101
|
Wu CY, Zhang B, Kim H, Anderson SK, Miller JS, Cichocki F. Ascorbic Acid Promotes KIR Demethylation during Early NK Cell Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1513-1523. [PMID: 32759296 PMCID: PMC7484163 DOI: 10.4049/jimmunol.2000212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/12/2020] [Indexed: 12/28/2022]
Abstract
Variegated expression of killer Ig-like receptors (KIR) in human NK cells is a stochastic process exclusive to subsets of mature NK cells and CD8+ T cells. Allele-specific KIR expression is maintained by DNA methylation within the proximal promoter regions. Because KIR genes are densely methylated in NK cell progenitors, there is an implied stage of human NK cell development in which DNA demethylation takes place to allow for active transcription. When and how this process occurs is unknown. In this study, we show that KIR proximal promoters are densely methylated in less mature CD56bright NK cells and are progressively demethylated in CD56dim NK cells as they mature and acquire KIR. We hypothesized that ten-eleven translocation (TET) enzymes, which oxidize 5mC on DNA could mediate KIR promoter demethylation. The catalytic efficiency of TET enzymes is known to be enhanced by ascorbic acid. We found that the addition of ascorbic acid to ex vivo culture of sorted CD56bright NK cells increased the frequency of KIR expression in a dose-dependent manner and facilitated demethylation of proximal promoters. A marked enrichment of the transcription factor Runx3 as well as TET2 and TET3 was observed within proximal KIR promoters in CD56bright NK cells cultured with ascorbic acid. Additionally, overexpression of TET3 and Runx3 promoted KIR expression in CD56bright NK cells and NK-92 cells. Our results show that KIR promoter demethylation can be induced in CD56bright, and this process is facilitated by ascorbic acid.
Collapse
Affiliation(s)
- Cheng-Ying Wu
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455; and
| | - Bin Zhang
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455; and
| | - Hansol Kim
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455; and
| | - Stephen K Anderson
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455; and
| | - Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455; and
| |
Collapse
|
102
|
Sivori S, Pende D, Quatrini L, Pietra G, Della Chiesa M, Vacca P, Tumino N, Moretta F, Mingari MC, Locatelli F, Moretta L. NK cells and ILCs in tumor immunotherapy. Mol Aspects Med 2020; 80:100870. [PMID: 32800530 DOI: 10.1016/j.mam.2020.100870] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Cells of the innate immunity play an important role in tumor immunotherapy. Thus, NK cells can control tumor growth and metastatic spread. Thanks to their strong cytolytic activity against tumors, different approaches have been developed for exploiting/harnessing their function in patients with leukemia or solid tumors. Pioneering trials were based on the adoptive transfer of autologous NK cell-enriched cell populations that were expanded in vitro and co-infused with IL-2. Although relevant results were obtained in patients with advanced melanoma, the effect was mostly limited to certain metastatic localizations, particularly to the lung. In addition, the severe IL-2-related toxicity and the preferential IL-2-induced expansion of Treg limited this type of approach. This limitation may be overcome by the use of IL-15, particularly of modified IL-15 molecules to improve its half-life and optimize the biological effects. Other approaches to harness NK cell function include stimulation via TLR, the use of bi- and tri-specific NK cell engagers (BiKE and TriKE) linking activating NK receptors (e.g. CD16) to tumor-associated antigens and even incorporating an IL-15 moiety (TriKE). As recently shown, in tumor patients, NK cells may also express inhibitory checkpoints, primarily PD-1. Accordingly, the therapeutic use of checkpoint inhibitors may unleash NK cells against PD-L1+ tumors. This effect may be predominant and crucial in tumors that have lost HLA cl-I expression, thus resulting "invisible" to T lymphocytes. Additional approaches in which NK cells may represent an important tool for cancer therapy, are to exploit the unique properties of the "adaptive" NK cells. These CD57+ NKG2C+ cells, despite their mature stage and a potent cytolytic activity, maintain a strong proliferating capacity. This property revealed to be crucial in hematopoietic stem cell transplantation (HSCT), particularly in the haplo-HSCT setting, to cure high-risk leukemias. T depleted haplo-HSCT (e.g. from one of the parents) allowed to save the life of thousands of patients lacking a HLA-compatible donor. In this setting, NK cells have been shown to play an essential role against leukemia cells and infections. Another major advance is represented by chimeric antigen receptor (CAR)-engineered NK cells. CAR-NK, different from CAR-T cells, may be obtained from allogeneic donors since they do not cause GvHD. Accordingly, they may represent "off-the-shelf" products to promptly treat tumor patients, with affordable costs. Different from NK cells, helper ILC (ILC1, ILC2 and ILC3), the innate counterpart of T helper cell subsets, remain rather ambiguous with respect to their anti-tumor activity. A possible exception is represented by a subset of ILC3: their frequency in peri-tumoral tissues in patients with NSCLC directly correlates with a better prognosis, possibly reflecting their ability to contribute to the organization of tertiary lymphoid structures, an important site of T cell-mediated anti-tumor responses. It is conceivable that innate immunity may significantly contribute to the major advances that immunotherapy has ensured and will continue to ensure to the cure of cancer.
Collapse
Affiliation(s)
- Simona Sivori
- Department of Experimental Medicine, University of Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Italy
| | - Daniela Pende
- UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine, University of Genoa, Italy; UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Italy
| | - Paola Vacca
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Nicola Tumino
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Francesca Moretta
- Department of Laboratory Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, University of Genoa, Italy; UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy; Department of Gynecology/Obstetrics and Pediatrics, Sapienza University, Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| |
Collapse
|
103
|
Research Progress on NK Cell Receptors and Their Signaling Pathways. Mediators Inflamm 2020; 2020:6437057. [PMID: 32774149 PMCID: PMC7396059 DOI: 10.1155/2020/6437057] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/25/2020] [Accepted: 06/20/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer cells (NK cells) play an important role in innate immunity. NK cells recognize self and nonself depending on the balance of activating receptors and inhibitory receptors. After binding to their ligands, NK cell receptors trigger subsequent signaling conduction and then determine whether NK is activated or inhibited. Furthermore, NK cell response includes cytotoxicity and cytokine release, which is tightly related to the activation of NK cell-activating receptors and the inhibition of inhibitory receptors on the surfaces of NK cells. The expression and function of NK cell surface receptors also alter in virus infection, tumor, and autoimmune diseases and influence the occurrence and development of diseases. So, it is important to understand the mechanism of recognition between NK receptors and their ligands in pathological conditions and the signaling pathways of NK cell receptors. This review mainly summarizes the research progress on NK cell surface receptors and their signal pathways.
Collapse
|
104
|
Abstract
PURPOSE Approximately 50% of men reporting to clinics for assisted reproduction have abnormal sperm parameters; we therefore considered whether they differ from fertile males in terms of the frequency of KIR and HLA-C genes, suggesting the involvement of NK cells and some T cells in the inflammatory reaction that can occur in the testes, vas deferens, or epididymis. METHOD We tested a total of 1064 men: 445 of them were patients who, together with their female partners, participated in in vitro fertilization (IVF), 298 men whose female partners suffered from recurrent spontaneous abortion. Three hundred twenty-one fertile men constituted the control group. KIRs were genotyped using KIR Ready Gene kits and HLA-C by PCR-SSP methods. RESULTS We found differences in KIR gene frequencies between men who became fathers via natural conception and men who participated in in vitro fertilization for KIR2DL2 (p/pcorr. = 0.0015/0.035, OR = 1.61), KIR2DL5 gr.2 (p/pcorr. = 0.0023/0.05, OR = 1.64), KIR2DS2 (p/pcorr. = 0.0019/0.044, OR = 1.59), and KIR2DS3 (p/pcorr. = 0.0016/0.037, OR = 1.67). KIRs in Cen AA region were significantly overrepresented in fertile males than in IVF males (p/pcorr. = 0.0076/0.03, OR = 0.67), whereas Cen AB + Cen BB frequency was higher in IVF males than in fertile males (p/pcorr. = 0.0076/0.03, OR = 1.50). We also observed a limited association in KIR-HLA-C combinations. CONCLUSION Fertile men differ in profile of KIR genes and KIR-HLA-C combinations from men participating in IVF.
Collapse
|
105
|
Mariotti FR, Quatrini L, Munari E, Vacca P, Tumino N, Pietra G, Mingari MC, Moretta L. Inhibitory checkpoints in human natural killer cells: IUPHAR Review 28. Br J Pharmacol 2020; 177:2889-2903. [PMID: 32335915 PMCID: PMC7279970 DOI: 10.1111/bph.15081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors have revolutionized cancer therapy leading to exceptional success. However, there is still the need to improve their efficacy in non‐responder patients. Natural killer (NK) cells represent the first line of defence against tumours, due to their ability to release immunomodulatory cytokines and kill target cells that have undergone malignant transformation. Harnessing NK cell response will open new possibilities to improve control of tumour growth. In this respect inhibitory checkpoints expressed on these innate lymphocytes represents a promising target for next‐generation immunotherapy. In this review, we will summarize recent evidences on the expression of NK cells receptors in cancer, with a focus on the inhibitory checkpoint programmed cell death protein 1 (PD‐1). We will also highlight the strength and limitations of the blockade of PD‐1 inhibitory pathway and suggest new combination strategies that may help to unleash more efficiently NK cell anti‐tumour response.
Collapse
Affiliation(s)
- F R Mariotti
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - L Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - E Munari
- Department of Pathology, Sacro Cuore Don Calabria, Negrar, Italy
| | - P Vacca
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - N Tumino
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - G Pietra
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine (DIMES), Università di Genova, Genoa, Italy
| | - M C Mingari
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine (DIMES), Center of Excellence for Biomedical Research, Università di Genova, Genoa, Italy
| | - L Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
106
|
Falco M, Pende D, Munari E, Vacca P, Mingari MC, Moretta L. Natural killer cells: From surface receptors to the cure of high-risk leukemia (Ceppellini Lecture). HLA 2020; 93:185-194. [PMID: 30828978 PMCID: PMC6767140 DOI: 10.1111/tan.13509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022]
Abstract
Natural killer (NK) cells are innate immune effector cells involved in the first line of defense against viral infections and malignancies. In the last three decades, the identification of HLA class I‐specific inhibitory killer immunoglobulin‐like receptors (KIR) and of the main activating receptors has strongly improved our understanding of the mechanisms regulating NK cell functions. The increased knowledge on how NK cells discriminate healthy cells from damaged cells has made it possible to transfer basic research notions to clinical applications. Of particular relevance is the strong NK‐mediated anti‐leukemia effect in haploidentical hematopoietic stem cell transplantation to cure high‐risk leukemia.
Collapse
Affiliation(s)
- Michela Falco
- Laboratorio di Immunologia Clinica e Sperimentale, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Daniela Pende
- Laboratorio di Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Enrico Munari
- Department of Pathology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Paola Vacca
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Maria C Mingari
- Laboratorio di Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine (DIMES) and CEBR, Università di Genova, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
107
|
Zhang J, Khasanova E, Zhang L. Bioinformatics analysis of gene expression profiles of Inclusion body myositis. Scand J Immunol 2020; 91:e12887. [PMID: 32259312 DOI: 10.1111/sji.12887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/15/2020] [Accepted: 03/30/2020] [Indexed: 11/27/2022]
Abstract
Inclusion body myositis (IBM) is a disease with a poor prognosis and limited treatment options. This study aimed at exploring gene expression profile alterations, investigating the underlying mechanisms and identifying novel targets for IBM. We analysed two microarray datasets (GSE39454 and GSE128470) derived from the Gene Expression Omnibus (GEO) database. The GEO2R tool was used to screen out differentially expressed genes (DEGs) between IBM and normal samples. Gene Ontology(GO)function and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery to identify the pathways and functional annotation of DEGs. Finally, protein-protein interaction (PPI) networks were constructed using STRING and Cytoscape, in order to identify hub genes. A total of 144 upregulated DEGs and one downregulated DEG were identified. The GO enrichment analysis revealed that the immune response was the most significantly enriched term within the DEGs. The KEGG pathway analysis identified 22 significant pathways, the majority of which could be divided into the immune and infectious diseases. Following the construction of PPI networks, ten hub genes with high degrees of connectivity were picked out, namely PTPRC, IRF8, CCR5, VCAM1, HLA-DRA, TYROBP, C1QB, HLA-DRB1, CD74 and CXCL9. Our research hypothesizes that autoimmunity plays an irreplaceable role in the pathogenesis of IBM. The novel DEGs and pathways identified in this study may provide new insight into the underlying mechanisms of IBM at the molecular level.
Collapse
Affiliation(s)
- Jiuchang Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Elona Khasanova
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liming Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
108
|
Wu Y, Li J, Jabbarzadeh Kaboli P, Shen J, Wu X, Zhao Y, Ji H, Du F, Zhou Y, Wang Y, Zhang H, Yin J, Wen Q, Cho CH, Li M, Xiao Z. Natural killer cells as a double-edged sword in cancer immunotherapy: A comprehensive review from cytokine therapy to adoptive cell immunotherapy. Pharmacol Res 2020; 155:104691. [DOI: 10.1016/j.phrs.2020.104691] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023]
|
109
|
Yuan C, Aierken A, Xie Z, Li N, Zhao J, Qing H. The age-related microglial transformation in Alzheimer's disease pathogenesis. Neurobiol Aging 2020; 92:82-91. [PMID: 32408056 DOI: 10.1016/j.neurobiolaging.2020.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Neuroinflammatory responses mediated by microglia, the resident immune cells of the central nervous system, have long been a subject of study in the field of Alzheimer's disease (AD). Microglia express a wide range of receptors that act as molecular sensors, through which they can fulfill their various functions. In this review, we first analyzed the changes in the expression levels of microglial membrane receptors SR-A, TREM2, CD36, CD33, and CR3 in aging and AD and described the different roles of these receptors in amyloid-beta clearance and inflammatory responses. Two classical hallmarks of AD are extracellular amyloid-beta deposits and intracellular aggregated phosphorylated tau. In AD, microglia reaction was initially thought to be triggered by amyloid deposits. New evidence showed it also associated with increased phosphorylation of tau. However, which first appeared and induced activated microglia is not clear. Then we summarized diverse opinions on it. Besides, as AD is tightly linked to aging, and microglia changes dramatically on aging, yet the relative impacts of both aging and microglia are less frequently considered, so at last, we discussed the roles of aging microglia in AD. We hope to provide a reference for subsequent research.
Collapse
Affiliation(s)
- Chunxu Yuan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ailikemu Aierken
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Nuomin Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Juan Zhao
- School of Materials Science and Engineering, Department of Materials Processing Engineering, Beijing Institute of Technology, Beijing, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
110
|
Meza Guzman LG, Keating N, Nicholson SE. Natural Killer Cells: Tumor Surveillance and Signaling. Cancers (Basel) 2020; 12:cancers12040952. [PMID: 32290478 PMCID: PMC7226588 DOI: 10.3390/cancers12040952] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells play a pivotal role in cancer immunotherapy due to their innate ability to detect and kill tumorigenic cells. The decision to kill is determined by the expression of a myriad of activating and inhibitory receptors on the NK cell surface. Cell-to-cell engagement results in either self-tolerance or a cytotoxic response, governed by a fine balance between the signaling cascades downstream of the activating and inhibitory receptors. To evade a cytotoxic immune response, tumor cells can modulate the surface expression of receptor ligands and additionally, alter the conditions in the tumor microenvironment (TME), tilting the scales toward a suppressed cytotoxic NK response. To fully harness the killing power of NK cells for clinical benefit, we need to understand what defines the threshold for activation and what is required to break tolerance. This review will focus on the intracellular signaling pathways activated or suppressed in NK cells and the roles signaling intermediates play during an NK cytotoxic response.
Collapse
Affiliation(s)
- Lizeth G. Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sandra E. Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| |
Collapse
|
111
|
Dang D, Taheri S, Das S, Ghosh P, Prince LS, Sahoo D. Computational Approach to Identifying Universal Macrophage Biomarkers. Front Physiol 2020; 11:275. [PMID: 32322218 PMCID: PMC7156600 DOI: 10.3389/fphys.2020.00275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Macrophages engulf and digest microbes, cellular debris, and various disease-associated cells throughout the body. Understanding the dynamics of macrophage gene expression is crucial for studying human diseases. As both bulk RNAseq and single cell RNAseq datasets become more numerous and complex, identifying a universal and reliable marker of macrophage cell becomes paramount. Traditional approaches have relied upon tissue specific expression patterns. To identify universal biomarkers of macrophage, we used a previously published computational approach called BECC (Boolean Equivalent Correlated Clusters) that was originally used to identify conserved cell cycle genes. We performed BECC analysis using the known macrophage marker CD14 as a seed gene. The main idea behind BECC is that it uses massive database of public gene expression dataset to establish robust co-expression patterns identified using a combination of correlation, linear regression and Boolean equivalences. Our analysis identified and validated FCER1G and TYROBP as novel universal biomarkers for macrophages in human and mouse tissues.
Collapse
Affiliation(s)
- Dharanidhar Dang
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States.,Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Sahar Taheri
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States
| | - Soumita Das
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Pradipta Ghosh
- Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States.,Moores Cancer Center, San Diego, CA, United States
| | - Lawrence S Prince
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States.,Rady Children's Hospital, San Diego, CA, United States
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States.,Department of Pediatrics, University of California, San Diego, San Diego, CA, United States.,Moores Cancer Center, San Diego, CA, United States
| |
Collapse
|
112
|
Tambini MD, D'Adamio L. Trem2 Splicing and Expression are Preserved in a Human Aβ-producing, Rat Knock-in Model of Trem2-R47H Alzheimer's Risk Variant. Sci Rep 2020; 10:4122. [PMID: 32139718 PMCID: PMC7058057 DOI: 10.1038/s41598-020-60800-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/13/2020] [Indexed: 11/18/2022] Open
Abstract
The R47H variant of the Triggering-Receptor-Expressed on Myeloid cells 2 (TREM2) increases the risk of Alzheimer's disease (AD). Mutagenesis of exon 2 in Knock-in (KI) mouse models of the R47H variant introduced a cryptic splice site, leading to nonsense mediated decay. Since haploinsufficiency does not model Trem2-R47H function, a new rat KI model, the Trem2R47H KI rat was created. Human Aβ has higher propensity to form toxic Aβ species, which are considered the main pathogenic entity in AD, as compared to rodent Aβ, the rat Amyloid Precursor Protein (App) gene was mutated to produce human Aβ. Trem2 splicing and expression was measured in Trem2R47H KI rat brains and microglia by qualitative and quantitative RT-PCR. Trem2 levels and Trem2 processing was assessed by Western analysis. APP metabolite levels were determined by enzyme-linked immunosorbent assay (ELISA), for Human Aβ and soluble APP, and Western analysis, for full length APP, βCTF and αCTF. Trem2 expression and Trem2 levels are unchanged in Trem2R47H KI rats. The artifactual splicing seen in KI mouse models is not present; additionally, two novel isoforms of rat Trem2 are described. Trem2R47H rat brains have lower human Aβ38, sAPPα and sAPPβ levels. Thus, Trem2R47H KI rats may prove valuable to define pathogenic mechanisms triggered by the Trem2 R47H variant, including those mediated by toxic species of human Aβ peptides.
Collapse
Affiliation(s)
- Marc D Tambini
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Luciano D'Adamio
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 185 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
113
|
Diaz-Peña R, Mondelo-Macía P, Molina de la Torre AJ, Sanz-Pamplona R, Moreno V, Martín V. Analysis of Killer Immunoglobulin-Like Receptor Genes in Colorectal Cancer. Cells 2020; 9:cells9020514. [PMID: 32102404 PMCID: PMC7072752 DOI: 10.3390/cells9020514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/22/2022] Open
Abstract
Natural killer cells (NK cells) play a major role in the immune response to cancer. An important element of NK target recognition is the binding of human leucocyte antigen (HLA) class I molecules by killer immunoglobulin-like receptors (KIRs). Colorectal carcinoma (CRC) is one of the most common types of inflammation-based cancer. The purpose of the present study was to investigate the presence of KIR genes and HLA class I and II alleles in 1074 CRC patients and 1272 controls. We imputed data from single-nucleotide polymorphism (SNP) Illumina OncoArray to identify associations at HLA (HLA–A, B, C, DPB1, DQA1, DQB1, and DRB1) and KIRs (HIBAG and KIR*IMP, respectively). For association analysis, we used PLINK (v1.9), the PyHLA software, and R version 3.4.0. Only three SNP markers showed suggestive associations (p < 10−3; rs16896742, rs28367832, and rs9277952). The frequency of KIR2DS3 was significantly increased in the CRC patients compared to healthy controls (p < 0.005). Our results suggest that the implication of NK cells in CRC may not act through allele combinations in KIR and HLA genes. Much larger studies in ethnically homogeneous populations are needed to rule out the possible role of allelic combinations in KIR and HLA genes in CRC risk.
Collapse
Affiliation(s)
- Roberto Diaz-Peña
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain;
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile
- Correspondence: or ; Tel.: +34-981-955-073 (ext. 15706)
| | - Patricia Mondelo-Macía
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain;
| | - Antonio José Molina de la Torre
- Instituto de Biomedicina (IBIOMED), CIBERESP, 24071 León, Spain; (A.J.M.d.l.T.); (V.M.)
- Group of Research on Gene-Environment-Health Interactions (GIIGAS), Universidad de León, 24071 León, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L’Hospitalet de Llobregat, 08908 Barcelona, Spain (V.M.)
| | - Víctor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L’Hospitalet de Llobregat, 08908 Barcelona, Spain (V.M.)
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Vicente Martín
- Instituto de Biomedicina (IBIOMED), CIBERESP, 24071 León, Spain; (A.J.M.d.l.T.); (V.M.)
- Group of Research on Gene-Environment-Health Interactions (GIIGAS), Universidad de León, 24071 León, Spain
| |
Collapse
|
114
|
Blunt MD, Khakoo SI. Activating killer cell immunoglobulin-like receptors: Detection, function and therapeutic use. Int J Immunogenet 2020; 47:1-12. [PMID: 31755661 DOI: 10.1111/iji.12461] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) have a central role in the control of natural killer (NK) cell function. The functions of the activating KIRs, as compared to those of the inhibitory KIR, have been more difficult to define due to difficulties in antibody-mediated identification and their apparent low affinities for HLA class I. Immunogenetic studies have shown associations of activating KIRs with the outcome of autoimmune diseases, pregnancy-associated disorders, infectious diseases and cancers. Activating KIR are thus thought to have important roles in the control of natural killer cell functions and their role in disease. In this review, we discuss current knowledge on activating KIR, their ligands and, their roles in the pathogenesis and potential therapy of human diseases.
Collapse
Affiliation(s)
- Matthew D Blunt
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Salim I Khakoo
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| |
Collapse
|
115
|
Lyu P, Huang Z, Feng Q, Su Y, Zheng M, Hong Y, Cai X, Lu Z. Unveiling the transcriptome alteration of POMC neuron in diet-induced obesity. Exp Cell Res 2020; 389:111848. [PMID: 31954693 DOI: 10.1016/j.yexcr.2020.111848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 01/24/2023]
Abstract
Loss of neuron homeostasis in the arcuate nucleus (ARC) is responsible for diet-induced-obesity (DIO). We previously reported that loss of Rb1 gene compromised the homeostasis of anorexigenic POMC neurons in ARC and induced obesity in mice. To evaluate the development of DIO, we propose to analyze the transcriptomic alteration of POMC neurons in mice following high fat diet (HFD) feeding. We isolated these neurons from established DIO mice and performed transcriptomic profiling using RNA-seq. In total, 1066 genes (628 upregulated and 438 downregulated) were identified as differentially expressed genes (DEGs). Pathway enrichment analysis with these DEGs further revealed that "cell cycle," "apoptosis," "chemokine signaling," and "sphingolipid metabolism" pathways were correlated with DIO development. Moreover, we validated that the pRb protein, a key regulator of "cell cycle pathway," was inactivated by phosphorylation in POMC neurons by HFD feeding. Importantly, the reversal of deregulated cell cycle by stereotaxic delivering of the unphosphorylated pRbΔP in ARC significantly meliorated the DIO. Collectively, our study provides insights into the mechanisms related to the loss of homeostasis of POMC neurons in DIO, and suggests pRb phosphorylation as a potential intervention target to treat DIO.
Collapse
Affiliation(s)
- Peng Lyu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhishun Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qingjun Feng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yongfu Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Mengying Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yannv Hong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xiang Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhonglei Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
116
|
Abstract
The respiratory tract is tasked with responding to a constant and vast influx of foreign agents. It acts as an important first line of defense in the innate immune system and as such plays a crucial role in preventing the entry of invading pathogens. While physical barriers like the mucociliary escalator exert their effects through the clearance of these pathogens, diverse and dynamic cellular mechanisms exist for the activation of the innate immune response through the recognition of pathogen-associated molecular patterns (PAMPs). These PAMPs are recognized by pattern recognition receptors (PRRs) that are expressed on a number of myeloid cells such as dendritic cells, macrophages, and neutrophils found in the respiratory tract. C-type lectin receptors (CLRs) are PRRs that play a pivotal role in the innate immune response and its regulation to a variety of respiratory pathogens such as viruses, bacteria, and fungi. This chapter will describe the function of both activating and inhibiting myeloid CLRs in the recognition of a number of important respiratory pathogens as well as the signaling events initiated by these receptors.
Collapse
|
117
|
Liu H, Yang Y, Ge Y, Liu J, Zhao Y. TERC promotes cellular inflammatory response independent of telomerase. Nucleic Acids Res 2019; 47:8084-8095. [PMID: 31294790 PMCID: PMC6735767 DOI: 10.1093/nar/gkz584] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/09/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
TERC is an RNA component of telomerase. However, TERC is also ubiquitously expressed in most human terminally differentiated cells, which don't have telomerase activity. The function of TERC in these cells is largely unknown. Here, we report that TERC enhances the expression and secretion of inflammatory cytokines by stimulating NK-κB pathway in a telomerase-independent manner. The ectopic expression of TERC in telomerase-negative cells alters the expression of 431 genes with high enrichment of those involved in cellular immunity. We perform genome-wide screening using a previously identified 'binding motif' of TERC and identify 14 genes that are transcriptionally regulated by TERC. Among them, four genes (LIN37, TPRG1L, TYROBP and USP16) are demonstrated to stimulate the activation of NK-κB pathway. Mechanistically, TERC associates with the promoter of these genes through forming RNA-DNA triplexes, thereby enhancing their transcription. In vivo, expression levels of TERC and TERC target genes (TYROBP, TPRG1L and USP16) are upregulated in patients with inflammation-related diseases such as type II diabetes and multiple sclerosis. Collectively, these results reveal an unknown function of TERC on stimulating inflammatory response and highlight a new mechanism by which TERC modulates gene transcription. TERC may be a new target for the development of anti-inflammation therapeutics.
Collapse
Affiliation(s)
- Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yiding Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yuanlong Ge
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Juanhong Liu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
118
|
Sivori S, Meazza R, Quintarelli C, Carlomagno S, Della Chiesa M, Falco M, Moretta L, Locatelli F, Pende D. NK Cell-Based Immunotherapy for Hematological Malignancies. J Clin Med 2019; 8:E1702. [PMID: 31623224 PMCID: PMC6832127 DOI: 10.3390/jcm8101702] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) lymphocytes are an integral component of the innate immune system and represent important effector cells in cancer immunotherapy, particularly in the control of hematological malignancies. Refined knowledge of NK cellular and molecular biology has fueled the interest in NK cell-based antitumor therapies, and recent efforts have been made to exploit the high potential of these cells in clinical practice. Infusion of high numbers of mature NK cells through the novel graft manipulation based on the selective depletion of T cells and CD19+ B cells has resulted into an improved outcome in children with acute leukemia given human leucocyte antigen (HLA)-haploidentical hematopoietic transplantation. Likewise, adoptive transfer of purified third-party NK cells showed promising results in patients with myeloid malignancies. Strategies based on the use of cytokines or monoclonal antibodies able to induce and optimize NK cell activation, persistence, and expansion also represent a novel field of investigation with remarkable perspectives of favorably impacting on outcome of patients with hematological neoplasia. In addition, preliminary results suggest that engineering of mature NK cells through chimeric antigen receptor (CAR) constructs deserve further investigation, with the goal of obtaining an "off-the-shelf" NK cell bank that may serve many different recipients for granting an efficient antileukemia activity.
Collapse
Affiliation(s)
- Simona Sivori
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy (S.C.); (M.D.C.)
- Centre of Excellence for Biomedical Research, University of Genoa, 16132 Genoa, Italy
| | - Raffaella Meazza
- Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Concetta Quintarelli
- Department of Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy; (C.Q.); (F.L.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy (S.C.); (M.D.C.)
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy (S.C.); (M.D.C.)
- Centre of Excellence for Biomedical Research, University of Genoa, 16132 Genoa, Italy
| | - Michela Falco
- Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy;
| | - Franco Locatelli
- Department of Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy; (C.Q.); (F.L.)
- Department of Gynecology/Obstetrics and Pediatrics, Sapienza University, 00185 Rome, Italy
| | - Daniela Pende
- Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| |
Collapse
|
119
|
Yao H, Coppola K, Schweig JE, Crawford F, Mullan M, Paris D. Distinct Signaling Pathways Regulate TREM2 Phagocytic and NFκB Antagonistic Activities. Front Cell Neurosci 2019; 13:457. [PMID: 31649511 PMCID: PMC6795686 DOI: 10.3389/fncel.2019.00457] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/25/2019] [Indexed: 11/13/2022] Open
Abstract
Several genetic variants of the Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) have been shown to increase the risk of developing Alzheimer’s disease (AD) supporting a role of microglia and immune cells in the pathobiology of AD. We have employed an ectopic model of TREM2 and DAP12 expression in HEK293 cells to study selectively TREM2 dependent signaling and phagocytic functions and evaluated the effects of some of the TREM2 mutations associated with AD. We show that shedding of the TREM2 N-terminal domain does not affect the inhibition of NFκB activation induced by TREM2 while it completely blocks phagocytosis suggesting that TREM2 anti-inflammatory properties can be mediated by the TREM2 C-terminal fragment while the phagocytic activity requires the full-length receptor. In addition, we confirm in that model that apolipoprotein E (APOE) is a ligand for TREM2 and triggers TREM2 signaling. In particular, we show that APOE4 stimulates spleen tyrosine kinase (SYK) activation more potently than APOE2 in a TREM2 dependent manner. Interestingly, TREM2 appears to antagonize NFκB activation induced by phorbol ester but is unable to prevent TNFα induction of NFκB activation suggesting that TREM2 antagonizes inflammatory events triggered downstream of PKC. TREM2 mutations drastically impact TREM2 phagocytosis as well as its ability to antagonize NFκB activation and notably prevent the activation of the PI3K/AKT pathway observed with wild-type TREM2. Overall our data suggest that TREM2 dependent phagocytosis requires an activation of the SYK/PI3K/AKT/PLCγ pathways while the suppression of NFκB activation by TREM2 is independent of SYK, PI3K, and PLCγ activities. This model of ectopic TREM2-DAP12 co-expression appears suitable to study TREM2 signaling as several biological functions of TREM2 and TREM2 mutations that have been previously described in myeloid and microglial cells were also replicated in this model.
Collapse
Affiliation(s)
- Hailan Yao
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Kyle Coppola
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Jonas Elias Schweig
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Michael Mullan
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Daniel Paris
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| |
Collapse
|
120
|
Genetic intolerance analysis as a tool for protein science. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183058. [PMID: 31494120 DOI: 10.1016/j.bbamem.2019.183058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 01/04/2023]
Abstract
Recent advances in whole genome and exome sequencing have dramatically increased the database of human gene variations. There are now enough sequenced human exomes and genomes to begin to identify gene variations that are notable because they are NOT observed in sequenced human genomes, apparently because they are subject to "purifying selection", exemplifying genetic intolerance. Such "dysprocreative" gene variations are embryonic lethal or prevent reproduction through any one of a number of possible mechanisms. Here we review an emerging quantitative approach, "Missense Tolerance Ratio" (MTR) analysis, that is used to assess protein-encoding gene (cDNA) sequence intolerance to missense mutations based on analysis of the >100 K and growing number of currently available human genome and exome sequences. This approach is already useful for analyzing intolerance to mutations in cDNA segments with a resolution on the order of 90 bases. Moreover, as the number of sequenced genomes/exomes increases by orders of magnitude it may eventually be possible to assess mutational tolerance in a statistically robust manner at or near single site resolution. Here we focus on how cDNA intolerance analysis complements other bioinformatic methods to illuminate structure-folding-function relationships for the encoded proteins. A set of disease-linked membrane proteins is employed to provide examples.
Collapse
|
121
|
Xiao L, Cen D, Gan H, Sun Y, Huang N, Xiong H, Jin Q, Su L, Liu X, Wang K, Yan G, Dong T, Wu S, Zhou P, Zhang J, Liang W, Ren J, Teng Y, Chen C, Xu XH. Adoptive Transfer of NKG2D CAR mRNA-Engineered Natural Killer Cells in Colorectal Cancer Patients. Mol Ther 2019; 27:1114-1125. [PMID: 30962163 PMCID: PMC6554529 DOI: 10.1016/j.ymthe.2019.03.011] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/04/2023] Open
Abstract
By fusing the extracellular domain of the natural killer (NK) cell receptor NKG2D to DAP12, we constructed a chimeric antigen receptor (CAR) to improve NK cell tumor responses. An RNA electroporation approach that provides transient expression of the CAR was adopted as a risk mitigation strategy. Expression of the NKG2D RNA CAR significantly augmented the cytolytic activity of NK cells against several solid tumor cell lines in vitro and provided a clear therapeutic benefit to mice with established solid tumors. Three patients with metastatic colorectal cancer were then treated with local infusion of the CAR-NK cells. Reduction of ascites generation and a marked decrease in number of tumor cells in ascites samples were observed in the first two patients treated with intraperitoneal infusion of low doses of the CAR-NK cells. The third patient with metastatic tumor sites in the liver was treated with ultrasound-guided percutaneous injection, followed by intraperitoneal infusion of the CAR-NK cells. Rapid tumor regression in the liver region was observed with Doppler ultrasound imaging and complete metabolic response in the treated liver lesions was confirmed by positron emission tomography (PET)- computed tomographic (CT) scanning. Our results highlight a promising therapeutic potential of using RNA CAR-modified NK cells to treat metastatic colorectal cancer.
Collapse
MESH Headings
- Adoptive Transfer/adverse effects
- Adoptive Transfer/methods
- Animals
- Cell Engineering/methods
- Cell Transplantation/adverse effects
- Cell Transplantation/methods
- Colorectal Neoplasms/mortality
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/therapy
- Cytotoxicity, Immunologic/genetics
- Feasibility Studies
- Female
- Genetic Vectors
- HCT116 Cells
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/transplantation
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Middle Aged
- NK Cell Lectin-Like Receptor Subfamily K/genetics
- Pilot Projects
- RNA, Messenger/genetics
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lin Xiao
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Dongzhi Cen
- Department of Radiation Oncology and Nuclear Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Haining Gan
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yan Sun
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Nanqi Huang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Hanzhen Xiong
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Qiongmei Jin
- Department of Radiation Oncology and Nuclear Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Liqun Su
- Department of Radiation Oncology and Nuclear Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xuejuan Liu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Kejian Wang
- Lin He's Academician Workstation of New Medicine and Clinical Translation at The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Guangrong Yan
- Biomedicine Research Centre, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Tianfa Dong
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Shangbiao Wu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Pengzhi Zhou
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Jinshan Zhang
- Department of Radiation Oncology and Nuclear Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Weixiang Liang
- Department of Ultrasound, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Junlan Ren
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong Province 510320, China
| | - Yaoshu Teng
- Department of Otorhinolaryngology, Affiliated Hangzhou First's People Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Can Chen
- Hangzhou Youshan Biomedical Co., Ltd., 459 Qianmo Road, Hangzhou 310051, China
| | - Xue Hu Xu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| |
Collapse
|
122
|
Pende D, Falco M, Vitale M, Cantoni C, Vitale C, Munari E, Bertaina A, Moretta F, Del Zotto G, Pietra G, Mingari MC, Locatelli F, Moretta L. Killer Ig-Like Receptors (KIRs): Their Role in NK Cell Modulation and Developments Leading to Their Clinical Exploitation. Front Immunol 2019; 10:1179. [PMID: 31231370 PMCID: PMC6558367 DOI: 10.3389/fimmu.2019.01179] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells contribute to the first line of defense against viruses and to the control of tumor growth and metastasis spread. The discovery of HLA class I specific inhibitory receptors, primarily of killer Ig-like receptors (KIRs), and of activating receptors has been fundamental to unravel NK cell function and the molecular mechanisms of tumor cell killing. Stemmed from the seminal discoveries in early '90s, in which Alessandro Moretta was the major actor, an extraordinary amount of research on KIR specificity, genetics, polymorphism, and repertoire has followed. These basic notions on NK cells and their receptors have been successfully translated to clinical applications, primarily to the haploidentical hematopoietic stem cell transplantation to cure otherwise fatal leukemia in patients with no HLA compatible donors. The finding that NK cells may express the PD-1 inhibitory checkpoint, particularly in cancer patients, may allow understanding how anti-PD-1 therapy could function also in case of HLA class Ineg tumors, usually susceptible to NK-mediated killing. This, together with the synergy of therapeutic anti-checkpoint monoclonal antibodies, including those directed against NKG2A or KIRs, emerging in recent or ongoing studies, opened new solid perspectives in cancer therapy.
Collapse
Affiliation(s)
- Daniela Pende
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Massimo Vitale
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Cantoni
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
- Department of Experimental Medicine (DIMES), Center of Excellence for Biomedical Research, Università di Genova, Genoa, Italy
| | - Chiara Vitale
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine (DIMES), Università di Genova, Genoa, Italy
| | - Enrico Munari
- Department of Pathology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Alice Bertaina
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics Stanford School of Medicine, Stanford, CA, United States
| | - Francesca Moretta
- Department of Laboratory Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Genny Del Zotto
- Core Facilities, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Gabriella Pietra
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine (DIMES), Università di Genova, Genoa, Italy
| | - Maria Cristina Mingari
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine (DIMES), Center of Excellence for Biomedical Research, Università di Genova, Genoa, Italy
| | - Franco Locatelli
- Department of Oncohematology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Lorenzo Moretta
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
123
|
Barrow AD, Martin CJ, Colonna M. The Natural Cytotoxicity Receptors in Health and Disease. Front Immunol 2019; 10:909. [PMID: 31134055 PMCID: PMC6514059 DOI: 10.3389/fimmu.2019.00909] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
The Natural Cytotoxicity Receptors (NCRs), NKp46, NKp44, and NKp30, were some of the first human activating Natural Killer (NK) cell receptors involved in the non-MHC-restricted recognition of tumor cells to be cloned over 20 years ago. Since this time many host- and pathogen-encoded ligands have been proposed to bind the NCRs and regulate the cytotoxic and cytokine-secreting functions of tissue NK cells. This diverse set of NCR ligands can manifest on the surface of tumor or virus-infected cells or can be secreted extracellularly, suggesting a remarkable NCR polyfunctionality that regulates the activity of NK cells in different tissue compartments during steady state or inflammation. Moreover, the NCRs can also be expressed by other innate and adaptive immune cell subsets under certain tissue conditions potentially conferring NK recognition programs to these cells. Here we review NCR biology in health and disease with particular reference to how this important class of receptors regulates the functions of tissue NK cells as well as confer NK cell recognition patterns to other innate and adaptive lymphocyte subsets. Finally, we highlight how NCR biology is being harnessed for novel therapeutic interventions particularly for enhanced tumor surveillance.
Collapse
Affiliation(s)
- Alexander David Barrow
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Claudia Jane Martin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
124
|
Parodi M, Favoreel H, Candiano G, Gaggero S, Sivori S, Mingari MC, Moretta L, Vitale M, Cantoni C. NKp44-NKp44 Ligand Interactions in the Regulation of Natural Killer Cells and Other Innate Lymphoid Cells in Humans. Front Immunol 2019; 10:719. [PMID: 31024551 PMCID: PMC6465645 DOI: 10.3389/fimmu.2019.00719] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
Natural Killer (NK) cells are potent cytotoxic cells belonging to the family of Innate Lymphoid Cells (ILCs). Their most characterized effector functions are directed to the control of aberrant cells in the body, including both transformed and virus-infected cells. NK cell-mediated recognition of abnormal cells primarily occurs through receptor-ligand interactions, involving an array of inhibitory and activating NK receptors and different types of ligands expressed on target cells. While most of the receptors have become known over many years, their respective ligands were only defined later and their impressive complexity has only recently become evident. NKp44, a member of Natural Cytotoxicity Receptors (NCRs), is an activating receptor playing a crucial role in most functions exerted by activated NK cells and also by other NKp44+ immune cells. The large and heterogeneous panel of NKp44 ligands (NKp44L) now includes surface expressed glycoproteins and proteoglycans, nuclear proteins that can be exposed outside the cell, and molecules that can be either released in the extracellular space or carried in extracellular vesicles. Recent findings have extended our knowledge on the nature of NKp44L to soluble plasma glycoproteins, such as secreted growth factors or extracellular matrix (ECM)-derived glycoproteins. NKp44L are induced upon tumor transformation or viral infection but may also be expressed in normal cells and tissues. In addition, NKp44-NKp44L interactions are involved in the crosstalk between NK cells and different innate and adaptive immune cell types. NKp44 expression in different ILCs located in tissues further extends the potential role of NKp44-NKp44L interactions.
Collapse
Affiliation(s)
- Monica Parodi
- Immunology Operative Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Herman Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Gaggero
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Maria Cristina Mingari
- Immunology Operative Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Massimo Vitale
- Immunology Operative Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
125
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
126
|
Lack of an Association between the Functional Polymorphism TREM-1 rs2234237 and the Clinical Course of Sepsis among Critically Ill Caucasian Patients-A Monocentric Prospective Genetic Association Study. J Clin Med 2019; 8:jcm8030301. [PMID: 30832396 PMCID: PMC6463065 DOI: 10.3390/jcm8030301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 01/09/2023] Open
Abstract
Sepsis is a life-threatening condition and a significant challenge for those working in intensive care, where it remains one of the leading causes of mortality. According to the sepsis-3 definition, sepsis is characterized by dysregulation of the host response to infection. The TREM-1 gene codes for the triggering receptor expressed on myeloid cells 1, which is part of the pro-inflammatory response of the immune system. This study aimed to determine whether the functional TREM-1 rs2234237 single nucleotide polymorphism was associated with mortality in a cohort of 649 Caucasian patients with sepsis. The 90-day mortality rate was the primary outcome, and disease severity and microbiological findings were analyzed as secondary endpoints. TREM-1 rs2234237 TT homozygous patients were compared to A-allele carriers for this purpose. Kaplan⁻Meier survival analysis revealed no association between the clinically relevant TREM-1 rs2234237 single nucleotide polymorphism and the 90-day or 28-day survival rate in this group of septic patients. In addition, the performed analyses of disease severity and the microbiological findings did not show significant differences between the TREM-1 rs2234237 genotypes. The TREM-1 rs2234237 genotype was not significantly associated with sepsis mortality and sepsis disease severity. Therefore, it was not a valuable prognostic marker for the survival of septic patients in the studied cohort.
Collapse
|
127
|
Lazarova M, Steinle A. The NKG2D axis: an emerging target in cancer immunotherapy. Expert Opin Ther Targets 2019; 23:281-294. [DOI: 10.1080/14728222.2019.1580693] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mariya Lazarova
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
128
|
Trinh TL, Kandell WM, Donatelli SS, Tu N, Tejera MM, Gilvary DL, Eksioglu EA, Burnette A, Adams WA, Liu J, Teer JK, Djeu JY, Coppola D, Wei S. Immune evasion by TGFβ-induced miR-183 repression of MICA/B expression in human lung tumor cells. Oncoimmunology 2019; 8:e1557372. [PMID: 30906652 PMCID: PMC6422376 DOI: 10.1080/2162402x.2018.1557372] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/07/2018] [Accepted: 12/01/2018] [Indexed: 01/02/2023] Open
Abstract
Immune escape is a hallmark of cancer. In human lung cancer, we have identified a unique microRNA (miR)-based pathway employed by tumor cells to repress detection by immune cells via the NKG2D-MICA/B receptor-ligand system. MICA/B is readily induced by cell transformation and serves as a danger signal and ligand to alert NK and activated CD8+ T cells. However, immunohistochemical analysis indicated that human lung adenocarcinoma and squamous cell carcinoma specimens express little MICA/B while high levels of miR-183 were detected in both tumor types in a TCGA database. Human lung tumor cell lines confirmed the reverse relationship in expression of MICA/B and miR-183. Importantly, a miR-183 binding site was identified on the 3'untranslated region (UTR) of both MICA and MICB, suggesting its role in MICA/B regulation. Luciferase reporter constructs bearing the 3'UTR of MICA or MICB in 293 cells supported the function of miR-183 in repressing MICA/B expression. Additionally, anti-sense miR-183 transfection into H1355 or H1299 tumor cells caused the upregulation of MICA/B. Abundant miR-183 expression in tumor cells was traced to transforming growth factor-beta (TGFβ), as evidenced by antisense TGFβ transfection into H1355 or H1299 tumor cells which subsequently lost miR-183 expression accompanied by MICA/B upregulation. Most significantly, anti-sense miR-183 transfected tumor cells became more sensitive to lysis by activated CD8+ T cells that express high levels of NKG2D. Thus, high miR-183 triggered by TGFβ expressed in lung tumor cells can target MICA/B expression to circumvent detection by NKG2D on immune cells.
Collapse
Affiliation(s)
- Thu Le Trinh
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Wendy M Kandell
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | | | - Nhan Tu
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Melba M Tejera
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Erika A Eksioglu
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Alexis Burnette
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - William A Adams
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jinhong Liu
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jamie K Teer
- Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Julie Y Djeu
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Sheng Wei
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
129
|
Muraleedharan CK, McClellan SA, Ekanayaka SA, Francis R, Zmejkoski A, Hazlett LD, Xu S. The miR-183/96/182 Cluster Regulates Macrophage Functions in Response to Pseudomonas aeruginosa. J Innate Immun 2019; 11:347-358. [PMID: 30625496 DOI: 10.1159/000495472] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Macrophages (Mϕ) are an important component of the innate immune system; they play critical roles in the first line of defense to pathogen invasion and modulate adaptive immunity. MicroRNAs (miRNAs) are a newly recognized, important level of gene expression regulation. However, their roles in the regulation of Mϕ and the immune system are still not fully understood. In this report, we provide evidence that the conserved miR-183/96/182 cluster (miR-183/96/182) modulates Mϕ function in their production of reactive nitrogen (RNS) and oxygen species (ROS) and their inflammatory response to Pseudomonas aeruginosa (PA) infection and/or lipopolysaccharide (LPS) treatment. We show that knockdown of miR-183/96/182 results in decreased production of multiple proinflammatory cytokines in response to PA or LPS treatment in Mϕ-like Raw264.7 cells. Consistently, peritoneal Mϕ from miR-183/96/182-knockout versus wild-type mice are less responsive to PA or LPS, although their basal levels of proinflammatory cytokines are increased. In addition, overexpression of miR-183/96/182 results in decreased production of nitrite and ROS in Raw264.7 cells. We also provide evidence that DAP12 and Nox2 are downstream target genes of miR-183/96/182. These data suggest that miR-183/96/182 imposes global regulation on various aspects of Mϕ function through different downstream target genes.
Collapse
Affiliation(s)
- Chithra K Muraleedharan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sharon A McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sandamali A Ekanayaka
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Rebecca Francis
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Alex Zmejkoski
- Irvin D. Reed Honors College, Wayne State University, Detroit, Michigan, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA,
| |
Collapse
|
130
|
Gratuze M, Leyns CEG, Holtzman DM. New insights into the role of TREM2 in Alzheimer's disease. Mol Neurodegener 2018; 13:66. [PMID: 30572908 PMCID: PMC6302500 DOI: 10.1186/s13024-018-0298-9] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia. The two histopathological markers of AD are amyloid plaques composed of the amyloid-β (Aβ) peptide, and neurofibrillary tangles of aggregated, abnormally hyperphosphorylated tau protein. The majority of AD cases are late-onset, after the age of 65, where a clear cause is still unknown. However, there are likely different multifactorial contributors including age, enviornment, biology and genetics which can increase risk for the disease. Genetic predisposition is considerable, with heritability estimates of 60-80%. Genetic factors such as rare variants of TREM2 (triggering receptor expressed on myeloid cells-2) strongly increase the risk of developing AD, confirming the role of microglia in AD pathogenesis. In the last 5 years, several studies have dissected the mechanisms by which TREM2, as well as its rare variants affect amyloid and tau pathologies and their consequences in both animal models and in human studies. In this review, we summarize increases in our understanding of the involvement of TREM2 and microglia in AD development that may open new therapeutic strategies targeting the immune system to influence AD pathogenesis.
Collapse
Affiliation(s)
- Maud Gratuze
- Department of Neurology, St. Louis, USA
- Hope Center for Neurological Disorders, St. Louis, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Cheryl E. G. Leyns
- Department of Neurology, St. Louis, USA
- Hope Center for Neurological Disorders, St. Louis, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, St. Louis, USA
- Hope Center for Neurological Disorders, St. Louis, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
131
|
Viral and Nonviral Engineering of Natural Killer Cells as Emerging Adoptive Cancer Immunotherapies. J Immunol Res 2018; 2018:4054815. [PMID: 30306093 PMCID: PMC6166361 DOI: 10.1155/2018/4054815] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/26/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are powerful immune effectors whose antitumor activity is regulated through a sophisticated network of activating and inhibitory receptors. As effectors of cancer immunotherapy, NK cells are attractive as they do not attack healthy self-tissues nor do they induce T cell-driven inflammatory cytokine storm, enabling their use as allogeneic adoptive cellular therapies. Clinical responses to adoptive NK-based immunotherapy have been thwarted, however, by the profound immunosuppression induced by the tumor microenvironment, particularly severe in the context of solid tumors. In addition, the short postinfusion persistence of NK cells in vivo has limited their clinical efficacy. Enhancing the antitumor immunity of NK cells through genetic engineering has been fueled by the promise that impaired cytotoxic functionality can be restored or augmented with the use of synthetic genetic approaches. Alongside expressing chimeric antigen receptors to overcome immune escape by cancer cells, enhance their recognition, and mediate their killing, NK cells have been genetically modified to enhance their persistence in vivo by the expression of cytokines such as IL-15, avoid functional and metabolic tumor microenvironment suppression, or improve their homing ability, enabling enhanced targeting of solid tumors. However, NK cells are notoriously adverse to endogenous gene uptake, resulting in low gene uptake and transgene expression with many vector systems. Though viral vectors have achieved the highest gene transfer efficiencies with NK cells, nonviral vectors and gene transfer approaches—electroporation, lipofection, nanoparticles, and trogocytosis—are emerging. And while the use of NK cell lines has achieved improved gene transfer efficiencies particularly with viral vectors, challenges with primary NK cells remain. Here, we discuss the genetic engineering of NK cells as they relate to NK immunobiology within the context of cancer immunotherapy, highlighting the most recent breakthroughs in viral vectors and nonviral approaches aimed at genetic reprogramming of NK cells for improved adoptive immunotherapy of cancer, and, finally, address their clinical status.
Collapse
|
132
|
Early Events in Japanese Encephalitis Virus Infection: Viral Entry. Pathogens 2018; 7:pathogens7030068. [PMID: 30104482 PMCID: PMC6161159 DOI: 10.3390/pathogens7030068] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne zoonotic flavivirus, is an enveloped positive-strand RNA virus that can cause a spectrum of clinical manifestations, ranging from mild febrile illness to severe neuroinvasive disease. Today, several killed and live vaccines are available in different parts of the globe for use in humans to prevent JEV-induced diseases, yet no antivirals are available to treat JEV-associated diseases. Despite the progress made in vaccine research and development, JEV is still a major public health problem in southern, eastern, and southeastern Asia, as well as northern Oceania, with the potential to become an emerging global pathogen. In viral replication, the entry of JEV into the cell is the first step in a cascade of complex interactions between the virus and target cells that is required for the initiation, dissemination, and maintenance of infection. Because this step determines cell/tissue tropism and pathogenesis, it is a promising target for antiviral therapy. JEV entry is mediated by the viral glycoprotein E, which binds virions to the cell surface (attachment), delivers them to endosomes (endocytosis), and catalyzes the fusion between the viral and endosomal membranes (membrane fusion), followed by the release of the viral genome into the cytoplasm (uncoating). In this multistep process, a collection of host factors are involved. In this review, we summarize the current knowledge on the viral and cellular components involved in JEV entry into host cells, with an emphasis on the initial virus-host cell interactions on the cell surface.
Collapse
|
133
|
Konishi H, Kiyama H. Microglial TREM2/DAP12 Signaling: A Double-Edged Sword in Neural Diseases. Front Cell Neurosci 2018; 12:206. [PMID: 30127720 PMCID: PMC6087757 DOI: 10.3389/fncel.2018.00206] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
Microglia are activated after neuronal injury and in neurodegenerative diseases, and trigger neuroinflammation in the central nervous system (CNS). Microglia-derived neuroinflammation has both beneficial and detrimental effects on neurons. Because the timing and magnitude of microglial activation is thought to be a critical determinant of neuronal fate, understanding the molecular mechanisms underlying microglial activation is required to enable establishment of microglia-targeted therapies for neural diseases. Plasma membrane receptors play primary roles as activators of microglia and in this review, we focus on a receptor complex involving triggering receptor expressed on myeloid cells 2 (TREM2) and DNAX-activating protein of 12 kDa (DAP12), both of which are causative genes for Nasu-Hakola disease, a dementia with bone cysts. Recent transcriptome approaches demonstrated TREM2/DAP12 signaling as the principal regulator that transforms microglia from a homeostatic to a neural disease-associated state. Furthermore, animal model studies revealed critical roles for TREM2/DAP12 in the regulation of microglial activity, including survival, phagocytosis, and cytokine production, not only in Alzheimer's disease but also in other neural diseases, such as Parkinson's disease, demyelinating disease, ischemia, and peripheral nerve injury. Intriguingly, while TREM2/DAP12-mediated microglial activation is detrimental for some diseases, including peripheral nerve injury, it is beneficial for other diseases. As the role of activated microglia differs among disease models, TREM2/DAP12 signaling may result in different outcomes in different diseases. In this review we discuss recent perspectives on the role of TREM2/DAP12 in microglia and their contribution to neural diseases.
Collapse
Affiliation(s)
- Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
134
|
Abstract
Natural killer (NK) cells express an array of germ-line encoded receptors that are capable of triggering cytotoxicity. NK cells tend to express many members of a given family of signalling molecules. The presence of many activating receptors and many members of a given family of signalling molecules can enable NK cells to detect different kinds of target cells, and to mount different kinds of responses. This contributes also to the robustness of NK cells responses; cytotoxic functions of NK cells often remain unaffected in the absence of selected signalling molecules. NK cells express many MHC-I-specific inhibitory receptors. Signals from MHC-I-specific inhibitory receptors tightly control NK cell cytotoxicity and, paradoxically, maintain NK cells in a state of proper responsiveness. This review provides a brief overview of the events that underlie NK cell activation, and how signals from inhibitory receptors intercept NK cell activation to prevent inappropriate triggering of cytotoxicity.
Collapse
Affiliation(s)
- Santosh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| |
Collapse
|
135
|
Dhar P, Wu JD. NKG2D and its ligands in cancer. Curr Opin Immunol 2018; 51:55-61. [PMID: 29525346 PMCID: PMC6145810 DOI: 10.1016/j.coi.2018.02.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 01/12/2023]
Abstract
NKG2D is an activating immune receptor expressed by NK and effector T cells. Induced expression of NKG2D ligand on tumor cell surface during oncogenic insults renders cancer cells susceptible to immune destruction. In advanced human cancers, tumor cells shed NKG2D ligand to produce an immune soluble form as a means of immune evasion. Soluble NKG2D ligands have been associated with poor clinical prognosis in cancer patients. Harnessing NKG2D pathway is considered a viable avenue in cancer immunotherapy over recent years. In this review, we will discuss the progress and perspectives.
Collapse
Affiliation(s)
- Payal Dhar
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago IL60611, United States; Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Chicago, Northwestern University, Chicago IL60611, United States
| | - Jennifer D Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago IL60611, United States; Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago IL60611, United States; Robert Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL60611, United States.
| |
Collapse
|
136
|
Dai KZ, Ryan JC, Naper C, Vaage JT. Identification of MHC Class Ib Ligands for Stimulatory and Inhibitory Ly49 Receptors and Induction of Potent NK Cell Alloresponses in Rats. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29531166 DOI: 10.4049/jimmunol.1701464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Early studies indicate that rats may have a repertoire of MHC class Ib-reactive Ly49 stimulatory receptors capable of mounting memory-like NK cell alloresponses. In this article, we provide molecular and functional evidence for this assumption. Pairs of Ly49 receptors with sequence similarities in the lectin-like domains, but with opposing signaling functions, showed specificity for ligands with class Ia-like structural features encoded from the first telomeric MHC class Ib gene cluster, RT1-CE, which is syntenic with the H2-D/H2-L/H2-Q cluster in mice. The activating Ly49s4 receptor and its inhibitory counterparts, Ly49i4 and Ly49i3, reacted with all allelic variants of RT1-U, whereas Ly49s5 and Ly49i5 were specific for RT1-Eu NK cell cytolytic responses were predictably activated and inhibited, and potent in vivo NK alloresponses were induced by repeated MHC class Ib alloimmunizations. Additional Ly49-class Ib interactions, including RT1-Cl with the Ly49s4/Ly49i4/Ly49i3 group of receptors, were characterized using overexpressed receptor/ligand pairs, in vitro functional assays, and limited mutational analyses. Obvious, as well as subtle, Ly49-class Ib interactions led to ligand-induced receptor calibration and NK subset expansions in vivo. Together, these studies suggest that in vivo NK alloresponses are controlled by pleomorphic Ly49-class Ib interactions, some of which may not be easily detectable in vitro.
Collapse
Affiliation(s)
- Ke-Zheng Dai
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - James C Ryan
- Department of Medicine, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA 94121; and
| | - Christian Naper
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - John T Vaage
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway; .,Department of Immunology, University of Oslo, 0424 Oslo, Norway
| |
Collapse
|
137
|
Dukovska D, Fernández-Soto D, Valés-Gómez M, Reyburn HT. NKG2H-Expressing T Cells Negatively Regulate Immune Responses. Front Immunol 2018; 9:390. [PMID: 29545803 PMCID: PMC5837990 DOI: 10.3389/fimmu.2018.00390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 02/12/2018] [Indexed: 01/03/2023] Open
Abstract
The biology and function of NKG2H receptor, unlike the better characterized members of the NKG2 family NKG2A, NKG2C, and NKG2D, remains largely unclear. Here, we show that NKG2H is able to associate with the signaling adapter molecules DAP12 and DAP10 suggesting that this receptor can signal for cell activation. Using a recently described NKG2H-specific monoclonal antibody (mAb), we have characterized the expression and function of lymphocytes that express this receptor. NKG2H is expressed at the cell surface of a small percentage of peripheral blood mononuclear cell (PBMC) and is found more frequently on T cells, rather than NK cells. Moreover, although NKG2H is likely to trigger activation, co-cross-linking of this receptor with an NKG2H-specific mAb led to decreased T cell activation and proliferation in polyclonal PBMC cultures stimulated by anti-CD3 mAbs. This negative regulatory activity was seen only after cross-linking with NKG2H, but not NKG2A- or NKG2C-specific monoclonal antibodies. The mechanism underlying this negative effect is as yet unclear, but did not depend on the release of soluble factors or recognition of MHC class I molecules. These observations raise the intriguing possibility that NKG2H may be a novel marker for T cells able to negatively regulate T cell responses.
Collapse
Affiliation(s)
- Daniela Dukovska
- Department of Immunology and Oncology, National Centre for Biotechnology, CSIC, Madrid, Spain
| | - Daniel Fernández-Soto
- Department of Immunology and Oncology, National Centre for Biotechnology, CSIC, Madrid, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology, CSIC, Madrid, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology, CSIC, Madrid, Spain
| |
Collapse
|
138
|
Mecca C, Giambanco I, Donato R, Arcuri C. Microglia and Aging: The Role of the TREM2-DAP12 and CX3CL1-CX3CR1 Axes. Int J Mol Sci 2018; 19:E318. [PMID: 29361745 PMCID: PMC5796261 DOI: 10.3390/ijms19010318] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Depending on the species, microglial cells represent 5-20% of glial cells in the adult brain. As the innate immune effector of the brain, microglia are involved in several functions: regulation of inflammation, synaptic connectivity, programmed cell death, wiring and circuitry formation, phagocytosis of cell debris, and synaptic pruning and sculpting of postnatal neural circuits. Moreover, microglia contribute to some neurodevelopmental disorders such as Nasu-Hakola disease (NHD), and to aged-associated neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and others. There is evidence that human and rodent microglia may become senescent. This event determines alterations in the microglia activation status, associated with a chronic inflammation phenotype and with the loss of neuroprotective functions that lead to a greater susceptibility to the neurodegenerative diseases of aging. In the central nervous system (CNS), Triggering Receptor Expressed on Myeloid Cells 2-DNAX activation protein 12 (TREM2-DAP12) is a signaling complex expressed exclusively in microglia. As a microglial surface receptor, TREM2 interacts with DAP12 to initiate signal transduction pathways that promote microglial cell activation, phagocytosis, and microglial cell survival. Defective TREM2-DAP12 functions play a central role in the pathogenesis of several diseases. The CX3CL1 (fractalkine)-CX3CR1 signaling represents the most important communication channel between neurons and microglia. The expression of CX3CL1 in neurons and of its receptor CX3CR1 in microglia determines a specific interaction, playing fundamental roles in the regulation of the maturation and function of these cells. Here, we review the role of the TREM2-DAP12 and CX3CL1-CX3CR1 axes in aged microglia and the involvement of these pathways in physiological CNS aging and in age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Carmen Mecca
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Ileana Giambanco
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Rosario Donato
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
- Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Cataldo Arcuri
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| |
Collapse
|
139
|
Biagioli M, Mencarelli A, Carino A, Cipriani S, Marchianò S, Fiorucci C, Donini A, Graziosi L, Baldelli F, Distrutti E, Costantino G, Fiorucci S. Genetic and Pharmacological Dissection of the Role of Spleen Tyrosine Kinase (Syk) in Intestinal Inflammation and Immune Dysfunction in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2017; 24:123-135. [PMID: 29272492 DOI: 10.1093/ibd/izx031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND The DNAX adaptor protein 12 (DAP12) is a transmembrane adaptor molecule that signals through the activation of Syk (Spleen Tyrosine Kinase) in myeloid cells. The purpose of this study is to investigate the role of DAP12 and Syk pathways in inflammatory bowel diseases (IBDs). METHODS DAP12 deficient and DAP12 transgenic, overexpressing an increased amount of DAP12, mice and Syk deficient mice in the C57/BL6 background were used for these studies. Colitis was induced by administering mice with dextran sulfate sodium (DSS), in drinking water, or 2,4,6-trinitrobenzene sulfonic acid (TNBS), by intrarectal enema. RESULTS Abundant expression of DAP12 and Syk was detected in colon samples obtained from Crohn's disease patients with expression restricted to immune cells infiltrating the colonic wall. In rodents development of DSS colitis as measured by assessing severity of wasting diseases, global colitis score,and macroscopic and histology scores was robustly attenuated in DAP12-/- and Syk-/- mice. In contrast, DAP12 overexpression resulted in a striking exacerbation of colon damage caused by DSS. Induction of colon expression of proinflammatory cytokines and chemokines in response to DSS administration was attenuated in DAP12-/- and Syk-/- mice, whereas opposite results were observed in DAP12 transgenic mice. Treating wild-type mice with a DAP-12 inhibitor or a Syk inhibitor caused a robust attenuation of colitis induced by DSS and TNBS. CONCLUSIONS DAP12 and Syk are essential mediators in inflammation-driven immune dysfunction in murine colitides. Because DAP12 and Syk expression is upregulated in patients with active disease, present findings suggest a beneficial role for DAP12 and Syk inhibitors in IBD.
Collapse
Affiliation(s)
- Michele Biagioli
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Andrea Mencarelli
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Adriana Carino
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Sabrina Cipriani
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Chiara Fiorucci
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Annibale Donini
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Luigina Graziosi
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Franco Baldelli
- Department of Medicine, University of Perugia, Perugia, 06132, Italy; ‡Perugia Hospital, Perugia, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | | | - Stefano Fiorucci
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
140
|
Increased serum TREM-1 level is associated with in-stent restenosis, and activation of TREM-1 promotes inflammation, proliferation and migration in vascular smooth muscle cells. Atherosclerosis 2017; 267:10-18. [DOI: 10.1016/j.atherosclerosis.2017.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/18/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
|
141
|
Kim HS, Nam ST, Mun SH, Lee SK, Kim HW, Park YH, Kim B, Won KJ, Kim HR, Park YM, Kim HS, Beaven MA, Kim YM, Choi WS. DJ-1 controls bone homeostasis through the regulation of osteoclast differentiation. Nat Commun 2017; 8:1519. [PMID: 29142196 PMCID: PMC5688089 DOI: 10.1038/s41467-017-01527-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 09/25/2017] [Indexed: 11/09/2022] Open
Abstract
Receptor activator of NF-kB ligand (RANKL) generates intracellular reactive oxygen species (ROS), which increase RANKL-mediated signaling in osteoclast (OC) precursor bone marrow macrophages (BMMs). Here we show that a ROS scavenging protein DJ-1 negatively regulates RANKL-driven OC differentiation, also called osteoclastogenesis. DJ-1 ablation in mice leads to a decreased bone volume and an increase in OC numbers. In vitro, the activation of RANK-dependent signals is enhanced in DJ-1-deficient BMMs as compared to wild-type BMMs. DJ-1 suppresses the activation of both RANK-TRAF6 and RANK-FcRγ/Syk signaling pathways because of activation of Src homology region 2 domain-containing phosphatase-1, which is inhibited by ROS. Ablation of DJ-1 in mouse models of arthritis and RANKL-induced bone disease leads to an increase in the number of OCs, and exacerbation of bone damage. Overall, our results suggest that DJ-1 plays a role in bone homeostasis in normal physiology and in bone-associated pathology by negatively regulating osteoclastogenesis.
Collapse
Affiliation(s)
- Hyuk Soon Kim
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Seung Taek Nam
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Se Hwan Mun
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
- Department of Medicine, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Sun-Kyeong Lee
- Department of Medicine, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Hyun Woo Kim
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Young Hwan Park
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Bokyung Kim
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Kyung-Jong Won
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Hae-Rim Kim
- Department of Rheumatology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Yeong-Min Park
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Hyung Sik Kim
- Department of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Michael A Beaven
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Young Mi Kim
- Department of Preventive Pharmacy, College of Pharmacy, Duksung Women's University, Seoul, 132-714, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea.
| |
Collapse
|
142
|
Naiyer MM, Cassidy SA, Magri A, Cowton V, Chen K, Mansour S, Kranidioti H, Mbirbindi B, Rettman P, Harris S, Fanning LJ, Mulder A, Claas FHJ, Davidson AD, Patel AH, Purbhoo MA, Khakoo SI. KIR2DS2 recognizes conserved peptides derived from viral helicases in the context of HLA-C. Sci Immunol 2017; 2:2/15/eaal5296. [DOI: 10.1126/sciimmunol.aal5296] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/30/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
|
143
|
Jay TR, von Saucken VE, Landreth GE. TREM2 in Neurodegenerative Diseases. Mol Neurodegener 2017; 12:56. [PMID: 28768545 PMCID: PMC5541421 DOI: 10.1186/s13024-017-0197-5] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
TREM2 variants have been identified as risk factors for Alzheimer's disease (AD) and other neurodegenerative diseases (NDDs). Because TREM2 encodes a receptor exclusively expressed on immune cells, identification of these variants conclusively demonstrates that the immune response can play an active role in the pathogenesis of NDDs. These TREM2 variants also confer the highest risk for developing Alzheimer's disease of any risk factor identified in nearly two decades, suggesting that understanding more about TREM2 function could provide key insights into NDD pathology and provide avenues for novel immune-related NDD biomarkers and therapeutics. The expression, signaling and function of TREM2 in NDDs have been extensively investigated in an effort to understand the role of immune function in disease pathogenesis and progression. We provide a comprehensive review of our current understanding of TREM2 biology, including new insights into the regulation of TREM2 expression, and TREM2 signaling and function across NDDs. While many open questions remain, the current body of literature provides clarity on several issues. While it is still often cited that TREM2 expression is decreased by pro-inflammatory stimuli, it is now clear that this is true in vitro, but inflammatory stimuli in vivo almost universally increase TREM2 expression. Likewise, while TREM2 function is classically described as promoting an anti-inflammatory phenotype, more than half of published studies demonstrate a pro-inflammatory role for TREM2, suggesting that its role in inflammation is much more complex. Finally, these components of TREM2 biology are applied to a discussion of how TREM2 impacts NDD pathologies and the latest assessment of how these findings might be applied to immune-directed clinical biomarkers and therapeutics.
Collapse
Affiliation(s)
- Taylor R. Jay
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - Victoria E. von Saucken
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W 15th Street, Indianapolis, IN 46202 USA
| | - Gary E. Landreth
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W 15th Street, Indianapolis, IN 46202 USA
| |
Collapse
|
144
|
Nabekura T, Gotthardt D, Niizuma K, Trsan T, Jenus T, Jonjic S, Lanier LL. Cutting Edge: NKG2D Signaling Enhances NK Cell Responses but Alone Is Insufficient To Drive Expansion during Mouse Cytomegalovirus Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:1567-1571. [PMID: 28760883 DOI: 10.4049/jimmunol.1700799] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022]
Abstract
NK cells play a critical role in host defense against viruses. In this study, we investigated the role of NKG2D in the expansion of NK cells after mouse CMV (MCMV) infection. Wild-type and NKG2D-deficient (Klrk1-/- ) Ly49H+ NK cells proliferated robustly when infected with MCMV strains engineered to allow expression of NKG2D ligands, which enhanced the response of wild-type NK cells. Naive NK cells exclusively express NKG2D-L, which pairs only with DAP10, whereas NKG2D-S expressed by activated NK cells pairs with DAP10 and DAP12, similar to Ly49H. However, NKG2D alone was unable to drive robust expansion of Ly49H- NK cells when mice were infected with these MCMV strains, likely because NKG2D-S was only transiently expressed postinfection. These findings demonstrate that NKG2D augments Ly49H-dependent proliferation of NK cells; however, NKG2D signaling alone is inadequate for expansion of NK cells, likely due to only transient expression of the NKG2D-DAP12 complex.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143.,Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Dagmar Gotthardt
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143
| | - Kouta Niizuma
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8575, Japan; and
| | - Tihana Trsan
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| | - Tina Jenus
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143; .,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143
| |
Collapse
|
145
|
Zhong L, Zhang ZL, Li X, Liao C, Mou P, Wang T, Wang Z, Wang Z, Wei M, Xu H, Bu G, Chen XF. TREM2/DAP12 Complex Regulates Inflammatory Responses in Microglia via the JNK Signaling Pathway. Front Aging Neurosci 2017; 9:204. [PMID: 28680398 PMCID: PMC5478682 DOI: 10.3389/fnagi.2017.00204] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/06/2017] [Indexed: 12/26/2022] Open
Abstract
DNAX-activating protein of 12 kDa (DAP12) is a signaling adapter protein expressed in cells that participate in innate immune responses. By pairing with different triggering receptors expressed on myeloid cell (TREM) proteins, DAP12 can mediate both positive and negative cellular responses. In particular, TREM1 acts as an amplifier of the immune response, while TREM2 functions as a negative regulator. TREM2 has also been shown to stimulate the phagocytosis of apoptotic neurons and define the barrier function in microglia. Notably, loss-of-function mutations of either DAP12 or TREM2 result in a disorder known as Nasu-Hakola disease (NHD); and mutations of these genes have been associated with the risk for Alzheimer's disease (AD), suggesting that TREM2 and DAP12 may regulate common signaling pathways in the disease pathogenesis. In this study, we demonstrated an anti-inflammatory role of DAP12 in murine microglia that depends on the presence of TREM2. We also uncovered the JNK signaling pathway as the underlying molecular mechanism by which the TREM2/DAP12 complex suppresses the hyperactivation of microglia upon LPS stimulation. Interestingly, LPS down-regulates the expression of Trem2 via the activation of JNK and NF-κB signaling pathways, resulting in a vicious cycle that synergistically promotes the inflammatory responses. Our study provides insights into mechanism-based therapy for neuroinflammatory disorders.
Collapse
Affiliation(s)
- Li Zhong
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen UniversityXiamen, China
| | - Zhen-Lian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen UniversityXiamen, China
| | - Xinxiu Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen UniversityXiamen, China
| | - Chunyan Liao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen UniversityXiamen, China
| | - Pengfei Mou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen UniversityXiamen, China
| | - Tingting Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen UniversityXiamen, China
| | - Zongqi Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen UniversityXiamen, China
| | - Zhe Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen UniversityXiamen, China
| | - Min Wei
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen UniversityXiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen UniversityXiamen, China.,Neuroscience and Aging Research Center, Sanford-Burnham-Prebys Medical Discovery InstituteLa Jolla, CA, United States
| | - Guojun Bu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen UniversityXiamen, China.,Department of Neuroscience, Mayo ClinicJacksonville, FL, United States
| | - Xiao-Fen Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen UniversityXiamen, China.,Shenzhen Research Institute of Xiamen UniversityShenzhen, China
| |
Collapse
|
146
|
Demoulin B, Cook WJ, Murad J, Graber DJ, Sentman ML, Lonez C, Gilham DE, Sentman CL, Agaugue S. Exploiting natural killer group 2D receptors for CAR T-cell therapy. Future Oncol 2017; 13:1593-1605. [PMID: 28613086 DOI: 10.2217/fon-2017-0102] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chimeric antigen receptors (CARs) are genetically engineered proteins that combine an extracellular antigen-specific recognition domain with one or several intracellular T-cell signaling domains. When expressed in T cells, these CARs specifically trigger T-cell activation upon antigen recognition. While the clinical proof of principle of CAR T-cell therapy has been established in hematological cancers, CAR T cells are only at the early stages of being explored to tackle solid cancers. This special report discusses the concept of exploiting natural killer cell receptors as an approach that could broaden the specificity of CAR T cells and potentially enhance the efficacy of this therapy against solid tumors. New data demonstrating feasibility of this approach in humans and supporting the ongoing clinical trial are also presented.
Collapse
Affiliation(s)
- Benjamin Demoulin
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - W James Cook
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | | | - David J Graber
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Marie-Louise Sentman
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Caroline Lonez
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - David E Gilham
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - Charles L Sentman
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Sophie Agaugue
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| |
Collapse
|
147
|
Baytak E, Gong Q, Akman B, Yuan H, Chan WC, Küçük C. Whole transcriptome analysis reveals dysregulated oncogenic lncRNAs in natural killer/T-cell lymphoma and establishes MIR155HG as a target of PRDM1. Tumour Biol 2017; 39:1010428317701648. [PMID: 28468592 DOI: 10.1177/1010428317701648] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Natural killer/T-cell lymphoma is a rare but aggressive neoplasm with poor prognosis. Despite previous reports that showed potential tumor suppressors, such as PRDM1 or oncogenes associated with the etiology of this malignancy, the role of long non-coding RNAs in natural killer/T-cell lymphoma pathobiology has not been addressed to date. Here, we aim to identify cancer-associated dysregulated long non-coding RNAs and signaling pathways or biological processes associated with these long non-coding RNAs in natural killer/T-cell lymphoma cases and to identify the long non-coding RNAs transcriptionally regulated by PRDM1. RNA-Seq analysis revealed 166 and 66 long non-coding RNAs to be significantly overexpressed or underexpressed, respectively, in natural killer/T-cell lymphoma cases compared with resting or activated normal natural killer cells. Novel long non-coding RNAs as well as the cancer-associated ones such as SNHG5, ZFAS1, or MIR155HG were dysregulated. Interestingly, antisense transcripts of many growth-regulating genes appeared to be transcriptionally deregulated. Expression of ZFAS1, which is upregulated in natural killer/T-cell lymphoma cases, showed association with growth-regulating pathways such as stabilization of P53, regulation of apoptosis, cell cycle, or nuclear factor-kappa B signaling in normal and neoplastic natural killer cell samples. Consistent with the tumor suppressive role of PRDM1, we identified MIR155HG and TERC to be transcriptionally downregulated by PRDM1 in two PRDM1-null NK-cell lines when it is ectopically expressed. In conclusion, this is the first study that identified long non-coding RNAs whose expression is dysregulated in natural killer/T-cell lymphoma cases. These findings suggest that ZFAS1 and other dysregulated long non-coding RNAs may be involved in natural killer/T-cell lymphoma pathobiology through regulation of cancer-related genes, and loss-of-PRDM1 expression in natural killer/T-cell lymphomas may contribute to overexpression of MIR155HG; thereby promoting tumorigenesis.
Collapse
Affiliation(s)
- Esra Baytak
- 1 İzmir International Biomedicine and Genome Institute (iBG-İzmir), Dokuz Eylul University, İzmir, Turkey.,2 Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Qiang Gong
- 3 Department of Pathology, City of Hope Medical Center, Duarte, CA, USA
| | - Burcu Akman
- 1 İzmir International Biomedicine and Genome Institute (iBG-İzmir), Dokuz Eylul University, İzmir, Turkey
| | - Hongling Yuan
- 1 İzmir International Biomedicine and Genome Institute (iBG-İzmir), Dokuz Eylul University, İzmir, Turkey
| | - Wing C Chan
- 3 Department of Pathology, City of Hope Medical Center, Duarte, CA, USA
| | - Can Küçük
- 1 İzmir International Biomedicine and Genome Institute (iBG-İzmir), Dokuz Eylul University, İzmir, Turkey.,2 Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
148
|
Gentle NL, Loubser S, Paximadis M, Puren A, Tiemessen CT. Killer-cell immunoglobulin-like receptor (KIR) and human leukocyte antigen (HLA) class I genetic diversity in four South African populations. Hum Immunol 2017; 78:503-509. [PMID: 28571758 DOI: 10.1016/j.humimm.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 11/29/2022]
Abstract
Killer-cell Immunoglobulin-like Receptor (KIR) and Human Leukocyte Antigen (HLA) genotypes vary considerably between individuals and populations due to KIR/HLA allelic variation and variable haplotype configurations of KIR. HLA mediate natural killer cell activity by serving as KIR ligands. KIR/HLA polymorphisms associate with both disease susceptibility and severity. We determined the frequencies of KIR, KIR genotypes and KIR-HLA combinations in 364 healthy individuals from four South African populations. Study participants included black African (n=167), Caucasian (n=97), Mixed ancestry (n=50) and Indian (n=50) individuals. We identified 48 KIR genotypes that included two genotypes not previously reported. Based on KIR gene content, Indian individuals represented the most distinct group, showing the highest frequencies of KIR2DL2, KIR2DL5, KIR2DS1, KIR2DS2, KIR2DS3 and KIR3DS1, the lowest frequencies of KIR2DL3, KIR2DS4 and KIR3DL1; and a KIR2DL4-negative individual. KIR2DS1 and KIR3DS1 were infrequent in black African populations. HLA-C2 was more common in black African individuals, while HLA-C1 predominated in the other populations. Indian individuals were more likely to possess KIR2DL2 paired with HLA-C1, while Caucasian individuals exhibited the highest frequencies of KIR2DL3 paired with HLA-C1. This report provides comprehensive reference data for further study of the roles of KIR/HLA in non-communicable and infectious diseases in South African populations.
Collapse
Affiliation(s)
- Nikki L Gentle
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa
| | - Shayne Loubser
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa
| | - Maria Paximadis
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa
| | - Adrian Puren
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa
| | - Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa.
| |
Collapse
|
149
|
Chapel A, Garcia-Beltran WF, Hölzemer A, Ziegler M, Lunemann S, Martrus G, Altfeld M. Peptide-specific engagement of the activating NK cell receptor KIR2DS1. Sci Rep 2017; 7:2414. [PMID: 28546555 PMCID: PMC5445099 DOI: 10.1038/s41598-017-02449-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/11/2017] [Indexed: 01/10/2023] Open
Abstract
The activating NK cell receptor KIR2DS1 has been shown to be involved in many disorders including autoimmune diseases, malignancies and pregnancy outcomes. However, the precise ligands and functions of this receptor remain unclear. We aimed to gain a better understanding of the factors involved in the binding of KIR2DS1 and its inhibitory counterpart KIR2DL1 to HLA class I molecules, and the consequences for KIR2DS1+ NK-cell function. A systematic screen that assessed binding to 97 HLA-I proteins confirmed that KIR2DS1-binding was narrowly restricted to HLA-C group 2 complexes, while KIR2DL1 showed a broader binding specificity. Using KIR2DS1ζ+ Jurkat reporter-cells and peptide-pulsed 721.221.TAP1KO-HLA-C*06:02 cells, we identified the synthetic peptide SRGPVHHLL presented by HLA-C*06:02 that strongly engaged KIR2DS1- and KIR2DL1-binding. Functional analysis showed that this HLA-C*06:02-presented peptide can furthermore activate primary KIR2DS1(+) NK cell clones. Thus, we demonstrated peptide-dependent binding of the activating NK cell receptor KIR2DS1, providing new insights into the underlying mechanisms involved in KIR2DS1-related disorders.
Collapse
Affiliation(s)
- Anaïs Chapel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Angelique Hölzemer
- Department of Internal Medicine, University Hospital Eppendorf (UKE), Hamburg, Germany
| | - Maja Ziegler
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sebastian Lunemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Gloria Martrus
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Marcus Altfeld
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.
| |
Collapse
|
150
|
Liu D, Tian S, Zhang K, Xiong W, Lubaki NM, Chen Z, Han W. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV. Protein Cell 2017; 8:861-877. [PMID: 28488245 PMCID: PMC5712291 DOI: 10.1007/s13238-017-0415-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/22/2017] [Indexed: 12/31/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells contribute to the body’s immune defenses. Current chimeric antigen receptor (CAR)-modified T cell immunotherapy shows strong promise for treating various cancers and infectious diseases. Although CAR-modified NK cell immunotherapy is rapidly gaining attention, its clinical applications are mainly focused on preclinical investigations using the NK92 cell line. Despite recent advances in CAR-modified T cell immunotherapy, cost and severe toxicity have hindered its widespread use. To alleviate these disadvantages of CAR-modified T cell immunotherapy, additional cytotoxic cell-mediated immunotherapies are urgently needed. The unique biology of NK cells allows them to serve as a safe, effective, alternative immunotherapeutic strategy to CAR-modified T cells in the clinic. While the fundamental mechanisms underlying the cytotoxicity and side effects of CAR-modified T and NK cell immunotherapies remain poorly understood, the formation of the immunological synapse (IS) between CAR-modified T or NK cells and their susceptible target cells is known to be essential. The role of the IS in CAR T and NK cell immunotherapies will allow scientists to harness the power of CAR-modified T and NK cells to treat cancer and infectious diseases. In this review, we highlight the potential applications of CAR-modified NK cells to treat cancer and human immunodeficiency virus (HIV), and discuss the challenges and possible future directions of CAR-modified NK cell immunotherapy, as well as the importance of understanding the molecular mechanisms of CAR-modified T cell- or NK cell-mediated cytotoxicity and side effects, with a focus on the CAR-modified NK cell IS.
Collapse
Affiliation(s)
- Dongfang Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA.
| | - Shuo Tian
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Kai Zhang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Wei Xiong
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ndongala Michel Lubaki
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Zhiying Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Weidong Han
- Institute of Basic Medicine, College of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|