101
|
Ponomareva NV, Andreeva TV, Protasova MS, Kunizheva SS, Kuznetsova IL, Kolesnikova EP, Malina DD, Mitrofanov AA, Fokin VF, Illarioshkin SN, Rogaev EI. Neuronal Hyperactivation in EEG Data during Cognitive Tasks Is Related to the Apolipoprotein J/Clusterin Genotype in Nondemented Adults. Int J Mol Sci 2023; 24:6790. [PMID: 37047762 PMCID: PMC10095572 DOI: 10.3390/ijms24076790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
The clusterin (CLU) rs11136000 CC genotype is a probable risk factor for Alzheimer's disease (AD). CLU, also known as the apolipoprotein J gene, shares certain properties with the apolipoprotein E (APOE) gene with a well-established relationship with AD. This study aimed to determine whether the electrophysiological patterns of brain activation during the letter fluency task (LFT) depend on CLU genotypes in adults without dementia. Previous studies have shown that LFT performance involves activation of the frontal cortex. We examined EEG alpha1 and alpha2 band desynchronization in the frontal regions during the LFT in 94 nondemented individuals stratified by CLU (rs11136000) genotype. Starting at 30 years of age, CLU CC carriers exhibited more pronounced task-related alpha2 desynchronization than CLU CT&TT carriers in the absence of any differences in LFT performance. In CLU CC carriers, alpha2 desynchronization was significantly correlated with age. Increased task-related activation in individuals at genetic risk for AD may reflect greater "effort" to perform the task and/or neuronal hyperexcitability. The results show that the CLU genotype is associated with neuronal hyperactivation in the frontal cortex during cognitive tasks performances in nondemented individuals, suggesting systematic vulnerability of LFT related cognitive networks in people carrying unfavorable CLU alleles.
Collapse
Affiliation(s)
- Natalya V. Ponomareva
- Research Center of Neurology, 125367 Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
| | - Tatiana V. Andreeva
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Centre for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Maria S. Protasova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Svetlana S. Kunizheva
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina L. Kuznetsova
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | | | | | | | | | - Evgeny I. Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Department of Psychiatry, Umass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
102
|
Balmorez T, Sakazaki A, Murakami S. Genetic Networks of Alzheimer's Disease, Aging, and Longevity in Humans. Int J Mol Sci 2023; 24:ijms24065178. [PMID: 36982253 PMCID: PMC10049434 DOI: 10.3390/ijms24065178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Human genomic analysis and genome-wide association studies (GWAS) have identified genes that are risk factors for early and late-onset Alzheimer's disease (AD genes). Although the genetics of aging and longevity have been extensively studied, previous studies have focused on a specific set of genes that have been shown to contribute to or are a risk factor for AD. Thus, the connections among the genes involved in AD, aging, and longevity are not well understood. Here, we identified the genetic interaction networks (referred to as pathways) of aging and longevity within the context of AD by using a gene set enrichment analysis by Reactome that cross-references more than 100 bioinformatic databases to allow interpretation of the biological functions of gene sets through a wide variety of gene networks. We validated the pathways with a threshold of p-value < 1.00 × 10-5 using the databases to extract lists of 356 AD genes, 307 aging-related (AR) genes, and 357 longevity genes. There was a broad range of biological pathways involved in AR and longevity genes shared with AD genes. AR genes identified 261 pathways within the threshold of p < 1.00 × 10-5, of which 26 pathways (10% of AR gene pathways) were further identified by overlapping genes among AD and AR genes. The overlapped pathways included gene expression (p = 4.05 × 10-11) including ApoE, SOD2, TP53, and TGFB1 (p = 2.84 × 10-10); protein metabolism and SUMOylation, including E3 ligases and target proteins (p = 1.08 × 10-7); ERBB4 signal transduction (p = 2.69 × 10-6); the immune system, including IL-3 and IL-13 (p = 3.83 × 10-6); programmed cell death (p = 4.36 × 10-6); and platelet degranulation (p = 8.16 × 10-6), among others. Longevity genes identified 49 pathways within the threshold, of which 12 pathways (24% of longevity gene pathways) were further identified by overlapping genes among AD and longevity genes. They include the immune system, including IL-3 and IL-13 (p = 7.64 × 10-8), plasma lipoprotein assembly, remodeling and clearance (p < 4.02 × 10-6), and the metabolism of fat-soluble vitamins (p = 1.96 × 10-5). Thus, this study provides shared genetic hallmarks of aging, longevity, and AD backed up by statistical significance. We discuss the significant genes involved in these pathways, including TP53, FOXO, SUMOylation, IL4, IL6, APOE, and CEPT, and suggest that mapping the gene network pathways provide a useful basis for further medical research on AD and healthy aging.
Collapse
Affiliation(s)
- Timothy Balmorez
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, USA
| | - Amy Sakazaki
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, USA
| | - Shin Murakami
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, USA
| |
Collapse
|
103
|
I F. The unique neuropathological vulnerability of the human brain to aging. Ageing Res Rev 2023; 87:101916. [PMID: 36990284 DOI: 10.1016/j.arr.2023.101916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD)-related neurofibrillary tangles (NFT), argyrophilic grain disease (AGD), aging-related tau astrogliopathy (ARTAG), limbic predominant TDP-43 proteinopathy (LATE), and amygdala-predominant Lewy body disease (LBD) are proteinopathies that, together with hippocampal sclerosis, progressively appear in the elderly affecting from 50% to 99% of individuals aged 80 years, depending on the disease. These disorders usually converge on the same subject and associate with additive cognitive impairment. Abnormal Tau, TDP-43, and α-synuclein pathologies progress following a pattern consistent with an active cell-to-cell transmission and abnormal protein processing in the host cell. However, cell vulnerability and transmission pathways are specific for each disorder, albeit abnormal proteins may co-localize in particular neurons. All these alterations are unique or highly prevalent in humans. They all affect, at first, the archicortex and paleocortex to extend at later stages to the neocortex and other regions of the telencephalon. These observations show that the phylogenetically oldest areas of the human cerebral cortex and amygdala are not designed to cope with the lifespan of actual humans. New strategies aimed at reducing the functional overload of the human telencephalon, including optimization of dream repair mechanisms and implementation of artificial circuit devices to surrogate specific brain functions, appear promising.
Collapse
Affiliation(s)
- Ferrer I
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain; Biomedical Research Network of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
104
|
Simões JL, Sobierai LD, Leal IF, Dos Santos MV, Coiado JV, Bagatini MD. Action of the Purinergic and Cholinergic Anti-inflammatory Pathways on Oxidative Stress in Patients with Alzheimer's Disease in the Context of the COVID-19 Pandemic. Neuroscience 2023; 512:110-132. [PMID: 36526078 PMCID: PMC9746135 DOI: 10.1016/j.neuroscience.2022.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of the 2019 coronavirus disease (COVID-19), has affected more than 20 million people in Brazil and caused a global health emergency. This virus has the potential to affect various parts of the body and compromise metabolic functions. The virus-mediated neural inflammation of the nervous system is due to a storm of cytokines and oxidative stress, which are the clinical features of Alzheimer's disease (AD). This neurodegenerative disease is aggravated in cases involving SARS-CoV-2 and its inflammatory biomarkers, accelerating accumulation of β-amyloid peptide, hyperphosphorylation of tau protein, and production of reactive oxygen species, which lead to homeostasis imbalance. The cholinergic system, through neurons and the neurotransmitter acetylcholine (ACh), modulates various physiological pathways, such as the response to stress, sleep and wakefulness, sensory information, and the cognitive system. Patients with AD have low concentrations of ACh; hence, therapeutic methods are aimed at adjusting the ACh titers available to the body for maintaining functionality. Herein, we focused on acetylcholinesterase inhibitors, responsible for the degradation of ACh in the synaptic cleft, and muscarinic and nicotinic receptor agonists of the cholinergic system owing to the therapeutic potential of the cholinergic anti-inflammatory pathway in AD associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Júlia L.B. Simões
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - Inayá F. Leal
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - João Victor Coiado
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Margarete D. Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil,Corresponding author
| |
Collapse
|
105
|
Bustos LM, Sattler R. The Fault in Our Astrocytes - cause or casualties of proteinopathies of ALS/FTD and other neurodegenerative diseases? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1075805. [PMID: 39165755 PMCID: PMC11334001 DOI: 10.3389/fmmed.2023.1075805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/08/2023] [Indexed: 08/22/2024]
Abstract
Many neurodegenerative diseases fall under the class of diseases known as proteinopathies, whereby the structure and localization of specific proteins become abnormal. These aberrant proteins often aggregate within cells which disrupts vital homeostatic and physiological cellular functions, ultimately contributing to cell death. Although neurodegenerative disease research is typically neurocentric, there is evidence supporting the role of non-neuronal cells in the pathogenesis of these diseases. Specifically, the role of astrocytes in neurodegenerative diseases has been an ever-growing area of research. Astrocytes are one of the most abundant cell types in the central nervous system (CNS) and provide an array of essential homeostatic functions that are disrupted in neurodegenerative diseases. Astrocytes can exhibit a reactive phenotype that is characterized by molecular changes, as well as changes in morphology and function. In neurodegenerative diseases, there is potential for reactive astrocytes to assume a loss-of-function phenotype in homeostatic operations such as synapse maintenance, neuronal metabolic support, and facilitating cell-cell communication between glia and neurons. They are also able to concurrently exhibit gain-of-function phenotypes that can be destructive to neural networks and the astrocytes themselves. Additionally, astrocytes have been shown to internalize disease related proteins and reflect similar or exacerbated pathology that has been observed in neurons. Here, we review several major neurodegenerative disease-specific proteinopathies and what is known about their presence in astrocytes and the potential consequences regarding cell and non-cell autonomous neurodegeneration.
Collapse
Affiliation(s)
- Lynette M. Bustos
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Barrow Neurological Institute, Phoenix, AZ, United States
| | - Rita Sattler
- Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
106
|
Course MM, Gudsnuk K, Keene CD, Bird TD, Jayadev S, Valdmanis PN. Aberrant splicing of PSEN2, but not PSEN1, in individuals with sporadic Alzheimer's disease. Brain 2023; 146:507-518. [PMID: 35949106 PMCID: PMC10169283 DOI: 10.1093/brain/awac294] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/08/2022] [Accepted: 07/24/2022] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease is the most common neurodegenerative disease, characterized by dementia and premature death. Early-onset familial Alzheimer's disease is caused in part by pathogenic variants in presenilin 1 (PSEN1) and presenilin 2 (PSEN2), and alternative splicing of these two genes has been implicated in both familial and sporadic Alzheimer's disease. Here, we leveraged targeted isoform-sequencing to characterize thousands of complete PSEN1 and PSEN2 transcripts in the prefrontal cortex of individuals with sporadic Alzheimer's disease, familial Alzheimer's disease (carrying PSEN1 and PSEN2 variants), and controls. Our results reveal alternative splicing patterns of PSEN2 specific to sporadic Alzheimer's disease, including a human-specific cryptic exon present in intron 9 of PSEN2 as well as a 77 bp intron retention product before exon 6 that are both significantly elevated in sporadic Alzheimer's disease samples, alongside a significantly lower percentage of canonical full-length PSEN2 transcripts versus familial Alzheimer's disease samples and controls. Both alternatively spliced products are predicted to generate a prematurely truncated PSEN2 protein and were corroborated in an independent cerebellum RNA-sequencing dataset. In addition, our data in PSEN variant carriers is consistent with the hypothesis that PSEN1 and PSEN2 variants need to produce full-length but variant proteins to contribute to the onset of Alzheimer's disease, although intriguingly there were far fewer full-length transcripts carrying pathogenic alleles versus wild-type alleles in PSEN2 variant carriers. Finally, we identify frequent RNA editing at Alu elements present in an extended 3' untranslated region in PSEN2. Overall, this work expands the understanding of PSEN1 and PSEN2 variants in Alzheimer's disease, shows that transcript differences in PSEN2 may play a role in sporadic Alzheimer's disease, and suggests novel mechanisms of Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Meredith M Course
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, USA
| | - Kathryn Gudsnuk
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Thomas D Bird
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Northwest Mental Illness Research, Education and Clinical Centers, VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Geriatrics Research Education and Clinical Center, Puget Sound VA Medical Center, Seattle, WA 98108, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Suman Jayadev
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Paul N Valdmanis
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
107
|
Wang H, Wang LS, Schellenberg G, Lee WP. The role of structural variations in Alzheimer's disease and other neurodegenerative diseases. Front Aging Neurosci 2023; 14:1073905. [PMID: 36846102 PMCID: PMC9944073 DOI: 10.3389/fnagi.2022.1073905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/31/2022] [Indexed: 02/10/2023] Open
Abstract
Dozens of single nucleotide polymorphisms (SNPs) related to Alzheimer's disease (AD) have been discovered by large scale genome-wide association studies (GWASs). However, only a small portion of the genetic component of AD can be explained by SNPs observed from GWAS. Structural variation (SV) can be a major contributor to the missing heritability of AD; while SV in AD remains largely unexplored as the accurate detection of SVs from the widely used array-based and short-read technology are still far from perfect. Here, we briefly summarized the strengths and weaknesses of available SV detection methods. We reviewed the current landscape of SV analysis in AD and SVs that have been found associated with AD. Particularly, the importance of currently less explored SVs, including insertions, inversions, short tandem repeats, and transposable elements in neurodegenerative diseases were highlighted.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gerard Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
108
|
Arafah A, Khatoon S, Rasool I, Khan A, Rather MA, Abujabal KA, Faqih YAH, Rashid H, Rashid SM, Bilal Ahmad S, Alexiou A, Rehman MU. The Future of Precision Medicine in the Cure of Alzheimer's Disease. Biomedicines 2023; 11:335. [PMID: 36830872 PMCID: PMC9953731 DOI: 10.3390/biomedicines11020335] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
This decade has seen the beginning of ground-breaking conceptual shifts in the research of Alzheimer's disease (AD), which acknowledges risk elements and the evolving wide spectrum of complicated underlying pathophysiology among the range of diverse neurodegenerative diseases. Significant improvements in diagnosis, treatments, and mitigation of AD are likely to result from the development and application of a comprehensive approach to precision medicine (PM), as is the case with several other diseases. This strategy will probably be based on the achievements made in more sophisticated research areas, including cancer. PM will require the direct integration of neurology, neuroscience, and psychiatry into a paradigm of the healthcare field that turns away from the isolated method. PM is biomarker-guided treatment at a systems level that incorporates findings of the thorough pathophysiology of neurodegenerative disorders as well as methodological developments. Comprehensive examination and categorization of interrelated and convergent disease processes, an explanation of the genomic and epigenetic drivers, a description of the spatial and temporal paths of natural history, biological markers, and risk markers, as well as aspects about the regulation, and the ethical, governmental, and sociocultural repercussions of findings at a subclinical level all require clarification and realistic execution. Advances toward a comprehensive systems-based approach to PM may finally usher in a new era of scientific and technical achievement that will help to end the complications of AD.
Collapse
Affiliation(s)
- Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Iyman Rasool
- Department of Pathology, Government Medical College (GMC-Srinagar), Karan Nagar, Srinagar 190010, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mashoque Ahmad Rather
- Department of Molecular Pharmacology & Physiology, Bryd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | | | | | - Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar 190006, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar 190006, India
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
- AFNP Med, Haidingergasse 29, 1030 Vienna, Austria
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
109
|
Ortega-Campos SM, García-Heredia JM. The Multitasker Protein: A Look at the Multiple Capabilities of NUMB. Cells 2023; 12:333. [PMID: 36672267 PMCID: PMC9856935 DOI: 10.3390/cells12020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
NUMB, a plasma membrane-associated protein originally described in Drosophila, is involved in determining cell function and fate during early stages of development. It is secreted asymmetrically in dividing cells, with one daughter cell inheriting NUMB and the other inheriting its antagonist, NOTCH. NUMB has been proposed as a polarizing agent and has multiple functions, including endocytosis and serving as an adaptor in various cellular pathways such as NOTCH, Hedgehog, and the P53-MDM2 axis. Due to its role in maintaining cellular homeostasis, it has been suggested that NUMB may be involved in various human pathologies such as cancer and Alzheimer's disease. Further research on NUMB could aid in understanding disease mechanisms and advancing the field of personalized medicine and the development of new therapies.
Collapse
Affiliation(s)
- Sara M. Ortega-Campos
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel García-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
110
|
Raval M, Mishra S, Tiwari AK. Epigenetic regulons in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:185-247. [DOI: 10.1016/bs.pmbts.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
111
|
A New Presenilin-1 Missense Variant Associated With a Progressive Supranuclear Palsy-like Phenotype. Alzheimer Dis Assoc Disord 2023; 37:82-84. [PMID: 35383591 DOI: 10.1097/wad.0000000000000503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/25/2022] [Indexed: 11/26/2022]
Abstract
Early-onset forms of Alzheimer disease (AD) have been associated with pathogenic variants in the APP , PSEN1 , and PSEN2 genes. Mutations in presenilin-1 ( PSEN1 ) account for the majority of cases of autosomal dominant AD. Numerous phenotypes have been associated with PSEN1 -pathogenic variants, including cerebellar ataxia and spastic paraplegia. Here, we describe a patient with early-onset AD presenting with extrapyramidal symptoms and supranuclear gaze palsy, mimicking progressive supranuclear palsy.
Collapse
|
112
|
Abstract
National Institute on Aging-Alzheimer's Association definition and classification of sporadic Alzheimer's disease (sAD) is based on the assumption that β-amyloid drives the pathogenesis of sAD, and therefore, β-amyloid pathology is the sine-qua-non condition for the diagnosis of sAD. The neuropathological diagnosis is based on the concurrence of senile plaques (SPs) and neurofibrillary tangles (NFTs) designated as Alzheimer's disease neuropathological changes. However, NFTs develop in the brain decades before the appearance of SPs, and their distribution does not parallel the distribution of SPs. Moreover, NFTs are found in about 85% of individuals at age 65 and around 97% at age 80. SPs occur in 30% at age 65 and 50%-60% at age 80. More than 70 genetic risk factors have been identified in sAD; the encoded proteins modulate cell membranes, synapses, lipid metabolism, and neuroinflammation. Alzheimer's disease (AD) overture provides a new concept and definition of brain aging and sAD for further discussion. AD overture proposes that sAD is: (i) a multifactorial and progressive neurodegenerative biological process, (ii) characterized by the early appearance of 3R + 4Rtau NFTs, (iii) later deposition of β-amyloid and SPs, (iv) with particular non-overlapped regional distribution of NFTs and SPs, (v) preceded by or occurring in parallel with molecular changes affecting cell membranes, cytoskeleton, synapses, lipid and protein metabolism, energy metabolism, neuroinflammation, cell cycle, astrocytes, microglia, and blood vessels; (vi) accompanied by progressive neuron loss and brain atrophy, (vii) prevalent in human brain aging, and (viii) manifested as pre-clinical AD, and progressing not universally to mild cognitive impairment due to AD, and mild, moderate, and severe AD dementia.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental TherapeuticsUniversity of Barcelona (UB)BarcelonaSpain
- Neuropathology groupInstitute of Biomedical Research of Bellvitge (IDIBELL)BarcelonaSpain
- Network Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos IIIBarcelonaSpain
| |
Collapse
|
113
|
Du Y, Chen X, Zhang B, Jin X, Wan Z, Zhan M, Yan J, Zhang P, Ke P, Huang X, Han L, Zhang Q. Identification of Copper Metabolism Related Biomarkers, Polygenic Prediction Model, and Potential Therapeutic Agents in Alzheimer's Disease. J Alzheimers Dis 2023; 95:1481-1496. [PMID: 37694370 DOI: 10.3233/jad-230565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
BACKGROUND The underlying pathogenic genes and effective therapeutic agents of Alzheimer's disease (AD) are still elusive. Meanwhile, abnormal copper metabolism is observed in AD brains of both human and mouse models. OBJECTIVE To investigate copper metabolism-related gene biomarkers for AD diagnosis and therapy. METHODS The AD datasets and copper metabolism-related genes (CMGs) were downloaded from GEO and GeneCards database, respectively. Differentially expressed CMGs (DE-CMGs) performed through Limma, functional enrichment analysis and the protein-protein interaction were used to identify candidate key genes by using CytoHubba. And these candidate key genes were utilized to construct a prediction model by logistic regression analysis for AD early diagnosis. Furthermore, ROC analysis was conducted to identify a single gene with AUC values greater than 0.7 by GSE5281. Finally, the single gene biomarker was validated by quantitative real-time polymerase chain reaction (qRT-PCR) in AD clinical samples. Additionally, immune cell infiltration in AD samples and potential therapeutic drugs targeting the identified biomarkers were further explored. RESULTS A polygenic prediction model for AD based on copper metabolism was established by the top 10 genes, which demonstrated good diagnostic performance (AUC values). COX11, LDHA, ATOX1, SCO1, and SOD1 were identified as blood biomarkers for AD early diagnosis. 20 agents targeting biomarkers were retrieved from DrugBank database, some of which have been proven effective for the treatment of AD. CONCLUSIONS The five blood biomarkers and copper metabolism-associated model can differentiate AD patients from non-demented individuals and aid in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yuanyuan Du
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Chen
- Clinical Laboratory, Yangzhou Wutaishan Hospital, Yangzhou, Jiangsu, China
| | - Bin Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Jin
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zemin Wan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Min Zhan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jun Yan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Pengwei Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Peifeng Ke
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xianzhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Liqiao Han
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Qiaoxuan Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
114
|
de Souza MM, Cenci AR, Teixeira KF, Machado V, Mendes Schuler MCG, Gonçalves AE, Paula Dalmagro A, André Cazarin C, Gomes Ferreira LL, de Oliveira AS, Andricopulo AD. DYRK1A Inhibitors and Perspectives for the Treatment of Alzheimer's Disease. Curr Med Chem 2023; 30:669-688. [PMID: 35726411 DOI: 10.2174/0929867329666220620162018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most common form of dementia, especially in the elderly. Due to the increase in life expectancy, in recent years, there has been an excessive growth in the number of people affected by this disease, causing serious problems for health systems. In recent years, research has been intensified to find new therapeutic approaches that prevent the progression of the disease. In this sense, recent studies indicate that the dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) gene, which is located on chromosome 21q22.2 and overexpressed in Down syndrome (DS), may play a significant role in developmental brain disorders and early onset neurodegeneration, neuronal loss and dementia in DS and AD. Inhibiting DYRK1A may serve to stop the phenotypic effects of its overexpression and, therefore, is a potential treatment strategy for the prevention of ageassociated neurodegeneration, including Alzheimer-type pathology. OBJECTIVE In this review, we investigate the contribution of DYRK1A inhibitors as potential anti-AD agents. METHODS A search in the literature to compile an in vitro dataset including IC50 values involving DYRK1A was performed from 2014 to the present day. In addition, we carried out structure-activity relationship studies based on in vitro and in silico data. RESULTS molecular modeling and enzyme kinetics studies indicate that DYRK1A may contribute to AD pathology through its proteolytic process, reducing its kinase specificity. CONCLUSION further evaluation of DYRK1A inhibitors may contribute to new therapeutic approaches for AD.
Collapse
Affiliation(s)
- Márcia Maria de Souza
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Arthur Ribeiro Cenci
- Department of Exact Sciences and Education, Federal University of Santa Catarina, R. João Pessoa, 2750 - Velha, 89036-002, Blumenau, SC, Brazil
| | - Kerolain Faoro Teixeira
- Department of Exact Sciences and Education, Federal University of Santa Catarina, R. João Pessoa, 2750 - Velha, 89036-002, Blumenau, SC, Brazil
| | - Valkiria Machado
- Department of Exact Sciences and Education, Federal University of Santa Catarina, R. João Pessoa, 2750 - Velha, 89036-002, Blumenau, SC, Brazil
| | | | - Ana Elisa Gonçalves
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Ana Paula Dalmagro
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Camila André Cazarin
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Leonardo Luiz Gomes Ferreira
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of São Carlos, University of São Paulo, São Carlos-SP, Brazil
| | - Aldo Sena de Oliveira
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of São Carlos, University of São Paulo, São Carlos-SP, Brazil
| | - Adriano Defini Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of São Carlos, University of São Paulo, São Carlos-SP, Brazil
| |
Collapse
|
115
|
Rudenskaya GE, Petukhova MS, Zabnenkova VV, Cherevatova TB, Ryzhkova OP. [Early-onset familial Alzheimer's disease with spastic paraparesis associated with PSEN1 gene]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:120-127. [PMID: 37994898 DOI: 10.17116/jnevro2023123111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
A familial case of a rare autosomal dominant Alzheimer's disease (AD), related to PSEN1 gene (AD3, OMIM 607822), differing from common multifactorial form by earlier onset and, in part of cases, by accompanying neurological signs, spastic paraparesis particularly, is presented. The first sign in a female proband and in her son was paraparesis manifested at the age of 29 and 21 years, respectively. Cognitive disturbances developed soon; the former diagnosis was hereditary spastic paraplegia with cognitive impairment, In the proband examined in 2008 at 33 years old the diagnosis was not established. In the son examined in 2022 at 27 years old whole-exome sequencing detected a novel PSEN1 missense mutation p.Thr421Ala. The mutation was confirmed by Sanger sequencing in him, found out in the proband (who was severely disabled by that time) and excluded in her unaffected mother. Except for different age of onset, AD3 in two patients was similar, though in whole it is variable, also in relatives. The variability and rareness of the disease hampers clinical diagnostics. Massive parallel sequencing is a most reliable diagnostic method.
Collapse
Affiliation(s)
| | - M S Petukhova
- Research Centre for Medical Genetics, Moscow, Russia
| | | | | | - O P Ryzhkova
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
116
|
Taylor AP, Davis PJ, Aubrey LD, White JBR, Parton ZN, Staniforth RA. Simple, Reliable Protocol for High-Yield Solubilization of Seedless Amyloid-β Monomer. ACS Chem Neurosci 2022; 14:53-71. [PMID: 36512740 PMCID: PMC9817077 DOI: 10.1021/acschemneuro.2c00411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Self-assembly of the amyloid-β (Aβ) peptide to form toxic oligomers and fibrils is a key causal event in the onset of Alzheimer's disease, and Aβ is the focus of intense research in neuroscience, biophysics, and structural biology aimed at therapeutic development. Due to its rapid self-assembly and extreme sensitivity to aggregation conditions, preparation of seedless, reproducible Aβ solutions is highly challenging, and there are serious ongoing issues with consistency in the literature. In this paper, we use a liquid-phase separation technique, asymmetric flow field-flow fractionation with multiangle light scattering (AF4-MALS), to develop and validate a simple, effective, economical method for re-solubilization and quality control of purified, lyophilized Aβ samples. Our findings were obtained with recombinant peptide but are physicochemical in nature and thus highly relevant to synthetic peptide. We show that much of the variability in the literature stems from the inability of overly mild solvent treatments to produce consistently monomeric preparations and is rectified by a protocol involving high-pH (>12) dissolution, sonication, and rapid freezing to prevent modification. Aβ treated in this manner is chemically stable, can be stored over long timescales at -80 °C, and exhibits remarkably consistent self-assembly behavior when returned to near-neutral pH. These preparations are highly monomeric, seedless, and do not require additional rounds of size exclusion, eliminating the need for this costly procedure and increasing the flexibility of use. We propose that our improved protocol is the simplest, fastest, and most effective way to solubilize Aβ from diverse sources for sensitive self-assembly and toxicity assays.
Collapse
|
117
|
Presenilin and APP Regulate Synaptic Kainate Receptors. J Neurosci 2022; 42:9253-9262. [PMID: 36288945 PMCID: PMC9761675 DOI: 10.1523/jneurosci.0297-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 02/02/2023] Open
Abstract
Kainate receptors (KARs) form a family of ionotropic glutamate receptors that regulate the activity of neuronal networks by both presynaptic and postsynaptic mechanisms. Their implication in pathologies is well documented for epilepsy. The higher prevalence of epileptic symptoms in Alzheimer's disease (AD) patients questions the role of KARs in AD. Here we investigated whether the synaptic expression and function of KARs was impaired in mouse models of AD. We addressed this question by immunostaining and electrophysiology at synapses between mossy fibers and CA3 pyramidal cells, in which KARs are abundant and play a prominent physiological role. We observed a decrease of the immunostaining for GluK2 in the stratum lucidum in CA3, and of the amplitude and decay time of synaptic currents mediated by GluK2-containing KARs in an amyloid mouse model (APP/PS1) of AD. Interestingly, a similar phenotype was observed in CA3 pyramidal cells in male and female mice with a genetic deletion of either presenilin or APP/APLP2 as well as in organotypic cultures treated with γ-secretase inhibitors. Finally, the GluK2 protein interacts with full-length and C-terminal fragments of APP. Overall, our data suggest that APP stabilizes KARs at synapses, possibly through a transsynaptic mechanism, and this interaction is under the control the γ-secretase proteolytic activity of presenilin.SIGNIFICANCE STATEMENT Synaptic impairment correlates strongly with cognitive deficits in Alzheimer's disease (AD). In this context, many studies have addressed the dysregulation of AMPA and NMDA ionotropic glutamate receptors. Kainate receptors (KARs), which form the third family of iGluRs, represent an underestimated actor in the regulation of neuronal circuits and have not yet been examined in the context of AD. Here we provide evidence that synaptic KARs are markedly impaired in a mouse model of AD. Additional experiments indicate that the γ-secretase activity of presenilin acting on the amyloid precursor protein controls synaptic expression of KAR. This study clearly indicates that KARs should be taken into consideration whenever addressing synaptic dysfunction and related cognitive deficits in the context of AD.
Collapse
|
118
|
Papadopoulou AA, Stelzer W, Silber M, Schlosser C, Spitz C, Haug-Kröper M, Straub T, Müller SA, Lichtenthaler SF, Muhle-Goll C, Langosch D, Fluhrer R. Helical stability of the GnTV transmembrane domain impacts on SPPL3 dependent cleavage. Sci Rep 2022; 12:20987. [PMID: 36470941 PMCID: PMC9722940 DOI: 10.1038/s41598-022-24772-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Signal-Peptide Peptidase Like-3 (SPPL3) is an intramembrane cleaving aspartyl protease that causes secretion of extracellular domains from type-II transmembrane proteins. Numerous Golgi-localized glycosidases and glucosyltransferases have been identified as physiological SPPL3 substrates. By SPPL3 dependent processing, glycan-transferring enzymes are deactivated inside the cell, as their active site-containing domain is cleaved and secreted. Thus, SPPL3 impacts on glycan patterns of many cellular and secreted proteins and can regulate protein glycosylation. However, the characteristics that make a substrate a favourable candidate for SPPL3-dependent cleavage remain unknown. To gain insights into substrate requirements, we investigated the function of a GxxxG motif located in the transmembrane domain of N-acetylglucosaminyltransferase V (GnTV), a well-known SPPL3 substrate. SPPL3-dependent secretion of the substrate's ectodomain was affected by mutations disrupting the GxxxG motif. Using deuterium/hydrogen exchange and NMR spectroscopy, we studied the effect of these mutations on the helix flexibility of the GnTV transmembrane domain and observed that increased flexibility facilitates SPPL3-dependent shedding and vice versa. This study provides first insights into the characteristics of SPPL3 substrates, combining molecular biology, biochemistry, and biophysical techniques and its results will provide the basis for better understanding the characteristics of SPPL3 substrates with implications for the substrates of other intramembrane proteases.
Collapse
Affiliation(s)
- Alkmini A. Papadopoulou
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| | - Walter Stelzer
- grid.6936.a0000000123222966Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Mara Silber
- grid.7892.40000 0001 0075 5874Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany ,grid.7892.40000 0001 0075 5874Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Christine Schlosser
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| | - Charlotte Spitz
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| | - Martina Haug-Kröper
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| | - Tobias Straub
- grid.5252.00000 0004 1936 973XCore Facility Bioinformatics, Biomedical Center, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Stephan A. Müller
- grid.424247.30000 0004 0438 0426DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
| | - Stefan F. Lichtenthaler
- grid.424247.30000 0004 0438 0426DZNE – German Center for Neurodegenerative Diseases, Munich, Germany ,grid.15474.330000 0004 0477 2438Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Claudia Muhle-Goll
- grid.7892.40000 0001 0075 5874Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany ,grid.7892.40000 0001 0075 5874Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Dieter Langosch
- grid.6936.a0000000123222966Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Regina Fluhrer
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| |
Collapse
|
119
|
Prasannan P, Siney E, Chatterjee S, Johnston D, Shah M, Mudher A, Willaime-Morawek S. A 3D-induced pluripotent stem cell-derived human neural culture model to study certain molecular and biochemical aspects of Alzheimer's disease. IN VITRO MODELS 2022; 1:447-462. [PMID: 39872613 PMCID: PMC11756488 DOI: 10.1007/s44164-022-00038-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/30/2025]
Abstract
Purpose Alzheimer's disease (AD) early pathology needs better understanding and models. Here, we describe a human induced pluripotent stem cells (iPSCs)-derived 3D neural culture model to study certain aspects of AD biochemistry and pathology. Method iPSCs derived from controls and AD patients with Presenilin1 mutations were cultured in a 3D platform with a similar microenvironment to the brain, to differentiate into neurons and astrocytes and self-organise into 3D structures by 3 weeks of differentiation in vitro. Results Cells express astrocytic (GFAP), neuronal (β3-Tubulin, MAP2), glutamatergic (VGLUT1), GABAergic (GAD65/67), pre-synaptic (Synapsin1) markers and a low level of neural progenitor cell (Nestin) marker after 6 and 12 weeks of differentiation in 3D. The foetal 3R Tau isoforms and adult 4R Tau isoforms were detected at 6 weeks post differentiation, showing advanced neuronal maturity. In the 3D AD cells, total and insoluble Tau levels were higher than in 3D control cells. Conclusion Our data indicates that this model may recapitulate the early biochemical and pathological disease features and can be a relevant platform for studying early cellular and biochemical changes and the identification of drug targets. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-022-00038-5.
Collapse
Affiliation(s)
| | - Elodie Siney
- Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - David Johnston
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mohammad Shah
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Amrit Mudher
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | |
Collapse
|
120
|
Levin J, Vöglein J, Quiroz YT, Bateman RJ, Ghisays V, Lopera F, McDade E, Reiman E, Tariot PN, Morris JC. Testing the amyloid cascade hypothesis: Prevention trials in autosomal dominant Alzheimer disease. Alzheimers Dement 2022; 18:2687-2698. [PMID: 35212149 PMCID: PMC9399299 DOI: 10.1002/alz.12624] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The amyloid cascade hypothesis of Alzheimer disease (AD) has been increasingly challenged. Here, we aim to refocus the amyloid cascade hypothesis on its original premise that the accumulation of amyloid beta (Aβ) peptide is the primary and earliest event in AD pathogenesis as based on current evidence, initiating several pathological events and ultimately leading to AD dementia. BACKGROUND An ongoing debate about the validity of the amyloid cascade hypothesis for AD has been triggered by clinical trials with investigational disease-modifying drugs targeting Aβ that have not demonstrated consistent clinically meaningful benefits. UPDATED HYPOTHESIS It is an open question if monotherapy targeting Aβ pathology could be markedly beneficial at a stage when the brain has been irreversibly damaged by a cascade of pathological changes. Interventions in cognitively unimpaired individuals at risk for dementia, during amyloid-only and pre-amyloid stages, are more appropriate for proving or refuting the amyloid hypothesis. Our updated hypothesis states that anti-Aβ investigational therapies are likely to be most efficacious when initiated in the preclinical (asymptomatic) stages of AD and specifically when the disease is driven primarily by amyloid pathology. Given the young age at symptom onset and the deterministic nature of the mutations, autosomal dominant AD (ADAD) mutation carriers represent the ideal population to evaluate the efficacy of putative disease-modifying Aβ therapies. MAJOR CHALLENGES FOR THE HYPOTHESIS Key challenges of the amyloid hypothesis include the recognition that disrupted Aβ homeostasis alone is insufficient to produce the AD pathophysiologic process, poor correlation of Aβ with cognitive impairment, and inconclusive data regarding clinical efficacy of therapies targeting Aβ. Challenges of conducting ADAD research include the rarity of the disease and uncertainty of the generalizability of ADAD findings for the far more common "sporadic" late-onset AD. LINKAGE TO OTHER MAJOR THEORIES The amyloid cascade hypothesis, modified here to pertain to the preclinical stage of AD, still needs to be integrated with the development and effects of tauopathy and other co-pathologies, including neuroinflammation, vascular insults, synucleinopathy, and many others.
Collapse
Affiliation(s)
- Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81541 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jonathan Vöglein
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81541 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Yakeel T. Quiroz
- Harvard Medical School and Massachusetts General Hospital, 39 1 Avenue, Suite 101, Charlestown, MA 02129, USA
- Grupo de Neurociencias, Universidad de Antioquia, Antioquia, Colombia
| | - Randall J. Bateman
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Valentina Ghisays
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - Francisco Lopera
- Grupo de Neurociencias, Universidad de Antioquia, Antioquia, Colombia
| | - Eric McDade
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Eric Reiman
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - Pierre N. Tariot
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - John C. Morris
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| |
Collapse
|
121
|
Villain N, Planche V, Levy R. High-clearance anti-amyloid immunotherapies in Alzheimer's disease. Part 1: Meta-analysis and review of efficacy and safety data, and medico-economical aspects. Rev Neurol (Paris) 2022; 178:1011-1030. [PMID: 36184326 DOI: 10.1016/j.neurol.2022.06.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/25/2022] [Accepted: 06/15/2022] [Indexed: 12/14/2022]
Abstract
In 2021, aducanumab, an immunotherapy targeting amyloid-β, was approved for Alzheimer's disease (AD) by the US Food and Drug Administration thanks to positive results on a putative biological surrogate marker. This approval has raised an unprecedented controversy. It was followed by a refusal of the European Medicine Agency, which does not allow the marketing of drugs solely on biological arguments and raised safety issues, and important US coverage limitations by the Centers for Medicare & Medicaid Services. Two other anti-amyloid immunotherapies showed significant results regarding a clinical outcome in phase 2 trials, and five drugs are being studied in phase 3 trials. Compared to those tested in previous trials of the 2010s, the common feature and novelty of these anti-amyloid immunotherapies is their ability to induce a high clearance of amyloid load, as measured with positron emission tomography, in the brain of early-stage biomarker-proven AD patients. Here, we review the available evidence regarding efficacy and safety data and medico-economical aspects for high-clearance anti-amyloid immunotherapies. We also perform frequentist and Bayesian meta-analyses of the clinical efficacy and safety of the highest dose groups from the two aducanumab phase 3 trials and the donanemab and lecanemab phase 2 trials. When pooled together, the data from high-clearance anti-amyloid immunotherapies trials confirm a statistically significant clinical effect of these drugs on cognitive decline after 18 months (difference in cognitive decline measured with CDR-SB after 18 months between the high dose immunotherapy groups vs. placebo = -0.24 points; P=0.04, frequentist random-effect model), with results on ADAS-Cog being the most statistically robust. However, this effect remains below the previously established minimal clinically relevant values. In parallel, the drugs significantly increased the occurrence of amyloid-related imaging abnormalities-edema (ARIA-E: risk ratio=13.39; P<0.0001), ARIA-hemorrhage (risk ratio=2.78; P=0.0002), and symptomatic and serious ARIA (7/1321=0.53% in the high dose groups versus 0/1446 in the placebo groups; risk ratio=6.44; P=0.04). The risk/benefit ratio of high-clearance immunotherapies in early AD is so far questionable after 18 months. Identifying subgroups of better responders, the perspective of combination therapies, and a longer follow-up may help improve their clinical relevance. Finally, the preliminary evidence from medico-economical analyses seems to indicate that the current cost of aducanumab in the US is not in reasonable alignment with its clinical benefits.
Collapse
Affiliation(s)
- N Villain
- Assistance Publique - Hôpitaux de Paris, Department of Neurology, Institute of Memory and Alzheimer's Disease, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Inserm U1127, CNRS 7225, Institut du Cerveau - ICM, Paris, France.
| | - V Planche
- CNRS, IMN, UMR 5293, University Bordeaux, 33000 Bordeaux, France; Pôle de Neurosciences Cliniques, Centre Mémoire Ressources Recherches, CHU de Bordeaux, 33000 Bordeaux, France
| | - R Levy
- Assistance Publique - Hôpitaux de Paris, Department of Neurology, Institute of Memory and Alzheimer's Disease, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Inserm U1127, CNRS 7225, Institut du Cerveau - ICM, Paris, France
| |
Collapse
|
122
|
Lordén G, Wozniak JM, Doré K, Dozier LE, Cates-Gatto C, Patrick GN, Gonzalez DJ, Roberts AJ, Tanzi RE, Newton AC. Enhanced activity of Alzheimer disease-associated variant of protein kinase Cα drives cognitive decline in a mouse model. Nat Commun 2022; 13:7200. [PMID: 36418293 PMCID: PMC9684486 DOI: 10.1038/s41467-022-34679-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
Exquisitely tuned activity of protein kinase C (PKC) isozymes is essential to maintaining cellular homeostasis. Whereas loss-of-function mutations are generally associated with cancer, gain-of-function variants in one isozyme, PKCα, are associated with Alzheimer's disease (AD). Here we show that the enhanced activity of one variant, PKCα M489V, is sufficient to rewire the brain phosphoproteome, drive synaptic degeneration, and impair cognition in a mouse model. This variant causes a modest 30% increase in catalytic activity without altering on/off activation dynamics or stability, underscoring that enhanced catalytic activity is sufficient to drive the biochemical, cellular, and ultimately cognitive effects observed. Analysis of hippocampal neurons from PKCα M489V mice reveals enhanced amyloid-β-induced synaptic depression and reduced spine density compared to wild-type mice. Behavioral studies reveal that this mutation alone is sufficient to impair cognition, and, when coupled to a mouse model of AD, further accelerates cognitive decline. The druggability of protein kinases positions PKCα as a promising therapeutic target in AD.
Collapse
Affiliation(s)
- Gema Lordén
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jacob M Wozniak
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kim Doré
- Center for Neural Circuits and Behavior, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Lara E Dozier
- Section of Neurobiology. Division of Biological sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chelsea Cates-Gatto
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gentry N Patrick
- Section of Neurobiology. Division of Biological sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
123
|
Kulminski AM, Jain-Washburn E, Loiko E, Loika Y, Feng F, Culminskaya I, for the Alzheimer’s Disease Neuroimaging Initiative. Associations of the APOE ε2 and ε4 alleles and polygenic profiles comprising APOE-TOMM40-APOC1 variants with Alzheimer's disease biomarkers. Aging (Albany NY) 2022; 14:9782-9804. [PMID: 36399096 PMCID: PMC9831745 DOI: 10.18632/aging.204384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022]
Abstract
Capturing the genetic architecture of Alzheimer's disease (AD) is challenging because of the complex interplay of genetic and non-genetic factors in its etiology. It has been suggested that AD biomarkers may improve the characterization of AD pathology and its genetic architecture. Most studies have focused on connections of individual genetic variants with AD biomarkers, whereas the role of combinations of genetic variants is substantially underexplored. We examined the associations of the APOE ε2 and ε4 alleles and polygenic profiles comprising the ε4-encoding rs429358, TOMM40 rs2075650, and APOC1 rs12721046 polymorphisms with cerebrospinal fluid (CSF) and plasma amyloid β (Aβ40 and Aβ42) and tau biomarkers. Our findings support associations of the ε4 alleles with both plasma and CSF Aβ42 and CSF tau, and the ε2 alleles with baseline, but not longitudinal, CSF Aβ42 measurements. We found that the ε4-bearing polygenic profiles conferring higher and lower AD risks are differentially associated with tau but not Aβ42. Modulation of the effect of the ε4 alleles by TOMM40 and APOC1 variants indicates the potential genetic mechanism of differential roles of Aβ and tau in AD pathogenesis.
Collapse
Affiliation(s)
- Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Ethan Jain-Washburn
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Elena Loiko
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Fan Feng
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | | |
Collapse
|
124
|
Calin-Jageman RJ. Better Inference in Neuroscience: Test Less, Estimate More. J Neurosci 2022; 42:8427-8431. [PMID: 36351833 PMCID: PMC9665913 DOI: 10.1523/jneurosci.1133-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Null-hypothesis significance testing (NHST) has become the main tool of inference in neuroscience, and yet evidence suggests we do not use this tool well: tests are often planned poorly, conducted unfairly, and interpreted invalidly. This editorial makes the case that in addition to reforms to increase rigor we should test less, reserving NHST for clearly confirmatory contexts in which the researcher has derived a quantitative prediction, can provide the inputs needed to plan a quality test, and can specify the criteria not only for confirming their hypothesis but also for rejecting it. A reduction in testing would be accompanied by an expansion of the use of estimation [effect sizes and confidence intervals (CIs)]. Estimation is more suitable for exploratory research, provides the inputs needed to plan strong tests, and provides important contexts for properly interpreting tests.
Collapse
|
125
|
Glycosylated clusterin species facilitate Aβ toxicity in human neurons. Sci Rep 2022; 12:18639. [PMID: 36329114 PMCID: PMC9633591 DOI: 10.1038/s41598-022-23167-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Clusterin (CLU) is one of the most significant genetic risk factors for late onset Alzheimer's disease (AD). However, the mechanisms by which CLU contributes to AD development and pathogenesis remain unclear. Studies have demonstrated that the trafficking and localisation of glycosylated CLU proteins is altered by CLU-AD mutations and amyloid-β (Aβ), which may contribute to AD pathogenesis. However, the roles of non-glycosylated and glycosylated CLU proteins in mediating Aβ toxicity have not been studied in human neurons. iPSCs with altered CLU trafficking were generated following the removal of CLU exon 2 by CRISPR/Cas9 gene editing. Neurons were generated from control (CTR) and exon 2 -/- edited iPSCs and were incubated with aggregated Aβ peptides. Aβ induced changes in cell death and neurite length were quantified to determine if altered CLU protein trafficking influenced neuronal sensitivity to Aβ. Finally, RNA-Seq analysis was performed to identify key transcriptomic differences between CLU exon 2 -/- and CTR neurons. The removal of CLU exon 2, and the endoplasmic reticulum (ER)-signal peptide located within, abolished the presence of glycosylated CLU and increased the abundance of intracellular, non-glycosylated CLU. While non-glycosylated CLU levels were unaltered by Aβ25-35 treatment, the trafficking of glycosylated CLU was altered in control but not exon 2 -/- neurons. The latter also displayed partial protection against Aβ-induced cell death and neurite retraction. Transcriptome analysis identified downregulation of multiple extracellular matrix (ECM) related genes in exon 2 -/- neurons, potentially contributing to their reduced sensitivity to Aβ toxicity. This study identifies a crucial role of glycosylated CLU in facilitating Aβ toxicity in human neurons. The loss of these proteins reduced both, cell death and neurite damage, two key consequences of Aβ toxicity identified in the AD brain. Strikingly, transcriptomic differences between exon 2 -/- and control neurons were small, but a significant and consistent downregulation of ECM genes and pathways was identified in exon 2 -/- neurons. This may contribute to the reduced sensitivity of these neurons to Aβ, providing new mechanistic insights into Aβ pathologies and therapeutic targets for AD.
Collapse
|
126
|
Jordà‐Siquier T, Petrel M, Kouskoff V, Smailovic U, Cordelières F, Frykman S, Müller U, Mulle C, Barthet G. APP accumulates with presynaptic proteins around amyloid plaques: A role for presynaptic mechanisms in Alzheimer's disease? Alzheimers Dement 2022; 18:2099-2116. [PMID: 35076178 PMCID: PMC9786597 DOI: 10.1002/alz.12546] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/21/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023]
Abstract
In Alzheimer's disease (AD), the distribution of the amyloid precursor protein (APP) and its fragments other than amyloid beta, has not been fully characterized. Here, we investigate the distribution of APP and its fragments in human AD brain samples and in mouse models of AD in reference to its proteases, synaptic proteins, and histopathological features characteristic of the AD brain, by combining an extensive set of histological and analytical tools. We report that the prominent somatic distribution of APP observed in control patients remarkably vanishes in human AD patients to the benefit of dense accumulations of extra-somatic APP, which surround dense-core amyloid plaques enriched in APP-Nter. These features are accentuated in patients with familial forms of the disease. Importantly, APP accumulations are enriched in phosphorylated tau and presynaptic proteins whereas they are depleted of post-synaptic proteins suggesting that the extra-somatic accumulations of APP are of presynaptic origin. Ultrastructural analyses unveil that APP concentrates in autophagosomes and in multivesicular bodies together with presynaptic vesicle proteins. Altogether, alteration of APP distribution and its accumulation together with presynaptic proteins around dense-core amyloid plaques is a key histopathological feature in AD, lending support to the notion that presynaptic failure is a strong physiopathological component of AD.
Collapse
Affiliation(s)
- Tomàs Jordà‐Siquier
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Melina Petrel
- University Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Vladimir Kouskoff
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Una Smailovic
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| | - Fabrice Cordelières
- University Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Susanne Frykman
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| | - Ulrike Müller
- Institute for Pharmacy and Molecular BiotechnologyHeidelbergGermany
| | - Christophe Mulle
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Gaël Barthet
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| |
Collapse
|
127
|
The central role of tau in Alzheimer’s disease: From neurofibrillary tangle maturation to the induction of cell death. Brain Res Bull 2022; 190:204-217. [DOI: 10.1016/j.brainresbull.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
|
128
|
Chockanathan U, Padmanabhan K. From synapses to circuits and back: Bridging levels of understanding in animal models of Alzheimer's disease. Eur J Neurosci 2022; 56:5564-5586. [PMID: 35244297 PMCID: PMC10926359 DOI: 10.1111/ejn.15636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/04/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by behavioural changes that include memory loss and cognitive decline and is associated with the appearance of amyloid-β plaques and neurofibrillary tangles throughout the brain. Although aspects of the disease percolate across multiple levels of neuronal organization, from the cellular to the behavioural, it is increasingly clear that circuits are a critical junction between the cellular pathology and the behavioural phenotypes that bookend these levels of analyses. In this review, we discuss critical aspects of neural circuit research, beginning with synapses and progressing to network activity and how they influence our understanding of disease processed in AD.
Collapse
Affiliation(s)
- Udaysankar Chockanathan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Krishnan Padmanabhan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Center for Visual Science, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Intellectual and Developmental Disabilities Research Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
129
|
Jansen IE, van der Lee SJ, Gomez-Fonseca D, de Rojas I, Dalmasso MC, Grenier-Boley B, Zettergren A, Mishra A, Ali M, Andrade V, Bellenguez C, Kleineidam L, Küçükali F, Sung YJ, Tesí N, Vromen EM, Wightman DP, Alcolea D, Alegret M, Alvarez I, Amouyel P, Athanasiu L, Bahrami S, Bailly H, Belbin O, Bergh S, Bertram L, Biessels GJ, Blennow K, Blesa R, Boada M, Boland A, Buerger K, Carracedo Á, Cervera-Carles L, Chene G, Claassen JAHR, Debette S, Deleuze JF, de Deyn PP, Diehl-Schmid J, Djurovic S, Dols-Icardo O, Dufouil C, Duron E, Düzel E, Fladby T, Fortea J, Frölich L, García-González P, Garcia-Martinez M, Giegling I, Goldhardt O, Gobom J, Grimmer T, Haapasalo A, Hampel H, Hanon O, Hausner L, Heilmann-Heimbach S, Helisalmi S, Heneka MT, Hernández I, Herukka SK, Holstege H, Jarholm J, Kern S, Knapskog AB, Koivisto AM, Kornhuber J, Kuulasmaa T, Lage C, Laske C, Leinonen V, Lewczuk P, Lleó A, de Munain AL, Lopez-Garcia S, Maier W, Marquié M, Mol MO, Montrreal L, Moreno F, Moreno-Grau S, Nicolas G, Nöthen MM, Orellana A, Pålhaugen L, Papma JM, Pasquier F, Perneczky R, Peters O, Pijnenburg YAL, Popp J, Posthuma D, Pozueta A, Priller J, Puerta R, Quintela I, Ramakers I, et alJansen IE, van der Lee SJ, Gomez-Fonseca D, de Rojas I, Dalmasso MC, Grenier-Boley B, Zettergren A, Mishra A, Ali M, Andrade V, Bellenguez C, Kleineidam L, Küçükali F, Sung YJ, Tesí N, Vromen EM, Wightman DP, Alcolea D, Alegret M, Alvarez I, Amouyel P, Athanasiu L, Bahrami S, Bailly H, Belbin O, Bergh S, Bertram L, Biessels GJ, Blennow K, Blesa R, Boada M, Boland A, Buerger K, Carracedo Á, Cervera-Carles L, Chene G, Claassen JAHR, Debette S, Deleuze JF, de Deyn PP, Diehl-Schmid J, Djurovic S, Dols-Icardo O, Dufouil C, Duron E, Düzel E, Fladby T, Fortea J, Frölich L, García-González P, Garcia-Martinez M, Giegling I, Goldhardt O, Gobom J, Grimmer T, Haapasalo A, Hampel H, Hanon O, Hausner L, Heilmann-Heimbach S, Helisalmi S, Heneka MT, Hernández I, Herukka SK, Holstege H, Jarholm J, Kern S, Knapskog AB, Koivisto AM, Kornhuber J, Kuulasmaa T, Lage C, Laske C, Leinonen V, Lewczuk P, Lleó A, de Munain AL, Lopez-Garcia S, Maier W, Marquié M, Mol MO, Montrreal L, Moreno F, Moreno-Grau S, Nicolas G, Nöthen MM, Orellana A, Pålhaugen L, Papma JM, Pasquier F, Perneczky R, Peters O, Pijnenburg YAL, Popp J, Posthuma D, Pozueta A, Priller J, Puerta R, Quintela I, Ramakers I, Rodriguez-Rodriguez E, Rujescu D, Saltvedt I, Sanchez-Juan P, Scheltens P, Scherbaum N, Schmid M, Schneider A, Selbæk G, Selnes P, Shadrin A, Skoog I, Soininen H, Tárraga L, Teipel S, Tijms B, Tsolaki M, Van Broeckhoven C, Van Dongen J, van Swieten JC, Vandenberghe R, Vidal JS, Visser PJ, Vogelgsang J, Waern M, Wagner M, Wiltfang J, Wittens MMJ, Zetterberg H, Zulaica M, van Duijn CM, Bjerke M, Engelborghs S, Jessen F, Teunissen CE, Pastor P, Hiltunen M, Ingelsson M, Andreassen OA, Clarimón J, Sleegers K, Ruiz A, Ramirez A, Cruchaga C, Lambert JC, van der Flier W. Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers. Acta Neuropathol 2022; 144:821-842. [PMID: 36066633 PMCID: PMC9547780 DOI: 10.1007/s00401-022-02454-z] [Show More Authors] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 01/26/2023]
Abstract
Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.
Collapse
Affiliation(s)
- Iris E Jansen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands.
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Duber Gomez-Fonseca
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Itziar de Rojas
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Maria Carolina Dalmasso
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Neurosciences and Complex Systems Unit (ENyS), CONICET, Hospital El Cruce, National University A. Jauretche (UNAJ), Florencio Varela, Argentina
| | - Benjamin Grenier-Boley
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE / Labex DISTALZ - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Anna Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
| | - Aniket Mishra
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000, Bordeaux, France
| | - Muhammad Ali
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Victor Andrade
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Céline Bellenguez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE / Labex DISTALZ - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Luca Kleineidam
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Niccolo Tesí
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Ellen M Vromen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Douglas P Wightman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands
| | - Daniel Alcolea
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Alegret
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Ignacio Alvarez
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE / Labex DISTALZ - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Lavinia Athanasiu
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health, Oslo, Norway
| | - Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health, Oslo, Norway
| | - Henri Bailly
- Université Paris Cité, EA4468, Maladie d'Alzheimer, F-75013 Paris, France
| | - Olivia Belbin
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sverre Bergh
- The Research-Centre for Age-Related Functional Decline and Disease, Innlandet Hospital Trust, Brumunddal, Norway
- Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, Utrecht, The Netherlands
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Rafael Blesa
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica-CIBERER-IDIS, Santiago de Compostela, Spain
| | - Laura Cervera-Carles
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Geneviève Chene
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000, Bordeaux, France
- Department of Neurology, CHU de Bordeaux, 33000, Bordeaux, France
| | - Jurgen A H R Claassen
- Radboudumc Alzheimer Center, Department of Geriatrics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Center for Medical Neuroscience, Nijmegen, The Netherlands
| | - Stephanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000, Bordeaux, France
- Department of Neurology, CHU de Bordeaux, 33000, Bordeaux, France
- Department of Neurology, Boston University School of Medicine, Boston, MA, 2115, USA
| | - Jean-Francois Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Peter Paul de Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Janine Diehl-Schmid
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- kbo-Inn-Salzach-Hospital, Wasserburg am Inn, Germany
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, NORMENT Centre, University of Bergen, Bergen, Norway
| | - Oriol Dols-Icardo
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carole Dufouil
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000, Bordeaux, France
- Pôle de Santé Publique Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | | | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Tormod Fladby
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Juan Fortea
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg, Germany
| | - Pablo García-González
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Maria Garcia-Martinez
- Cognitive Impairment Unit, Neurology Service, "Marqués de Valdecilla" University Hospital, Institute for Research "Marques de Valdecilla" (IDIVAL), University of Cantabria, Santander, Spain, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ina Giegling
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Oliver Goldhardt
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Johan Gobom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Timo Grimmer
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Harald Hampel
- Alzheimer Precision Medicine (APM), Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Neurology Business Group, Eisai Inc, 100 Tice Blvd, Woodcliff Lake, NJ, 07677, USA
| | - Olivier Hanon
- Université Paris Cité, EA4468, Maladie d'Alzheimer, F-75013 Paris, France
- Service gériatrie, Centre Mémoire de Ressources et Recherches Ile de France-Broca, AP-HP, Hôpital Broca, F-75013, Paris, France
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, 53127, Bonn, Germany
| | - Seppo Helisalmi
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Isabel Hernández
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sanna-Kaisa Herukka
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Henne Holstege
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Jonas Jarholm
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Silke Kern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | | | - Anne M Koivisto
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Teemu Kuulasmaa
- Bioinformatics Center, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Carmen Lage
- Cognitive Impairment Unit, Neurology Service, "Marqués de Valdecilla" University Hospital, Institute for Research "Marques de Valdecilla" (IDIVAL), University of Cantabria, Santander, Spain, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Atlantic Fellow at the Global Brain Health Institute (GBHI) -, University of California, San Francisco, USA
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Ville Leinonen
- Institute of Clinical Medicine, Neurosurgery, University of Eastern Finland, Kuopio, Finland
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Alberto Lleó
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adolfo López de Munain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Hospital Universitario Donostia-OSAKIDETZA, Donostia, Spain
- Instituto Biodonostia, San Sebastián, Spain
- University of The Basque Country, San Sebastian, Spain
| | - Sara Lopez-Garcia
- Cognitive Impairment Unit, Neurology Service, "Marqués de Valdecilla" University Hospital, Institute for Research "Marques de Valdecilla" (IDIVAL), University of Cantabria, Santander, Spain, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Wolfgang Maier
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Marta Marquié
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Merel O Mol
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Laura Montrreal
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Fermin Moreno
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Hospital Universitario Donostia-OSAKIDETZA, Donostia, Spain
- Instituto Biodonostia, San Sebastián, Spain
| | - Sonia Moreno-Grau
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Gael Nicolas
- Department of Genetics and CNR-MAJ, Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Rouen, France
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, 53127, Bonn, Germany
| | - Adelina Orellana
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Lene Pålhaugen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Janne M Papma
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Florence Pasquier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE / Labex DISTALZ - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Julius Popp
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich and University of Zürich, Zurich, Switzerland
- Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands
| | - Ana Pozueta
- Cognitive Impairment Unit, Neurology Service, "Marqués de Valdecilla" University Hospital, Institute for Research "Marques de Valdecilla" (IDIVAL), University of Cantabria, Santander, Spain, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Klinikum rechts der isar, Technical University Munich, 81675, Munich, Germany
| | - Raquel Puerta
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Inés Quintela
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Inez Ramakers
- Department of Psychiatry and Neuropsychologie, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Eloy Rodriguez-Rodriguez
- Cognitive Impairment Unit, Neurology Service, "Marqués de Valdecilla" University Hospital, Institute for Research "Marques de Valdecilla" (IDIVAL), University of Cantabria, Santander, Spain, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Dan Rujescu
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Geriatrics, St Olav Hospital, University Hospital of Trondheim, Trondheim, Norway
| | | | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Norbert Scherbaum
- Department of Psychiatry and Psychotherapy, Medical Faculty, LVR-Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Schmid
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany
| | - Anja Schneider
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Geir Selbæk
- Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health, Oslo, Norway
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Lluís Tárraga
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Betty Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Magda Tsolaki
- 1st Department of Neurology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Makedonia, Greece
| | - Christine Van Broeckhoven
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Jasper Van Dongen
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - John C van Swieten
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Rik Vandenberghe
- Neurology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | | | - Pieter J Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience Maastricht University, Maastricht, The Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Vogelgsang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Göttingen, Germany
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Margda Waern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Psychosis Clinic, Gothenburg, Sweden
| | - Michael Wagner
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Medical Science Department, iBiMED, Aveiro, Portugal
| | - Mandy M J Wittens
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Miren Zulaica
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Hospital Universitario Donostia-OSAKIDETZA, Donostia, Spain
- Instituto Biodonostia, San Sebastián, Spain
| | - Cornelia M van Duijn
- Department of Epidemiology, ErasmusMC, Rotterdam, The Netherlands
- Nuffield Department of Population Health, Oxford University, Oxford, UK
| | - Maria Bjerke
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Neurochemistry, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Neurochemistry, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Neurochemistry Lab, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health, Oslo, Norway
- Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Jordi Clarimón
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Agustín Ruiz
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Psychiatry, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE / Labex DISTALZ - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Wiesje van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
| |
Collapse
|
130
|
Pinals RL, Tsai LH. Building in vitro models of the brain to understand the role of APOE in Alzheimer's disease. Life Sci Alliance 2022; 5:5/11/e202201542. [PMID: 36167428 PMCID: PMC9515460 DOI: 10.26508/lsa.202201542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating, complex, and incurable disease that represents an increasingly problematic global health issue. The etiology of sporadic AD that accounts for a vast majority of cases remains poorly understood, with no effective therapeutic interventions. Genetic studies have identified AD risk genes including the most prominent, APOE, of which the ɛ4 allele increases risk in a dose-dependent manner. A breakthrough discovery enabled the creation of human induced pluripotent stem cells (hiPSCs) that can be differentiated into various brain cell types, facilitating AD research in genetically human models. Herein, we provide a brief background on AD in the context of APOE susceptibility and feature work employing hiPSC-derived brain cell and tissue models to interrogate the contribution of APOE in driving AD pathology. Such models have delivered crucial insights into cellular mechanisms and cell type-specific roles underlying the perturbed biological functions that trigger pathogenic cascades and propagate neurodegeneration. Collectively, hiPSC-based models are envisioned to be an impactful platform for uncovering fundamental AD understanding, with high translational value toward AD drug discovery and testing.
Collapse
Affiliation(s)
- Rebecca L Pinals
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA .,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
131
|
Guo Z, Shafik AM, Jin P, Wu H. Differential RNA methylation analysis for MeRIP-seq data under general experimental design. Bioinformatics 2022; 38:4705-4712. [PMID: 36063045 PMCID: PMC9563684 DOI: 10.1093/bioinformatics/btac601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/03/2022] [Accepted: 09/02/2022] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION RNA epigenetics is an emerging field to study the post-transcriptional gene regulation. The dynamics of RNA epigenetic modification have been reported to associate with many human diseases. Recently developed high-throughput technology named Methylated RNA Immunoprecipitation Sequencing (MeRIP-seq) enables the transcriptome-wide profiling of N6-methyladenosine (m6A) modification and comparison of RNA epigenetic modifications. There are a few computational methods for the comparison of mRNA modifications under different conditions but they all suffer from serious limitations. RESULTS In this work, we develop a novel statistical method to detect differentially methylated mRNA regions from MeRIP-seq data. We model the sequence count data by a hierarchical negative binomial model that accounts for various sources of variations and derive parameter estimation and statistical testing procedures for flexible statistical inferences under general experimental designs. Extensive benchmark evaluations in simulation and real data analyses demonstrate that our method is more accurate, robust and flexible compared to existing methods. AVAILABILITY AND IMPLEMENTATION Our method TRESS is implemented as an R/Bioconductor package and is available at https://bioconductor.org/packages/devel/TRESS. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhenxing Guo
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Andrew M Shafik
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
132
|
Xiao X, Liu H, Zhou L, Liu X, Xu T, Zhu Y, Yang Q, Hao X, Liu Y, Zhang W, Zhou Y, Wang J, Li J, Jiao B, Shen L, Liao X. The associations of APP, PSEN1, and PSEN2 genes with Alzheimer's disease: A large case-control study in Chinese population. CNS Neurosci Ther 2022; 29:122-128. [PMID: 36217304 PMCID: PMC9804049 DOI: 10.1111/cns.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 02/06/2023] Open
Abstract
AIM The associations of non-pathogenic variants of APP, PSEN1, and PSEN2 with Alzheimer's disease (AD) remain unclear. This study is aimed at determining the role of these variants in AD. METHODS Our study recruited 1154 AD patients and 2403 controls. APP, PSEN1, PSEN2, and APOE were sequenced using a targeted panel. Variants were classified into common or rare variants with the minor allele frequencies (MAF) cutoff of 0.01. Common variant (MAF≥0.01)-based association test was performed by PLINK 1.9, and gene-based (MAF <0.01) association analysis was conducted using Sequence Kernel Association Test-Optimal (SKAT-O test). Additionally, using PLINK 1.9, we performed AD endophenotypes association studies. RESULTS A common variant, PSEN2 rs11405, was suggestively associated with AD risk (p = 1.08 × 10-2 ). The gene-based association analysis revealed that the APP gene exhibited a significant association with AD (p = 1.43 × 10-2 ). In the AD endophenotypes association studies, APP rs459543 was nominally correlated with CSF Aβ42 level (p = 7.91 × 10-3 ). CONCLUSION Our study indicated that non-pathogenic variants in PSEN2 and APP may be involved in AD pathogenesis in the Chinese population.
Collapse
Affiliation(s)
- Xuewen Xiao
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hui Liu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Lu Zhou
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xixi Liu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Tianyan Xu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuan Zhu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Qijie Yang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoli Hao
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yingzi Liu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Weiwei Zhang
- Bioinformatics Center && National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Department of Radiology, Xiangya HospitalCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Yafang Zhou
- Bioinformatics Center && National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Junling Wang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,Bioinformatics Center && National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Jinchen Li
- Bioinformatics Center && National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
| | - Bin Jiao
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,Bioinformatics Center && National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Lu Shen
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,Bioinformatics Center && National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
| | - Xinxin Liao
- Bioinformatics Center && National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| |
Collapse
|
133
|
Reyes‐Dumeyer D, Faber K, Vardarajan B, Goate A, Renton A, Chao M, Boeve B, Cruchaga C, Pericak‐Vance M, Haines JL, Rosenberg R, Tsuang D, Sweet RA, Bennett DA, Wilson RS, Foroud T, Mayeux R. The National Institute on Aging Late-Onset Alzheimer's Disease Family Based Study: A resource for genetic discovery. Alzheimers Dement 2022; 18:1889-1897. [PMID: 34978149 PMCID: PMC9250549 DOI: 10.1002/alz.12514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 08/11/2021] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The National Institute on Aging Late-Onset Alzheimer's Disease Family Based Study (NIA-LOAD FBS) was established to study the genetic etiology of Alzheimer's disease (AD). METHODS Recruitment focused on families with two living affected siblings and a third first-degree relative similar in age with or without dementia. Uniform assessments were completed, DNA was obtained, as was neuropathology, when possible. Apolipoprotein E (APOE) genotypes, genome-wide single nucleotide polymorphism (SNP) arrays, and sequencing was completed in most families. RESULTS APOE genotype modified the age-at-onset in many large families. Novel variants and known variants associated with early- and late-onset AD and frontotemporal dementia were identified supporting an international effort to solve AD genetics. DISCUSSION The NIA-LOAD FBS is the largest collection of familial AD worldwide, and data or samples have been included in 123 publications addressing the genetic etiology of AD. Genetic heterogeneity and variability in the age-at-onset provides opportunities to investigate the complexity of familial AD.
Collapse
Affiliation(s)
- Dolly Reyes‐Dumeyer
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University in the City of New YorkNew YorkNew YorkUSA
| | - Kelley Faber
- Department of Medical and Molecular GeneticsNational Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD)Indiana University School of MedicineIndianapolisIndianaUSA
| | - Badri Vardarajan
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University in the City of New YorkNew YorkNew YorkUSA
| | - Alison Goate
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Alan Renton
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Michael Chao
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Brad Boeve
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Carlos Cruchaga
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Margaret Pericak‐Vance
- John P. Hussman Institute for Human GenomicsDr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jonathan L. Haines
- Department of Population & Quantitative Health Sciences and Cleveland Institute for Computational BiologyCase Western Reserve UniversityClevelandOhioUSA
| | - Roger Rosenberg
- Department of NeurologyUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
| | - Debby Tsuang
- GRECC VA Puget SoundDepartment of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Robert A. Sweet
- Departments of Psychiatry and NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Robert S. Wilson
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Tatiana Foroud
- Department of Medical and Molecular GeneticsNational Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD)Indiana University School of MedicineIndianapolisIndianaUSA
| | - Richard Mayeux
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University in the City of New YorkNew YorkNew YorkUSA
| |
Collapse
|
134
|
Tábuas-Pereira M, Guerreiro R, Kun-Rodrigues C, Almeida MR, Brás J, Santana I. Whole-exome sequencing reveals PSEN1 and ATP7B combined variants as a possible cause of early-onset Lewy body dementia: a case study of genotype-phenotype correlation. Neurogenetics 2022; 23:279-283. [PMID: 36114914 PMCID: PMC9669161 DOI: 10.1007/s10048-022-00699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Dementia with Lewy bodies is a neurodegenerative disease, sharing features with Parkinson's and Alzheimer's diseases. We report a case of a patient dementia with Lewy bodies carrying combined PSEN1 and ATP7B mutations. A man developed dementia with Lewy bodies starting at the age of 60 years. CSF biomarkers were of Alzheimer's disease and DaTSCAN was abnormal. Whole-exome sequencing revealed a heterozygous p.Ile408Thr PSEN1 variant and a homozygous p.Arg616Trp ATP7B variant. This case reinstates the need of considering ATP7B mutations when evaluating a patient with parkinsonism and supports p.Ile408Thr as a pathogenic PSEN1 variant.
Collapse
Affiliation(s)
- Miguel Tábuas-Pereira
- Neurology Department, Centro Hospitalar E Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-045, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Centro Académico Clínico de Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Célia Kun-Rodrigues
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Maria Rosário Almeida
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Brás
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Isabel Santana
- Neurology Department, Centro Hospitalar E Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-045, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Centro Académico Clínico de Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
135
|
Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022; 18:643-660. [PMID: 36180553 DOI: 10.1038/s41582-022-00714-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
With the exception of a few monogenic forms, Alzheimer disease (AD) has a complex aetiology that is likely to involve multiple susceptibility genes and environmental factors. The role of environmental factors is difficult to determine and, until a few years ago, the molecular mechanisms underlying gene-environment (G × E) interactions in AD were largely unknown. Here, we review evidence that has emerged over the past two decades to explain how environmental factors, such as diet, lifestyle, alcohol, smoking and pollutants, might interact with the human genome. In particular, we discuss how various environmental AD risk factors can induce epigenetic modifications of key AD-related genes and pathways and consider how epigenetic mechanisms could contribute to the effects of oxidative stress on AD onset. Studies on early-life exposures are helping to uncover critical time windows of sensitivity to epigenetic influences from environmental factors, thereby laying the foundations for future primary preventative approaches. We conclude that epigenetic modifications need to be considered when assessing G × E interactions in AD.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy. .,Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy.
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
136
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
137
|
Song C, Pan S, Li D, Hao B, Lu Z, Lai K, Li N, Geng Q. Comprehensive analysis reveals the potential value of inflammatory response genes in the prognosis, immunity, and drug sensitivity of lung adenocarcinoma. BMC Med Genomics 2022; 15:198. [PMID: 36117156 PMCID: PMC9484176 DOI: 10.1186/s12920-022-01340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Background Although the relationship between inflammatory response and tumor has been gradually recognized, the potential implications of of inflammatory response genes in lung adenocarcinoma (LUAD) remains poorly investigated. Methods RNA sequencing and clinical data were obtained from multiple independent datasets (GSE29013, GSE30219, GSE31210, GSE37745, GSE42127, GSE50081, GSE68465, GSE72094, TCGA and GTEx). Unsupervised clustering analysis was used to identify different tumor subtypes, and LASSO and Cox regression analysis were applied to construct a novel scoring tool. We employed multiple algorithms (ssGSEA, CIBERSORT, MCP counter, and ESTIMATE) to better characterize the LUAD tumor microenvironment (TME) and immune landscapes. GSVA and Metascape analysis were performed to investigate the biological processes and pathway activity. Furthermore, ‘pRRophetic’ R package was used to evaluate the half inhibitory concentration (IC50) of each sample to infer drug sensitivity. Results We identified three distinct tumor subtypes, which were related to different clinical outcomes, biological pathways, and immune characteristics. A scoring tool called inflammatory response gene score (IRGS) was established and well validated in multiple independent cohorts, which could well divide patients into two subgroups with significantly different prognosis. High IRGS patients, characterized by increased genomic variants and mutation burden, presented a worse prognosis, and might show a more favorable response to immunotherapy and chemotherapy. Additionally, based on the cross-talk between TNM stage, IRGS and patients clinical outcomes, we redefined the LUAD stage, which was called ‘IRGS-Stage’. The novel staging system could distinguish patients with different prognosis, with better predictive ability than the conventional TNM staging. Conclusions Inflammatory response genes present important potential value in the prognosis, immunity and drug sensitivity of LUAD. The proposed IRGS and IRGS-Stage may be promising biomarkers for estimating clinical outcomes in LUAD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01340-7.
Collapse
|
138
|
Li L, Yu X, Sheng C, Jiang X, Zhang Q, Han Y, Jiang J. A review of brain imaging biomarker genomics in Alzheimer’s disease: implementation and perspectives. Transl Neurodegener 2022; 11:42. [PMID: 36109823 PMCID: PMC9476275 DOI: 10.1186/s40035-022-00315-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with phenotypic changes closely associated with both genetic variants and imaging pathology. Brain imaging biomarker genomics has been developed in recent years to reveal potential AD pathological mechanisms and provide early diagnoses. This technique integrates multimodal imaging phenotypes with genetic data in a noninvasive and high-throughput manner. In this review, we summarize the basic analytical framework of brain imaging biomarker genomics and elucidate two main implementation scenarios of this technique in AD studies: (1) exploring novel biomarkers and seeking mutual interpretability and (2) providing a diagnosis and prognosis for AD with combined use of machine learning methods and brain imaging biomarker genomics. Importantly, we highlight the necessity of brain imaging biomarker genomics, discuss the strengths and limitations of current methods, and propose directions for development of this research field.
Collapse
|
139
|
Zhai Z, Xie D, Qin T, Zhong Y, Xu Y, Sun T. Effect and Mechanism of Exogenous Melatonin on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic review and Meta-analysis. Neuroscience 2022; 505:91-110. [PMID: 36116555 DOI: 10.1016/j.neuroscience.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/09/2022]
Abstract
Melatonin (MT) has been reported to control and prevent Alzheimer's disease (AD) in the clinic; however, the effect and mechanism of MT on AD have not been specifically described. Therefore, the main purpose of this meta-analysis was to explore the effect and mechanism of MT on AD models by studying behavioural indicators and pathological features. Seven databases were searched and 583 articles were retrieved. Finally, nine studies (13 analyses, 294 animals) were included according to pre-set criteria. Three authors independently judged the selected literature and the methodological quality. Meta-analysis showed that MT markedly ameliorated the learning ability by reducing the escape latency (EL), and the memory deficit was significantly corrected by increasing the dwell time in the target quadrant and crossings over the platform location in the Morris Water Maze (MWM). Among the pathological features, subgroup analysis found that MT may ease the symptoms of AD mainly by reducing the deposition of Aβ40 and Aβ42 in the cortex. In addition, MT exerted a superior effect on ameliorating the learning ability of senescence-related and metabolic AD models, and corrected the memory deficit of the toxin-induced AD model. The study was registered at PROSPERO (CRD42021226594).
Collapse
Affiliation(s)
- Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yanmei Zhong
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Tao Sun
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
140
|
Bruno F, Laganà V, Di Lorenzo R, Bruni AC, Maletta R. Calabria as a Genetic Isolate: A Model for the Study of Neurodegenerative Diseases. Biomedicines 2022; 10:biomedicines10092288. [PMID: 36140389 PMCID: PMC9496333 DOI: 10.3390/biomedicines10092288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Although originally multi-ethnic in its structure, nowadays the Calabria region of southern Italy represents an area with low genetic heterogeneity and a high level of consanguinity that allows rare mutations to be maintained due to the founder effect. A complex research methodology—ranging from clinical activity to the genealogical reconstruction of families/populations across the centuries, the creation of databases, and molecular/genetic research—was modelled on the characteristics of the Calabrian population for more than three decades. This methodology allowed the identification of several novel genetic mutations or variants associated with neurodegenerative diseases. In addition, a higher prevalence of several hereditary neurodegenerative diseases has been reported in this population, such as Alzheimer’s disease, frontotemporal dementia, Parkinson’s disease, Niemann–Pick type C disease, spinocerebellar ataxia, Creutzfeldt–Jakob disease, and Gerstmann–Straussler–Scheinker disease. Here, we summarize and discuss the results of research data supporting the view that Calabria could be considered as a genetic isolate and could represent a model, a sort of outdoor laboratory—similar to very few places in the world—useful for the advancement of knowledge on neurodegenerative diseases.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
- Correspondence: (F.B.); (A.C.B.)
| | - Valentina Laganà
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| | | | - Amalia C. Bruni
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
- Correspondence: (F.B.); (A.C.B.)
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| |
Collapse
|
141
|
Fray S, Achouri-Rassas A, Belal S, Messaoud T. Missing apolipoprotein E ɛ4 allele associated with nonamnestic Alzheimer’s disease in a Tunisian population. J Genet 2022. [DOI: 10.1007/s12041-022-01384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
142
|
Castora FJ, Kerns KA, Pflanzer HK, Hitefield NL, Gershon B, Shugoll J, Shelton M, Coleman RA. Expression Changes in Mitochondrial Genes Affecting Mitochondrial Morphology, Transmembrane Potential, Fragmentation, Amyloidosis, and Neuronal Cell Death Found in Brains of Alzheimer’s Disease Patients. J Alzheimers Dis 2022; 90:119-137. [DOI: 10.3233/jad-220161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Alzheimer’s disease (AD) is a neurological disease that has both a genetic and non-genetic origin. Mitochondrial dysfunction is a critical component in the pathogenesis of AD as deficits in oxidative capacity and energy production have been reported. Objective: Nuclear-encoded mitochondrial genes were studied in order to understand the effects of mitochondrial expression changes on mitochondrial function in AD brains. These expression data were to be incorporated into a testable mathematical model for AD used to further assess the genes of interest as therapeutic targets for AD. Methods: RT2-PCR arrays were used to assess expression of 84 genes involved in mitochondrial biogenesis in AD brains. A subset of mitochondrial genes of interest was identified after extensive Ingenuity Pathway Analysis (IPA) (Qiagen). Further filtering of this subset of genes of interest was achieved by individual qPCR analyses. Expression values from this group of genes were included in a mathematical model being developed to identify potential therapeutic targets. Results: Nine genes involved in trafficking proteins to mitochondria, morphology of mitochondria, maintenance of mitochondrial transmembrane potential, fragmentation of mitochondria and mitochondrial dysfunction, amyloidosis, and neuronal cell death were identified as significant to the changes seen. These genes include TP53, SOD2, CDKN2A, MFN2, DNM1L, OPA1, FIS1, BNIP3, and GAPDH. Conclusion: Altered mitochondrial gene expression indicates that a subset of nuclear-encoded mitochondrial genes compromise multiple aspects of mitochondrial function in AD brains. A new mathematical modeling system may provide further insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Frank J. Castora
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
- Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kimberly A. Kerns
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Haley K. Pflanzer
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Naomi L. Hitefield
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Blake Gershon
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jason Shugoll
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Morgan Shelton
- Department of Chemistry Integrated Science Center, The College of William and Mary, Williamsburg, VA, USA
| | - Randolph A. Coleman
- Department of Chemistry Integrated Science Center, The College of William and Mary, Williamsburg, VA, USA
| |
Collapse
|
143
|
Kalfon L, Paz R, Raveh-Barak H, Salama A, Samra N, Kaplun A, Chasnyk N, Kfir NC, Mousa NK, Biton ES, Tanus M, Aharon-Peretz J, Falik Zaccai TC. Familial Early-Onset Alzheimer's Caused by Novel Genetic Variant and APP Duplication: A Cross-Sectional Study. Curr Alzheimer Res 2022; 19:694-707. [PMID: 36278440 DOI: 10.2174/1567205020666221020095257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The clinical characteristics of symptomatic and asymptomatic carriers of early- onset autosomal dominant Alzheimer's (EOADAD) due to a yet-undescribed chromosomal rearrangement may add to the available body of knowledge about Alzheimer's disease and may enlighten novel and modifier genes. We report the clinical and genetic characteristics of asymptomatic and symptomatic individuals carrying a novel APP duplication rearrangement. METHODS Individuals belonging to a seven-generation pedigree with familial cognitive decline or intracerebral hemorrhages were recruited. Participants underwent medical, neurological, and neuropsychological evaluations. The genetic analysis included chromosomal microarray, Karyotype, fluorescence in situ hybridization, and whole genome sequencing. RESULTS Of 68 individuals, six females presented with dementia, and four males presented with intracerebral hemorrhage. Of these, nine were found to carry Chromosome 21 copy number gain (chr21:27,224,097-27,871,284, GRCh37/hg19) including the APP locus (APP-dup). In seven, Chromosome 5 copy number gain (Chr5: 24,786,234-29,446,070, GRCh37/hg19) (Chr5-CNG) cosegregated with the APP-dup. Both duplications co-localized to chromosome 18q21.1 and segregated in 25 pre-symptomatic carriers. Compared to non-carriers, asymptomatic carriers manifested cognitive decline in their mid-thirties. A third of the affected individuals carried a diagnosis of a dis-immune condition. CONCLUSION APP extra dosage, even in isolation and when located outside chromosome 21, is pathogenic. The clinical presentation of APP duplication varies and may be gender specific, i.e., ICH in males and cognitive-behavioral deterioration in females. The association with immune disorders is presently unclear but may prove relevant. The implication of Chr5-CNG co-segregation and the surrounding chromosome 18 genetic sequence needs further clarification.
Collapse
Affiliation(s)
- Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Rotem Paz
- Rappaport Faculty of Medicine, Technion Medicine, Haifa, Israel.,Cognitive Neurology Institute, Rambam Health Care Campus, Haifa, Israel
| | - Hadas Raveh-Barak
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Areef Salama
- Department of Family Medicine, Sherutei Briut Clalit, Haifa and Western Galilee District, Tel Aviv, Israel
| | - Nadra Samra
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | | | - Natalia Chasnyk
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Nehama Cohen Kfir
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | | | - Efrat Shuster Biton
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Mary Tanus
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Judith Aharon-Peretz
- Rappaport Faculty of Medicine, Technion, Haifa Israel.,Cognitive Neurology Institute, Rambam Health Care Campus, Haifa, Israel
| | - Tzipora C Falik Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| |
Collapse
|
144
|
Paranjpe MD, Chaffin M, Zahid S, Ritchie S, Rotter JI, Rich SS, Gerszten R, Guo X, Heckbert S, Tracy R, Danesh J, Lander ES, Inouye M, Kathiresan S, Butterworth AS, Khera AV. Neurocognitive trajectory and proteomic signature of inherited risk for Alzheimer's disease. PLoS Genet 2022; 18:e1010294. [PMID: 36048760 PMCID: PMC9436054 DOI: 10.1371/journal.pgen.1010294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
For Alzheimer's disease-a leading cause of dementia and global morbidity-improved identification of presymptomatic high-risk individuals and identification of new circulating biomarkers are key public health needs. Here, we tested the hypothesis that a polygenic predictor of risk for Alzheimer's disease would identify a subset of the population with increased risk of clinically diagnosed dementia, subclinical neurocognitive dysfunction, and a differing circulating proteomic profile. Using summary association statistics from a recent genome-wide association study, we first developed a polygenic predictor of Alzheimer's disease comprised of 7.1 million common DNA variants. We noted a 7.3-fold (95% CI 4.8 to 11.0; p < 0.001) gradient in risk across deciles of the score among 288,289 middle-aged participants of the UK Biobank study. In cross-sectional analyses stratified by age, minimal differences in risk of Alzheimer's disease and performance on a digit recall test were present according to polygenic score decile at age 50 years, but significant gradients emerged by age 65. Similarly, among 30,541 participants of the Mass General Brigham Biobank, we again noted no significant differences in Alzheimer's disease diagnosis at younger ages across deciles of the score, but for those over 65 years we noted an odds ratio of 2.0 (95% CI 1.3 to 3.2; p = 0.002) in the top versus bottom decile of the polygenic score. To understand the proteomic signature of inherited risk, we performed aptamer-based profiling in 636 blood donors (mean age 43 years) with very high or low polygenic scores. In addition to the well-known apolipoprotein E biomarker, this analysis identified 27 additional proteins, several of which have known roles related to disease pathogenesis. Differences in protein concentrations were consistent even among the youngest subset of blood donors (mean age 33 years). Of these 28 proteins, 7 of the 8 proteins with concentrations available were similarly associated with the polygenic score in participants of the Multi-Ethnic Study of Atherosclerosis. These data highlight the potential for a DNA-based score to identify high-risk individuals during the prolonged presymptomatic phase of Alzheimer's disease and to enable biomarker discovery based on profiling of young individuals in the extremes of the score distribution.
Collapse
Affiliation(s)
- Manish D. Paranjpe
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mark Chaffin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sohail Zahid
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Scott Ritchie
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Cambridge Baker Systems Genomics Initiative, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles Medical Center, Torrance, California, United States of America
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Robert Gerszten
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles Medical Center, Torrance, California, United States of America
| | - Susan Heckbert
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Russ Tracy
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Eric S. Lander
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Cambridge Baker Systems Genomics Initiative, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia
- The Alan Turing Institute, London, United Kingdom
| | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Verve Therapeutics, Cambridge, Massachusetts, United States of America
- Division of Cardiology and Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adam S. Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Amit V. Khera
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Verve Therapeutics, Cambridge, Massachusetts, United States of America
- Division of Cardiology and Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
145
|
McKendell AK, Houser MCQ, Mitchell SPC, Wolfe MS, Berezovska O, Maesako M. In-Depth Characterization of Endo-Lysosomal Aβ in Intact Neurons. BIOSENSORS 2022; 12:663. [PMID: 36005059 PMCID: PMC9406119 DOI: 10.3390/bios12080663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/21/2022]
Abstract
Amyloid-beta (Aβ) peptides are produced within neurons. Some peptides are released into the brain parenchyma, while others are retained inside the neurons. However, the detection of intracellular Aβ remains a challenge since antibodies against Aβ capture Aβ and its precursor proteins (i.e., APP and C99). To overcome this drawback, we recently developed 1) the C99 720-670 biosensor for recording γ-secretase activity and 2) a unique multiplexed immunostaining platform that enables the selective detection of intracellular Aβ with subcellular resolution. Using these new assays, we showed that C99 is predominantly processed by γ-secretase in late endosomes and lysosomes, and intracellular Aβ is enriched in the same subcellular loci in intact neurons. However, the detailed properties of Aβ in the acidic compartments remain unclear. Here, we report using fluorescent lifetime imaging microscopy (FLIM) that intracellular Aβ includes both long Aβ intermediates bound to γ-secretase and short peptides dissociated from the protease complex. Surprisingly, our results also suggest that the dissociated Aβ is bound to the glycoproteins on the inner membrane of lysosomes. Furthermore, we show striking cell-to-cell heterogeneity in intracellular Aβ levels in primary neurons and APP transgenic mouse brains. These findings provide a basis for the further investigation of the role(s) of intracellular Aβ and its relevance to Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Alec K. McKendell
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114, 16th street, Charlestown, MA 02129, USA
| | - Mei C. Q. Houser
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114, 16th street, Charlestown, MA 02129, USA
| | - Shane P. C. Mitchell
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114, 16th street, Charlestown, MA 02129, USA
| | - Michael S. Wolfe
- Department of Medicinal Chemistry, University of Kansas, 1567 Irving Hill Rd, Lawrence, Kansas City, KS 66045, USA
| | - Oksana Berezovska
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114, 16th street, Charlestown, MA 02129, USA
| | - Masato Maesako
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114, 16th street, Charlestown, MA 02129, USA
| |
Collapse
|
146
|
Ponomareva NV, Andreeva TV, Protasova M, Konovalov RN, Krotenkova MV, Kolesnikova EP, Malina DD, Kanavets EV, Mitrofanov AA, Fokin VF, Illarioshkin SN, Rogaev EI. Genetic association of apolipoprotein E genotype with EEG alpha rhythm slowing and functional brain network alterations during normal aging. Front Neurosci 2022; 16:931173. [PMID: 35979332 PMCID: PMC9376365 DOI: 10.3389/fnins.2022.931173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
The ε4 allele of the apolipoprotein E (APOE4+) genotype is a major genetic risk factor for Alzheimer’s disease (AD), but the mechanisms underlying its influence remain incompletely understood. The study aimed to investigate the possible effect of the APOE genotype on spontaneous electroencephalogram (EEG) alpha characteristics, resting-state functional MRI (fMRI) connectivity (rsFC) in large brain networks and the interrelation of alpha rhythm and rsFC characteristics in non-demented adults during aging. We examined the EEG alpha subband’s relative power, individual alpha peak frequency (IAPF), and fMRI rsFC in non-demented volunteers (age range 26–79 years) stratified by the APOE genotype. The presence of the APOE4+ genotype was associated with lower IAPF and lower relative power of the 11–13 Hz alpha subbands. The age related decrease in EEG IAPF was more pronounced in the APOE4+ carriers than in the APOE4+ non-carriers (APOE4-). The APOE4+ carriers had a stronger fMRI positive rsFC of the interhemispheric regions of the frontoparietal, lateral visual and salience networks than the APOE4– individuals. In contrast, the negative rsFC in the network between the left hippocampus and the right posterior parietal cortex was reduced in the APOE4+ carriers compared to the non-carriers. Alpha rhythm slowing was associated with the dysfunction of hippocampal networks. Our results show that in adults without dementia APOE4+ genotype is associated with alpha rhythm slowing and that this slowing is age-dependent. Our data suggest predominant alterations of inhibitory processes in large-scale brain network of non-demented APOE4+ carriers. Moreover, dysfunction of large-scale hippocampal network can influence APOE-related alpha rhythm vulnerability.
Collapse
Affiliation(s)
- Natalya V. Ponomareva
- Research Center of Neurology, Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- *Correspondence: Natalya V. Ponomareva,
| | - Tatiana V. Andreeva
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Maria Protasova
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | | | | | | | | | | | | | | | | | - Evgeny I. Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
- Brudnick Neuropsychiatric Research Institute (BNRI), University of Massachusetts Medical School, Worcester, MA, United States
- Evgeny I. Rogaev,
| |
Collapse
|
147
|
Tejada Moreno JA, Villegas Lanau A, Madrigal Zapata L, Baena Pineda AY, Velez Hernandez J, Campo Nieto O, Soto Ospina A, Araque Marín P, Rishishwar L, Norris ET, Chande AT, Jordan IK, Bedoya Berrio G. Mutations in SORL1 and MTHFDL1 possibly contribute to the development of Alzheimer's disease in a multigenerational Colombian Family. PLoS One 2022; 17:e0269955. [PMID: 35905044 PMCID: PMC9337667 DOI: 10.1371/journal.pone.0269955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/31/2022] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, affecting over 50 million people worldwide in 2020 and this number will triple to 152 million by 2050. Much of the increase will be in developing countries like Colombia. In familial forms, highly penetrant mutations have been identified in three genes, APP, PSEN1, and PSEN2, supporting a role for amyloid-β peptide. In sporadic forms, more than 30 risk genes involved in the lipid metabolism, the immune system, and synaptic functioning mechanisms. We used whole-exome sequencing (WES) to evaluate a family of 97 members, spanning three generations, with a familiar AD, and without mutations in APP, PSEN1, or PSEN2. We sequenced two affected and one unaffected member with the aim of identifying genetic variants that could explain the presence of the disease in the family and the candidate variants were validated in eleven members. We also built a structural model to try to determine the effect on protein function. WES analysis identified two rare variants in SORL1 and MTHFD1L genes segregating in the family with other potential risk variants in APOE, ABCA7, and CHAT, suggesting an oligogenic inheritance. Additionally, the structural 3D models of SORL1 and MTHFD1L variants shows that these variants produce polarity changes that favor hydrophobic interactions, resulting in local structural changes that could affect the protein function and may contribute to the development of the disease in this family.
Collapse
Affiliation(s)
| | | | | | | | | | - Omer Campo Nieto
- Molecular Genetics Research Group, University of Antioquia, Medellin, Colombia
| | | | - Pedronel Araque Marín
- Research and Innovation Group in Chemical Formulations, EIA University, Medellin, Colombia
| | - Lavanya Rishishwar
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, Georgia, United States of America
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| | - Emily T. Norris
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, Georgia, United States of America
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Aroon T. Chande
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, Georgia, United States of America
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - I. King Jordan
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, Georgia, United States of America
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | | |
Collapse
|
148
|
Kumari A, Rahaman A, Zeng XA, Farooq MA, Huang Y, Yao R, Ali M, Ishrat R, Ali R. Temporal Cortex Microarray Analysis Revealed Impaired Ribosomal Biogenesis and Hyperactivity of the Glutamatergic System: An Early Signature of Asymptomatic Alzheimer's Disease. Front Neurosci 2022; 16:966877. [PMID: 35958988 PMCID: PMC9359077 DOI: 10.3389/fnins.2022.966877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022] Open
Abstract
Pathogenic aging is regarded as asymptomatic AD when there is no cognitive deficit except for neuropathology consistent with Alzheimer's disease. These individuals are highly susceptible to developing AD. Braak and Braak's theory specific to tau pathology illustrates that the brain's temporal cortex region is an initiation site for early AD progression. So, the hub gene analysis of this region may reveal early altered biological cascades that may be helpful to alleviate AD in an early stage. Meanwhile, cognitive processing also drags its attention because cognitive impairment is the ultimate result of AD. Therefore, this study aimed to explore changes in gene expression of aged control, asymptomatic AD (AsymAD), and symptomatic AD (symAD) in the temporal cortex region. We used microarray data sets to identify differentially expressed genes (DEGs) with the help of the R programming interface. Further, we constructed the protein-protein interaction (PPI) network by performing the STRING plugin in Cytoscape and determined the hub genes via the CytoHubba plugin. Furthermore, we conducted Gene Ontology (GO) enrichment analysis via Bioconductor's cluster profile package. Resultant, the AsymAD transcriptome revealed the early-stage changes of glutamatergic hyperexcitability. Whereas the connectivity of major hub genes in this network indicates a shift from initially reduced rRNA biosynthesis in the AsymAD group to impaired protein synthesis in the symAD group. Both share the phenomenon of breaking tight junctions and others. In conclusion, this study offers new understandings of the early biological vicissitudes that occur in the brain before the manifestation of symAD and gives new promising therapeutic targets for early AD intervention.
Collapse
Affiliation(s)
- Ankita Kumari
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
- Abdul Rahaman
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
- *Correspondence: Xin-An Zeng
| | - Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Yanyan Huang
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
| | - Runyu Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Murtaza Ali
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Romana Ishrat
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Romana Ishrat
| | - Rafat Ali
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
149
|
Andersen JV, Schousboe A, Verkhratsky A. Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol 2022; 217:102331. [PMID: 35872221 DOI: 10.1016/j.pneurobio.2022.102331] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes contribute to the complex cellular pathology of Alzheimer's disease (AD). Neurons and astrocytes function in close collaboration through neurotransmitter recycling, collectively known as the glutamate/GABA-glutamine cycle, which is essential to sustain neurotransmission. Neurotransmitter recycling is intimately linked to astrocyte energy metabolism. In the course of AD, astrocytes undergo extensive metabolic remodeling, which may profoundly affect the glutamate/GABA-glutamine cycle. The consequences of altered astrocyte function and metabolism in relation to neurotransmitter recycling are yet to be comprehended. Metabolic alterations of astrocytes in AD deprive neurons of metabolic support, thereby contributing to synaptic dysfunction and neurodegeneration. In addition, several astrocyte-specific components of the glutamate/GABA-glutamine cycle, including glutamine synthesis and synaptic neurotransmitter uptake, are perturbed in AD. Integration of the complex astrocyte biology within the context of AD is essential for understanding the fundamental mechanisms of the disease, while restoring astrocyte metabolism may serve as an approach to arrest or even revert clinical progression of AD.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| |
Collapse
|
150
|
Tran D, DiGiacomo P, Born DE, Georgiadis M, Zeineh M. Iron and Alzheimer's Disease: From Pathology to Imaging. Front Hum Neurosci 2022; 16:838692. [PMID: 35911597 PMCID: PMC9327617 DOI: 10.3389/fnhum.2022.838692] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a debilitating brain disorder that afflicts millions worldwide with no effective treatment. Currently, AD progression has primarily been characterized by abnormal accumulations of β-amyloid within plaques and phosphorylated tau within neurofibrillary tangles, giving rise to neurodegeneration due to synaptic and neuronal loss. While β-amyloid and tau deposition are required for clinical diagnosis of AD, presence of such abnormalities does not tell the complete story, and the actual mechanisms behind neurodegeneration in AD progression are still not well understood. Support for abnormal iron accumulation playing a role in AD pathogenesis includes its presence in the early stages of the disease, its interactions with β-amyloid and tau, and the important role it plays in AD related inflammation. In this review, we present the existing evidence of pathological iron accumulation in the human AD brain, as well as discuss the imaging tools and peripheral measures available to characterize iron accumulation and dysregulation in AD, which may help in developing iron-based biomarkers or therapeutic targets for the disease.
Collapse
Affiliation(s)
- Dean Tran
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Phillip DiGiacomo
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Donald E. Born
- Department of Pathology, Stanford School of Medicine, Stanford, CA, United States
| | - Marios Georgiadis
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Michael Zeineh
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|