrome (SIRS), we adapted a standard human protocol for the measurement of activated platelets and platelet-leukocyte aggregates (PLAs) in equine platelet-leukocyte-rich plasma (PLRP) by flow cytometry, and we investigated the hypothesis that activated platelets and PLAs are increased in clinical cases of SIRS. We included 17 adult horses and ponies fulfilling at least 2 SIRS criteria, and 10 healthy equids as controls. Activation of platelets was determined by increased expression of CD62P on platelets. Activated platelets and PLAs were measured before and after in vitro activation of platelets with collagen. Median expression of CD62P on platelets was significantly increased after activation in the control group: 1.45% (interquartile range [IQR]: 1.08-1.99%) initially versus 8.78% (IQR: 6.79-14.78%, p = 0.002) after activation. The equids with SIRS had significantly more activated platelets and PLAs in native PLRP than controls: CD62P 4.92% (median, IQR: 2.21-12.41%) versus 1.45% in controls (median, IQR: 1.08-1.99%, p = 0.0007), and PLAs 4.16% (median, IQR: 2.50-8.58%) versus 2.95% in controls (median, IQR: 1.57-3.22%, p = 0.048). To our knowledge, increased platelet activation and PLAs have not been demonstrated previously with flow cytometry in clinical cases of equine SIRS.
Collapse
Affiliation(s)
| | - Carmen Obach-Schröck
- Equine Clinic, Internal Medicine, Department of Veterinary Clinical Science (Theuerkauf, Roscher), Institute of Veterinary-Anatomy, -Histology and -Embryology (Obach-Schröck, Staszyk), Clinical Pathophysiology and Veterinary Clinical Pathology, Department of Veterinary Clinical Science (Moritz), Justus-Liebig-University, Giessen, Germany
| | - Carsten Staszyk
- Equine Clinic, Internal Medicine, Department of Veterinary Clinical Science (Theuerkauf, Roscher), Institute of Veterinary-Anatomy, -Histology and -Embryology (Obach-Schröck, Staszyk), Clinical Pathophysiology and Veterinary Clinical Pathology, Department of Veterinary Clinical Science (Moritz), Justus-Liebig-University, Giessen, Germany
| | - Andreas Moritz
- Equine Clinic, Internal Medicine, Department of Veterinary Clinical Science (Theuerkauf, Roscher), Institute of Veterinary-Anatomy, -Histology and -Embryology (Obach-Schröck, Staszyk), Clinical Pathophysiology and Veterinary Clinical Pathology, Department of Veterinary Clinical Science (Moritz), Justus-Liebig-University, Giessen, Germany
| | - Katja A Roscher
- Equine Clinic, Internal Medicine, Department of Veterinary Clinical Science (Theuerkauf, Roscher), Institute of Veterinary-Anatomy, -Histology and -Embryology (Obach-Schröck, Staszyk), Clinical Pathophysiology and Veterinary Clinical Pathology, Department of Veterinary Clinical Science (Moritz), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
113
|
Jurasz P, Ignjatovic V, Lordkipanidzé M. Editorial: Established and Novel Roles of Platelets in Health and Disease. Front Cardiovasc Med 2022; 9:835615. [PMID: 35174235 PMCID: PMC8841832 DOI: 10.3389/fcvm.2022.835615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Vera Ignjatovic
- Department of Haematology Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Marie Lordkipanidzé
| |
Collapse
|
114
|
Neonatal Sepsis and Hemostasis. Diagnostics (Basel) 2022; 12:diagnostics12020261. [PMID: 35204352 PMCID: PMC8871162 DOI: 10.3390/diagnostics12020261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Neonatal sepsis is considered critical for a significant increase in neonatal morbidity and mortality among hospitalized neonates. Neonatal sepsis, in most cases, coexists with coagulopathy, which can prove to be life-threatening. Complex molecular and cellular systems are involved in the cross-talk between inflammation and hemostasis during sepsis. Disturbances in the regulating systems of the vascular endothelium, and platelet–endothelial and platelet–neutrophil interactions play a pivotal role in both inflammation and coagulation. This complex process is poorly understood in neonates. In addition to the developmental maturation of hemostasis and the immune response in neonatal sepsis, a cellular model of hemostasis during sepsis should be taken into account. This review focused on the molecular and cellular mechanisms underlying inflammation and hemostasis during neonatal sepsis, taking the developmental immune response and developmental hemostasis into account in order to provide future diagnostic approaches to be applied in everyday clinical settings. Regarding the diagnostic modalities, we briefly provide the limitations of the currently used conventional coagulation assays, focusing on viscoelastic tests and platelet flow cytometry.
Collapse
|
115
|
Dechamps M, De Poortere J, Martin M, Gatto L, Daumerie A, Bouzin C, Octave M, Ginion A, Robaux V, Pirotton L, Bodart J, Gerard L, Montiel V, Campion A, Gruson D, Van Dievoet MA, Douxfils J, Haguet H, Morimont L, Derive M, Jolly L, Bertrand L, Dumoutier L, Castanares-Zapatero D, Laterre PF, Horman S, Beauloye C. Inflammation-Induced Coagulopathy Substantially Differs Between COVID-19 and Septic Shock: A Prospective Observational Study. Front Med (Lausanne) 2022; 8:780750. [PMID: 35111777 PMCID: PMC8801505 DOI: 10.3389/fmed.2021.780750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Critical COVID-19, like septic shock, is related to a dysregulated systemic inflammatory reaction and is associated with a high incidence of thrombosis and microthrombosis. Improving the understanding of the underlying pathophysiology of critical COVID-19 could help in finding new therapeutic targets already explored in the treatment of septic shock. The current study prospectively compared 48 patients with septic shock and 22 patients with critical COVID-19 regarding their clinical characteristics and outcomes, as well as key plasmatic soluble biomarkers of inflammation, coagulation, endothelial activation, platelet activation, and NETosis. Forty-eight patients with matched age, gender, and co-morbidities were used as controls. Critical COVID-19 patients exhibited less organ failure but a prolonged ICU length-of-stay due to a prolonged respiratory failure. Inflammatory reaction of critical COVID-19 was distinguished by very high levels of interleukin (IL)-1β and T lymphocyte activation (including IL-7 and CD40L), whereas septic shock displays higher levels of IL-6, IL-8, and a more significant elevation of myeloid response biomarkers, including Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) and IL-1ra. Subsequent inflammation-induced coagulopathy of COVID-19 also differed from sepsis-induced coagulopathy (SIC) and was characterized by a marked increase in soluble tissue factor (TF) but less platelets, antithrombin, and fibrinogen consumption, and less fibrinolysis alteration. In conclusion, COVID-19 inflammation-induced coagulopathy substantially differs from SIC. Modulating TF release and activity should be evaluated in critical COVID-19 patients.
Collapse
Affiliation(s)
- Mélanie Dechamps
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Cardiovascular Intensive Care, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Julien De Poortere
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Manon Martin
- Computational Biology and Bioinformatics Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Aurélie Daumerie
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Marie Octave
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Audrey Ginion
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Valentine Robaux
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Laurence Pirotton
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Julie Bodart
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ludovic Gerard
- Department of Intensive Care, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Pôle de Pneumologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Virginie Montiel
- Department of Intensive Care, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Alessandro Campion
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Damien Gruson
- Department of Clinical Biology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Jonathan Douxfils
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur, Belgium
- Qualiblood, s.a., Namur, Belgium
| | - Hélène Haguet
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur, Belgium
- Qualiblood, s.a., Namur, Belgium
| | - Laure Morimont
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur, Belgium
- Qualiblood, s.a., Namur, Belgium
| | | | | | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Laure Dumoutier
- Experimental Medicine Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Diego Castanares-Zapatero
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Intensive Care, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- *Correspondence: Christophe Beauloye
| |
Collapse
|
116
|
Ma J, Zhang T, Wang W, Chen Y, Cai W, Zhu B, Xu L, Gao H, Zhang L, Li J, Gao X. Comparative Transcriptome Analyses of Gayal (Bos frontalis), Yak (Bos grunniens), and Cattle (Bos taurus) Reveal the High-Altitude Adaptation. Front Genet 2022; 12:778788. [PMID: 35087567 PMCID: PMC8789257 DOI: 10.3389/fgene.2021.778788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Gayal and yak are well adapted to their local high-altitude environments, yet the transcriptional regulation difference of the plateau environment among them remains obscure. Herein, cross-tissue and cross-species comparative transcriptome analyses were performed for the six hypoxia-sensitive tissues from gayal, yak, and cattle. Gene expression profiles for all single-copy orthologous genes showed tissue-specific expression patterns. By differential expression analysis, we identified 3,020 and 1,995 differentially expressed genes (DEGs) in at least one tissue of gayal vs. cattle and yak vs. cattle, respectively. Notably, we found that the adaptability of the gayal to the alpine canyon environment is highly similar to the yak living in the Qinghai-Tibet Plateau, such as promoting red blood cell development, angiogenesis, reducing blood coagulation, immune system activation, and energy metabolism shifts from fatty acid β-oxidation to glycolysis. By further analyzing the common and unique DEGs in the six tissues, we also found that numerous expressed regulatory genes related to these functions are unique in the gayal and yak, which may play important roles in adapting to the corresponding high-altitude environment. Combined with WGCNA analysis, we found that UQCRC1 and COX5A are the shared differentially expressed hub genes related to the energy supply of myocardial contraction in the heart-related modules of gayal and yak, and CAPS is a shared differential hub gene among the hub genes of the lung-related module, which is related to pulmonary artery smooth muscle contraction. Additionally, EDN3 is the unique differentially expressed hub gene related to the tracheal epithelium and pulmonary vasoconstriction in the lung of gayal. CHRM2 is a unique differentially expressed hub gene that was identified in the heart of yak, which has an important role in the autonomous regulation of the heart. These results provide a basis for further understanding the complex transcriptome expression pattern and the regulatory mechanism of high-altitude domestication of gayal and yak.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Junya Li
- *Correspondence: Junya Li, ; Xue Gao,
| | - Xue Gao
- *Correspondence: Junya Li, ; Xue Gao,
| |
Collapse
|
117
|
Johnson BZ, Stevenson AW, Barrett LW, Fear MW, Wood FM, Linden MD. Platelets after burn injury - hemostasis and beyond. Platelets 2022; 33:655-665. [PMID: 34986759 DOI: 10.1080/09537104.2021.1981849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Burn injuries are common and often life-threatening trauma. With this trauma comes an interruption of normal hemostasis, with distinct impacts on platelets. Our interest in the relationships between burn injury and platelet function stems from two key perspectives: platelet function is a vital component of acute responses to injury, and furthermore the incidence of cardiovascular disease (CVD) is higher in burn survivors compared to the general population. This review explores the impact of burn injury on coagulation, platelet function, and the participation of platelets in immunopathology. Potential avenues of further research are explored, and consideration is given to what therapies may be appropriate for mediating post-burn thrombopathology.
Collapse
Affiliation(s)
- B Z Johnson
- Burn Injury Research Unit, University of Western Australia, Perth, Australia.,School of Biomedical Science, University of Western Australia, Perth, Australia
| | - A W Stevenson
- Burn Injury Research Unit, University of Western Australia, Perth, Australia.,School of Biomedical Science, University of Western Australia, Perth, Australia
| | - L W Barrett
- Burn Injury Research Unit, University of Western Australia, Perth, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - M W Fear
- Burn Injury Research Unit, University of Western Australia, Perth, Australia.,School of Biomedical Science, University of Western Australia, Perth, Australia
| | - F M Wood
- Burn Injury Research Unit, University of Western Australia, Perth, Australia.,Burns Service of Western Australia, Wa Department of Health, Nedlands, Australia
| | - M D Linden
- School of Biomedical Science, University of Western Australia, Perth, Australia
| |
Collapse
|
118
|
Langer HF. Chronic inflammation in atherosclerosis-The CD40L/CD40 axis belongs to dendritic cells and T cells, not platelets. J Thromb Haemost 2022; 20:3-5. [PMID: 34796641 DOI: 10.1111/jth.15591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Harald F Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
119
|
Santoro F, Nuñez-Gil IJ, Vitale E, Viana-Llamas MC, Reche-Martinez B, Romero-Pareja R, Feltez Guzman G, Fernandez Rozas I, Uribarri A, Becerra-Muñoz VM, Alfonso-Rodriguez E, Garcia-Aguado M, Huang J, Ortega-Armas ME, Garcia Prieto JF, Corral Rubio EM, Ugo F, Bianco M, Mulet A, Raposeiras-Roubin S, Jativa Mendez JL, Espejo Paeres C, Albarrán AR, Marín F, Guerra F, Akin I, Cortese B, Ramakrishna H, Macaya C, Fernandez-Ortiz A, Brunetti ND. Antiplatelet therapy and outcome in COVID-19: the Health Outcome Predictive Evaluation Registry. Heart 2022; 108:130-136. [PMID: 34611045 PMCID: PMC8494537 DOI: 10.1136/heartjnl-2021-319552] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Standard therapy for COVID-19 is continuously evolving. Autopsy studies showed high prevalence of platelet-fibrin-rich microthrombi in several organs. The aim of the study was therefore to evaluate the safety and efficacy of antiplatelet therapy (APT) in hospitalised patients with COVID-19 and its impact on survival. METHODS 7824 consecutive patients with COVID-19 were enrolled in a multicentre international prospective registry (Health Outcome Predictive Evaluation-COVID-19 Registry). Clinical data and in-hospital complications were recorded. Data on APT, including aspirin and other antiplatelet drugs, were obtained for each patient. RESULTS During hospitalisation, 730 (9%) patients received single APT (93%, n=680) or dual APT (7%, n=50). Patients treated with APT were older (74±12 years vs 63±17 years, p<0.01), more frequently male (68% vs 57%, p<0.01) and had higher prevalence of diabetes (39% vs 16%, p<0.01). Patients treated with APT showed no differences in terms of in-hospital mortality (18% vs 19%, p=0.64), need for invasive ventilation (8.7% vs 8.5%, p=0.88), embolic events (2.9% vs 2.5% p=0.34) and bleeding (2.1% vs 2.4%, p=0.43), but had shorter duration of mechanical ventilation (8±5 days vs 11±7 days, p=0.01); however, when comparing patients with APT versus no APT and no anticoagulation therapy, APT was associated with lower mortality rates (log-rank p<0.01, relative risk 0.79, 95% CI 0.70 to 0.94). On multivariable analysis, in-hospital APT was associated with lower mortality risk (relative risk 0.39, 95% CI 0.32 to 0.48, p<0.01). CONCLUSIONS APT during hospitalisation for COVID-19 could be associated with lower mortality risk and shorter duration of mechanical ventilation, without increased risk of bleeding. TRIAL REGISTRATION NUMBER NCT04334291.
Collapse
Affiliation(s)
- Francesco Santoro
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Enrica Vitale
- Department of Medical and Surgical Sciences, Universita degli Studi di Foggia, Foggia, Italy
| | - Maria C Viana-Llamas
- Department of Intensive Medicine, Hospital General Universitario de Guadalajara, Guadalajara, Spain
| | | | | | | | | | - Aitor Uribarri
- Department of Cardiology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | | | | | - Marcos Garcia-Aguado
- Department of Cardiology, Puerta de Hierro University Hospital of Majadahonda, Majadahonda, Spain
| | - Jia Huang
- Department of Cardiology, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | | | | | | | - Fabrizio Ugo
- Department of Cardiology, Sant'Andrea Hospital, Vercelli, Italy
| | - Matteo Bianco
- Division of Cardiology, San Luigi Gonzaga University Hospital, Orbassano and Rivoli infermi Hospital, Rivoli, Italy
| | - Alba Mulet
- Department of Lung Disease, Hospital Clinico Valencia, Valencia, Spain
| | | | | | | | | | - Francisco Marín
- Department of Cardiology, Hospital Clinico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Federico Guerra
- Cardiology and Arrhythmology Department, Marche Polytechnic University, University Hospital 'Ospedali Riuniti', Ancona, Italy
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine, University of Mannheim, Mannheim, Germany
| | | | - Harish Ramakrishna
- Department of Cardiovascular and Thoracic Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Carlos Macaya
- Department of Cardiology, San Carlos University Hospital, Madrid, Spain
| | | | - Natale Daniele Brunetti
- Department of Medical and Surgical Sciences, Università degli Studi di Foggia, Foggia, Italy
| |
Collapse
|
120
|
Vardon-Bounes F, Garcia C, Piton A, Series J, Gratacap MP, Poëtte M, Seguin T, Crognier L, Ruiz S, Silva S, Conil JM, Minville V, Payrastre B. Evolution of Platelet Activation Parameters During Septic Shock in Intensive Care Unit. Platelets 2021; 33:918-925. [PMID: 34915822 DOI: 10.1080/09537104.2021.2007873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During severe sepsis, platelet activation may induce disseminate microvascular thrombosis, which play a key role in critical organ failure. Crucially, most of the studies in this field have explored platelet-leukocyte interactions in animal models, or explored platelets under the spectrum of thrombocytopenia or disseminated intravascular coagulation and have not taken into account the complex interplay that might exist between platelets and leukocytes during human septic shock nor the kinetics of platelet activation. Here, we assessed platelet activation parameters at the admission of patients with sepsis to the intensive care unit (ICU) and 48 hours later. Twenty-two patients were enrolled in the study, thirteen (59.1%) of whom were thrombocytopenic. The control group was composed of twelve infection-free patients admitted during the study period. The activation parameters studied included platelet-leukocyte interactions, assessed by flow cytometry in whole blood, as well as membrane surface and soluble platelet activation markers measured by flow cytometry and dedicated ELISA kits. We also investigated platelet aggregation and secretion responses of patients with sepsis following stimulation, compared to controls. At admission, the level of circulating monocyte-platelet and neutrophil-platelet heterotypic aggregates was significantly higher in sepsis patients compared to controls and returned to a level comparable to controls or even below 48 hours later. Basal levels of CD62P and CD63 platelet membrane exposure at admission and 48 hours later were low and similar to controls. In contrast, plasma level of soluble GPVI and soluble CD40 ligand was significantly increased in septic patients, at the two times of analysis, reflecting previous platelet activation. Platelet aggregation and secretion responses induced by specific agonists were significantly decreased in septic conditions, particularly 48 hours after admission. Hence, we have observed for the first time that critically ill septic patients compared to controls have both an early and durable platelet activation while their circulating platelets are less responsive to different agonists.
Collapse
Affiliation(s)
- Fanny Vardon-Bounes
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,INSERM UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université Paul Sabatier Toulouse 3, Toulouse, France
| | - Cédric Garcia
- INSERM UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université Paul Sabatier Toulouse 3, Toulouse, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Alexandra Piton
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,INSERM UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université Paul Sabatier Toulouse 3, Toulouse, France
| | - Jennifer Series
- INSERM UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université Paul Sabatier Toulouse 3, Toulouse, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Marie-Pierre Gratacap
- INSERM UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université Paul Sabatier Toulouse 3, Toulouse, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Michaël Poëtte
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,INSERM UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université Paul Sabatier Toulouse 3, Toulouse, France
| | - Thierry Seguin
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Laure Crognier
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Stéphanie Ruiz
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Stein Silva
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,INSERM UMR 1214, ToNIC: Toulouse NeuroImaging Center, Toulouse, France
| | - Jean-Marie Conil
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Vincent Minville
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,INSERM UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université Paul Sabatier Toulouse 3, Toulouse, France
| | - Bernard Payrastre
- INSERM UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université Paul Sabatier Toulouse 3, Toulouse, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
121
|
Schmidt SN, Reichardt W, Kaufmann BA, Wadle C, von Elverfeldt D, Stachon P, Hilgendorf I, Wolf D, Heidt T, Duerschmied D, Peter K, Bode C, von zur Mühlen C, Maier A. P2Y 12 Inhibition in Murine Myocarditis Results in Reduced Platelet Infiltration and Preserved Ejection Fraction. Cells 2021; 10:3414. [PMID: 34943922 PMCID: PMC8699761 DOI: 10.3390/cells10123414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Previous mouse studies have shown the increased presence of platelets in the myocardium during early stages of myocarditis and their selective detection by MRI. Here, we aimed to depict early myocarditis using molecular contrast-enhanced ultrasound of activated platelets, and to evaluate the impact of a P2Y12 receptor platelet inhibition. Experimental autoimmune myocarditis was induced in BALB/c mice by subcutaneous injection of porcine cardiac myosin and complete Freund adjuvant (CFA). Activated platelets were targeted with microbubbles (MB) coupled to a single-chain antibody that binds to the "ligand-induced binding sites" of the GPIIb/IIIa-receptor (=LIBS-MB). Alongside myocarditis induction, a group of mice received a daily dose of 100 g prasugrel for 1 month. Mice injected with myosin and CFA had a significantly deteriorated ejection fraction and histological inflammation on day 28 compared to mice only injected with myosin. Platelets infiltrated the myocardium before reduction in ejection fraction could be detected by echocardiography. No selective binding of the LIBS-MB contrast agent could be detected by either ultrasound or histology. Prasugrel therapy preserved ejection fraction and significantly reduced platelet aggregates in the myocardium compared to mice without prasugrel therapy. Therefore, P2Y12 inhibition could be a promising early therapeutic target in myocarditis, requiring further investigation.
Collapse
Affiliation(s)
- Sarah Nasreen Schmidt
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.N.S.); (C.W.); (P.S.); (I.H.); (D.W.); (T.H.); (D.D.); (C.B.); (C.v.z.M.)
| | - Wilfried Reichardt
- University Medical Center Freiburg, Department of Radiology–Medical Physics, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (W.R.); (D.v.E.)
- German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Beat A. Kaufmann
- Department of Cardiology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland;
| | - Carolin Wadle
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.N.S.); (C.W.); (P.S.); (I.H.); (D.W.); (T.H.); (D.D.); (C.B.); (C.v.z.M.)
| | - Dominik von Elverfeldt
- University Medical Center Freiburg, Department of Radiology–Medical Physics, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (W.R.); (D.v.E.)
| | - Peter Stachon
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.N.S.); (C.W.); (P.S.); (I.H.); (D.W.); (T.H.); (D.D.); (C.B.); (C.v.z.M.)
- Medical Center Mannheim, Department of Cardiology, Medical Faculty Mannheim, Haemostaseology and Medical Intensive Care University Heidelberg University, 68167 Mannheim, Germany
| | - Ingo Hilgendorf
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.N.S.); (C.W.); (P.S.); (I.H.); (D.W.); (T.H.); (D.D.); (C.B.); (C.v.z.M.)
| | - Dennis Wolf
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.N.S.); (C.W.); (P.S.); (I.H.); (D.W.); (T.H.); (D.D.); (C.B.); (C.v.z.M.)
| | - Timo Heidt
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.N.S.); (C.W.); (P.S.); (I.H.); (D.W.); (T.H.); (D.D.); (C.B.); (C.v.z.M.)
| | - Daniel Duerschmied
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.N.S.); (C.W.); (P.S.); (I.H.); (D.W.); (T.H.); (D.D.); (C.B.); (C.v.z.M.)
- Medical Center Mannheim, Department of Cardiology, Medical Faculty Mannheim, Haemostaseology and Medical Intensive Care University Heidelberg University, 68167 Mannheim, Germany
| | - Karlheinz Peter
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia;
| | - Christoph Bode
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.N.S.); (C.W.); (P.S.); (I.H.); (D.W.); (T.H.); (D.D.); (C.B.); (C.v.z.M.)
| | - Constantin von zur Mühlen
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.N.S.); (C.W.); (P.S.); (I.H.); (D.W.); (T.H.); (D.D.); (C.B.); (C.v.z.M.)
| | - Alexander Maier
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.N.S.); (C.W.); (P.S.); (I.H.); (D.W.); (T.H.); (D.D.); (C.B.); (C.v.z.M.)
| |
Collapse
|
122
|
Shigeta A, Tanabe N, Naito A, Yokota H, Kato F, Jujo-Sanada T, Sakao S, Ishida K, Masuda M, Tatsumi K. Preoperative soluble cluster of differentiation 40 ligand level is associated with outcome of pulmonary endarterectomy. JTCVS OPEN 2021; 8:618-629. [PMID: 36004182 PMCID: PMC9390291 DOI: 10.1016/j.xjon.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/12/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022]
Abstract
Objective Soluble CD40 ligand (sCD40L) is associated with some pathobiological states. However, whether sCD40L in patients with chronic thromboembolic pulmonary hypertension (CTEPH) who underwent pulmonary endarterectomy (PEA) is associated with perioperative pulmonary hemodynamics and surgical outcomes has not been elucidated. Here we aimed to investigate whether sCD40L is a useful serologic biomarker of poor surgical outcome of PEA in patients with CTEPH. Methods Ninety patients with CTEPH who underwent PEA were enrolled. Independent preoperative parameters were examined, including sCD40L related to lower cardiac index (CI), higher pulmonary vascular resistance (PVR), and poor surgical outcomes after PEA, according to the multivariate logistic regression analysis. In addition, the area under the curve (AUC) value of sCD40L to predict poor surgical outcomes was compared with the AUCs of D-dimer and C-reactive protein (CRP). The generalizability of this study model was tested by a 5-fold cross-validation analysis. Results Multivariate logistic regression analysis showed that high sCD40L level was related to postoperative lower CI, higher PVR, and poor surgical outcomes independent of other preoperative parameters. The AUC value of sCD40L to predict poor surgical outcomes was higher than those of D-dimer and CRP. A sCD40L cutoff value of 1.45 ng/mL predicted poor surgical outcomes with 79.3% sensitivity and 67.3% specificity. The 5-fold cross-validation analysis showed the effectiveness of our model's performance. Conclusions Preoperative sCD40L level could be a promising serologic biomarker associated with poor surgical outcomes in CTEPH. In addition to known preoperative parameters, the biomarker might have the potential to identify patients at high risk of PEA, thereby reducing the mortality rates.
Collapse
Affiliation(s)
- Ayako Shigeta
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Address for reprints: Ayako Shigeta, MD, PhD, Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuou-Ku Chiba 260-8670, Japan.
| | - Nobuhiro Tanabe
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Respirology, Chibaken Saiseikai Narashino Hospital, Narashino, Japan
| | - Akira Naito
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hajime Yokota
- Department of Radiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumiaki Kato
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Jujo-Sanada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keiichi Ishida
- Department of Cardiovascular Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Cardiovascular Surgery, Eastern Chiba Medical Center, Togane, Japan
| | - Masahisa Masuda
- Department of Cardiovascular Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Cardiovascular Surgery, Eastern Chiba Medical Center, Togane, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
123
|
Leiva O, AbdelHameid D, Connors JM, Cannon CP, Bhatt DL. Common Pathophysiology in Cancer, Atrial Fibrillation, Atherosclerosis, and Thrombosis: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2021; 3:619-634. [PMID: 34988471 PMCID: PMC8702799 DOI: 10.1016/j.jaccao.2021.08.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease and cancer are the 2 leading causes of death worldwide. Emerging evidence suggests common mechanisms between cancer and cardiovascular disease, including atrial fibrillation and atherosclerosis. With advances in cancer therapies, screening, and diagnostics, cancer-specific survival and outcomes have improved. This increase in survival has led to the coincidence of cardiovascular disease, including atrial fibrillation and atherosclerosis, as patients with cancer live longer. Additionally, cancer and cardiovascular disease share several risk factors and underlying pathophysiologic mechanisms, including inflammation, cancer-related factors including treatment effects, and alterations in platelet function. Patients with cancer are at increased risk for bleeding and thrombosis compared with the general population. Although optimal antithrombotic therapy, including agent choice and duration, has been extensively studied in the general population, this area remains understudied in patients with cancer despite their altered thrombotic and bleeding risk. Future investigation, including incorporation of cancer-specific characteristics to traditional thrombotic and bleeding risk scores, clinical trials in the cancer population, and the development of novel antithrombotic and anti-inflammatory strategies on the basis of shared pathophysiologic mechanisms, is warranted to improve outcomes in this patient population.
Collapse
Key Words
- AF, atrial fibrillation
- CAD, coronary artery disease
- CHIP, clonal hematopoiesis of indeterminate potential
- CI, confidence interval
- CLEC-2, C-type lectin-like receptor 2
- HR, hazard ratio
- IL, interleukin
- MI, myocardial infarction
- PCI, percutaneous coronary intervention
- ROS, reactive oxygen species
- TKI, tyrosine kinase inhibitor
- VTE, venous thromboembolism
- arrhythmia
- risk factor
- thrombosis
Collapse
Affiliation(s)
- Orly Leiva
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Duaa AbdelHameid
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jean M. Connors
- Division of Hematology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher P. Cannon
- Brigham and Women’s Hospital Heart & Vascular Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Deepak L. Bhatt
- Brigham and Women’s Hospital Heart & Vascular Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
124
|
Sheemar A, Soni D, Takkar B, Basu S, Venkatesh P. Inflammatory mediators in diabetic retinopathy: Deriving clinicopathological correlations for potential targeted therapy. Indian J Ophthalmol 2021; 69:3035-3049. [PMID: 34708739 PMCID: PMC8725076 DOI: 10.4103/ijo.ijo_1326_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
The role of inflammation in diabetic retinopathy (DR) is well-established and dysregulation of a large number of inflammatory mediators is known. These include cytokines, chemokines, growth factors, mediators of proteogenesis, and pro-apoptotic molecules. This para-inflammation as a response is not directed to a particular pathogen or antigen but is rather directed toward the by-products of the diabetic milieu. The inflammatory mediators take part in cascades that result in cellular level responses like neurodegeneration, pericyte loss, leakage, capillary drop out, neovascularization, etc. There are multiple overlaps between the inflammatory pathways occurring within the diabetic retina due to a large number of mediators, their varied sources, and cross-interactions. This makes understanding the role of inflammation in clinical manifestations of DR difficult. Currently, mediator-based therapy for DR is being evaluated for interventions that target a specific step of the inflammatory cascade. We reviewed the role of inflammation in DR and derived a simplified clinicopathological correlation between the sources and stimuli of inflammation, the inflammatory mediators and pathways, and the clinical manifestations of DR. By doing so, we deliberate mediator-specific therapy for DR. The cross-interactions between inflammatory mediators and the molecular cycles influencing the inflammatory cascades are crucial challenges to such an approach. Future research should be directed to assess the feasibility of the pathology-based therapy for DR.
Collapse
Affiliation(s)
- Abhishek Sheemar
- Department of Ophthalmology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Deepak Soni
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Brijesh Takkar
- Smt. Kanuri Santhamma Center for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India
- Indian Health Outcomes, Public Health and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Soumyava Basu
- Uveitis Service, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Pradeep Venkatesh
- Dr.R.P.Centre for Ophthalmic Sciences, All India Institute of Medical Science, New Delhi, India
| |
Collapse
|
125
|
Cellular and molecular mechanisms in COVID-19 coagulopathy: role of inflammation and endotheliopathy. J Thromb Thrombolysis 2021; 53:282-290. [PMID: 34687400 PMCID: PMC8536904 DOI: 10.1007/s11239-021-02583-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Coronavirus 2 (CoV-2) infection or coronavirus disease 2019 (COVID-19) is frequently associated with microvascular thrombosis.The microthrombosis in COVID-19 is the result of the interplay between inflammation and endotheliopathy. Elevated interleukin-6 (IL-6) characterizes COVID-19 inflammation resulting in endotheliopathy and coagulopathy marked by elevated D-dimer (DD). Aim of this study is to identify and to describe the coagulation changes in 100 moderate COVID-19 patients having lung involvement and to determine the association of coagulopathy with the severity and prognosis. METHODS Inflammation, endothelial and coagulation molecules were measured in moderate and mild disease. RESULTS IL-6 and tumor necrosis factor-α (TNF-α) and tissue factor (TF), von Willebrand factor (VWF), and tissue factor pathway inhibitor (TFPI) significantly increased in moderate disease as well as D-dimer, thrombin antithrombin complex (TAT), Fibrinogen (Fib), platelet factor-4 (PF4), β-thromboglobulin (β-TG), P-selectin, and platelet adhesion. Shortened clotting time (CT) and clot formation time (CFT), high maximum clot firmness (MCF) and low LY at 30 min were present in 100% of moderate COVID-19 patients compared with mild COVID-19 patients. CONCLUSIONS These findings demonstrate that moderate COVID-19 has a profound inflammation associated with severee ndotheliopathy and intense coagulation activation uncontrolled by TFPI. Attention should be paid to coagulopathy in COVID-19. Closely monitoring of coagulation and application of appropriate anticoagulation may improve the prognosis of moderate COVID-19 and to prevent the progression to severe COVID-19 disease.
Collapse
|
126
|
Boshtam M, Kouhpayeh S, Amini F, Azizi Y, Najaflu M, Shariati L, Khanahmad H. Anti-inflammatory effects of apocynin: a narrative review of the evidence. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1990136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Kouhpayeh
- Department of Immunology, Erythron Genetics and Pathobiology Laboratory, Isfahan, Iran
| | - Farahnaz Amini
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Yadollah Azizi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Najaflu
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied physiology research center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
127
|
Wang F, Ao G, Wang Y, Liu F, Bao M, Gao M, Zhou S, Qi X. Risk factors for mortality in hemodialysis patients with COVID-19: a systematic review and meta-analysis. Ren Fail 2021; 43:1394-1407. [PMID: 34629011 PMCID: PMC8510603 DOI: 10.1080/0886022x.2021.1986408] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background New evidence from studies on risk factors for mortality in hemodialysis (HD) patients with COVID-19 became available. We aimed to review the clinical risk factors for fatal outcomes in these patients. Methods We performed meta-analysis using the PubMed, EMBASE, and Cochrane databases. A fixed- or random-effects model was used for calculating heterogeneity. We used contour-enhanced funnel plot and Egger’s tests to assess potential publication bias. Results Twenty-one studies were included. The proportion of males was lower in the survivor group than in the non-survivor group (OR = 0.75, 95% CI [0.61, 0.94]). The proportion of respiratory diseases was significantly lower in the survivor group than in the non-survivor group (OR = 0.42, 95% CI [0.29, 0.60]). The proportion of patients with fever, cough, and dyspnea was significantly lower in the survivor group (fever: OR = 0.53, 95% CI [0.31, 0.92]; cough: OR = 0.50, 95% CI [0.38, 0.65]; dyspnea: OR = 0.25, 95% CI [0.14, 0.47]) than in the non-survivor group. Compared with the non-survivor group, the survivor group had higher albumin and platelet levels and lower leucocyte counts. Conclusions Male patients might have a higher risk of developing severe COVID-19. Comorbidities, such as respiratory diseases could also greatly influence the clinical prognosis of COVID-19. Clinical features, such as fever, dyspnea, cough, and abnormal platelet, leucocyte, and albumin levels, could imply eventual death. Our findings will help clinicians identify markers for the detection of high mortality risk in HD patients at an early stage of COVID-19.
Collapse
Affiliation(s)
- Fengping Wang
- Department of Nephrology, Chengdu Second People's Hospital, Chengdu, PR China
| | - Guangyu Ao
- Department of Nephrology, Chengdu First People's Hospital, Chengdu, PR China
| | - Yushu Wang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, PR China.,Chengdu West China Clinical Research Center Co., Ltd, Chengdu, PR China
| | - Fuqiang Liu
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, PR China
| | - Mulong Bao
- Department of Intensive Care Unit, Chengdu First People's Hospital, Chengdu, PR China
| | - Ming Gao
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, PR China
| | - Shulu Zhou
- Department of Nephrology, Chengdu First People's Hospital, Chengdu, PR China
| | - Xin Qi
- Department of Neurology, the Affiliated Hospital of Southwest Jiaotong University & the Third People's Hospital of Chengdu, Chengdu, PR China
| |
Collapse
|
128
|
Abu El-Hamd M, Aboeldahab S. A case of resistant multiple plantar warts cured with combined autologous platelet-rich plasma injection and topical salicylic acid 30. J Cosmet Dermatol 2021; 21:2417-2419. [PMID: 34559938 DOI: 10.1111/jocd.14468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Plantar warts are common benign cutaneous lesions affecting the plantar aspects of the feet; they are caused by infection of the keratinocytes by the human papillomavirus (HPV). The effective treatment of plantar warts is still a therapeutic challenge. AIM This study aimed to assess the possible clinical efficacy and safety of the combined intralesional autologous platelet-rich plasma (PRP) injection with local application of salicylic acid 30% solution in the treatment of multiple resistant plantar warts. METHOD In the present case, a 54-year-old immunocompetent male patient presented with multiple, bilateral resistant plantar warts. RESULTS A complete clearance of the plantar warts was observed after three sessions of intralesional autologous PRP injections with one-month interval, combined with twice-daily local application of salicylic acid 30% solution between sessions. No recurrence was recorded after a nine-month follow-up from the last session. There were no reported side effects during or after the sessions. CONCLUSION The combined intralesional autologous PRP injection with topical salicylic acid is an effective, economic, and safe modality of treatment for multiple resistant plantar warts.
Collapse
Affiliation(s)
- Mohammed Abu El-Hamd
- Department of Dermatology, Venereology, and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Soha Aboeldahab
- Department of Dermatology, Venereology, and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
129
|
Momi S, Falcinelli E, Petito E, Ciarrocca Taranta G, Ossoli A, Gresele P. Matrix metalloproteinase-2 on activated platelets triggers endothelial PAR-1 initiating atherosclerosis. Eur Heart J 2021; 43:504-514. [PMID: 34529782 DOI: 10.1093/eurheartj/ehab631] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/02/2021] [Accepted: 09/09/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS Platelets participate in atherogenesis with mechanisms not yet fully clarified. Vascular wall MMP-2 is involved in the arterial remodelling accompanying atherosclerosis. Platelets contain and release MMP-2 but no informations are available on its role in atherosclerotic lesion formation. METHODS AND RESULTS We generated double knockout mice lacking the LDL receptor and MMP-2 only in circulating blood cells showing that they develop significantly lesser femoral intima thickening after photochemical-induced arterial damage and atherosclerotic lesions in the aorta, measured by the en face method, after 4 months of atherogenic diet. Moreover, repeated transfusions of autologous-activated platelets in LDLR-/- mice on atherogenic diet significantly enhanced the extension of aortic atherosclerotic lesions while transfusion of activated platelets from MMP-2-/- mice did not. In vitro coincubation studies showed that platelet-derived MMP-2 plays a pivotal role in the development and progression of atherosclerosis through a complex cross-talk between activated platelets, monocyte/macrophages, and endothelial cells. Translational studies in patients with CAD and chronic HIV infection showed that platelet surface expression of MMP-2 highly significantly correlated with the degree of carotid artery stenosis. CONCLUSION We show a previously unknown mechanism of the pathway through which platelets expressing MMP-2 trigger the initial phases of atherosclerosis and provide a mechanism showing that they activate endothelial PAR-1 triggering endothelial p38MAPK signalling and the expression of adhesion molecules. The development of drugs blocking selectively platelet MMP-2 or its expression may represent a new approach to the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Stefania Momi
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Strada Vicinale Via delle Corse, Perugia 06132, Italy
| | - Emanuela Falcinelli
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Strada Vicinale Via delle Corse, Perugia 06132, Italy
| | - Eleonora Petito
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Strada Vicinale Via delle Corse, Perugia 06132, Italy
| | - Giulia Ciarrocca Taranta
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Strada Vicinale Via delle Corse, Perugia 06132, Italy
| | - Alice Ossoli
- Center E. Grossi Paoletti, Department of Pharmacologic and Biomolecular Science, University of Milan, via delle Corse, Milan 06132, Italy
| | - Paolo Gresele
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Strada Vicinale Via delle Corse, Perugia 06132, Italy
| |
Collapse
|
130
|
Madike LN, Pillay M, Popat KC. Antithrombogenic properties of Tulbaghia violacea aqueous leaf extracts: assessment of platelet activation and whole blood clotting kinetics. RSC Adv 2021; 11:30455-30464. [PMID: 35480283 PMCID: PMC9041137 DOI: 10.1039/d1ra00926e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022] Open
Abstract
Tulbaghia violacea plant extracts have been investigated for their potential therapeutic effects in the management of various ailments, among which are cardiovascular diseases, due to the wide range of phytocompounds that the plant possesses. One of the major challenges in clinical practice is the inability to control platelet activation and clotting caused by cardiovascular disease interventions. Current treatment methods to inhibit platelet aggregation and thromboxane formation have been associated with major undesirable side effects. This has led to increased research studies on the development of newer and more effective antiplatelet agents. In particular, there has been a growing interest on the potential antiplatelet activity of plant-derived extracts. Hence this study methodically evaluates the anticlotting and antiplatelet properties of T. violacea aqueous leaf extracts. The platelet activity of the plant extracts was assessed using total platelet adhesion, platelet morphology and whole blood clotting kinetics. The 0.1 mg ml-1 T. violacea extract mixed with blood plasma demonstrated the lowest platelet adhesion and activation and also reduced whole blood clotting kinetics. There was a reduction of about 70% in platelet adhesion for the 0.1 mg ml-1 treatment compared to the control in the first 15 min which was supported by morphological characterization under SEM. These observations suggest that T. violacea may be a potential antiplatelet therapeutic agent to inhibit the initial step of platelet adhesion and ultimately reduce the incidence of cardiovascular events.
Collapse
Affiliation(s)
- Lerato N Madike
- Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology Andries Potgieter Blvd Vanderbijlpark 1911 South Africa
| | - M Pillay
- Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology Andries Potgieter Blvd Vanderbijlpark 1911 South Africa
| | - Ketul C Popat
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University Fort Collins Colorado 80523 USA
| |
Collapse
|
131
|
Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat Biomed Eng 2021; 5:1038-1047. [PMID: 33903744 PMCID: PMC9102991 DOI: 10.1038/s41551-021-00712-1] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
The immunosuppressive microenvironment of solid tumours reduces the antitumour activity of chimeric antigen receptor T cells (CAR-T cells). Here, we show that the release-through the implantation of a hyaluronic acid hydrogel-of CAR-T cells targeting the human chondroitin sulfate proteoglycan 4, polymer nanoparticles encapsulating the cytokine interleukin-15 and platelets conjugated with the checkpoint inhibitor programmed death-ligand 1 into the tumour cavity of mice with a resected subcutaneous melanoma tumour inhibits the local recurrence of the tumour as well as the growth of distant tumours, through the abscopal effect. The hydrogel, which functions as a reservoir, facilitates the enhanced distribution of the CAR-T cells within the surgical bed, and the inflammatory microenvironment triggers platelet activation and the subsequent release of platelet-derived microparticles. The post-surgery local delivery of combination immunotherapy through a biocompatible hydrogel reservoir could represent a translational route for preventing the recurrence of cancers with resectable tumours.
Collapse
|
132
|
Yıldırım A, Kücükosmanoglu M, Koyunsever NY, Cekici Y, Dogdus M, Saracoglu E, Kilic S. Association between serum SCUBE1 levels and thrombus burden in patients with ST-segment elevation myocardial infarction. Acta Cardiol 2021; 76:777-784. [PMID: 33283652 DOI: 10.1080/00015385.2020.1852753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The signal peptide-CUB-EGF domain-containing protein-1 (SCUBE1) is a recently available biomarker which is expressed by activated and adhered platelets. In present study, we aimed to investigate the association between SCUBE1 levels and thrombus burden in patients with ST elevation myocardial infarction (STEMI) who underwent primary percutaneous coronary intervention (PPCI). METHODS A total of 88 patients who were diagnosed with STEMI and underwent PPCI were prospectively included between July 2019 and August 2019. Blood samples were collected for routine biochemistry and serum SCUBE1 levels before PPCI and antiplatelet therapy. Angiographic coronary thrombus burden was classified based on thrombolysis in myocardial infarction (TIMI) thrombus grades. We formed two groups based on the thrombus grade: 37 (42%) patients had high thrombus burden whereas 51 (58%) patients had low thrombus burden. RESULTS The mean age of study population was 58.2 ± 11.8 years (34% female). The mean peak troponin I level, SCUBE1 level, SYNTAX score, and pain-to-balloon time were significantly higher in the high thrombus burden group compared to the low thrombus burden group (p < .05, for all). In ROC analysis, SCUBE1 level >65.63 ng/dL had a sensitivity of 91.9% and a specificity of 76.6% to predict high thrombus burden (AUC: 0.9256; p < .001). In multivariate analysis, SCUBE1 level (HR: 1.133, p = .004) and troponin (HR: 1.002; 95% CI 1.001-1.004, p = .003) were independent predictors of high thrombus burden. CONCLUSION In the present study, we showed that SCUBE1, a novel platelet-endothelial adhesion molecule and a marker of platelet activation, is an independent predictor of high thrombus burden in patients with STEMI.
Collapse
Affiliation(s)
- Arafat Yıldırım
- Department of Cardiology, University of Health Sciences – Adana Health Practice and Research Center, Adana, Turkey
| | - Mehmet Kücükosmanoglu
- Department of Cardiology, University of Health Sciences – Adana Health Practice and Research Center, Adana, Turkey
| | - Nermin Yildiz Koyunsever
- Department of Cardiology, University of Health Sciences – Adana Health Practice and Research Center, Adana, Turkey
| | - Yusuf Cekici
- Department of Cardiology, Uşak University Research and Training Hospital, Uşak, Turkey
| | - Mustafa Dogdus
- Department of Cardiology, Mehmet Akif Inan Research and Training Hospital, Şanlıurfa, Turkey
| | - Erhan Saracoglu
- Department of Cardiology, University of Health Sciences, Yıldırım Beyazıt Dışkapı Research and Training Hospital, Ankara, Turkey
| | - Salih Kilic
- Department of Cardiology, University of Health Sciences – Adana Health Practice and Research Center, Adana, Turkey
| |
Collapse
|
133
|
Thrombo-Inflammation: A Focus on NTPDase1/CD39. Cells 2021; 10:cells10092223. [PMID: 34571872 PMCID: PMC8469976 DOI: 10.3390/cells10092223] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence for a link between inflammation and thrombosis. Following tissue injury, vascular endothelium becomes activated, losing its antithrombotic properties whereas inflammatory mediators build up a prothrombotic environment. Platelets are the first elements to be activated following endothelial damage; they participate in physiological haemostasis, but also in inflammatory and thrombotic events occurring in an injured tissue. While physiological haemostasis develops rapidly to prevent excessive blood loss in the endothelium activated by inflammation, hypoxia or by altered blood flow, thrombosis develops slowly. Activated platelets release the content of their granules, including ATP and ADP released from their dense granules. Ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1)/CD39 dephosphorylates ATP to ADP and to AMP, which in turn, is hydrolysed to adenosine by ecto-5'-nucleotidase (CD73). NTPDase1/CD39 has emerged has an important molecule in the vasculature and on platelet surfaces; it limits thrombotic events and contributes to maintain the antithrombotic properties of endothelium. The aim of the present review is to provide an overview of platelets as cellular elements interfacing haemostasis and inflammation, with a particular focus on the emerging role of NTPDase1/CD39 in controlling both processes.
Collapse
|
134
|
França TT, Al-Sbiei A, Bashir G, Mohamed YA, Salgado RC, Barreiros LA, Maria da Silva Napoleão S, Weber CW, Fernandes Severo Ferreira J, Aranda CS, Prando C, de Barros Dorna MB, Jurisica I, Fernandez-Cabezudo MJ, Ochs HD, Condino-Neto A, Al-Ramadi BK, Cabral-Marques O. CD40L modulates transcriptional signatures of neutrophils in the bone marrow associated with development and trafficking. JCI Insight 2021; 6:e148652. [PMID: 34255742 PMCID: PMC8410015 DOI: 10.1172/jci.insight.148652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neutrophils are produced in the BM in a process called granulopoiesis, in which progenitor cells sequentially develop into mature neutrophils. During the developmental process, which is finely regulated by distinct transcription factors, neutrophils acquire the ability to exit the BM, properly distribute throughout the body, and migrate to infection sites. Previous studies have demonstrated that CD40 ligand (CD40L) influences hematopoiesis and granulopoiesis. Here, we investigate the effect of CD40L on neutrophil development and trafficking by performing functional and transcriptome analyses. We found that CD40L signaling plays an essential role in the early stages of neutrophil generation and development in the BM. Moreover, CD40L modulates transcriptional signatures, indicating that this molecule enables neutrophils to traffic throughout the body and to migrate in response to inflammatory signals. Thus, our study provides insights into the complex relationships between CD40L signaling and granulopoiesis, and it suggests a potentially novel and nonredundant role of CD40L signaling in neutrophil development and function.
Collapse
Affiliation(s)
- Tábata Takahashi França
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ashraf Al-Sbiei
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Yassir Awad Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Ranieri Coelho Salgado
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Lucila Akune Barreiros
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Cristina Worm Weber
- Pediatric Allergy & Immunology Clinic, Caxias do Sul, Rio Grande do Sul, Brazil
| | | | - Carolina Sanchez Aranda
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Carolina Prando
- Faculdades Pequeno Príncipe, Pelé Pequeno Principe Research Intitute, Curitiba, Paraná, Brazil.,Hospital Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Mayra B de Barros Dorna
- Division of Allergy and Immunology, Department of Pediatrics, Children's Institute, Hospital das Clínicas, São Paulo, São Paulo, Brazil
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Krembil Research Institute, University Health Network, Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontaro, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maria J Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, Washington, USA
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, Abu Dhabi, United Arab Emirates.,Zayed Center for Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, São Paulo, Brazil.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil.,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, São Paulo, Brazil
| |
Collapse
|
135
|
The Relationship between Inflammation Markers (CRP, IL-6, sCD40L) and Colorectal Cancer Stage, Grade, Size and Location. Diagnostics (Basel) 2021; 11:diagnostics11081382. [PMID: 34441316 PMCID: PMC8393680 DOI: 10.3390/diagnostics11081382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022] Open
Abstract
The aim of the study was the evaluation whether in primary colorectal cancer (CRC) patients (n = 55): age, sex, TNM classification results, WHO grade, tumor location (proximal colon, distal colon, rectum), tumor size, platelet count (PLT), mean platelet volume (MPV), mean platelet component (MCP), levels of carcinoembryonic antigen (CEA), cancer antigen (CA 19-9), as well as soluble lectin adhesion molecules (L-, E-, and P-selectins) may influence circulating inflammatory biomarkers: IL-6, CRP, and sCD40L. We found that CRP concentration evaluation in routine clinical practice may have an advantage as a prognostic biomarker in CRC patients, as this protein the most comprehensively reflects clinicopathological features of the tumor. Univariate linear regression analysis revealed that in CRC patients: (1) with an increase in PLT by 10 × 103/μL, the mean concentration of CRP increases by 3.4%; (2) with an increase in CA 19-9 of 1 U/mL, the mean concentration of CRP increases by 0.7%; (3) with the WHO 2 grade, the mean CRP concentration increases 3.631 times relative to the WHO 1 grade group; (4) with the WHO 3 grade, the mean CRP concentration increases by 4.916 times relative to the WHO 1 grade group; (5) with metastases (T1-4N+M+) the mean CRP concentration increases 4.183 times compared to non-metastatic patients (T1-4N0M0); (6) with a tumor located in the proximal colon, the mean concentration of CRP increases 2.175 times compared to a tumor located in the distal colon; (7) in patients with tumor size > 3 cm, the CRP concentration is about 2 times higher than in patients with tumor size ≤ 3 cm. In the multivariate linear regression model, the variables that influence the mean CRP value in CRC patients included: WHO grade and tumor localization. R2 for the created model equals 0.50, which indicates that this model explains 50% of the variance in the dependent variable. In CRC subjects: (1) with the WHO 2 grade, the mean CRP concentration rises 3.924 times relative to the WHO 1 grade; (2) with the WHO 3 grade, the mean CRP concentration increases 4.721 times in relation to the WHO 1 grade; (3) with a tumor located in the rectum, the mean CRP concentration rises 2.139 times compared to a tumor located in the distal colon; (4) with a tumor located in the proximal colon, the mean concentration of CRP increases 1.998 times compared to the tumor located in the distal colon; if other model parameters are fixed.
Collapse
|
136
|
Ebermeyer T, Cognasse F, Berthelot P, Mismetti P, Garraud O, Hamzeh-Cognasse H. Platelet Innate Immune Receptors and TLRs: A Double-Edged Sword. Int J Mol Sci 2021; 22:ijms22157894. [PMID: 34360659 PMCID: PMC8347377 DOI: 10.3390/ijms22157894] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Platelets are hematopoietic cells whose main function has for a long time been considered to be the maintenance of vascular integrity. They have an essential role in the hemostatic response, but they also have functional capabilities that go far beyond it. This review will provide an overview of platelet functions. Indeed, stress signals may induce platelet apoptosis through proapoptotis or hemostasis receptors, necrosis, and even autophagy. Platelets also interact with immune cells and modulate immune responses in terms of activation, maturation, recruitment and cytokine secretion. This review will also show that platelets, thanks to their wide range of innate immune receptors, and in particular toll-like receptors, and can be considered sentinels actively participating in the immuno-surveillance of the body. We will discuss the diversity of platelet responses following the engagement of these receptors as well as the signaling pathways involved. Finally, we will show that while platelets contribute significantly, via their TLRs, to immune response and inflammation, these receptors also participate in the pathophysiological processes associated with various pathogens and diseases, including cancer and atherosclerosis.
Collapse
Affiliation(s)
- Théo Ebermeyer
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
| | - Fabrice Cognasse
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Etablissement Français du Sang Auvergne-Rhône-Alpes, 25 bd Pasteur, F-42100 Saint-Étienne, France
| | - Philippe Berthelot
- Team GIMAP, CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, U1111, UMR5308, F-69007 Lyon, France;
- Infectious Diseases Department, CHU de St-Etienne, F-42055 Saint-Etienne, France
| | - Patrick Mismetti
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Department of Vascular Medicine and Therapeutics, INNOVTE, CHU de St-Etienne, F-42055 Saint-Etienne, France
| | - Olivier Garraud
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
| | - Hind Hamzeh-Cognasse
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Correspondence:
| |
Collapse
|
137
|
Platelet and Red Blood Cell Transfusions and Risk of Acute Graft-versus-Host Disease after Myeloablative Allogeneic Hematopoietic Cell Transplantation. Transplant Cell Ther 2021; 27:866.e1-866.e9. [PMID: 34252580 DOI: 10.1016/j.jtct.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 12/22/2022]
Abstract
Transfusion therapy is a critical part of supportive care early after allogeneic hematopoietic cell transplantation (allo-HCT). Platelet and RBC transfusions elicit immunomodulatory effects in the recipient, but if this impacts the risk of acute graft-versus-host disease (aGVHD) has only been scarcely investigated. We investigated if platelet and RBC transfusions were associated with the development of aGVHD following myeloablative allo-HCT in a cohort of 664 patients who underwent transplantation between 2000 and 2019. Data were further analyzed for the impact of blood donor age and sex and blood product storage time. Exploratory analyses were conducted to assess correlations between transfusion burden and plasma biomarkers of inflammation and endothelial activation and damage. Between day 0 and day +13, each patient received a median of 7 (IQR, 5 to 10) platelet transfusions and 3 (IQR, 2 to 6) RBC transfusions (Spearman's ρ = 0.49). The cumulative sums of platelet and RBC transfusions, respectively, received from day 0 to day +13 were associated with subsequent grade II-IV aGVHD in multivariable landmark Cox models (platelets: adjusted hazard ratio [HR], 1.27; 95% confidence interval [CI], 1.06 to 1.51; RBCs: adjusted HR, 1.41; 95% CI, 1.09 to 1.82; both per 5 units; 184 events). For both platelet and RBC transfusions, we did not find support for a difference in the risk of aGVHD according to age or sex of the blood donor. Transfusion of RBCs with a storage time longer than the median of 8 days was inversely associated with aGVHD (HR per 5 units, 0.54; 95% CI, 0.30 to 0.96); however, when using an RBC storage time of ≥14 days as a cutoff, there was no longer evidence for an association with aGVHD (HR, 1.03 per 5 units; 95% CI, 0.53 to 2.00). For platelets, there was no clear association between storage time and the risk of aGVHD. The transfusion burdens of platelets and RBCs were positively correlated with plasma levels of TNF-α, IL-6, and soluble thrombomodulin at day +14. In conclusion, platelet and RBC transfusions in the first 2 weeks after myeloablative allo-HCT were associated with subsequent development of grade II-IV aGVHD. We did not find evidence of an impact of blood donor age or sex or blood product storage time on the risk of aGVHD. Our findings support restrictive transfusion strategies in allo-HCT recipients.
Collapse
|
138
|
Åkesson A, Ljungkvist M, Martin M, Blom AM, Klintman J, Schött U, Zetterberg E, Kander T. Biomarkers of complement and platelet activation are not correlated with the one or twenty-four hours corrected count increments in prophylactically platelet transfused hematological patients: a prospective cohort study. Platelets 2021; 33:350-359. [PMID: 34210243 DOI: 10.1080/09537104.2021.1942817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Platelet transfusion refractoriness is a serious clinical concern that complicates the management of thrombocytopenic patients. Previous studies have suggested a potential role for both complement and platelet activation based on in vitro analyses of platelet concentrates. In this study, the post-transfusion platelet response, as indicated by the corrected count increment at 1 and 24 h after prophylactic platelet transfusions, respectively, was correlated with the 1 h post-transfusion Δconcentration (1 h post-transfusion - pretransfusion) of complement and platelet activation biomarkers. The study was registered as a clinical trial at ClinicalTrials.gov (identifier: NCT02601131) and patients were recruited during inpatient care in the hematological department. Soluble terminal complement complexes, soluble P-selectin and soluble CD40 ligand were analyzed. Confirmed alloimmunized patients were excluded. Included subjects were either given platelet transfusions (n = 43) and categorized into four clinical study groups or included in a non-transfused control group (n = 10). In total, 54 transfusions were included. No transfusion-mediated complement activation was observed. The transfusions were associated with a significant increase in the concentration of soluble P-selectin (p < .001), primarily corresponding to the passive infusion of soluble P-selectin-containing plasma residuals. The Δconcentration of soluble P-selectin was, however, not significantly correlated with the corrected count increments. Thus, significant correlations between biomarkers of complement and platelet activation and the post-transfusion platelet response could not be demonstrated in this study.
Collapse
Affiliation(s)
- Alexander Åkesson
- The Clinical Coagulation Research Unit, Department of Translational Medicine, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Marcus Ljungkvist
- Department of Clinical Chemistry and Pharmacology, University and Regional Laboratories, Region Skåne, Malmö, Sweden
| | - Myriam Martin
- The Medical Protein Chemistry Research Group, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- The Medical Protein Chemistry Research Group, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jenny Klintman
- The Clinical Coagulation Research Unit, Department of Translational Medicine, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Ulf Schött
- Anesthesia and Intensive Care, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Eva Zetterberg
- The Clinical Coagulation Research Unit, Department of Translational Medicine, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Thomas Kander
- Anesthesia and Intensive Care, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
139
|
Camilli M, Iannaccone G, La Vecchia G, Cappannoli L, Scacciavillani R, Minotti G, Massetti M, Crea F, Aspromonte N. Platelets: the point of interconnection among cancer, inflammation and cardiovascular diseases. Expert Rev Hematol 2021; 14:537-546. [PMID: 34126832 DOI: 10.1080/17474086.2021.1943353] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The association between thrombosis, cancer and inflammation is well-established. Platelets play a major role in atherosclerosis, inflammation and immune response. Furthermore, growing evidence suggests that they are also significantly involved in tumor development and progression so that anti-platelet agents may prevent cancer and improve outcomes in oncological patients. In this review, we aimed at analyzing the relationship between platelets, cardiovascular diseases and cancer. A comprehensive study in the main educational platforms was performed and high-quality original articles and reviews were included. AREAS COVERED This review will focus on the role of platelets in cardiovascular disease and in cancer genesis and progression, analyzing their function as immune cells that link inflammation to thrombosis. Finally, it will examine the recent controversies on the use of anti-platelet agents as cancer medications, in particular the already known anti-tumor properties of aspirin, as well as the new perspectives regarding P2Y12 inhibitors. EXPERT OPINION Platelet-cancer crosstalk generates a vicious feed-back loop involving tumor cells and secreting molecules that activate platelets, which in turn promote cancer-associated inflammation, proliferation, spreading and immune system evasion. Therefore, platelets inhibition may represent an innovative therapeutical strategy offered to cancer patients, in the perspective of personalized medicine.
Collapse
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy
| | - Giulia Iannaccone
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy
| | - Giulia La Vecchia
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy
| | - Luigi Cappannoli
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy
| | - Roberto Scacciavillani
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy
| | - Giorgio Minotti
- Department of Medicine, Center for Integrated Research and Unit of Drug Sciences, University Campus Bio-Medico, Rome, Italy
| | - Massimo Massetti
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy.,Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy.,Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Nadia Aspromonte
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy.,Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
140
|
Zhou Y, Heitmann JS, Kropp KN, Hinterleitner M, Koch A, Hartkopf AD, Salih HR, Hinterleitner C, Maurer S. Regulation of Platelet-Derived ADAM17: A Biomarker Approach for Breast Cancer? Diagnostics (Basel) 2021; 11:diagnostics11071188. [PMID: 34208863 PMCID: PMC8305148 DOI: 10.3390/diagnostics11071188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2021] [Accepted: 06/26/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor progression and metastasis are critically dependent on the tumor microenvironment. A disintegrin and metalloproteinase 17 (ADAM17) is associated with shedding of several substrates involved in tumor progression and known to be expressed by platelets of healthy donors and patients with solid tumors. Here, we report that platelet-derived ADAM17 (pADAM17) is regulated upon platelet activation of breast cancer patients, but not of healthy individuals. The observed downregulation of pADAM17 on platelets of cancer patients correlated with clinical parameters related to tumor progression including tumor stage and the occurrence of metastasis. Our data identify an association between platelet activation, modulation of platelet-derived ADAM17, and metastasis. In conclusion, we demonstrate that further development of pADAM17 as a liquid biomarker is warranted for monitoring disease progression in breast cancer.
Collapse
Affiliation(s)
- Yanjun Zhou
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany; (Y.Z.); (J.S.H.); (M.H.); (H.R.S.); (S.M.)
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Jonas S. Heitmann
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany; (Y.Z.); (J.S.H.); (M.H.); (H.R.S.); (S.M.)
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Korbinian N. Kropp
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of Mainz, 55131 Mainz, Germany;
| | - Martina Hinterleitner
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany; (Y.Z.); (J.S.H.); (M.H.); (H.R.S.); (S.M.)
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - André Koch
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (A.K.); (A.D.H.)
| | - Andreas D. Hartkopf
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (A.K.); (A.D.H.)
| | - Helmut R. Salih
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany; (Y.Z.); (J.S.H.); (M.H.); (H.R.S.); (S.M.)
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Clemens Hinterleitner
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany; (Y.Z.); (J.S.H.); (M.H.); (H.R.S.); (S.M.)
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, 72076 Tuebingen, Germany
- Correspondence:
| | - Stefanie Maurer
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany; (Y.Z.); (J.S.H.); (M.H.); (H.R.S.); (S.M.)
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
141
|
Spurgeon BEJ, Linden MD, Michelson AD, Frelinger AL. Immunophenotypic Analysis of Platelets by Flow Cytometry. Curr Protoc 2021; 1:e178. [PMID: 34170638 DOI: 10.1002/cpz1.178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Platelets are small but very abundant blood cells that play a key role in hemostasis, contributing to thrombus formation at sites of injury. The ability of platelets to perform this function, as well as functions in immunity and inflammation, is dependent on the presence of cell surface glycoproteins and changes in their quantity and conformation after platelet stimulation. In this article, we describe the characterization of platelet surface markers and platelet function using platelet-specific fluorescent probes and flow cytometry. Unlike traditional platelet tests, immunophenotypic analysis of platelets by flow cytometry allows the analysis of platelet function in samples with very low platelet counts as often encountered in clinical situations. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Immunophenotyping of platelet surface receptors Alternate Protocol: Fix-first method for immunophenotyping of platelet surface receptors Basic Protocol 2: Determination of platelet activation using P-selectin expression and/or PAC1 binding Basic Protocol 3: Determination of procoagulant platelets using annexin V binding or antibodies specific for coagulation factor V/Va or X/Xa Support Protocol: Preparation of isolated platelets.
Collapse
Affiliation(s)
- Benjamin E J Spurgeon
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Matthew D Linden
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Alan D Michelson
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Andrew L Frelinger
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
142
|
Baidildinova G, Nagy M, Jurk K, Wild PS, Ten Cate H, van der Meijden PEJ. Soluble Platelet Release Factors as Biomarkers for Cardiovascular Disease. Front Cardiovasc Med 2021; 8:684920. [PMID: 34235190 PMCID: PMC8255615 DOI: 10.3389/fcvm.2021.684920] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Platelets are the main players in thrombotic diseases, where activated platelets not only mediate thrombus formation but also are involved in multiple interactions with vascular cells, inflammatory components, and the coagulation system. Although in vitro reactivity of platelets provides information on the function of circulating platelets, it is not a full reflection of the in vivo activation state, which may be relevant for thrombotic risk assessment in various disease conditions. Therefore, studying release markers of activated platelets in plasma is of interest. While this type of study has been done for decades, there are several new discoveries that highlight the need for a critical assessment of the available tests and indications for platelet release products. First, new insights have shown that platelets are not only prominent players in arterial vascular disease, but also in venous thromboembolism and atrial fibrillation. Second, knowledge of the platelet proteome has dramatically expanded over the past years, which contributed to an increasing array of tests for proteins released and shed from platelets upon activation. Identification of changes in the level of plasma biomarkers associated with upcoming thromboembolic events allows timely and individualized adjustment of the treatment strategy to prevent disease aggravation. Therefore, biomarkers of platelet activation may become a valuable instrument for acute event prognosis. In this narrative review based on a systematic search of the literature, we summarize the process of platelet activation and release products, discuss the clinical context in which platelet release products have been measured as well as the potential clinical relevance.
Collapse
Affiliation(s)
- Gaukhar Baidildinova
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Magdolna Nagy
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site RhineMain, Mainz, Germany
| | - Philipp S Wild
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site RhineMain, Mainz, Germany.,Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hugo Ten Cate
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, Netherlands
| | - Paola E J van der Meijden
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.,Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
143
|
Thrombopoietin, Soluble CD40 Ligand, and Platelet Count During Veno-arterial Extracorporeal Membrane Oxygenation. ASAIO J 2021; 68:e77-e79. [PMID: 34081052 DOI: 10.1097/mat.0000000000001508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
144
|
Lagrange J, Lacolley P, Wahl D, Peyrin-Biroulet L, Regnault V. Shedding Light on Hemostasis in Patients With Inflammatory Bowel Diseases. Clin Gastroenterol Hepatol 2021; 19:1088-1097.e6. [PMID: 31972287 DOI: 10.1016/j.cgh.2019.12.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/19/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
Patients with inflammatory bowel diseases (IBD) have an increased risk of thrombosis, possibly due to changes in blood cells and molecules involved in hemostasis. They have increased platelet counts and reactivity as well as increased platelet-derived large extracellular vesicles. Coagulation is continuously activated in patients with IBD, based on measured markers of thrombin generation, and the anticoagulant functions of endothelial cells are damaged. Furthermore, fibrinogen is increased and fibrin clots are denser. However, pathogenesis of thrombosis in patients with IBD appears to differ from that of patients without IBD. Patients with IBD also take drugs that might contribute to risk of thrombosis, complicating the picture. We review the features of homeostasis that are altered in patients with IBD and possible mechanisms of this relationship.
Collapse
Affiliation(s)
- Jeremy Lagrange
- INSERM U1116, Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| | - Patrick Lacolley
- INSERM U1116, Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; Centre Hospitalier Régionale Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| | - Denis Wahl
- INSERM U1116, Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; Division of Vascular Medicine, Centre Hospitalier Régionale Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| | - Laurent Peyrin-Biroulet
- Université de Lorraine, Nancy, France; INSERM U1256, Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France; Department of Gastroenterology, Centre Hospitalier Régionale Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| | - Véronique Regnault
- INSERM U1116, Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; Centre Hospitalier Régionale Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| |
Collapse
|
145
|
Savage AK, Gutschow MV, Chiang T, Henderson K, Green R, Chaudhari M, Swanson E, Heubeck AT, Kondza N, Burley KC, Genge PC, Lord C, Smith T, Thomson Z, Beaubien A, Johnson E, Goldy J, Bolouri H, Buckner JH, Meijer P, Coffey EM, Skene PJ, Torgerson TR, Li XJ, Bumol TF. Multimodal analysis for human ex vivo studies shows extensive molecular changes from delays in blood processing. iScience 2021; 24:102404. [PMID: 34113805 PMCID: PMC8169801 DOI: 10.1016/j.isci.2021.102404] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 12/04/2022] Open
Abstract
Multi-omic profiling of human peripheral blood is increasingly utilized to identify biomarkers and pathophysiologic mechanisms of disease. The importance of these platforms in clinical and translational studies led us to investigate the impact of delayed blood processing on the numbers and state of peripheral blood mononuclear cells (PBMC) and on the plasma proteome. Similar to previous studies, we show minimal effects of delayed processing on the numbers and general phenotype of PBMC up to 18 hours. In contrast, profound changes in the single-cell transcriptome and composition of the plasma proteome become evident as early as 6 hours after blood draw. These reflect patterns of cellular activation across diverse cell types that lead to progressive distancing of the gene expression state and plasma proteome from native in vivo biology. Differences accumulating during an overnight rest (18 hours) could confound relevant biologic variance related to many underlying disease states. Studies of human blood cells and plasma are highly sensitive to process variability Time variability distorts biology in cutting-edge single-cell and multiplex assays Longitudinal, multi-modal, and aligned data enable data qualification and exploration Dataset holds potential novel, multi-modal biological correlations and hypotheses
Collapse
Affiliation(s)
- Adam K Savage
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | - Tony Chiang
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | - Richard Green
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | | | | | - Nina Kondza
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | - Palak C Genge
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | - Cara Lord
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | - Tanja Smith
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | | | - Ed Johnson
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hamid Bolouri
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Jane H Buckner
- Center for Translational Research, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Paul Meijer
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | - Peter J Skene
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | - Xiao-Jun Li
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | |
Collapse
|
146
|
Singh MV, Suwunnakorn S, Simpson SR, Weber EA, Singh VB, Kalinski P, Maggirwar SB. Monocytes complexed to platelets differentiate into functionally deficient dendritic cells. J Leukoc Biol 2021; 109:807-820. [PMID: 32663904 PMCID: PMC7854860 DOI: 10.1002/jlb.3a0620-460rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
In addition to their role in hemostasis, platelets store numerous immunoregulatory molecules such as CD40L, TGFβ, β2-microglobulin, and IL-1β and release them upon activation. Previous studies indicate that activated platelets form transient complexes with monocytes, especially in HIV infected individuals and induce a proinflammatory monocyte phenotype. Because monocytes can act as precursors of dendritic cells (DCs) during infection/inflammation as well as for generation of DC-based vaccine therapies, we evaluated the impact of activated platelets on monocyte differentiation into DCs. We observed that in vitro cultured DCs derived from platelet-monocyte complexes (PMCs) exhibit reduced levels of molecules critical to DC function (CD206, dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin, CD80, CD86, CCR7) and reduced antigen uptake capacity. DCs derived from PMCs also showed reduced ability to activate naïve CD4+ and CD8+ T cells, and secrete IL-12p70 in response to CD40L stimulation, resulting in decreased ability to promote type-1 immune responses to HIV antigens. Our results indicate that formation of complexes with activated platelets can suppress the development of functional DCs from such monocytes. Disruption of PMCs in vivo via antiplatelet drugs such as Clopidogrel/Prasugrel or the application of platelet-free monocytes for DCs generation in vitro, may be used to enhance immunization and augment the immune control of HIV.
Collapse
Affiliation(s)
- Meera V Singh
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sumanun Suwunnakorn
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Microbiology and Immunology and Tropical Medicine, George Washington School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Sydney R Simpson
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Emily A Weber
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Vir B Singh
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Pawel Kalinski
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Microbiology and Immunology and Tropical Medicine, George Washington School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
147
|
Zamora C, Cantó E, Vidal S. The Dual Role of Platelets in the Cardiovascular Risk of Chronic Inflammation. Front Immunol 2021; 12:625181. [PMID: 33868242 PMCID: PMC8046936 DOI: 10.3389/fimmu.2021.625181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022] Open
Abstract
Patients with chronic inflammatory diseases often exhibit cardiovascular risk. This risk is associated with the systemic inflammation that persists in these patients, causing a sustained endothelial activation. Different mechanisms have been considered responsible for this systemic inflammation, among which activated platelets have been regarded as a major player. However, in recent years, the role of platelets has become controversial. Not only can this subcellular component release pro- and anti-inflammatory mediators, but it can also bind to different subsets of circulating lymphocytes, monocytes and neutrophils modulating their function in either direction. How platelets exert this dual role is not yet fully understood.
Collapse
Affiliation(s)
- Carlos Zamora
- Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Elisabet Cantó
- Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Sílvia Vidal
- Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| |
Collapse
|
148
|
Wang J, Zhou P, Han Y, Zhang H. Platelet transfusion for cancer secondary thrombocytopenia: Platelet and cancer cell interaction. Transl Oncol 2021; 14:101022. [PMID: 33545547 PMCID: PMC7868729 DOI: 10.1016/j.tranon.2021.101022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/14/2023] Open
Abstract
Chemoradiotherapy and autoimmune disorder often lead to secondary thrombocytopenia in cancer patients, and thus, platelet transfusion is needed to stop or prevent bleeding. However, the effect of platelet transfusion remains controversial for the lack of agreement on transfusion strategies. Before being transfused, platelets are stored in blood banks, and their activation is usually stimulated. Increasing evidence shows activated platelets may promote metastasis and the proliferation of cancer cells, while cancer cells also induce platelet activation. Such a vicious cycle of interaction between activated platelets and cancer cells is harmful for the prognosis of cancer patients, which results in an increased tumor recurrence rate and decreased five-year survival rate. Therefore, it is important to explore platelet transfusion strategies, summarize mechanisms of interaction between platelets and tumor cells, and carefully evaluate the pros and cons of platelet transfusion for better treatment and prognosis for patients with cancer with secondary thrombocytopenia.
Collapse
Affiliation(s)
- Juan Wang
- Class 2016 Clinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Pan Zhou
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Hongwei Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
149
|
Hinterleitner C, Zhou Y, Tandler C, Heitmann JS, Kropp KN, Hinterleitner M, Koch A, Hartkopf AD, Zender L, Salih HR, Maurer S. Platelet-Expressed TNFRSF13B (TACI) Predicts Breast Cancer Progression. Front Oncol 2021; 11:642170. [PMID: 33816291 PMCID: PMC8010255 DOI: 10.3389/fonc.2021.642170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Although treatment options in breast cancer have been improved significantly, predictive biomarkers for disease progression and metastasis are still lacking. Recent studies indicate that several TNF Receptor Superfamily members are involved in breast cancer cell proliferation and survival. Interestingly, TNFRSF13B (TACI) mRNA level were of prognostic relevance in breast cancer patients. In this study we provide evidence for TACI expression on platelets of breast cancer patients. The level of platelet-expressed TACI (pTACI) was significantly increased on platelets derived from breast cancer patients compared to healthy controls. Upon platelet activation, pTACI was downregulated on the platelet surface of healthy donors and breast cancer patients. Of note, inhibition of matrix metalloprotease (MMP) prevented downregulation of pTACI ex vivo, indicating that proteolytic cleavage of pTACI is responsible for reduction of pTACI level. Stimulation of pTACI via BAFF, BAFF 60-mer or APRIL did not influence platelet activation and function. Remarkably, pTACI was particularly regulated during tumor progression in our breast cancer cohort. TACI expression levels on platelets were correlated with clinical parameters including tumor stage, occurrence of metastasis and tumor cell proliferation (Ki67). In conclusion, our data emphasize the potential use of platelets as a liquid biomarker in breast cancer.
Collapse
Affiliation(s)
- Clemens Hinterleitner
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Yanjun Zhou
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Claudia Tandler
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Jonas S Heitmann
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Korbinian N Kropp
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of Mainz, Mainz, Germany
| | - Martina Hinterleitner
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - André Koch
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, Tuebingen, Germany
| | - Andreas D Hartkopf
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, Tuebingen, Germany
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.,German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Helmut R Salih
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Stefanie Maurer
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
150
|
Vial G, Gensous N, Duffau P. [The CD40-CD40L axis: Current and future implications in clinical immunology]. Rev Med Interne 2021; 42:722-728. [PMID: 33674076 DOI: 10.1016/j.revmed.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
The CD40-CD40 ligand (CD40L) pathway is a backbone of communication between cells of the immune system. It makes it possible to generate a proinflammatory signal and thus participates in the pathogenesis of dysimmune diseases, transplant rejection and atherosclerosis. Because of this therapeutic target of choice, several generations of anti-CD40L monoclonal antibodies have emerged since the 1990s. The first generation of antibodies was responsible for thromboembolic toxicity for which the mechanisms are starting to be defined. New generations of antibodies were designed to overcome this toxicity and are still being developed in lupus, rheumatoid arthritis, Sjogren's syndrome or immunologic thrombocytopenia. In addition to these targeted therapies, there are data suggesting the impact of several drugs among molecules used in cardiology and clinical immunology on the level of CD40L. The objective of this review is to recall the clinical issues related to the CD40-CD40L axis and to present current or future treatments that block CD40L which would allow clinicians to diversify their options for managing dysimmune diseases.
Collapse
Affiliation(s)
- G Vial
- Department of Internal Medicine and Clinical Immunology, University Hospital Centre of Bordeaux, Saint-André Hospital, 33000 Bordeaux, France.
| | - N Gensous
- Department of Internal Medicine and Clinical Immunology, University Hospital Centre of Bordeaux, Saint-André Hospital, 33000 Bordeaux, France
| | - P Duffau
- Department of Internal Medicine and Clinical Immunology, University Hospital Centre of Bordeaux, Saint-André Hospital, 33000 Bordeaux, France; CNRS UMR 5164, Immuno ConcEpT, Bordeaux University, 33076 Bordeaux, France
| |
Collapse
|