101
|
Mendu DR, Dasari VR, Cai M, Kim KS. Protein folding intermediates of invasin protein IbeA from Escherichia coli. FEBS J 2007; 275:458-69. [PMID: 18167139 DOI: 10.1111/j.1742-4658.2007.06213.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
IbeA of Escherichia coli K1 was cloned, expressed and purified as a His(6)-tag fusion protein. The purified fusion protein inhibited E. coli K1 invasion of human brain microvascular endothelial cells and was heat-modifiable. The structural and functional aspects, along with equilibrium unfolding of IbeA, were studied in solution. The far-UV CD spectrum of IbeA at pH 7.0 has a strong negative peak at 215 nm, indicating the existence of beta-sheet-like structure. The acidic unfolding curve of IbeA at pH 2.0 shows the existence of a partially unfolded molecule (molten globule-like structure) with beta-sheet-like structure and displays strong 8-anilino-2-naphthyl sulfonic acid (ANS) binding. The pH dependent intrinsic fluorescence of IbeA was biphasic. At pH 2.0, IbeA exists in a partially unfolded state with characteristics of a molten globule-like state, and the protein is in extended beta-sheet conformation and exhibits strong ANS binding. Guanidine hydrochloride denaturation of IbeA in the molten globule-like state is noncooperative, contrary to the cooperativity seen with the native protein, suggesting the presence of two domains (possibly) in the molecular structure of IbeA, with differential unfolding stabilities. Furthermore, tryptophan quenching studies suggested the exposure of aromatic residues to solvent in this state. Acid denatured unfolding of IbeA monitored by far-UV CD is non-cooperative with two transitions at pH 3.0-1.5 and 1.5-0.5. At lower pH, IbeA unfolds to the acid-unfolded state, and a further decrease in pH to 2.0 drives the protein to the A state. The presence of 0.5 m KCl in the solvent composition directs the transition to the A state by bypassing the acid-unfolded state. Additional guanidine hydrochloride induced conformational changes in IbeA from the native to the A-state, as monitored by near- and far-UV CD and ANS-fluorescence.
Collapse
Affiliation(s)
- Damodara R Mendu
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
102
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
103
|
Boudier C, Bousquet JA, Schauinger S, Michels B, Bieth JG. Reversible inactivation of serpins at acidic pH. Arch Biochem Biophys 2007; 466:155-63. [PMID: 17765197 DOI: 10.1016/j.abb.2007.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/27/2007] [Accepted: 06/27/2007] [Indexed: 11/21/2022]
Abstract
The inhibitory activity of the serpins alpha(1)-proteinase inhibitor, alpha(1)-antichymotrypsin, alpha(2)-antiplasmin, antithrombin and C(1)-esterase inactivator is rapidly lost at pH 3 but slowly recovers at pH 7.4 with variable first-order rates (t(1/2)=1.4-19.2 min). All except alpha(1)-antichymotrypsin undergo a variation in intrinsic fluorescence intensity upon acidification (midpoint ca. 4.5) with a slow bi-exponential return to the initial intensity at pH 7.4 (mean t(1/2)=2.3-23 min). No correlation was found between the time of fluorescence recovery and that of reactivation. The acid-treated serpins are proteolyzed at neutral pH by their target proteinases. alpha(1)-Proteinase inhibitor was studied in more detail. Its acidification at pH 3 has a mild effect on its secondary structure, strongly disorders its tertiary structure, changes the microenvironment of Cys(232) and causes a very fast change in ellipticity at 225 nm (t(1/2)=1.6s). Neutralization of the acid-treated alpha(1)-proteinase inhibitor is an exothermic phenomenon. It leads to a much faster recovery of activity (t(1/2)=4+/-1 min) than of fluorescence intensity (t(1/2)=23+/-19 min), ellipticity (t(1/2)=32+/-4 min) and change in total energy, indicating that the inhibitory activity of alpha(1)-proteinase inhibitor does not require a fully native structure.
Collapse
Affiliation(s)
- Christian Boudier
- CNRS UMR 7175, Département Physicochimie et Pharmacochimie des Interactions Moléculaires et Cellulaires, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg I, F-67401, Illkirch, France.
| | | | | | | | | |
Collapse
|
104
|
Faudry E, Job V, Dessen A, Attree I, Forge V. Type III secretion system translocator has a molten globule conformation both in its free and chaperone-bound forms. FEBS J 2007; 274:3601-3610. [PMID: 17578515 DOI: 10.1111/j.1742-4658.2007.05893.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type III secretion systems of Gram-negative pathogenic bacteria allow the injection of effector proteins into the cytosol of host eukaryotic cells. Crossing of the eukaryotic plasma membrane is facilitated by a translocon, an oligomeric structure made up of two bacterial proteins inserted into the host membrane during infection. In Pseudomonas aeruginosa, a major human opportunistic pathogen, these proteins are PopB and PopD. Their interactions with their common chaperone PcrH in the cytosol of the bacteria are essential for the proper function of the injection system. The interaction region between PopD and PcrH was identified using limited proteolysis, revealing that the putative PopD transmembrane fragment is buried within the PopD/PcrH complex. In addition, structural features of PopD and PcrH, either individually or within the binary complex, were characterized using spectroscopic methods and 1D NMR. Whereas PcrH possesses the characteristics of a folded protein, PopD is in a molten globule state either alone or in the PopD/PcrH complex. The molten globule state is known to enable the membrane insertion of translocation/pore-forming domains of bacterial toxins. Therefore, within the bacterial cytoplasm, PopD is preserved in a state that is favorable to secretion and insertion into cell membranes.
Collapse
Affiliation(s)
- Eric Faudry
- CEA Grenoble, DSV-iRTSV, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR5092 (CNRS, CEA, Université Joseph Fourier), Grenoble, France Institut de Biologie Structurale Jean-Pierre Ebel, UMR5075 (CNRS, CEA, Université Joseph Fourier), Grenoble, France CEA Grenoble, DSV-iRTSV, Laboratoire de Chimie et Biologie des Métaux, UMR5249 (CNRS, CEA, Université Joseph Fourier), Grenoble, France
| | - Viviana Job
- CEA Grenoble, DSV-iRTSV, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR5092 (CNRS, CEA, Université Joseph Fourier), Grenoble, France Institut de Biologie Structurale Jean-Pierre Ebel, UMR5075 (CNRS, CEA, Université Joseph Fourier), Grenoble, France CEA Grenoble, DSV-iRTSV, Laboratoire de Chimie et Biologie des Métaux, UMR5249 (CNRS, CEA, Université Joseph Fourier), Grenoble, France
| | - Andréa Dessen
- CEA Grenoble, DSV-iRTSV, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR5092 (CNRS, CEA, Université Joseph Fourier), Grenoble, France Institut de Biologie Structurale Jean-Pierre Ebel, UMR5075 (CNRS, CEA, Université Joseph Fourier), Grenoble, France CEA Grenoble, DSV-iRTSV, Laboratoire de Chimie et Biologie des Métaux, UMR5249 (CNRS, CEA, Université Joseph Fourier), Grenoble, France
| | - Ina Attree
- CEA Grenoble, DSV-iRTSV, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR5092 (CNRS, CEA, Université Joseph Fourier), Grenoble, France Institut de Biologie Structurale Jean-Pierre Ebel, UMR5075 (CNRS, CEA, Université Joseph Fourier), Grenoble, France CEA Grenoble, DSV-iRTSV, Laboratoire de Chimie et Biologie des Métaux, UMR5249 (CNRS, CEA, Université Joseph Fourier), Grenoble, France
| | - Vincent Forge
- CEA Grenoble, DSV-iRTSV, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR5092 (CNRS, CEA, Université Joseph Fourier), Grenoble, France Institut de Biologie Structurale Jean-Pierre Ebel, UMR5075 (CNRS, CEA, Université Joseph Fourier), Grenoble, France CEA Grenoble, DSV-iRTSV, Laboratoire de Chimie et Biologie des Métaux, UMR5249 (CNRS, CEA, Université Joseph Fourier), Grenoble, France
| |
Collapse
|
105
|
Gorecka KM, Thouverey C, Buchet R, Pikula S. Potential Role of Annexin AnnAt1 from Arabidopsis thaliana in pH-Mediated Cellular Response to Environmental Stimuli. ACTA ACUST UNITED AC 2007; 48:792-803. [PMID: 17452342 DOI: 10.1093/pcp/pcm046] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Plant annexins, Ca(2+)- and membrane-binding proteins, are probably implicated in the cellular response to stress resulting from acidification of cytosol. To understand how annexins can contribute to cellular ion homeostasis, we investigated the pH-induced changes in the structure and function of recombinant annexin AnnAt1 from Arabidopsis thaliana. The decrease of pH from 7.0 to 5.8 reduced the time of the formation of ion channels by AnnAt1 in artificial lipid membranes from 3.5 h to 15-20 min and increased their unitary conductance from 32 to 63 pS. These changes were accompanied by an increase in AnnAt1 hydrophobicity as revealed by hydrophobicity predictions, by an increase in fluorescence of 2-(p-toluidino)naphthalene-6-sulfonic acid (TNS) bound to AnnAt1 and fluorescence resonance energy transfer from AnnAt1 tryptophan residues to TNS. Concomitant lipid partition of AnnAt1 at acidic pH resulted in its partial protection from proteolytic digestion. Secondary structures of AnnAt1 determined by circular dichroism and infrared spectroscopy were also affected by lowering the pH from 7.2 to 5.2. These changes were characterized by an increase in beta-sheet content at the expense of alpha-helical structures, and were accompanied by reversible formation of AnnAt1 oligomers as probed by ultracentrifugation in a sucrose gradient. A further decrease of pH from 5.2 to 4.5 or lower led to the formation of irreversible aggregates and loss of AnnAt1 ionic conductance. Our findings suggest that AnnAt1 can sense changes of the pH milieu over the pH range from 7 to 5 and respond by changes in ion channel conductance, hydrophobicity, secondary structure of the protein and formation of oligomers. Further acidification irreversibly inactivated AnnAt1. We suggest that the pH-sensitive ion channel activity of AnnAt1 may play a role in intracellular ion homeostasis.
Collapse
Affiliation(s)
- Karolina M Gorecka
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, PL-02093 Warsaw, Poland
| | | | | | | |
Collapse
|
106
|
Rossjohn J, Polekhina G, Feil SC, Morton CJ, Tweten RK, Parker MW. Structures of perfringolysin O suggest a pathway for activation of cholesterol-dependent cytolysins. J Mol Biol 2007; 367:1227-36. [PMID: 17328912 PMCID: PMC3674820 DOI: 10.1016/j.jmb.2007.01.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 12/19/2006] [Accepted: 01/17/2007] [Indexed: 11/22/2022]
Abstract
Cholesterol-dependent cytolysins (CDCs), a large family of bacterial toxins, are secreted as water-soluble monomers and yet are capable of generating oligomeric pores in membranes. Previous work has demonstrated that large scale structural rearrangements occur during this transition but the detailed mechanism by which these changes take place remains a puzzle. Despite evidence of structural and functional couplings between domains 3 and 4, the crystal structure of the CDC, perfringolysin O (PFO), shows the two domains do not make direct contact. Here, we present crystal structures of PFO that demonstrate movements of domain 4 are sufficient to trigger conformational changes that are transmitted through the molecule to the distant domain 3. These coupled movements result in a loss of many contacts between domain 3 and rest of the molecule that would eventually lead to the exposure of transmembrane regions in preparation for membrane insertion. The structures reveal a detailed molecular pathway that may be the basis for the allosteric transition that occurs on initial membrane binding leading to the exposure of membrane-spanning regions in a domain distant from the initial site of interaction.
Collapse
Affiliation(s)
- Jamie Rossjohn
- Biota Structural Biology Laboratory, St. Vincent’s Institute of Medical Research, 9 Princes St, Fitzroy, Victoria 3065, Australia
| | - Galina Polekhina
- Biota Structural Biology Laboratory, St. Vincent’s Institute of Medical Research, 9 Princes St, Fitzroy, Victoria 3065, Australia
| | - Susanne C. Feil
- Biota Structural Biology Laboratory, St. Vincent’s Institute of Medical Research, 9 Princes St, Fitzroy, Victoria 3065, Australia
| | - Craig J. Morton
- Biota Structural Biology Laboratory, St. Vincent’s Institute of Medical Research, 9 Princes St, Fitzroy, Victoria 3065, Australia
| | - Rodney K. Tweten
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Michael W. Parker
- Biota Structural Biology Laboratory, St. Vincent’s Institute of Medical Research, 9 Princes St, Fitzroy, Victoria 3065, Australia
| |
Collapse
|
107
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Molten globule state of tear lipocalin: ANS binding restores tertiary interactions. Biochem Biophys Res Commun 2007; 357:499-504. [PMID: 17434452 PMCID: PMC1952184 DOI: 10.1016/j.bbrc.2007.03.186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 03/28/2007] [Indexed: 11/25/2022]
Abstract
Tear lipocalin (TL) may stabilize the lipid layer of tears through a molten globule state triggered by low pH. EPR spectroscopy with site-directed spin labeling, revealed the side chain mobility of residues on the G-strand of TL in a molten globule state; the G-strand retains beta-sheet structure. All of the side chains of G-strand residues become more loosely packed, especially residues 96-99. In contrast, the highly mobile side chain of residue 95 on the F-G loop, becomes tightly packed. ANS binding to TL in a molten globule state reestablishes tight packing around side chains that are oriented both inside and outside of the barrel. Unlike RBP and BLG; TL has no disulfide bond between G- and H-strands. It is likely that the central beta-sheet in the molten globule state of lipocalins is stabilized by its interactions with the main alpha-helix, rather than the interstrand disulfide bond.
Collapse
Affiliation(s)
| | | | - Ben J. Glasgow
- *Corresponding author: Ben J. Glasgow, Departments of Pathology and Ophthalmology, UCLA School of Medicine, Jules Stein Eye Institute, 100 Stein Plaza, Rm# B269, Los Angeles, CA 90095, USA, (310) 825–6998,
| |
Collapse
|
108
|
Veresov VG, Davidovskii AI. Monte Carlo simulations of tBid association with the mitochondrial outer membrane. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:19-33. [PMID: 17375293 DOI: 10.1007/s00249-007-0149-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 02/02/2007] [Accepted: 02/24/2007] [Indexed: 12/24/2022]
Abstract
Bid, a BH3-only pro-apoptopic member of the BCL-2 protein family, regulates cell death at the level of mitochondrial cytochrome c efflux. Bid consists of 8 alpha-helices (H1-H8, respectively) and is soluble cytosolic protein in its native state. Proteolysis of the N-terminus (encompassing H1 and H2) of Bid by caspase 8 in apoptosis yields activated "tBid" (truncated Bid), which translocates to the mitochondria and induces the efflux of cytochrome c. The release of cytochrome c from mitochondria to the cytosol constitutes a critical control point in apoptosis that is regulated by interaction of tBid protein with mitochondrial membrane. tBid displays structural homology to channel-forming bacterial toxins, such as colicins or transmembrane domain of diphtheria toxin. By analogy, it has been hypothesized that tBid would unfold and insert into the lipid bilayer of the mitochondria outer membrane (MOM) upon membrane association. However, it has been shown recently that unlike colicins and the transmembrane domain of diphtheria toxin, tBid binds to the lipid bilayer maintaining alpha-helical conformation of its helices without adopting a transmembrane orientation by them. Here, the mechanism of the association of tBid with the model membrane mimicking the mitochondrial membrane is studied by Monte Carlo simulations, taking into account the underlying energetics. A novel two-stage hierarchical simulation protocol combining coarse-grained discretization of conformational space with subsequent refinements was applied which was able to generate the protein conformation and its location in the membrane using modest computational resources. The simulations show that starting from NMR-established conformation in the solution, the protein associates with the membrane without adopting the transmembrane orientation. The configuration (conformation and location) of tBid providing the lowest free energy for the system protein/membrane/solvent has been obtained. The simulations reveal that tBid upon association with the membrane undergoes significant conformational changes primarily due to rotations within the loops between helices H4 and H5, H6 and H7, H7 and H8. It is established that in the membrane-bound state of tBid-monomer helices H3 and H5 have the locations exposed to the solution, helices H6 and H8 are partly buried and helices H4 and H7 are buried into the membrane at shallow depth. The average orientation of tBid bound to the membrane in the most stable configuration reported here is in satisfactory agreement with the evaluations obtained by indirect experimental means.
Collapse
Affiliation(s)
- Valery G Veresov
- Department of Cell Biophysics, Institute of Biophysics and Cell Engineering, Academicheskaya St. 27, Minsk 220072, Belarus.
| | | |
Collapse
|
109
|
Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev 2007; 71:158-229. [PMID: 17347522 PMCID: PMC1847374 DOI: 10.1128/mmbr.00036-06] [Citation(s) in RCA: 784] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.
Collapse
Affiliation(s)
- Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires,Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Man P, Montagner C, Vernier G, Dublet B, Chenal A, Forest E, Forge V. Defining the interacting regions between apomyoglobin and lipid membrane by hydrogen/deuterium exchange coupled to mass spectrometry. J Mol Biol 2007; 368:464-72. [PMID: 17346745 DOI: 10.1016/j.jmb.2007.02.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 01/24/2007] [Accepted: 02/06/2007] [Indexed: 11/22/2022]
Abstract
Sperm whale myoglobin can be considered as the model protein of the globin family. The pH-dependence of the interactions of apomyoglobin with lipid bilayers shares some similarities with the behavior of pore-forming domains of bacterial toxins belonging also to the globin family. Two different states of apomyoglobin bound to a lipid bilayer have been characterized by using hydrogen/deuterium exchange experiments and mass spectrometry. When bound to the membrane at pH 5.5, apomyoglobin remains mostly native-like and interacts through alpha-helix A. At pH 4, the binding is related to the stabilization of a partially folded state. In that case, alpha-helices A and G are involved in the interaction. At this pH, alpha-helix G, which is the most hydrophobic region of apomyoglobin, is available for interaction with the lipid bilayer because of the loss of the tertiary structure. Our results show the feasibility of such experiments and their potential for the characterization of various membrane-bound states of amphitropic proteins such as pore-forming domains of bacterial toxins. This is not possible with other high-resolution methods, because these proteins are usually in partially folded states when interacting with membranes.
Collapse
Affiliation(s)
- Petr Man
- Laboratoire de Spectrométrie de Masse des Protéines, Institut de Biologie Structurale (CEA-CNRS-UJF), 41 rue Jules Horowitz, 38027 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
111
|
Vernier G, Chenal A, Vitrac H, Barumandzadhe R, Montagner C, Forge V. Interactions of apomyoglobin with membranes: mechanisms and effects on heme uptake. Protein Sci 2007; 16:391-400. [PMID: 17242377 PMCID: PMC2203327 DOI: 10.1110/ps.062531207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The last step of the folding reaction of myoglobin is the incorporation of a prosthetic group. In cells, myoglobin is soluble, while heme resides in the mitochondrial membrane. We report here an exhaustive study of the interactions of apomyoglobin with lipid vesicles. We show that apomyoglobin interacts with large unilamellar vesicles under acidic conditions, and that this requires the presence of negatively charged phospholipids. The pH dependence of apomyoglobin interactions with membranes is a two-step process, and involves a partially folded state stabilized at acidic pH. An evident role for the interaction of apomyoglobin with lipid bilayers would be to facilitate the uptake of heme from the outer mitochondrial membrane. However, heme binding to apomyoglobin is observed at neutral pH when the protein remains in solution, and slows down as the pH becomes more favorable to membrane interactions. The effective incorporation of soluble heme into apomyoglobin at neutral pH suggests that the interaction of apomyoglobin with membranes is not necessary for the heme uptake from the lipid bilayer. In vivo, however, the ability of apomyoglobin to interact with membrane may facilitate its localization in the vicinity of the mitochondrial membranes, and so may increase the yield of heme uptake. Moreover, the behavior of apomyoglobin in the presence of membranes shows striking similarities with that of other proteins with a globin fold. This suggests that the globin fold is well adapted for soluble proteins whose functions require interactions with membranes.
Collapse
Affiliation(s)
- Grégory Vernier
- Laboratoire de Biophysique Moléculaire et Cellulaire, Unité Mixte de Recherche 5090, Département Réponse et Dynamique Cellulaires, CEA-Grenoble, 38054 Grenoble cedex 9, France
| | | | | | | | | | | |
Collapse
|
112
|
Kristan K, Viero G, Macek P, Dalla Serra M, Anderluh G. The equinatoxin N-terminus is transferred across planar lipid membranes and helps to stabilize the transmembrane pore. FEBS J 2006; 274:539-50. [PMID: 17229155 DOI: 10.1111/j.1742-4658.2006.05608.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Equinatoxin II is a cytolytic protein isolated from the sea anemone Actinia equina. It is a member of the actinoporins, a family of eukaryotic pore-forming toxins with a unique mechanism of pore formation. Equinatoxin II is a 20 kDa cysteineless protein, with sphingomyelin-dependent activity. Recent studies showed that the N-terminal region of the molecule requires conformational flexibility during pore formation. An understanding of the N-terminal position in the final pore and its role in membrane insertion and pore stability is essential to define the precise molecular mechanism of pore formation. The formation of pores and their electrophysiologic characteristics were studied with planar lipid membranes. We show that amino acids at positions 1 and 3 of equinatoxin II are exposed to the lumen of the pore. Moreover, sulfhydryl reagents and a hexa-histidine tag attached to the N-terminus revealed that the N-terminus of the toxin extends through the pore to the other (trans) side of the membrane and that negatively charged residues inside the pore are crucial to define the electrophysiologic characteristics of the channel. Finally, we detected a new, less stable, state with a lower conductance by using a deletion mutant in which the first five N-terminal amino acids were removed. We propose that the first five amino acids help to anchor the amphipathic helix on the trans side of the membrane and consequently stabilize the final transmembrane pore.
Collapse
Affiliation(s)
- Katarina Kristan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
113
|
Pina DG, Gómez J, England P, Craescu CT, Johannes L, Shnyrov VL. Characterization of the non-native trifluoroethanol-induced intermediate conformational state of the Shiga toxin B-subunit. Biochimie 2006; 88:1199-207. [PMID: 16697101 DOI: 10.1016/j.biochi.2006.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 03/27/2006] [Indexed: 11/21/2022]
Abstract
The effect of increasing concentrations of 2,2,2-trifluoroethanol (TFE) on the conformational stability of the Shiga toxin B-subunit (STxB), a bacterial homopentameric protein involved in cell-surface binding and intracellular transport, has been studied by far-, near-UV circular dichroism (CD), intrinsic fluorescence, analytical ultracentrifugation, and differential scanning calorimetry (DSC) under equilibrium conditions. Our data show that the native structure of STxB is highly perturbed by the presence of TFE. In fact, at concentrations of TFE above 20% (v/v), the native pentameric conformation of the protein is cooperatively transformed into a helix-rich monomeric and partially folded conformational state with no significant tertiary structure. Additionally, no cooperative transition was detected upon a further increase in the TFE concentration (above 40% (v/v)). The thermal stability of STxB was investigated at several different TFE concentrations using DSC and CD spectroscopy. Thermal transitions at TFE concentrations of up to 20% (v/v) were successfully fitted to the two-state folding/unfolding coupled to oligomerization model consistent with the transition between a pentameric folded conformation to a monomeric state of the protein, which the presence of TFE stabilizes as a partially folded conformation.
Collapse
Affiliation(s)
- David G Pina
- Laboratoire trafic et signalisation, UMR 144 CNRS, Institut Curie, 75248 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
114
|
Singh BR. Botulinum neurotoxin structure, engineering, and novel cellular trafficking and targeting. Neurotox Res 2006; 9:73-92. [PMID: 16785103 DOI: 10.1007/bf03033925] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Botulinum neurotoxins are multifaceted molecules, which are truly unique not only in their mode of action, but also their utility as a drug carrier either across the gut wall or to the nerve terminals. The molecule is divided in clear functional domains that can operate independently. This feature can be used to employ them as cargo carrier by linking other drugs or vaccines with the binding and translocation domains of BoNT. While the domain structures are largely independent of each other, the dynamic structure of these domains, especially that of the enzymatic domain (L chain), is quite different from the reported crystal structures for several BoNT serotypes and their enzymatic domain. This review discusses the comparative structures of BoNT in crystal and solution for their relevance to the molecular mechanism of BoNT action, especially in view of our recent discovery that the enzymatically active structure of the BoNT exists as a molten-globule and that of the endopeptidase domain as a novel PRIME conformation. Finally, a non-exhaustive discussion has been included to explain the long-lasting biological effects of certain serotypes of BoNT, based on the current knowledge of the structure-function of different serotypes of botulinum neurotoxins.
Collapse
Affiliation(s)
- B R Singh
- Botulinum Research Center, and Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, 02747, USA.
| |
Collapse
|
115
|
Li H, Frieden C. Fluorine-19 NMR studies on the acid state of the intestinal fatty acid binding protein. Biochemistry 2006; 45:6272-8. [PMID: 16700539 PMCID: PMC2501113 DOI: 10.1021/bi0602922] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intestinal fatty acid binding protein (IFABP) is composed of two beta-sheets with a large hydrophobic cavity into which ligands bind. After eight 4-(19)F-phenylalanines were incorporated into the protein, the acid state of both apo- and holo-IFABP (at pH 2.8 and 2.3) was characterized by means of (1)H NMR diffusion measurements, circular dichroism, and (19)F NMR. Diffusion measurements show a moderately increased hydrodynamic radius while near- and far-UV CD measurements suggest that the acid state has substantial secondary structure as well as persistent tertiary interactions. At pH 2.8, these tertiary interactions have been further characterized by (19)F NMR and show an NOE cross-peak between residues that are located on different beta-strands. Side chain conformational heterogeneity on the millisecond time scale was captured by phase-sensitive (19)F-(19)F NOESY. At pH 2.3, native NMR peaks are mostly gone, but the protein can still bind fatty acid to form the holoprotein. An exchange cross-peak of one phenylalanine in the holoprotein is attributed to increased motional freedom of the fatty acid backbone caused by the slight opening of the binding pocket at pH 2.8. In the acid environment Phe128 and Phe17 show dramatic line broadening and chemical shift changes, reflecting greater degrees of motion around these residues. We propose that there is a separation of specific regions of the protein that gives rise to the larger radius of hydration. Temperature and urea unfolding studies indicate that persistent hydrophobic clusters are nativelike and may account for the ability of ligand to bind and induce nativelike structure, even at pH 2.3.
Collapse
Affiliation(s)
- Hua Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
116
|
Pardo-López L, Gómez I, Muñoz-Garay C, Jiménez-Juarez N, Soberón M, Bravo A. Structural and functional analysis of the pre-pore and membrane-inserted pore of Cry1Ab toxin. J Invertebr Pathol 2006; 92:172-7. [PMID: 16777138 DOI: 10.1016/j.jip.2006.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 02/06/2006] [Indexed: 11/30/2022]
Abstract
Bacillus thuringiensis produces insecticidal Cry proteins that are active against different insect species. The primary action of Cry toxins is to lyse midgut epithelial cells in the target insect by forming lytic pores on the apical membrane. After interaction with cadherin receptor, Cry proteins undergo conformational changes from a monomeric structure to a pre-pore-oligomeric form that is able to interact with a second GPI-anchored aminopeptidase-N receptor and then insert into lipid membranes. Here, we review the recent advances in the understanding of the structural changes presented by Cry1Ab toxin upon membrane insertion. Based on analysis of the Trp fluorescence of pure monomeric and oligomeric Cry1Ab structures in solution and in membrane-bound state we reported that oligomerization caused 27% reduction of Trp exposed to the solvent. After membrane insertion there is another conformational change that allows an additional rearrangement of the Trp residues resulting in a total protection of these residues from exposure to the solvent. The oligomeric structure is membrane insertion competent since more than 96% of the Cry1Ab oligomer inserts into the membrane as a function of lipid:protein ratio, in contrast to the monomer of which only 5-10%, inserts into the membrane. Finally, analysis of the stability of monomeric, pre-pore and pore structures of Cry1Ab toxin after urea and thermal denaturation suggested that a more flexible conformation could be necessary for membrane insertion and this flexible structure is obtained by toxin oligomerization and by alkaline pH. Domain I is involved in the intermolecular interaction within the oligomeric Cry1Ab and this domain is inserted into the membrane in the membrane-inserted state.
Collapse
Affiliation(s)
- Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | | | | | | | | | | |
Collapse
|
117
|
Thuduppathy GR, Craig JW, Schon VKA, Hill RB. Evidence that membrane insertion of the cytosolic domain of Bcl-xL is governed by an electrostatic mechanism. J Mol Biol 2006; 359:1045-58. [PMID: 16650855 PMCID: PMC1785297 DOI: 10.1016/j.jmb.2006.03.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 03/16/2006] [Accepted: 03/21/2006] [Indexed: 11/30/2022]
Abstract
Signals from different cellular networks are integrated at the mitochondria in the regulation of apoptosis. This integration is controlled by the Bcl-2 proteins, many of which change localization from the cytosol to the mitochondrial outer membrane in this regulation. For Bcl-xL, this change in localization reflects the ability to undergo a conformational change from a solution to integral membrane conformation. To characterize this conformational change, structural and thermodynamic measurements were performed in the absence and presence of lipid vesicles with Bcl-xL. A pH-dependent model is proposed for the solution to membrane conformational change that consists of three stable conformations: a solution conformation, a conformation similar to the solution conformation but anchored to the membrane by its C-terminal transmembrane domain, and a membrane conformation that is fully associated with the membrane. This model predicts that the solution to membrane conformational change is independent of the C-terminal transmembrane domain, which is experimentally demonstrated. The conformational change is associated with changes in secondary and, especially, tertiary structure of the protein, as measured by far and near-UV circular dichroism spectroscopy, respectively. Membrane insertion was distinguished from peripheral association with the membrane by quenching of intrinsic tryptophan fluorescence by acrylamide and brominated lipids. For the cytosolic domain, the free energy of insertion (DeltaG degrees x) into lipid vesicles was determined to be -6.5 kcal mol(-1) at pH 4.9 by vesicle binding experiments. To test whether electrostatic interactions were significant to this process, the salt dependence of this conformational change was measured and analyzed in terms of Gouy-Chapman theory to estimate an electrostatic contribution of DeltaG degrees el approximately -2.5 kcal mol(-1) and a non-electrostatic contribution of DeltaG degrees nel approximately -4.0 kcal mol(-1) to the free energy of insertion, DeltaG degrees x. Calcium, which blocks ion channel activity of Bcl-xL, did not affect the solution to membrane conformational change more than predicted by these electrostatic considerations. The lipid cardiolipin, that is enriched at mitochondrial contact sites and reported to be important for the localization of Bcl-2 proteins, did not affect the solution to membrane conformational change of the cytosolic domain, suggesting that this lipid is not involved in the localization of Bcl-xL in vivo. Collectively, these data suggest the solution to membrane conformational change is controlled by an electrostatic mechanism. Given the distinct biological activities of these conformations, the possibility that this conformational change might be a regulatory checkpoint for apoptosis is discussed.
Collapse
Affiliation(s)
| | - Jeffrey W. Craig
- Department of Biology, Johns Hopkins University, 3400 N. Charles St,
Baltimore, MD 21218, USA
| | | | | |
Collapse
|
118
|
López-Llano J, Campos LA, Bueno M, Sancho J. Equilibrium Φ-Analysis of a Molten Globule: The 1-149 Apoflavodoxin Fragment. J Mol Biol 2006; 356:354-66. [PMID: 16364364 DOI: 10.1016/j.jmb.2005.10.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 10/27/2005] [Accepted: 10/28/2005] [Indexed: 11/19/2022]
Abstract
The apoflavodoxin fragment comprising residues 1-149 that can be obtained by chemical cleavage of the C-terminal alpha-helix of the full-length protein is known to populate a molten globule conformation that displays a cooperative behaviour and experiences two-state urea and thermal denaturation. Here, we have used a recombinant form of this fragment to investigate molten globule energetics and to derive structural information by equilibrium Phi-analysis. We have characterized 15 mutant fragments designed to probe the persistence of native interactions in the molten globule and compared their conformational stability to that of the equivalent full-length apoflavodoxin mutants. According to our data, most of the mutations analysed modify the stability of the molten globule fragment following the trend observed when the same mutations are implemented in the full-length protein. However, the changes in stability observed in the molten globule are much smaller and the Phi-values calculated are (with a single exception) below 0.4. This is consistent with an overall and significant debilitation of the native structure. Nevertheless, the fact that the molten globule fragment can be stabilised using as a guide the native structure of the full-length protein (by increasing helix propensity, optimising charge interactions and filling small cavities) suggests that the overall structure of the molten globule is still quite close to native, in spite of the lowered stability observed.
Collapse
Affiliation(s)
- J López-Llano
- Dep. Bioquímica y Biología Molecular y Celular, Facultad de Ciencias and Biocomputation and Complex Systems Physics Institute-BIFI, University of Zaragoza, Spain
| | | | | | | |
Collapse
|
119
|
Thuduppathy GR, Hill RB. Acid destabilization of the solution conformation of Bcl-xL does not drive its pH-dependent insertion into membranes. Protein Sci 2005; 15:248-57. [PMID: 16385002 PMCID: PMC1752203 DOI: 10.1110/ps.051807706] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Regulation of programmed cell death by Bcl-xL is dependent on both its solution and integral membrane conformations. A conformational change from solution to membrane is also important in this regulation. This conformational change shows a pH-dependence similar to the translocation domain of diphtheria toxin, where an acid-induced molten globule conformation in the absence of lipid vesicles mediates the change from solution to membrane conformations. By contrast, Bcl-xL deltaTM in the absence of lipid vesicles exhibits no gross conformational changes upon acidification as observed by near- and far-UV circular dichroism spectropolarimetry. Additionally, no significant local conformational changes upon acidification were observed by heteronuclear NMR spectroscopy of Bcl-xL deltaTM. Under conditions that favor the solution conformation (pH 7.4), the free energy of folding for Bcl-xL deltaTM (deltaG(o)) was determined to be 15.8 kcal x mol(-1). Surprisingly, under conditions that favor a membrane conformation (pH 4.9), deltaG(o) was 14.6 kcal x mol(-1). These results differ from those obtained with many other membrane-insertable proteins where acid-induced destabilization is important. Therefore, other contributions must be necessary to destabilize the solution conformation Bcl-xL and favor the membrane conformation at pH 4.9. Such contributions might include the presence of a negatively charged membrane or an electrostatic potential across the membrane. Thus, for proteins that adopt both solution and membrane conformations, an obligatory molten globule intermediate may not be necessary. The absence of a molten globule intermediate might have evolved to protect Bcl-xL from intracellular proteases as it undergoes this conformational change essential for its activity.
Collapse
|
120
|
Polverini E, Fornabaio M, Fasano A, Carlone G, Riccio P, Cavatorta P. The pH-dependent unfolding mechanism of P2 myelin protein: an experimental and computational study. J Struct Biol 2005; 153:253-63. [PMID: 16427315 DOI: 10.1016/j.jsb.2005.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 11/04/2005] [Accepted: 11/10/2005] [Indexed: 10/25/2022]
Abstract
The P2 protein is a small, extrinsic protein of the myelin membrane in the peripheral nervous system that structurally belongs to the fatty acid binding proteins (FABPs) family, sharing with them a 10 strands beta-barrel structure. FABPs appear to be involved in cellular fatty acid transport, but very little is known about the role of P2 in the metabolism of peripheral myelin lipids. Study of protein conformation at different pHs is a useful tool for the characterization of the unfolding mechanisms and the intrinsic conformational properties of the protein, and may give insight into factors that guide protein folding pathways. In particular, low pH conditions have been shown to induce partially folded states in several proteins. In this paper, the acidic unfolding of purified P2 protein was studied with both spectroscopic techniques and molecular dynamics simulation. Both experimental and computational results indicate the presence of a partly folded state at low pH, which shows structural changes mainly involving the lid that is formed by the helix-turn-helix domain. The opening of the lid, together with a barrel relaxation, could regulate the ligand exchanges near the cell membrane, supporting the hypothesis that the P2 protein may transport fatty acids between Schwann cells and peripheral myelin.
Collapse
Affiliation(s)
- Eugenia Polverini
- Dipartimento di Fisica, CNR-INFM and CNISM, Università di Parma, Parco Area delle Scienze, 7/A, 43100 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
121
|
Baker BY, Yaworsky DC, Miller WL. A pH-dependent Molten Globule Transition Is Required for Activity of the Steroidogenic Acute Regulatory Protein, StAR. J Biol Chem 2005; 280:41753-60. [PMID: 16234239 DOI: 10.1074/jbc.m510241200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The steroidogenic acute regulatory protein (StAR) simulates steroid biosynthesis by increasing the flow of cholesterol from the outer mitochondrial membrane (OMM) to the inner membrane. StAR acts exclusively on the OMM, and only StAR's carboxyl-terminal alpha-helix (C-helix) interacts with membranes. Biophysical studies have shown that StAR becomes a molten globule at acidic pH, but a physiologic role for this structural transition has been controversial. Molecular modeling shows that the C-helix, which forms the floor of the sterol-binding pocket, is stabilized by hydrogen bonding to adjacent loops. Molecular dynamics simulations show that protonation of the C-helix and adjacent loops facilitates opening and closing the sterol-binding pocket. Two disulfide mutants, S100C/S261C (SS) and D106C/A268C (DA), designed to limit the mobility of the C-helix but not disrupt overall conformation, were prepared in bacteria, and their correct folding and positioning of the disulfide bonds was confirmed. The SS mutant lost half, and the DA mutant lost all cholesterol binding capacity and steroidogenic activity with isolated mitochondria in vitro, but full binding and activity was restored to each mutant by disrupting the disulfide bonds with dithiothreitol. These data strongly support the model that StAR activity requires a pH-dependent molten globule transition on the OMM.
Collapse
Affiliation(s)
- Bo Y Baker
- Department of Pediatrics and Metabolic Research Unit, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
122
|
Turnay J, Lecona E, Fernández-Lizarbe S, Guzmán-Aránguez A, Fernández M, Olmo N, Lizarbe M. Structure-function relationship in annexin A13, the founder member of the vertebrate family of annexins. Biochem J 2005; 389:899-911. [PMID: 15813707 PMCID: PMC1180741 DOI: 10.1042/bj20041918] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Annexin A13 is considered the original progenitor of the 11 other members of vertebrate annexins, a superfamily of calcium/phospholipid-binding proteins. It is highly tissue-specific, being expressed only in intestinal and kidney epithelial cells. Alternative splicing generates two isoforms, both of which bind to rafts. In view of the lack of structural information supporting the physiological role of this annexin subfamily, we have cloned, expressed and purified human annexin A13b to investigate its structural and functional properties. The N-terminus of annexin A13b: (i) destabilizes the conserved protein core, as deduced from the low melting temperature in the absence (44 degrees C) or presence of calcium (55 degrees C), and (ii) impairs calcium-dependent binding to acidic phospholipids, requiring calcium concentrations >400 microM. Truncation of the N-terminus restores thermal stability and decreases the calcium requirement for phospholipid binding, confirming its essential role in the structure-function relationship of this annexin. Non-myristoylated annexin A13b only binds to acidic phospholipids at high calcium concentrations. We show for the first time that myristoylation of annexin A13b enables the direct binding to phosphatidylcholine, raft-like liposomes and acidic phospholipids in a calcium-independent manner. The conformational switch induced by calcium binding, from a 'closed' to an 'open' conformation with exposure of Trp227, can be mimicked by a decrease in pH, a process that may be relevant for membrane interactions. Our studies confirm that the common structural and functional characteristics that are dependent on the protein core of vertebrate annexins are likely to be common conserved features, whereas their variable N-termini confer distinct functional properties on annexins, as we report for myristoylation of annexin A13b.
Collapse
Affiliation(s)
- Javier Turnay
- *Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040-Madrid, Spain
| | - Emilio Lecona
- *Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040-Madrid, Spain
| | - Sara Fernández-Lizarbe
- *Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040-Madrid, Spain
| | - Ana Guzmán-Aránguez
- *Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040-Madrid, Spain
| | - María Pilar Fernández
- †Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Oviedo, 33006-Oviedo, Spain
| | - Nieves Olmo
- *Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040-Madrid, Spain
| | - Ma Antonia Lizarbe
- *Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040-Madrid, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
123
|
Kukreja R, Singh B. Biologically active novel conformational state of botulinum, the most poisonous poison. J Biol Chem 2005; 280:39346-52. [PMID: 16179354 DOI: 10.1074/jbc.m508463200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Botulinum neurotoxins (serotypes A-G), the most toxic substances known to humankind, cause flaccid muscle paralysis by blocking acetylcholine release at nerve-muscle junctions through a very specific and exclusive endopeptidase activity against SNARE proteins of presynaptic exocytosis machinery. We have examined polypeptide folding of the endopeptidase moiety of botulinum neurotoxin/A (the light chain) under conditions of its optimal enzymatic activity and have found that one of its stable conformational states is a molten-globule, which retains over 60% of its optimal enzyme activity. More importantly, we have discovered that the light chain acquires a novel pre-imminent molten-globule enzyme conformation at the physiologically relevant temperature, 37 degrees C. The pre-imminent molten-globule enzyme form also exhibited the maximum endopeptidase activity against its intracellular substrate, SNAP-25 (synaptosomal associated protein of 25 kDa). These findings will not only open new avenues to design effective diagnostics and antidotes against botulism but also provide new information on enzymatically active molten-globule or molten-globule like structures.
Collapse
Affiliation(s)
- Roshan Kukreja
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | | |
Collapse
|
124
|
Abstract
We have isolated, cloned, and expressed a male antennae-specific pheromone-degrading enzyme (PDE) [Antheraea polyphemus PDE (ApolPDE), formerly known as Sensillar Esterase] from the wild silkmoth, A. polyphemus, which seems essential for the rapid inactivation of pheromone during flight. The onset of enzymatic activity was detected at day 13 of the pupal stage with a peak at day 2 adult stage. De novo sequencing of ApolPDE, isolated from day 2 male antennae by multiple chromatographic steps, led to cDNA cloning. Purified recombinant ApolPDE, expressed by baculovirus, migrated with the same mobility as the native protein on both native polyacrylamide and isoelectric focusing gel electrophoresis. Concentration of ApolPDE (0.5 microM) in the sensillar lymph is approximately 20,000 lower than that of a pheromone-binding protein. Native and recombinant ApolPDE showed comparable kinetic parameters, with turnover number similar to that of carboxypeptidase and substrate specificity slightly lower than that of acetylcholinesterase. The rapid inactivation of pheromone, even faster than previously estimated, is kinetically compatible with the temporal resolution required for sustained odorant-mediated flight in moths.
Collapse
Affiliation(s)
- Yuko Ishida
- Maeda-Duffey Laboratory, Department of Entomology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
125
|
Keegan N, Wright NG, Lakey JH. Circular Dichroism Spectroscopy of Folding in a Protein Monolayer. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200462977] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
126
|
Keegan N, Wright NG, Lakey JH. Circular Dichroism Spectroscopy of Folding in a Protein Monolayer. Angew Chem Int Ed Engl 2005; 44:4801-4. [PMID: 16028206 DOI: 10.1002/anie.200462977] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Neil Keegan
- Institute of Cell and Molecular Biosciences and Institute for Nanoscale Science and Technology, University of Newcastle upon Tyne, Newcastle, UK
| | | | | |
Collapse
|
127
|
Nishi K, Komine Y, Sakai N, Maruyama T, Otagiri M. Cooperative effect of hydrophobic and electrostatic forces on alcohol-induced α-helix formation of α1-acid glycoprotein. FEBS Lett 2005; 579:3596-600. [PMID: 15963986 DOI: 10.1016/j.febslet.2005.05.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 05/14/2005] [Accepted: 05/16/2005] [Indexed: 11/22/2022]
Abstract
Alpha1-acid glycoprotein (AGP) is a serum glycoprotein that mainly binds basic drugs. Previous reports have shown that AGP converts from a beta-sheet to an alpha-helix upon interaction with biomembranes. In the current studies, we found that alkanols, diols, and halogenols all induce this conformational change. Increased length and bulkiness of the hydrocarbon group and the presence of a halogen atom promoted this conversion, whereas the presence of a hydroxyl group inhibited it. Moreover, the effect was dependent on the hydrophobic and electrostatic properties of the alcohols. These results indicate that, in a membrane environment, hydrophobic and electrostatic factors cooperatively induce the transition of AGP from a beta-sheet to an alpha-helix.
Collapse
Affiliation(s)
- Koji Nishi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Science, Kumamoto University 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | | | | | | | | |
Collapse
|
128
|
Palczewska M, Batta G, Groves P, Linse S, Kuznicki J. Characterization of calretinin I-II as an EF-hand, Ca2+, H+-sensing domain. Protein Sci 2005; 14:1879-87. [PMID: 15937279 PMCID: PMC2253342 DOI: 10.1110/ps.051369805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calretinin, a neuronal protein with well-defined calcium-binding properties, has a poorly defined function. The pH dependent properties of calretinin (CR), the N-terminal (CR I-II), and C-terminal (CR III-VI) domains were investigated. A drop in pH within the intracellular range (from pH 7.5 to pH 6.5) leads to an increased hydrophobicity of calcium-bound CR and its domains as reported by fluorescence spectroscopy with the hydrophobic probe 2-(p-toluidino)-6-naphthalenesulfonic acid (TNS). The TNS data for the N- and C-terminal domains of CR are additive, providing further support for their independence within the full-length protein. Our work concentrated on CR I-II, which was found to have hydrophobic properties similar to calmodulin at lower pH. The elution of CR I-II from a phenyl-Sepharose column was consistent with the TNS data. The pH-dependent structural changes were further localized to residues 13-28 and 44-51 using nuclear magnetic resonance spectroscopy chemical shift analysis, and there appear to be no large changes in secondary structure. Protonation of His 12 and/or His 27 side chains, coupled with calcium chelation, appears to lead to the organization of a hydrophobic pocket in the N-terminal domain. CR may sense and respond to calcium, proton, and other signals, contributing to conflicting data on the proteins role as a calcium sensor or calcium buffer.
Collapse
Affiliation(s)
- Malgorzata Palczewska
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | |
Collapse
|
129
|
Parker MW, Feil SC. Pore-forming protein toxins: from structure to function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 88:91-142. [PMID: 15561302 DOI: 10.1016/j.pbiomolbio.2004.01.009] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pore-forming protein toxins (PFTs) are one of Nature's most potent biological weapons. An essential feature of their toxicity is the remarkable property that PFTs can exist either in a stable water-soluble state or as an integral membrane pore. In order to convert from the water-soluble to the membrane state, the toxin must undergo large conformational changes. There are now more than a dozen PFTs for which crystal structures have been determined and the nature of the conformational changes they must undergo is beginning to be understood. Although they differ markedly in their primary, secondary, tertiary and quaternary structures, nearly all can be classified into one of two families based on the types of pores they are thought to form: alpha-PFTs or beta-PFTs. Recent work suggests a number of common features in the mechanism of membrane insertion may exist for each class.
Collapse
Affiliation(s)
- Michael W Parker
- Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia.
| | | |
Collapse
|
130
|
Luo W, Yao X, Hong M. Large Structure Rearrangement of Colicin Ia Channel Domain after Membrane Binding from 2D13C Spin Diffusion NMR. J Am Chem Soc 2005; 127:6402-8. [PMID: 15853348 DOI: 10.1021/ja0433121] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the main mechanisms of membrane protein folding is by spontaneous insertion into the lipid bilayer from the aqueous environment. The bacterial toxin, colicin Ia, is one such protein. To shed light on the conformational changes involved in this dramatic transfer from the polar to the hydrophobic milieu, we carried out 2D magic-angle spinning (13)C NMR experiments on the water-soluble and membrane-bound states of the channel-forming domain of colicin Ia. Proton-driven (13)C spin diffusion spectra of selectively (13)C-labeled protein show unequivocal attenuation of cross-peaks after membrane binding. This attenuation can be assigned to distance increases but not reduction of the diffusion coefficient. Analysis of the statistics of the interhelical and intrahelical (13)C-(13)C distances in the soluble protein structure indicates that the observed cross-peak reduction is well correlated with a high percentage of short interhelical contacts in the soluble protein. This suggests that colicin Ia channel domain becomes open and extended upon membrane binding, thus lengthening interhelical distances. In comparison, cross-peaks with similar intensities between the two states are dominated by intrahelical contacts in the soluble state. This suggests that the membrane-bound structure of colicin Ia channel domain may be described as a "molten globule", in which the helical secondary structure is retained while the tertiary structure is unfolded. This study demonstrates that (13)C spin diffusion NMR is a valuable tool for obtaining qualitative long-range distance constraints on membrane protein folding.
Collapse
Affiliation(s)
- Wenbin Luo
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
131
|
Sinibaldi F, Mei G, Polticelli F, Piro MC, Howes BD, Smulevich G, Santucci R, Ascoli F, Fiorucci L. ATP specifically drives refolding of non-native conformations of cytochrome c. Protein Sci 2005; 14:1049-58. [PMID: 15741329 PMCID: PMC2253445 DOI: 10.1110/ps.041069405] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 11/19/2004] [Accepted: 01/07/2005] [Indexed: 10/25/2022]
Abstract
An increasing body of evidence ascribes to misfolded forms of cytochrome c (cyt c) a role in pathophysiological events such as apoptosis and disease. Here, we examine the conformational changes induced by lipid binding to horse heart cyt c at pH 7 and study the ability of ATP (and other nucleotides) to refold several forms of unfolded cyt c such as oleic acid-bound cyt c, nicked cyt c, and acid denatured cyt c. The CD and fluorescence spectra demonstrate that cyt c unfolded by oleic acid has an intact secondary structure, and a disrupted tertiary structure and heme environment. Furthermore, evidence from the Soret CD, electronic absorption, and resonance Raman spectra indicates the presence of an equilibrium of at least two low-spin species having distinct heme-iron(III) coordination. As a whole, the data indicate that binding of cyt c to oleic acid leads to a partially unfolded conformation of the protein, resembling that typical of the molten globule state. Interestingly, the native conformation is almost fully recovered in the presence of ATP or dATP, while other nucleotides, such as GTP, are ineffective. Molecular modeling of ATP binding to cyt c and mutagenesis experiments show the interactions of phosphate groups with Lys88 and Arg91, with adenosine ring interaction with Glu62 explaining the unfavorable binding of GTP. The finding that ATP and dATP are unique among the nucleotides in being able to turn non-native states of cyt c back to native conformation is discussed in the light of cyt c involvement in cell apoptosis.
Collapse
Affiliation(s)
- Federica Sinibaldi
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Roma Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Krantz BA, Trivedi AD, Cunningham K, Christensen KA, Collier RJ. Acid-induced unfolding of the amino-terminal domains of the lethal and edema factors of anthrax toxin. J Mol Biol 2005; 344:739-56. [PMID: 15533442 DOI: 10.1016/j.jmb.2004.09.067] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 09/22/2004] [Accepted: 09/23/2004] [Indexed: 11/22/2022]
Abstract
The two enzymatic components of anthrax toxin, lethal factor (LF) and edema factor (EF), are transported to the cytosol of mammalian cells by the third component, protective antigen (PA). A heptameric form of PA binds LF and/or EF and, under the acidic conditions encountered in endosomes, generates a membrane-spanning pore that is thought to serve as a passageway for these enzymes to enter the cytosol. The pore contains a 14-stranded transmembrane beta-barrel that is too narrow to accommodate a fully folded protein, necessitating that LF and EF unfold, at least partly, in order to pass. Here, we describe the pH-dependence of the unfolding of LF(N) and EF(N), the 30kDa N-terminal PA-binding domains, and minimal translocatable units, of LF and EF. Equilibrium chemical denaturation studies using fluorescence and circular dichroism spectroscopy show that each protein unfolds via a four-state mechanism: N<-->I<-->J<-->U. The acid-induced N-->I transition occurs within the pH range of the endosome (pH 5-6). The I state predominates at lower pH values, and the J and U states are populated significantly only in the presence of denaturant. The I state is compact and has characteristics of a molten globule, as shown by its retention of significant secondary structure and its ability to bind an apolar fluorophore. The N-->I transition leads to an overall 60% increase in buried surface area exposure. The J state is expanded significantly and has diminished secondary structure content. We analyze the different protonation states of LF(N) and EF(N) in terms of a linked equilibrium proton binding model and discuss the implications of our findings for the mechanism of acidic pH-induced translocation of anthrax toxin. Finally, analysis of the structure of the transmembrane beta-barrel of PA shows that it can accommodate alpha-helix, and we suggest that the steric constraints and composition of the lumen may promote alpha-helix formation.
Collapse
Affiliation(s)
- Bryan A Krantz
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
133
|
Model phospholipid membranes affect the tertiary structure of holomyoglobin: Conformational changes at pH 6.2. Mol Biol 2005. [DOI: 10.1007/s11008-005-0015-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
134
|
Baldwin MR, Lakey JH, Lax AJ. Identification and characterization of the Pasteurella multocida toxin translocation domain. Mol Microbiol 2004; 54:239-50. [PMID: 15458419 DOI: 10.1111/j.1365-2958.2004.04264.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Pasteurella multocida toxin (PMT) is a potent mitogen which enters the cytosol of eukaryotic cells via a low pH membrane translocation event. In common with the Escherichia coli cytotoxic necrotizing factor 1 (CNF1), the core of the PMT translocation domain is composed of two predicted hydrophobic helices (H1 - residues 402-423, H2 - 437-457) linked by a hydrophilic loop (PMT-TL - 424-436). The peptide loop contains three acidic residues (D425, D431 and E434), which may play a role equivalent to D373, D379 and E382/383 in CNF1. To test this hypothesis, a series of point mutants was generated in which acidic residues were mutated into the permanently charged positive residue lysine. Individual mutation of D425, D431 and E434 each caused a four- to sixfold reduction in toxin activity. Interestingly, mutation of D401 located immediately outside the predicted helix-loop-helix motif completely abolished toxin activity. Individual mutations did not affect cell binding nor greatly altered toxin structure, but did prevent translocation of the surface-bound proteins into the cytosol after a low pH pulse. Moreover, we demonstrate using an in vitro assay that PMT undergoes a pH-dependent membrane insertion.
Collapse
Affiliation(s)
- Michael R Baldwin
- Microbiology, Dental Institute, King's College London, Floor 28, Guy's Tower, Guy's Hospital, London SE1 9RT, UK
| | | | | |
Collapse
|
135
|
Campos LA, Bueno M, Lopez-Llano J, Jiménez MA, Sancho J. Structure of stable protein folding intermediates by equilibrium phi-analysis: the apoflavodoxin thermal intermediate. J Mol Biol 2004; 344:239-55. [PMID: 15504414 DOI: 10.1016/j.jmb.2004.08.081] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/19/2004] [Accepted: 08/26/2004] [Indexed: 11/17/2022]
Abstract
Protein intermediates in equilibrium with native states may play important roles in protein dynamics but, in cases, can initiate harmful aggregation events. Investigating equilibrium protein intermediates is thus important for understanding protein behaviour (useful or pernicious) but it is hampered by difficulties in gathering structural information. We show here that the phi-analysis techniques developed to investigate transition states of protein folding can be extended to determine low-resolution three-dimensional structures of protein equilibrium intermediates. The analysis proposed is based solely on equilibrium data and is illustrated by determination of the structure of the apoflavodoxin thermal unfolding intermediate. In this conformation, a large part of the protein remains close to natively folded, but a 40 residue region is clearly unfolded. This structure is fully consistent with the NMR data gathered on an apoflavodoxin mutant designed specifically to stabilise the intermediate. The structure shows that the folded region of the intermediate is much larger than the proton slow-exchange core at 25 degrees C. It also reveals that the unfolded region is made of elements whose packing surface is more polar than average. In addition, it constitutes a useful guide to rationally stabilise the native state relative to the intermediate state, a far from trivial task.
Collapse
Affiliation(s)
- Luis A Campos
- Biocomputation and Complex Systems Physics Institute and Department Bioquímica y Biología Molecular y Celular, Fac. Ciencias, University Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | |
Collapse
|
136
|
Smith PM, Ross GF, Taylor RW, Turnbull DM, Lightowlers RN. Strategies for treating disorders of the mitochondrial genome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1659:232-9. [PMID: 15576056 DOI: 10.1016/j.bbabio.2004.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/01/2004] [Accepted: 09/08/2004] [Indexed: 11/22/2022]
Abstract
Defects of the mitochondrial genome are a significant cause of disease. Patients suffer from a wide variety of clinical presentations, ranging from fatal infantile disease to mild muscle weakness. Most disorders, however, are characterized by inexorable progression. As mutations often cause defects in several components of the complexes that couple oxidative phosphorylation, this terminal state of oxidative metabolism cannot be readily bypassed by dietary means, leading to the search for novel therapies. In this article, we present the theory behind several concepts and report progress. We also discuss some of the recent difficulties encountered in the progress towards an antigenomc approach to treating mtDNA disorders.
Collapse
Affiliation(s)
- Paul M Smith
- Mitochondrial Research Group, The Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | |
Collapse
|
137
|
Freire E, Gomes FCA, Jotha-Mattos T, Neto VM, Silva Filho FC, Coelho-Sampaio T. Sialic acid residues on astrocytes regulate neuritogenesis by controlling the assembly of laminin matrices. J Cell Sci 2004; 117:4067-76. [PMID: 15292398 DOI: 10.1242/jcs.01276] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the developing nervous system migrating neurons and growing axons are guided by diffusible and/or substrate-bound cues, such as extracellular matrix-associated laminin. In a previous work we demonstrated that laminin molecules could self-assemble in two different manners, giving rise to matrices that could favor either neuritogenesis or proliferation of cortical precursor cells. We investigated whether the ability of astrocytes to promote neuritogenesis of co-cultivated neurons was modulated by the assembling mode of the laminin matrix secreted by them. We compared the morphologies and neuritogenic potentials of laminin deposited by in vitro-differentiated astrocytes obtained from embryonic or neonatal rat brain cortices. We showed that, while permissive astrocytes derived from embryonic brain produced a flat laminin matrix that remained associated to the cell surface, astrocytes derived from newborn brain secreted a laminin matrix resembling a fibrillar web that protruded from the cell plane. The average neurite lengths obtained for E16 neurons cultured on each astrocyte layer were 198+/-22 and 123+/-13 microm, respectively. Analyses of surface-associated electrostatic potentials revealed that embryonic astrocytes presented a pI of -2.8, while in newborn cells this value was -3.8. Removal of the sialic acid groups on the embryonic monolayer by neuraminidase treatment led to the immediate release of matrix-associated laminin. Interestingly, laminin reassembled 1 hour after neuraminidase removal converted to the features of the newborn matrix. Alternatively, treatment of astrocytes with the cholesterol-solubilizing detergent methyl-beta-cyclodextrin also resulted in release of the extracellular laminin. To test the hypothesis that sialic-acid-containing lipids localized at cholesterol-rich membrane domains could affect the process of laminin assembly, we devised a cell-free assay where laminin polymerization was carried out over artificial lipid films. Films of either a mixture of gangliosides or pure ganglioside GT1b induced formation of matrices of morpho-functional features similar to the matrices deposited by embryonic astrocytes. Conversely, films of phosphatidylcholine or ganglioside GM1 led to the formation of bulky laminin aggregates that lacked a defined structure. We propose that the expression of negative lipids on astrocytes can control the extracellular polymerization of laminin and, consequently, the permissivity to neuritogenesis of astrocytes during development.
Collapse
Affiliation(s)
- Elisabete Freire
- Departamento de Histologia e Embriologia, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | |
Collapse
|
138
|
Acid-induced conformational changes in Bacillus amyloliquefaciens α-amylase: appearance of a molten globule like state. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2004.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
139
|
Mosbahi K, Walker D, Lea E, Moore GR, James R, Kleanthous C. Destabilization of the Colicin E9 Endonuclease Domain by Interaction with Negatively Charged Phospholipids. J Biol Chem 2004; 279:22145-51. [PMID: 15044477 DOI: 10.1074/jbc.m400402200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that the 134-residue endonuclease domain of the bacterial cytotoxin colicin E9 (E9 DNase) forms channels in planar lipid bilayers (Mosbahi, K., Lemaître, C., Keeble, A. H., Mobasheri, H., Morel, B., James, R., Moore, G. R., Lea, E. J., and Kleanthous, C. (2002) Nat. Struct. Biol. 9, 476-484). It was proposed that the E9 DNase mediates its own translocation across the cytoplasmic membrane and that the formation of ion channels is essential to this process. Here we describe changes to the structure and stability of the E9 DNase that accompany interaction of the protein with phospholipid vesicles. Formation of the protein-lipid complex at pH 7.5 resulted in a red-shift of the intrinsic protein fluorescence emission maximum (lambda(max)) from 333 to 346 nm. At pH 4.0, where the E9 DNase lacks tertiary structure but retains secondary structure, DOPG induced a blue-shift in lambda(max), from 354 to 342 nm. Changes in lambda(max) were specific for anionic phospholipid vesicles at both pHs, suggesting electrostatics play a role in this association. The effects of phospholipid were negated by Im9 binding, the high affinity, acidic, exosite inhibitor protein, but not by zinc, which binds at the active site. Fluorescence-quenching experiments further demonstrated that similar protein-phospholipid complexes are formed regardless of whether the E9 DNase is initially in its native conformation. Consistent with these observations, chemical and thermal denaturation data as well as proteolytic susceptibility experiments showed that association with negatively charged phospholipids destabilize the E9 DNase. We suggest that formation of a destabilizing protein-lipid complex pre-empts channel formation by the E9 DNase and constitutes the initial step in its translocation across the Escherichia coli inner membrane.
Collapse
Affiliation(s)
- Khédidja Mosbahi
- Department of Biology, University of York, York YO10 5YW, United Kingdom
| | | | | | | | | | | |
Collapse
|
140
|
Relationships between conformational changes and antimicrobial activity of lysozyme upon reduction of its disulfide bonds. Food Chem 2004. [DOI: 10.1016/s0308-8146(03)00252-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
141
|
Hilsenbeck JL, Park H, Chen G, Youn B, Postle K, Kang C. Crystal structure of the cytotoxic bacterial protein colicin B at 2.5 Å resolution. Mol Microbiol 2004; 51:711-20. [PMID: 14731273 DOI: 10.1111/j.1365-2958.2003.03884.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Colicin B (55 kDa) is a cytotoxic protein that recognizes the outer membrane transporter, FepA, as a receptor and, after gaining access to the cytoplasmic membranes of sensitive Escherichia coli cells, forms a pore that depletes the electrochemical potential of the membrane and ultimately results in cell death. To begin to understand the series of dynamic conformational changes that must occur as colicin B translocates from outer membrane to cytoplasmic membrane, we report here the crystal structure of colicin B at 2.5 A resolution. The crystal belongs to the space group C2221 with unit cell dimensions a = 132.162 A, b = 138.167 A, c = 106.16 A. The overall structure of colicin B is dumbbell shaped. Unlike colicin Ia, the only other TonB-dependent colicin crystallized to date, colicin B does not have clearly structurally delineated receptor-binding and translocation domains. Instead, the unique N-terminal lobe of the dumbbell contains both domains and consists of a large (290 residues), mostly beta-stranded structure with two short alpha-helices. This is followed by a single long ( approximately 74 A) helix that connects the N-terminal domain to the C-terminal pore-forming domain, which is composed of 10 alpha-helices arranged in a bundle-type structure, similar to the pore-forming domains of other colicins. The TonB box sequence at the N-terminus folds back to interact with the N-terminal lobe of the dumbbell and leaves the flanking sequences highly disordered. Comparison of sequences among many colicins has allowed the identification of a putative receptor-binding domain.
Collapse
Affiliation(s)
- Jacqueline L Hilsenbeck
- Department of Chemistry and School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | | | |
Collapse
|
142
|
Schoehn G, Di Guilmi AM, Lemaire D, Attree I, Weissenhorn W, Dessen A. Oligomerization of type III secretion proteins PopB and PopD precedes pore formation in Pseudomonas. EMBO J 2003; 22:4957-67. [PMID: 14517235 PMCID: PMC204482 DOI: 10.1093/emboj/cdg499] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pseudomonas aeruginosa is the agent of opportunistic infections in immunocompromised individuals and chronic respiratory illnesses in cystic fibrosis patients. Pseudomonas aeruginosa utilizes a type III secretion system for injection of toxins into the host cell cytoplasm through a channel on the target membrane (the 'translocon'). Here, we have functionally and structurally characterized PopB and PopD, membrane proteins implicated in the formation of the P.aeruginosa translocon. PopB and PopD form soluble complexes with their common chaperone, PcrH, either as stable heterodimers or as metastable heterooligomers. Only oligomeric forms are able to bind to and disrupt cholesterol-rich membranes, which occurs within a pH range of 5-7 in the case of PopB/PcrH, and only at acidic pH for PcrH-free PopD. Electron microscopy reveals that upon membrane association PopB and PopD form 80 A wide rings which encircle 40 A wide cavities. Thus, formation of metastable oligomers precedes membrane association and ring generation in the formation of the Pseudomonas translocon, a mechanism which may be similar for other pathogens that employ type III secretion systems.
Collapse
Affiliation(s)
- Guy Schoehn
- Laboratoire de Virologie Moléculaire Structurale, Grenoble, France
| | | | | | | | | | | |
Collapse
|
143
|
Gupta PK, Kurupati RK, Chandra H, Gaur R, Tandon V, Singh Y, Maithal K. Acid induced unfolding of anthrax protective antigen. Biochem Biophys Res Commun 2003; 311:229-32. [PMID: 14575718 DOI: 10.1016/j.bbrc.2003.09.199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Acidic pH plays an important role in the membrane insertion of protective antigen (PA) of anthrax toxin leading to the translocation of the catalytic moieties. The structural transitions occurring in PA as a consequence of change in pH were investigated by fluorescence and circular dichroism measurements. Our studies revealed the presence of two intermediates on-pathway of acid induced unfolding; one at pH 2.0 and other at pH 4-5. Intrinsic fluorescence measurements of these intermediates showed a red shift in the wavelength of emission maximum with a concomitant decrease in fluorescence intensity, indicative of the exposure of tryptophan residues to the bulk solvent. Furthermore, no significant change was seen in the secondary structure of PA at a pH of 2.0, as indicated by far UV-CD spectra. The low pH intermediate of PA was characterized using the hydrophobic dye, 8-anilino-1-naphthalenesulfonate, and was found to have properties similar to those of a molten globule state.
Collapse
|
144
|
Fujiwara K, Tenno T, Sugasawa K, Jee JG, Ohki I, Kojima C, Tochio H, Hiroaki H, Hanaoka F, Shirakawa M. Structure of the ubiquitin-interacting motif of S5a bound to the ubiquitin-like domain of HR23B. J Biol Chem 2003; 279:4760-7. [PMID: 14585839 DOI: 10.1074/jbc.m309448200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitination, a modification in which single or multiple ubiquitin molecules are attached to a protein, serves signaling functions that control several cellular processes. The ubiquitination signal is recognized by downstream effectors, many of which carry a ubiquitin-interacting motif (UIM). Such interactions can be modulated by regulators carrying a ubiquitin-like (UbL) domain, which binds UIM by mimicking ubiquitination. Of them, HR23B regulates the proteasomal targeting of ubiquitinated substrates, DNA repair factors, and other proteins. Here we report the structure of the UIM of the proteasome subunit S5a bound to the UbL domain of HR23B. The UbL domain presents one hydrophobic and two polar contact sites for interaction with UIM. The residues in these contact sites are well conserved in ubiquitin, but ubiquitin also presents a histidine at the interface. The pH-dependent protonation of this residue interferes with the access of ubiquitin to the UIM and the ubiquitin-associated domain (UBA), and its mutation to a smaller residue increases the affinity of ubiquitin for UIM.
Collapse
Affiliation(s)
- Kenichiro Fujiwara
- Graduate School of Integrated Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Ellerby HM, Lee S, Ellerby LM, Chen S, Kiyota T, del Rio G, Sugihara G, Sun Y, Bredesen DE, Arap W, Pasqualini R. An artificially designed pore-forming protein with anti-tumor effects. J Biol Chem 2003; 278:35311-6. [PMID: 12750379 DOI: 10.1074/jbc.m300474200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein engineering is an emerging area that has expanded our understanding of protein folding and laid the groundwork for the creation of unprecedented structures with unique functions. We previously designed the first native-like pore-forming protein, small globular protein (SGP). We show here that this artificially engineered protein has membrane-disrupting properties and anti-tumor activity in several cancer animal models. We propose and validate a mechanism for the selectivity of SGP toward cell membranes in tumors. SGP is the prototype for a new class of artificial proteins designed for therapeutic applications.
Collapse
Affiliation(s)
- H Michael Ellerby
- Program on Cancer and Aging, The Buck Institute, Novato, California 94945, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Kueltzo LA, Middaugh CR. Nonclassical transport proteins and peptides: an alternative to classical macromolecule delivery systems. J Pharm Sci 2003; 92:1754-72. [PMID: 12949995 DOI: 10.1002/jps.10448] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The number of peptides and proteins known to exhibit nonclassical transport activity has increased significantly in recent years. In most cases, these entities have been studied in relation to their ability to deliver high molecular weight compounds, including proteins and DNA, for the ultimate purpose of developing new drug delivery strategies. In this review, an overview of the various types of vectors is presented. The in vitro and in vivo delivery successes of this technology, as well as preliminary therapeutic efforts, are described. Although a comprehensive mechanism of nonclassical transport has not yet been clearly established, we propose a straightforward model based on the cationic nature of the vectors and the need for lack of highly organized structure. In this hypothesis we suggest that the movement of polycations is mediated by a network of extra- and intracellular polyanions while transport across the bilayer is facilitated by cation-pi interactions between the vectors' basic groups and aromatic amino acid side chains in the bilayer spanning helices of membrane proteins.
Collapse
Affiliation(s)
- Lisa A Kueltzo
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Ave., Lawrence, Kansas 66047, USA
| | | |
Collapse
|
147
|
Touch V, Hayakawa S, Fukada K, Aratani Y, Sun Y. Preparation of antimicrobial reduced lysozyme compatible in food applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:5154-5161. [PMID: 12903984 DOI: 10.1021/jf021005d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The structural and antimicrobial functions of lysozyme reduced with food-compatible reducing agents-cysteine (Cys) and glutathione (GSH)-were investigated. The disulfide bonds were partially reduced by thiol-disulfide exchange reactions under heat-induced denaturing conditions from 55 to 90 degrees C. The results showed that treatment of lysozyme with Cys and GSH resulted in the introduction of new half-cystine residues (2-3 residues/mol of protein). The released SH groups, in turn, rendered the lysozyme molecule more flexible, being accompanied by a dramatic increase in the surface hydrophobicity and exposure of tryptophan residues. As a consequence, the resulting reduced lysozymes were more capable of binding to lipopolysaccharides (LPS) and permeabilizing the bacterial outer membrane, as evidenced by the liposome leakage experiment, than were native or heated lysozyme. Both reduced lysozymes displayed significantly higher antimicrobial activity than native or heated lysozyme against Salmonella enteritidis (SE) in sodium phosphate buffer (10 mM, pH 7.2) at 30 degrees C for 1 h. Their minimal inhibitory concentrations (MICs) against the tested bacteria were about 150- and 25-fold lower than their respective MICs of native or heated lysozyme. The results suggest that partially reduced lysozyme could be used as a potential antimicrobial agent for prevention of SE attack.
Collapse
Affiliation(s)
- Visalsok Touch
- Department of Biochemistry and Food Science, Faculty of Agriculture, Kagawa University, Ikenobe, Kagawa, Japan
| | | | | | | | | |
Collapse
|
148
|
Musse AA, Merrill AR. The molecular basis for the pH-activation mechanism in the channel-forming bacterial colicin E1. J Biol Chem 2003; 278:24491-9. [PMID: 12714593 DOI: 10.1074/jbc.m302371200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The in vitro activity of the channel-forming bacteriocins such as colicin E1 in model membranes requires the specific activation of the protein by an acidic environment in the presence of a membrane potential. Acid activation of the C-terminal domain results in the formation of an insertion-competent intermediate with an enhanced ability to penetrate and perforate cell membranes. We report novel findings of this activation process through the design and study of mutant proteins involving the replacement of conserved Asp residues Asp-408, Asp-410, and Asp-423 within helices 5a and 4 in the colicin E1 channel domain that resulted in enhanced membrane binding, bilayer insertion rates, and ion channel activities at near neutral pH values. This activation process involves the destabilization of a critical salt bridge (Asp-410 and Lys-406) and H-bonds (Asp-408 and Ser-405 main chain; Asp-423 and Lys-420 main chain). The helix-to-coil transition of this motif was identified previously by time-resolved Trp fluorescence measurements (Merrill, A. R., Steer, B. A., Prentice, G. A., Weller, M. J., and Szabo, A. G. (1997) Biochemistry 36, 6874-6884), and here we use this approach to demonstrate that disruption of the helical structure of helices 4 and 5a results in a shift in this equilibrium to favor the coil state. Finally, we show that the essential components of the pH trigger motif are conserved among the channel-forming colicins and that it likely exists within other bacterial proteins and may even have evolved into more sophisticated devices in a number of microbial species.
Collapse
Affiliation(s)
- Abdiwahab A Musse
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry and Biochemistry, University of Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
149
|
Borsari M, Bellei M, Tavagnacco C, Peressini S, Millo D, Costa G. Redox thermodynamics of cytochrome c in mixed water–organic solvent solutions. Inorganica Chim Acta 2003. [DOI: 10.1016/s0020-1693(03)00043-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
150
|
Abstract
The rapid integration of new technologies by the pharmaceutical industry has resulted in numerous breakthroughs in the discovery, development and manufacturing of pharmaceutical products. In particular, the commercial-scale production of high-purity recombinant proteins has resulted in important additions to treatment options for many large therapeutic areas. In addition to proteins, other macromolecules, such as the animal-derived mucopolysaccharide heparins, have also seen dramatic growth as injectable pharmaceutical products. To date, macromolecules have been limited as therapeutics by the fact that they cannot be orally delivered. This article will address the current status and future possibilities of oral macromolecular drug delivery.
Collapse
Affiliation(s)
- Michael Goldberg
- Emisphere Technologies Inc, 765 Old Saw Mill River Road Tarrytown, New York 10591, USA.
| | | |
Collapse
|