101
|
Kizil C, Bhattarai P. Is Alzheimer's Also a Stem Cell Disease? - The Zebrafish Perspective. Front Cell Dev Biol 2018; 6:159. [PMID: 30533414 PMCID: PMC6265475 DOI: 10.3389/fcell.2018.00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and is the leading form of dementia. AD entails chronic inflammation, impaired synaptic integrity and reduced neurogenesis. The clinical and molecular onsets of the disease do not temporally overlap and the initiation phase of the cellular changes might start with a complex causativeness between chronic inflammation, reduced neural stem cell plasticity and neurogenesis. Although the immune and neuronal aspects in AD are well studied, the neural stem cell-related features are far less investigated. An intriguing question is, therefore, whether a stem cell can ever be made proliferative and neurogenic during the prevalent AD in the brain. Recent findings affirm this hypothesis and thus a plausible way to circumvent the AD phenotypes could be to mobilize the endogenous stem cells by enhancing their proliferative and neurogenic capacity as well as to provide the newborn neurons the potential to survive and integrate into the existing circuitry. To address these questions, zebrafish offers unprecedented information and tools, which can be effectively translated into mammalian experimental systems.
Collapse
Affiliation(s)
- Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| | - Prabesh Bhattarai
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
102
|
Bundy JL, Vied C, Badger C, Nowakowski RS. Sex-biased hippocampal pathology in the 5XFAD mouse model of Alzheimer's disease: A multi-omic analysis. J Comp Neurol 2018; 527:462-475. [PMID: 30291623 DOI: 10.1002/cne.24551] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/16/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder and the most common form of dementia. Like many neurological disorders, Alzheimer's disease has a sex-biased epidemiological profile, affecting approximately twice as many women as men. The cause of this sex difference has yet to be elucidated. To identify molecular correlates of this sex bias, we investigated molecular pathology in females and males using the 5XFamilial Alzheimer's disease mutations (5XFAD) genetic mouse model of Alzheimer's disease. We profiled the transcriptome and proteome of the mouse hippocampus during early stages of disease development (1, 2, and 4 months of age). Our analysis reveals 42 genes that are differentially expressed between disease and wild-type animals at 2 months of age, prior to observable plaque deposition. In 4-month-old animals, we detect 1,316 differentially expressed transcripts between transgenic and control 5XFAD mice, many of which are associated with immune function. Additionally, we find that some of these transcriptional perturbations are correlated with altered protein levels in 4-month-old transgenic animals. Importantly, our data indicate that female 5XFAD mouse exhibit more profound pathology than their male counterparts as measured by differences in gene expression. We also find that the 5XFAD transgenes are more highly expressed in female 5XFAD mice than their male counterparts, which could partially account for the sex-biased molecular pathology observed in this dataset.
Collapse
Affiliation(s)
- Joseph L Bundy
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Cynthia Vied
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida.,Translational Science Laboratory, Florida State University College of Medicine, Tallahassee, Florida
| | - Crystal Badger
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Richard S Nowakowski
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| |
Collapse
|
103
|
Gupta P, Sil S, Ghosh R, Ghosh A, Ghosh T. Intracerebroventricular Aβ-Induced Neuroinflammation Alters Peripheral Immune Responses in Rats. J Mol Neurosci 2018; 66:572-586. [DOI: 10.1007/s12031-018-1189-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
|
104
|
Wu Q, Lin Y, Gu J, Sigurdsson EM. Dynamic assessment of tau immunotherapies in the brains of live animals by two-photon imaging. EBioMedicine 2018; 35:270-278. [PMID: 30146345 PMCID: PMC6158769 DOI: 10.1016/j.ebiom.2018.08.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/03/2018] [Accepted: 08/14/2018] [Indexed: 02/01/2023] Open
Abstract
Our original findings, showing the effectiveness of active and passive tau immunizations in mouse models, have now been confirmed and extended by many groups, with several clinical trials underway in Alzheimer's disease and progressive supranuclear palsy. Here, we report on a unique and sensitive two-photon imaging approach to concurrently study the dynamics of brain and neuronal uptake and clearance of tau antibodies as well as the acute removal of their pathological target in live animals. This in vivo technique is more sensitive to detect clearance of pathological tau protein than western blot tau analysis of brain tissue. In addition to providing an insight into the mechanisms involved, it allows for an efficient in vivo assessment of the therapeutic potential of tau antibodies, and may be applied to related protein misfolding diseases. Two-photon imaging approach to study uptake and clearance of tau antibodies, and removal of their target in live animals. This technique is more sensitive to detect clearance of pathological tau protein than western blot analysis of brain tissue. It allows for an acute in vivo determination of the therapeutic potential of tau antibodies.
Collapse
Affiliation(s)
- Qian Wu
- Department of Neuroscience and Physiology, New York University School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Yan Lin
- Department of Neuroscience and Physiology, New York University School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Jiaping Gu
- Department of Neuroscience and Physiology, New York University School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University School of Medicine, 435 East 30th Street, New York, NY 10016, United States; Department of Psychiatry, New York University School of Medicine, 435 East 30th Street, New York, NY 10016, United States.
| |
Collapse
|
105
|
Matsubara T, Yasumori H, Ito K, Shimoaka T, Hasegawa T, Sato T. Amyloid-β fibrils assembled on ganglioside-enriched membranes contain both parallel β-sheets and turns. J Biol Chem 2018; 293:14146-14154. [PMID: 30018137 DOI: 10.1074/jbc.ra118.002787] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/11/2018] [Indexed: 12/15/2022] Open
Abstract
Some protein and peptide aggregates, such as those of amyloid-β protein (Aβ), are neurotoxic and have been implicated in several neurodegenerative diseases. Aβ accumulates at nanoclusters enriched in neuronal lipids called gangliosides in the presynaptic neuronal membrane, and the resulting oligomeric and/or fibrous forms accelerate the development of Alzheimer's disease. Although the presence of Aβ deposits at such nanoclusters is known, the mechanism of their assembly and the relationship between Aβ secondary structure and topography are still unclear. Here, we first confirmed by atomic force microscopy that Aβ40 fibrils can be obtained by incubating seed-free Aβ40 monomers with a membrane composed of sphingomyelin, cholesterol, and the ganglioside GM1. Using Fourier transform infrared (FTIR) reflection-absorption spectroscopy, we then found that these lipid-associated fibrils contained parallel β-sheets, whereas self-assembled Aβ40 molecules formed antiparallel β-sheets. We also found that the fibrils obtained at GM1-rich nanoclusters were generated from turn Aβ40 Our findings indicate that Aβ generally self-assembles into antiparallel β-structures but can also form protofibrils with parallel β-sheets by interacting with ganglioside-bound Aβ. We concluded that by promoting the formation of parallel β-sheets, highly ganglioside-enriched nanoclusters help accelerate the elongation of Aβ fibrils. These results advance our understanding of ganglioside-induced Aβ fibril formation in neuronal membranes and may help inform the development of additional therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- From the Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan and
| | - Hanaki Yasumori
- From the Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan and
| | - Koichiro Ito
- From the Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan and
| | - Takafumi Shimoaka
- the Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takeshi Hasegawa
- the Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toshinori Sato
- From the Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan and
| |
Collapse
|
106
|
Kiyota T, Machhi J, Lu Y, Dyavarshetty B, Nemati M, Yokoyama I, Mosley RL, Gendelman HE. Granulocyte-macrophage colony-stimulating factor neuroprotective activities in Alzheimer's disease mice. J Neuroimmunol 2018; 319:80-92. [PMID: 29573847 PMCID: PMC5916331 DOI: 10.1016/j.jneuroim.2018.03.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/27/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
We investigated the effects of granulocyte-macrophage colony stimulating factor (GM-CSF) on behavioral and pathological outcomes in Alzheimer's disease (AD) and non-transgenic mice. GM-CSF treatment in AD mice reduced brain amyloidosis, increased plasma Aβ, and rescued cognitive impairment with increased hippocampal expression of calbindin and synaptophysin and increased levels of doublecortin-positive cells in the dentate gyrus. These data extend GM-CSF pleiotropic neuroprotection mechanisms in AD and include regulatory T cell-mediated immunomodulation of microglial function, Aβ clearance, maintenance of synaptic integrity, and induction of neurogenesis. Together these data support further development of GM-CSF as a neuroprotective agent for AD.
Collapse
Affiliation(s)
- Tomomi Kiyota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhagyalaxmi Dyavarshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maryam Nemati
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Izumi Yokoyama
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - R L Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
107
|
Zhang L, Trushin S, Christensen TA, Tripathi U, Hong C, Geroux RE, Howell KG, Poduslo JF, Trushina E. Differential effect of amyloid beta peptides on mitochondrial axonal trafficking depends on their state of aggregation and binding to the plasma membrane. Neurobiol Dis 2018; 114:1-16. [PMID: 29477640 PMCID: PMC5926207 DOI: 10.1016/j.nbd.2018.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/03/2018] [Accepted: 02/07/2018] [Indexed: 12/20/2022] Open
Abstract
Inhibition of mitochondrial axonal trafficking by amyloid beta (Aβ) peptides has been implicated in early pathophysiology of Alzheimer's Disease (AD). Yet, it remains unclear whether the loss of motility inevitably induces the loss of mitochondrial function, and whether restoration of axonal trafficking represents a valid therapeutic target. Moreover, while some investigations identify Aβ oligomers as the culprit of trafficking inhibition, others propose that fibrils play the detrimental role. We have examined the effect of a panel of Aβ peptides with different mutations found in familial AD on mitochondrial motility in primary cortical mouse neurons. Peptides with higher propensity to aggregate inhibit mitochondrial trafficking to a greater extent with fibrils inducing the strongest inhibition. Binding of Aβ peptides to the plasma membrane was sufficient to induce trafficking inhibition where peptides with reduced plasma membrane binding and internalization had lesser effect on mitochondrial motility. We also found that Aβ peptide with Icelandic mutation A673T affects axonal trafficking of mitochondria but has very low rates of plasma membrane binding and internalization in neurons, which could explain its relatively low toxicity. Inhibition of mitochondrial dynamics caused by Aβ peptides or fibrils did not instantly affect mitochondrial bioenergetic and function. Our results support a mechanism where inhibition of axonal trafficking is initiated at the plasma membrane by soluble low molecular weight Aβ species and is exacerbated by fibrils. Since trafficking inhibition does not coincide with the loss of mitochondrial function, restoration of axonal transport could be beneficial at early stages of AD progression. However, strategies designed to block Aβ aggregation or fibril formation alone without ensuring the efficient clearance of soluble Aβ may not be sufficient to alleviate the trafficking phenotype.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Trace A Christensen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Utkarsh Tripathi
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Courtney Hong
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Rachel E Geroux
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Kyle G Howell
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Joseph F Poduslo
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| |
Collapse
|
108
|
Hasunuma N, Kawakami M, Hiramatsu H, Nakabayashi T. Preparation and photo-induced activities of water-soluble amyloid β-C 60 complexes. RSC Adv 2018; 8:17847-17853. [PMID: 35542080 PMCID: PMC9080474 DOI: 10.1039/c8ra02789g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/04/2018] [Indexed: 01/06/2023] Open
Abstract
We have shown that fullerene (C60) becomes soluble in water by mixing fullerene and amyloid β peptide (Aβ40) whose fibril structures are considered to be associated with Alzheimer's disease. The water-solubility of fullerene arises from the generation of a nanosized complex between fullerene and the monomer species of Aβ40 (Aβ40-C60). The prepared Aβ40-C60 exhibits photo-induced activity with visible light to induce the inhibition of Aβ40 fibrillation and the cytotoxicity for cultured HeLa cells. The observed photo-induced phenomena result from the generation of singlet oxygen via photoexcitation, inducing oxidative damage to Aβ40 and HeLa cells. The oxidized Aβ40 following photoexcitation of Aβ40-C60 was confirmed by mass spectrometry.
Collapse
Affiliation(s)
- Naoki Hasunuma
- Graduate School of Pharmaceutical Sciences, Tohoku University Sendai 980-8578 Japan
| | - Masahiro Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University Sendai 980-8578 Japan
| | - Hirotsugu Hiramatsu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University 1001, Ta-Hsueh Road Hsinchu 30010 Taiwan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University Sendai 980-8578 Japan
| |
Collapse
|
109
|
Kiyota T, Machhi J, Lu Y, Dyavarshetty B, Nemati M, Zhang G, Mosley RL, Gelbard HA, Gendelman HE. URMC-099 facilitates amyloid-β clearance in a murine model of Alzheimer's disease. J Neuroinflammation 2018; 15:137. [PMID: 29729668 PMCID: PMC5935963 DOI: 10.1186/s12974-018-1172-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/23/2018] [Indexed: 01/19/2023] Open
Abstract
Background The mixed lineage kinase type 3 inhibitor URMC-099 facilitates amyloid-beta (Aβ) clearance and degradation in cultured murine microglia. One putative mechanism is an effect of URMC-099 on Aβ uptake and degradation. As URMC-099 promotes endolysosomal protein trafficking and reduces Aβ microglial pro-inflammatory activities, we assessed whether these responses affect Aβ pathobiogenesis. To this end, URMC-099’s therapeutic potential, in Aβ precursor protein/presenilin-1 (APP/PS1) double-transgenic mice, was investigated in this model of Alzheimer’s disease (AD). Methods Four-month-old APP/PS1 mice were administered intraperitoneal URMC-099 injections at 10 mg/kg daily for 3 weeks. Brain tissues were examined by biochemical, molecular and immunohistochemical tests. Results URMC-099 inhibited mitogen-activated protein kinase 3/4-mediated activation and attenuated β-amyloidosis. Microglial nitric oxide synthase-2 and arginase-1 were co-localized with lysosomal-associated membrane protein 1 (Lamp1) and Aβ. Importatly, URMC-099 restored synaptic integrity and hippocampal neurogenesis in APP/PS1 mice. Conclusions URMC-099 facilitates Aβ clearance in the brain of APP/PS1 mice. The multifaceted immune modulatory and neuroprotective roles of URMC-099 make it an attractive candidate for ameliorating the course of AD. This is buttressed by removal of pathologic Aβ species and restoration of the brain’s microenvironment during disease.
Collapse
Affiliation(s)
- Tomomi Kiyota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Safety Assessment, Genentech Inc., South San Francisco, CA, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhagyalaxmi Dyavarshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maryam Nemati
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gang Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
110
|
Acx H, Serneels L, Radaelli E, Muyldermans S, Vincke C, Pepermans E, Müller U, Chávez-Gutiérrez L, De Strooper B. Inactivation of γ-secretases leads to accumulation of substrates and non-Alzheimer neurodegeneration. EMBO Mol Med 2018; 9:1088-1099. [PMID: 28588032 PMCID: PMC5538297 DOI: 10.15252/emmm.201707561] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
γ-Secretases are a family of intramembrane cleaving aspartyl proteases and important drug targets in Alzheimer's disease. Here, we generated mice deficient for all γ-secretases in the pyramidal neurons of the postnatal forebrain by deleting the three anterior pharynx defective 1 (Aph1) subunits (Aph1abc cKO Cre+). The mice show progressive cortical atrophy, neuronal loss, and gliosis. Interestingly, this is associated with more than 10-fold accumulation of membrane-bound fragments of App, Aplp1, Nrg1, and Dcc, while other known substrates of γ-secretase such as Aplp2, Lrp1, and Sdc3 accumulate to lesser extents. Despite numerous reports linking neurodegeneration to accumulation of membrane-bound App fragments, deletion of App expression in the combined Aph1 knockout does not rescue this phenotype. Importantly, knockout of only Aph1a- or Aph1bc-secretases causes limited and differential accumulation of substrates. This was not associated with neurodegeneration. Further development of selective Aph1-γ-secretase inhibitors should be considered for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Hermien Acx
- VIB Center for Brain and Disease Research, Leuven, Belgium.,KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND) and Universitaire Ziekenhuizen Leuven, University of Leuven, Leuven, Belgium
| | - Lutgarde Serneels
- VIB Center for Brain and Disease Research, Leuven, Belgium.,KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND) and Universitaire Ziekenhuizen Leuven, University of Leuven, Leuven, Belgium
| | - Enrico Radaelli
- VIB Center for Brain and Disease Research, Leuven, Belgium.,KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND) and Universitaire Ziekenhuizen Leuven, University of Leuven, Leuven, Belgium
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cécile Vincke
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elise Pepermans
- VIB Center for Brain and Disease Research, Leuven, Belgium.,KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND) and Universitaire Ziekenhuizen Leuven, University of Leuven, Leuven, Belgium
| | - Ulrike Müller
- Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Heidelberg, Germany
| | - Lucía Chávez-Gutiérrez
- VIB Center for Brain and Disease Research, Leuven, Belgium .,KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND) and Universitaire Ziekenhuizen Leuven, University of Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, Leuven, Belgium .,KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND) and Universitaire Ziekenhuizen Leuven, University of Leuven, Leuven, Belgium.,UCL Dementia Research Institute (DRI-UK), London, UK
| |
Collapse
|
111
|
Whittaker HT, Zhu S, Di Curzio DL, Buist R, Li XM, Noy S, Wiseman FK, Thiessen JD, Martin M. T 1, diffusion tensor, and quantitative magnetization transfer imaging of the hippocampus in an Alzheimer's disease mouse model. Magn Reson Imaging 2018; 50:26-37. [PMID: 29545212 DOI: 10.1016/j.mri.2018.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/10/2018] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) pathology causes microstructural changes in the brain. These changes, if quantified with magnetic resonance imaging (MRI), could be studied for use as an early biomarker for AD. The aim of our study was to determine if T1 relaxation, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI) metrics could reveal changes within the hippocampus and surrounding white matter structures in ex vivo transgenic mouse brains overexpressing human amyloid precursor protein with the Swedish mutation. Delineation of hippocampal cell layers using DTI color maps allows more detailed analysis of T1-weighted imaging, DTI, and qMTI metrics, compared with segmentation of gross anatomy based on relaxation images, and with analysis of DTI or qMTI metrics alone. These alterations are observed in the absence of robust intracellular Aβ accumulation or plaque deposition as revealed by histology. This work demonstrates that multiparametric quantitative MRI methods are useful for characterizing changes within the hippocampal substructures and surrounding white matter tracts of mouse models of AD.
Collapse
Affiliation(s)
- Heather T Whittaker
- Biopsychology, University of Winnipeg, Winnipeg, MB R3B 2N2, Canada; Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Shenghua Zhu
- Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | | | - Richard Buist
- Radiology, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Xin-Min Li
- Psychiatry, University of Alberta, Alberta T6G 2R3, Canada
| | - Suzanna Noy
- Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Frances K Wiseman
- Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Jonathan D Thiessen
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; Medical Biophysics, Western University, London, Ontario, Canada
| | - Melanie Martin
- Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada; Radiology, University of Manitoba, Winnipeg, MB R3E 0T6, Canada; Physics, University of Winnipeg, R3B 2N2, Canada
| |
Collapse
|
112
|
Ibrahim NF, Yanagisawa D, Durani LW, Hamezah HS, Damanhuri HA, Wan Ngah WZ, Tsuji M, Kiuchi Y, Ono K, Tooyama I. Tocotrienol-Rich Fraction Modulates Amyloid Pathology and Improves Cognitive Function in AβPP/PS1 Mice. J Alzheimers Dis 2018; 55:597-612. [PMID: 27716672 PMCID: PMC5147513 DOI: 10.3233/jad-160685] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia. The cardinal neuropathological characteristic of AD is the accumulation of amyloid-β (Aβ) into extracellular plaques that ultimately disrupt neuronal function and lead to neurodegeneration. One possible therapeutic strategy therefore is to prevent Aβ aggregation. Previous studies have suggested that vitamin E analogs slow AD progression in humans. In the present study, we investigated the effects of the tocotrienol-rich fraction (TRF), a mixture of vitamin E analogs from palm oil, on amyloid pathology in vitro and in vivo. TRF treatment dose-dependently inhibited the formation of Aβ fibrils and Aβ oligomers in vitro. Moreover, daily TRF supplementation to AβPPswe/PS1dE9 double transgenic mice for 10 months attenuated Aβ immunoreactive depositions and thioflavin-S-positive fibrillar type plaques in the brain, and eventually improved cognitive function in the novel object recognition test compared with control AβPPswe/PS1dE9 mice. The present result indicates that TRF reduced amyloid pathology and improved cognitive functions, and suggests that TRF is a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Nor Faeizah Ibrahim
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan.,Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| | - Lina Wati Durani
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan.,Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Hamizah Shahirah Hamezah
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan.,Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Mayumi Tsuji
- Department of Pharmacology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Kenjiro Ono
- Department of Neurology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| |
Collapse
|
113
|
Common profiles of Notch signaling differentiate disease-free survival in luminal type A and triple negative breast cancer. Oncotarget 2018; 8:6013-6032. [PMID: 27888801 PMCID: PMC5351609 DOI: 10.18632/oncotarget.13451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/29/2016] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is characterized by high heterogeneity regarding its biology and clinical characteristics. The Notch pathway regulates such processes as organ modeling and epithelial-to-mesenchymal transition (EMT). The aim of the study was to determine the effect of differential expression of Notch members on disease-free survival (DFS) in luminal type A (lumA) and triple negative (TN) BC. The differential expression of 19 Notch members was examined in a TCGA BC cohort. DFS analysis was performed using the log-rank test (p<0.05). Biological differences between DFS groups were determined with Gene Set Enrichment Analysis (GSEA) (tTest, FDR<0.25). Common expression profiles according to Notch signaling were examined using ExpressCluster (K-means, mean centered, Euclidean distance metric). The overexpression of HES1, LFNG and PSEN1 was found to be favorable for DFS in lumA, and lowered expression favorable for DFS in TN. GSEA analysis showed that differential Notch signaling is associated with cell cycle, tissue architecture and remodeling. Particularly, targets of E2F, early stage S phase transcription factor, were upregulated in the lumA unfavorable group and the TN favorable group differentiated on a basis of HES1 and PSEN1 expression. Summarizing, our analysis show significance of Notch signaling in BRCA progression through triggering EMT. Moreover, identification of numerous genes which overexpression is associated with disease recurrence may serve as a source of potential targets for a new anticancer therapy.
Collapse
|
114
|
Yuan BF, Zhu QF, Guo N, Zheng SJ, Wang YL, Wang J, Xu J, Liu SJ, He K, Hu T, Zheng YW, Xu FQ, Feng YQ. Comprehensive Profiling of Fecal Metabolome of Mice by Integrated Chemical Isotope Labeling-Mass Spectrometry Analysis. Anal Chem 2018; 90:3512-3520. [PMID: 29406693 DOI: 10.1021/acs.analchem.7b05355] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gut microbiota plays important roles in the host health. The host and symbiotic gut microbiota coproduce a large number of metabolites during the metabolism of food and xenobiotics. The analysis of fecal metabolites can provide a noninvasive manner to study the outcome of the host-gut microbiota interaction. Herein, we reported the comprehensive profiling of fecal metabolome of mice by an integrated chemical isotope labeling combined with liquid chromatography-mass spectrometry (CIL-LC-MS) analysis. The metabolites are categorized into several submetabolomes based on the functional moieties (i.e., carboxyl, carbonyl, amine, and thiol) and then analysis of the individual submetabolome was performed. The combined data from the submetabolome form the metabolome with relatively high coverage. To this end, we synthesized stable isotope labeling reagents to label metabolites with different groups, including carboxyl, carbonyl, amine, and thiol groups. We detected 2302 potential metabolites, among which, 1388 could be positively or putatively identified in feces of mice. We then further confirmed 308 metabolites based on our established library of chemically labeled standards and tandem mass spectrometry analysis. With the identified metabolites in feces of mice, we established mice fecal metabolome database, which can be used to readily identify metabolites from feces of mice. Furthermore, we discovered 211 fecal metabolites exhibited significant difference between Alzheimer's disease (AD) model mice and wild type (WT) mice, which suggests the close correlation between the fecal metabolites and AD pathology and provides new potential biomarkers for the diagnosis of AD.
Collapse
Affiliation(s)
- Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Quan-Fei Zhu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Ning Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Shu-Jian Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Ya-Lan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Center for Magnetic Resonance (Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences) , Wuhan 430071 , P.R. China.,University of the Chinese Academy of Sciences , Beijing , 100049 , P.R. China
| | - Jing Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Shi-Jie Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Ke He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Ting Hu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Center for Magnetic Resonance (Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences) , Wuhan 430071 , P.R. China.,University of the Chinese Academy of Sciences , Beijing , 100049 , P.R. China
| | - Ying-Wei Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Center for Magnetic Resonance (Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences) , Wuhan 430071 , P.R. China.,University of the Chinese Academy of Sciences , Beijing , 100049 , P.R. China
| | - Fu-Qiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Center for Magnetic Resonance (Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences) , Wuhan 430071 , P.R. China.,University of the Chinese Academy of Sciences , Beijing , 100049 , P.R. China.,Center for Excellence in Brain Science and Intelligence Technology , Chinese Academy of Sciences , Shanghai 200031 , P.R. China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| |
Collapse
|
115
|
Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behav Brain Res 2018; 339:57-65. [DOI: 10.1016/j.bbr.2017.11.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/08/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022]
|
116
|
Wilkins JM, Trushina E. Application of Metabolomics in Alzheimer's Disease. Front Neurol 2018; 8:719. [PMID: 29375465 PMCID: PMC5770363 DOI: 10.3389/fneur.2017.00719] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022] Open
Abstract
Progress toward the development of efficacious therapies for Alzheimer’s disease (AD) is halted by a lack of understanding early underlying pathological mechanisms. Systems biology encompasses several techniques including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. Metabolomics is the newest omics platform that offers great potential for the diagnosis and prognosis of neurodegenerative diseases as an individual’s metabolome reflects alterations in genetic, transcript, and protein profiles and influences from the environment. Advancements in the field of metabolomics have demonstrated the complexity of dynamic changes associated with AD progression underscoring challenges with the development of efficacious therapeutic interventions. Defining systems-level alterations in AD could provide insights into disease mechanisms, reveal sex-specific changes, advance the development of biomarker panels, and aid in monitoring therapeutic efficacy, which should advance individualized medicine. Since metabolic pathways are largely conserved between species, metabolomics could improve the translation of preclinical research conducted in animal models of AD into humans. A summary of recent developments in the application of metabolomics to advance the AD field is provided below.
Collapse
Affiliation(s)
- Jordan Maximillian Wilkins
- Mitochondrial Neurobiology and Therapeutics Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Eugenia Trushina
- Mitochondrial Neurobiology and Therapeutics Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
117
|
Ramesh S, Govindarajulu M, Lynd T, Briggs G, Adamek D, Jones E, Heiner J, Majrashi M, Moore T, Amin R, Suppiramaniam V, Dhanasekaran M. SIRT3 activator Honokiol attenuates β-Amyloid by modulating amyloidogenic pathway. PLoS One 2018; 13:e0190350. [PMID: 29324783 PMCID: PMC5764272 DOI: 10.1371/journal.pone.0190350] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/13/2017] [Indexed: 01/06/2023] Open
Abstract
Honokiol (poly-phenolic lignan from Magnolia grandiflora) is a Sirtuin-3 (SIRT3) activator which exhibit antioxidant activity and augment mitochondrial functions in several experimental models. Modern evidence suggests the critical role of SIRT3 in the progression of several metabolic and neurodegenerative diseases. Amyloid beta (Aβ), the precursor to extracellular senile plaques, accumulates in the brains of patients with Alzheimer's disease (AD) and is related to the development of cognitive impairment and neuronal cell death. Aβ is generated from amyloid-β precursor protein (APP) through sequential cleavages, first by β-secretase and then by γ-secretase. Drugs modulating this pathway are believed to be one of the most promising strategies for AD treatment. In the present study, we found that Honokiol significantly enhanced SIRT3 expression, reduced reactive oxygen species generation and lipid peroxidation, enhanced antioxidant activities, and mitochondrial function thereby reducing Aβ and sAPPβ levels in Chinese Hamster Ovarian (CHO) cells (carrying the amyloid precursor protein-APP and Presenilin PS1 mutation). Mechanistic studies revealed that Honokiol affects neither protein levels of APP nor α-secretase activity. In contrast, Honokiol increased the expression of AMPK, CREB, and PGC-1α, thereby inhibiting β-secretase activity leading to reduced Aβ levels. These results suggest that Honokiol is an activator of SIRT3 capable of improving antioxidant activity, mitochondrial energy regulation, while decreasing Aβ, thereby indicating it to be a lead compound for AD drug development.
Collapse
Affiliation(s)
- Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Tyler Lynd
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Gwyneth Briggs
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Danielle Adamek
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Ellery Jones
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Jake Heiner
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Mohammed Majrashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Timothy Moore
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
118
|
Fontana BD, Mezzomo NJ, Kalueff AV, Rosemberg DB. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Exp Neurol 2018; 299:157-171. [DOI: 10.1016/j.expneurol.2017.10.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/30/2022]
|
119
|
Ochalek A, Mihalik B, Avci HX, Chandrasekaran A, Téglási A, Bock I, Giudice ML, Táncos Z, Molnár K, László L, Nielsen JE, Holst B, Freude K, Hyttel P, Kobolák J, Dinnyés A. Neurons derived from sporadic Alzheimer's disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation. ALZHEIMERS RESEARCH & THERAPY 2017; 9:90. [PMID: 29191219 PMCID: PMC5709977 DOI: 10.1186/s13195-017-0317-z] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/27/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia, affecting one in eight adults over 65 years of age. The majority of AD cases are sporadic, with unknown etiology, and only 5% of all patients with AD present the familial monogenic form of the disease. In the present study, our aim was to establish an in vitro cell model based on patient-specific human neurons to study the pathomechanism of sporadic AD. METHODS We compared neurons derived from induced pluripotent stem cell (iPSC) lines of patients with early-onset familial Alzheimer's disease (fAD), all caused by mutations in the PSEN1 gene; patients with late-onset sporadic Alzheimer's disease (sAD); and three control individuals without dementia. The iPSC lines were differentiated toward mature cortical neurons, and AD pathological hallmarks were analyzed by RT-qPCR, enzyme-linked immunosorbent assay, and Western blotting methods. RESULTS Neurons from patients with fAD and patients with sAD showed increased phosphorylation of TAU protein at all investigated phosphorylation sites. Relative to the control neurons, neurons derived from patients with fAD and patients with sAD exhibited higher levels of extracellular amyloid-β 1-40 (Aβ1-40) and amyloid-β 1-42 (Aβ1-42). However, significantly increased Aβ1-42/Aβ1-40 ratios, which is one of the pathological markers of fAD, were observed only in samples of patients with fAD. Additionally, we detected increased levels of active glycogen synthase kinase 3 β, a physiological kinase of TAU, in neurons derived from AD iPSCs, as well as significant upregulation of amyloid precursor protein (APP) synthesis and APP carboxy-terminal fragment cleavage. Moreover, elevated sensitivity to oxidative stress, as induced by amyloid oligomers or peroxide, was detected in both fAD- and sAD-derived neurons. CONCLUSIONS On the basis of the experiments we performed, we can conclude there is no evident difference except secreted Aβ1-40 levels in phenotype between fAD and sAD samples. To our knowledge, this is the first study in which the hyperphosphorylation of TAU protein has been compared in fAD and sAD iPSC-derived neurons. Our findings demonstrate that iPSC technology is suitable to model both fAD and sAD and may provide a platform for developing new treatment strategies for these conditions.
Collapse
Affiliation(s)
- Anna Ochalek
- Molecular Animal Biotechnology Laboratory, Szent István University, H-2100, Gödöllő, Hungary.,BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - Balázs Mihalik
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - Hasan X Avci
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary.,Department of Anatomy, Embryology and Histology, Faculty of Medicine, University of Szeged, H-6700, Szeged, Hungary.,Present address: University Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, 72076, Tübingen, Germany
| | | | | | - István Bock
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - Maria Lo Giudice
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - Zsuzsanna Táncos
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - Kinga Molnár
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117, Budapest, Hungary
| | - Lajos László
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117, Budapest, Hungary
| | - Jørgen E Nielsen
- Neurogenetics Clinic & Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Kristine Freude
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Copenhagen, Denmark
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Copenhagen, Denmark
| | - Julianna Kobolák
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - András Dinnyés
- Molecular Animal Biotechnology Laboratory, Szent István University, H-2100, Gödöllő, Hungary. .,BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary.
| |
Collapse
|
120
|
Guo J, Cheng J, North BJ, Wei W. Functional analyses of major cancer-related signaling pathways in Alzheimer's disease etiology. Biochim Biophys Acta Rev Cancer 2017; 1868:341-358. [PMID: 28694093 PMCID: PMC5675793 DOI: 10.1016/j.bbcan.2017.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disease and accounts for majority of human dementia. The hyper-phosphorylated tau-mediated intracellular neurofibrillary tangle and amyloid β-mediated extracellular senile plaque are characterized as major pathological lesions of AD. Different from the dysregulated growth control and ample genetic mutations associated with human cancers, AD displays damage and death of brain neurons in the absence of genomic alterations. Although various biological processes predominately governing tumorigenesis such as inflammation, metabolic alteration, oxidative stress and insulin resistance have been associated with AD genesis, the mechanistic connection of these biological processes and signaling pathways including mTOR, MAPK, SIRT, HIF, and the FOXO pathway controlling aging and the pathological lesions of AD are not well recapitulated. Hence, we performed a thorough review by summarizing the physiological roles of these key cancer-related signaling pathways in AD pathogenesis, comprising of the crosstalk of these pathways with neurofibrillary tangle and senile plaque formation to impact AD phenotypes. Importantly, the pharmaceutical investigations of anti-aging and AD relevant medications have also been highlighted. In summary, in this review, we discuss the potential role that cancer-related signaling pathways may play in governing the pathogenesis of AD, as well as their potential as future targeted strategies to delay or prevent aging-related diseases and combating AD.
Collapse
Affiliation(s)
- Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ji Cheng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
121
|
Watanabe H, Shen J. Dominant negative mechanism of Presenilin-1 mutations in FAD. Proc Natl Acad Sci U S A 2017; 114:12635-12637. [PMID: 29142009 PMCID: PMC5715794 DOI: 10.1073/pnas.1717180114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Jie Shen
- Department of Neurology, Brigham & Women's Hospital, Program in Neuroscience, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
122
|
Early Contextual Fear Memory Deficits in a Double-Transgenic Amyloid- β Precursor Protein/Presenilin 2 Mouse Model of Alzheimer's Disease. Int J Alzheimers Dis 2017; 2017:8584205. [PMID: 29333315 PMCID: PMC5733185 DOI: 10.1155/2017/8584205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 11/17/2022] Open
Abstract
Presenilin 1 and presenilin 2 (PS1 and PS2) play a critical role in γ-secretase-mediated cleavage of amyloid-β precursor protein (APP) and the subsequent generation of β-amyloid peptides. The purpose of the present study was to test whether PS2 mutation accelerates the onset of contextual fear memory deficits in a mouse model of AD that expresses a mutation (K670N/M671L) of the human APP with the Swedish mutation (Tg2576 mice). In the present study, an APP/PS2 double-transgenic mouse model (PS2Tg2576) was generated by crossbreeding transgenic mice carrying the human mutant PS2 (N141I) with Tg2576 mice. Contextual fear conditioning was tested in PS2Tg2576 mice aged 3, 4, 6, and 10-12 months. PS2Tg2576 mice showed a tendency of lower freezing behavior as early as 3 months of age, but significant memory impairment was observed from the age of 4 months. The cognitive impairment was more prominent at ages of 6 and 10-12 months. In contrast, Tg2576 mice aged 3 and 4 months exhibited successful acquisition of contextual fear learning, but Tg2576 mice aged 6 months or older showed significantly impaired fear memory. These results show that PS2 mutation significantly accelerates the onset of fear memory deficits in the APP AD model mice.
Collapse
|
123
|
IL4/STAT6 Signaling Activates Neural Stem Cell Proliferation and Neurogenesis upon Amyloid-β42 Aggregation in Adult Zebrafish Brain. Cell Rep 2017; 17:941-948. [PMID: 27760324 DOI: 10.1016/j.celrep.2016.09.075] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 06/25/2016] [Accepted: 09/22/2016] [Indexed: 12/12/2022] Open
Abstract
Human brains are prone to neurodegeneration, given that endogenous neural stem/progenitor cells (NSPCs) fail to support neurogenesis. To investigate the molecular programs potentially mediating neurodegeneration-induced NSPC plasticity in regenerating organisms, we generated an Amyloid-β42 (Aβ42)-dependent neurotoxic model in adult zebrafish brain through cerebroventricular microinjection of cell-penetrating Aβ42 derivatives. Aβ42 deposits in neurons and causes phenotypes reminiscent of amyloid pathophysiology: apoptosis, microglial activation, synaptic degeneration, and learning deficits. Aβ42 also induces NSPC proliferation and enhanced neurogenesis. Interleukin-4 (IL4) is activated primarily in neurons and microglia/macrophages in response to Aβ42 and is sufficient to increase NSPC proliferation and neurogenesis via STAT6 phosphorylation through the IL4 receptor in NSPCs. Our results reveal a crosstalk between neurons and immune cells mediated by IL4/STAT6 signaling, which induces NSPC plasticity in zebrafish brains.
Collapse
|
124
|
Somavarapu AK, Kepp KP. Membrane Dynamics of γ-Secretase Provides a Molecular Basis for β-Amyloid Binding and Processing. ACS Chem Neurosci 2017; 8:2424-2436. [PMID: 28841371 DOI: 10.1021/acschemneuro.7b00208] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
γ-Secretase produces β-amyloid (Aβ) within its presenilin (PS1) subunit, mutations in which cause Alzheimer's disease, and current therapies thus seek to modulate its activity. While the general structure is known from recent electron microscopy studies, direct loop and membrane interactions and explicit dynamics relevant to substrate processing remain unknown. We report a modeled structure utilizing the optimal multitemplate information available, including loops and missing side chains, account of maturation cleavage, and explicit all-atom molecular dynamics in the membrane. We observe three distinct conformations of γ-secretase (open, semiopen, and closed) that remarkably differ by tilting of helices 2 and 3 of PS1, directly controlling active site availability. The large hydrophilic loop of PS1 where maturation occurs reveals a new helix segment that parallels the likely helix character of other substrates. The semiopen conformation consistently shows the best fit of Aβ peptides, that is, longer residence before release and by inference more trimming. In contrast, the closed, hydrophobic conformation is largely inactive and the open conformation is active but provides fewer optimal interactions and induces shorter residence time and by inference releases Aβ peptides of longer lengths. Our simulations thus provide a molecular basis for substrate processing and changes in the Aβ42/Aβ40 ratio. Accordingly, selective binding to protect the semiopen "innocent" conformation provides a molecular recipe for effective γ-secretase modulators; we provide the full atomic structures for these states that may play a key role in developing selective γ-secretase modulators for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Kasper P. Kepp
- Technical University of Denmark, DTU Chemistry, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
125
|
Lacampagne A, Liu X, Reiken S, Bussiere R, Meli AC, Lauritzen I, Teich AF, Zalk R, Saint N, Arancio O, Bauer C, Duprat F, Briggs CA, Chakroborty S, Stutzmann GE, Shelanski ML, Checler F, Chami M, Marks AR. Post-translational remodeling of ryanodine receptor induces calcium leak leading to Alzheimer's disease-like pathologies and cognitive deficits. Acta Neuropathol 2017. [PMID: 28631094 DOI: 10.1007/s00401-017-1733-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms underlying ryanodine receptor (RyR) dysfunction associated with Alzheimer disease (AD) are still not well understood. Here, we show that neuronal RyR2 channels undergo post-translational remodeling (PKA phosphorylation, oxidation, and nitrosylation) in brains of AD patients, and in two murine models of AD (3 × Tg-AD, APP +/- /PS1 +/-). RyR2 is depleted of calstabin2 (KFBP12.6) in the channel complex, resulting in endoplasmic reticular (ER) calcium (Ca2+) leak. RyR-mediated ER Ca2+ leak activates Ca2+-dependent signaling pathways, contributing to AD pathogenesis. Pharmacological (using a novel RyR stabilizing drug Rycal) or genetic rescue of the RyR2-mediated intracellular Ca2+ leak improved synaptic plasticity, normalized behavioral and cognitive functions and reduced Aβ load. Genetically altered mice with congenitally leaky RyR2 exhibited premature and severe defects in synaptic plasticity, behavior and cognitive function. These data provide a mechanism underlying leaky RyR2 channels, which could be considered as potential AD therapeutic targets.
Collapse
|
126
|
Montagne A, Zhao Z, Zlokovic BV. Alzheimer's disease: A matter of blood-brain barrier dysfunction? J Exp Med 2017; 214:3151-3169. [PMID: 29061693 PMCID: PMC5679168 DOI: 10.1084/jem.20171406] [Citation(s) in RCA: 452] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
Abstract
Montagne et al. examine the role of blood–brain barrier (BBB) dysfunction in Alzheimer’s neurodegeneration and how targeting the BBB can influence the course of neurological disorder in transgenic models with human APP, PSEN1 and TAU mutations, APOE4 (major genetic risk), and pericyte degeneration causing loss of BBB integrity. The blood–brain barrier (BBB) keeps neurotoxic plasma-derived components, cells, and pathogens out of the brain. An early BBB breakdown and/or dysfunction have been shown in Alzheimer’s disease (AD) before dementia, neurodegeneration and/or brain atrophy occur. However, the role of BBB breakdown in neurodegenerative disorders is still not fully understood. Here, we examine BBB breakdown in animal models frequently used to study the pathophysiology of AD, including transgenic mice expressing human amyloid-β precursor protein, presenilin 1, and tau mutations, and apolipoprotein E, the strongest genetic risk factor for AD. We discuss the role of BBB breakdown and dysfunction in neurodegenerative process, pitfalls in BBB measurements, and how targeting the BBB can influence the course of neurological disorder. Finally, we comment on future approaches and models to better define, at the cellular and molecular level, the underlying mechanisms between BBB breakdown and neurodegeneration as a basis for developing new therapies for BBB repair to control neurodegeneration.
Collapse
Affiliation(s)
- Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| |
Collapse
|
127
|
Jia Y, Wang N, Liu X. Resveratrol and Amyloid-Beta: Mechanistic Insights. Nutrients 2017; 9:nu9101122. [PMID: 29036903 PMCID: PMC5691738 DOI: 10.3390/nu9101122] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
The amyloid-beta (Aβ) hypothesis that dyshomeostasis between Aβ production and clearance is a very early, key molecular factor in the etiology of Alzheimer’s disease (AD) has been proposed and examined in the AD research field. Scientists have focused on seeking natural products or drugs to influence the dynamic equilibrium of Aβ, targeting production and clearance of Aβ. There is emerging evidence that resveratrol (Res), a naturally occurring polyphenol mainly found in grapes and red wine, acts on AD in numerous in vivo and in vitro models. Res decreases the amyloidogenic cleavage of the amyloid precursor protein (APP), enhances clearance of amyloid beta-peptides, and reduces Aβ aggregation. Moreover, Res also protects neuronal functions through its antioxidant properties. This review discusses the action of Res on Aβ production, clearance and aggregation and multiple potential mechanisms, providing evidence of the useful of Res for AD treatment.
Collapse
Affiliation(s)
- Yongming Jia
- Department of Neuropharmacology, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| | - Na Wang
- Department of Pathophysiology, Qiqihar Medical University, Qiqihar 161006, China.
| | - Xuewei Liu
- Department of Neuropharmacology, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
128
|
Van Dam D, Vermeiren Y, Dekker AD, Naudé PJW, Deyn PPD. Neuropsychiatric Disturbances in Alzheimer's Disease: What Have We Learned from Neuropathological Studies? Curr Alzheimer Res 2017; 13:1145-64. [PMID: 27137218 PMCID: PMC5070416 DOI: 10.2174/1567205013666160502123607] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/04/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Abstract
Neuropsychiatric symptoms (NPS) are an integral part of the dementia syndrome and were therefore recently included in the core diagnostic criteria of dementia. The near universal prevalence of NPS in Alzheimer's disease (AD), combined with their disabling effects on patients and caregivers, is contrasted by the fact that few effective and safe treatments exist, which is in part to be attributed to our incomplete understanding of the neurobiology of NPS. In this review, we describe the pathological alterations typical for AD, including spreading and evolution of burden, effect on the molecular and cellular integrity, functional consequences and atrophy of NPS-relevant brain regions and circuits in correlation with specific NPS assessments. It is thereby clearly established that NPS are fundamental expressions of the underlying neurodegenerative brain disease and not simply reflect the patients' secondary response to their illness. Neuropathological studies, moreover, include a majority of end-stage patient samples, which may not correctly represent the pathophysiological environment responsible for particular NPS that may already be present in an early stage, or even prior to AD diagnosis. The burdensome nature and high prevalence of NPS, in combination with the absence of effective and safe pharmacotherapies, provide a strong incentive to continue neuropathological and neurochemical, as well as imaging and other relevant approaches to further improve our apprehension of the neurobiology of NPS.
Collapse
Affiliation(s)
| | | | | | | | - Peter P De Deyn
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, and, Faculty of Medical and Health Care Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk (Antwerp), Belgium
| |
Collapse
|
129
|
Resveratrol as a Natural Autophagy Regulator for Prevention and Treatment of Alzheimer's Disease. Nutrients 2017; 9:nu9090927. [PMID: 28837083 PMCID: PMC5622687 DOI: 10.3390/nu9090927] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders over the age of 65 years old. Although several underlying mechanisms for explaining the pathogenesis of AD are elucidated, the effective supplements or drugs for the intervention of AD are still limited. Recently, impaired autophagy associated with miRNA dysfunction has been reported to involve in aging and aging-related neurodegenerative diseases. Thus, the activation of autophagy through effectively regulating miRNAs may become a potential target for the prevention or treatment of AD. Mounting evidence from in vitro and in vivo AD models has demonstrated that resveratrol, one of polyphenolic compounds, can exert neuroprotective role in neurodegenerative diseases especially AD. In this review, the regulation of miRNAs and autophagy using resveratrol during the prevention and treatment of AD are systematically discussed, which will be beneficial to establish a target for the direct link between pharmacological intervention and AD in the future.
Collapse
|
130
|
Jayne T, Newman M, Verdile G, Sutherland G, Münch G, Musgrave I, Moussavi Nik SH, Lardelli M. Evidence For and Against a Pathogenic Role of Reduced γ-Secretase Activity in Familial Alzheimer's Disease. J Alzheimers Dis 2017; 52:781-99. [PMID: 27060961 DOI: 10.3233/jad-151186] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The majority of mutations causing familial Alzheimer's disease (fAD) have been found in the gene PRESENILIN1 (PSEN1) with additional mutations in the related gene PRESENILIN2 (PSEN2). The best characterized function of PRESENILIN (PSEN) proteins is in γ-secretase enzyme activity. One substrate of γ-secretase is encoded by the gene AMYLOID BETA A4 PRECURSOR PROTEIN (AβPP/APP) that is a fAD mutation locus. AβPP is the source of the amyloid-β (Aβ) peptide enriched in the brains of people with fAD or the more common, late onset, sporadic form of AD, sAD. These observations have resulted in a focus on γ-secretase activity and Aβ as we attempt to understand the molecular basis of AD pathology. In this paper we briefly review some of the history of research on γ-secretase in AD. We then discuss the main ideas regarding the role of γ-secretase and the PSEN genes in this disease. We examine the significance of the "fAD mutation reading frame preservation rule" that applies to PSEN1 and PSEN2 (and AβPP) and look at alternative roles for AβPP and Aβ in fAD. We present a case for an alternative interpretation of published data on the role of γ-secretase activity and fAD-associated mutations in AD pathology. Evidence supports a "PSEN holoprotein multimer hypothesis" where PSEN fAD mutations generate mutant PSEN holoproteins that multimerize with wild type holoprotein and dominantly interfere with an AD-critical function(s) such as autophagy or secretion of Aβ. Holoprotein multimerization may be required for the endoproteolysis that activates PSENs' γ-secretase activity.
Collapse
Affiliation(s)
- Tanya Jayne
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| | - Giuseppe Verdile
- School of Biomedical Sciences, Curtin Health Innovation Research Institute - Biosciences, Faculty of Health Sciences, Curtin University, Kent Street, Bentley, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,McCusker Alzheimer's Disease Research Foundation, Hollywood Private Hospital, Hollywood Medical Centre, Nedlands, WA, Australia
| | - Greg Sutherland
- Discipline of Pathology, Charles Perkins Centre, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Gerald Münch
- Molecular Medicine Research Group & School of Medicine, Western Sydney University, Campbelltown NSW, Australia
| | - Ian Musgrave
- Discipline of Pharmacology, School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Seyyed Hani Moussavi Nik
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| |
Collapse
|
131
|
Bhaumik P, Ghosh P, Ghosh S, Feingold E, Ozbek U, Sarkar B, Dey SK. Combined association of Presenilin-1 and Apolipoprotein E polymorphisms with maternal meiosis II error in Down syndrome births. Genet Mol Biol 2017; 40:577-585. [PMID: 28767121 PMCID: PMC5596362 DOI: 10.1590/1678-4685-gmb-2016-0138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 02/27/2017] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease and Down syndrome often exhibit close association and predictively share common genetic risk-factors. Presenilin-1 (PSEN-1) and Apolipoprotein E (APOE) genes are associated with early and late onset of Alzheimer's disease, respectively. Presenilin -1 is involved in faithful chromosomal segregation. A higher frequency of the APOE ε4 allele has been reported among young mothers giving birth to Down syndrome children. In this study, 170 Down syndrome patients, grouped according to maternal meiotic stage of nondisjunction and maternal age at conception, and their parents were genotyped for PSEN-1 intron-8 and APOE polymorphisms. The control group consisted of 186 mothers of karyotypically normal children. The frequencies of the PSEN-1 T allele and TT genotype, in the presence of the APOE ε4 allele, were significantly higher among young mothers (< 35 years) with meiosis II nondisjunction than in young control mothers (96.43% vs. 65.91% P = 0.0002 and 92.86% vs. 45.45% P < 0.0001 respectively) but not among mothers with meiosis I nondisjunction. We infer that the co-occurrence of the PSEN-1 T allele and the APOE ε4 allele associatively increases the risk of meiotic segregation error II among young women.
Collapse
Affiliation(s)
- Pranami Bhaumik
- Department of Biotechnology, School of Biotechnology and Biological
Sciences. Maulana Abul Kalam Azad University of Technology, West Bengal, India
| | - Priyanka Ghosh
- Department of Biotechnology, School of Biotechnology and Biological
Sciences. Maulana Abul Kalam Azad University of Technology, West Bengal, India
| | - Sujay Ghosh
- Department of Zoology, University of Calcutta, Ballygunge Science
college campus, Kolkata, West Bengal, India
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health,
University of Pittsburgh, PA, USA
- Department of Biostatistics, Graduate School of Public Health,
University of Pittsburgh, Pittsburgh, PA, USA
| | - Umut Ozbek
- Department of Biostatistics, Graduate School of Public Health,
University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Subrata Kumar Dey
- Department of Biotechnology, School of Biotechnology and Biological
Sciences. Maulana Abul Kalam Azad University of Technology, West Bengal, India
| |
Collapse
|
132
|
Haberman RP, Branch A, Gallagher M. Targeting Neural Hyperactivity as a Treatment to Stem Progression of Late-Onset Alzheimer's Disease. Neurotherapeutics 2017; 14:662-676. [PMID: 28560709 PMCID: PMC5509635 DOI: 10.1007/s13311-017-0541-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sporadic late-onset Alzheimer's disease (LOAD), the most common form of dementia in the elderly, causes progressive and severe loss of cognitive abilities. With greater numbers of people living to advanced ages, LOAD will increasingly burden both the healthcare system and society. There are currently no available disease-modifying therapies, and the failure of several recent pathology-based strategies has highlighted the urgent need for effective therapeutic targets. With aging as the greatest risk factor for LOAD, targeting mechanisms by which aging contributes to disease could prove an effective strategy to delay progression to clinical dementia by intervention in elderly individuals in an early prodromal stage of disease. Excess neural activity in the hippocampus, a recently described phenomenon associated with age-dependent memory loss, was first identified in animal models of aging and subsequently translated to clinical conditions of aging and early-stage LOAD. Critically, elevated activity was similarly localized to specific circuits within the hippocampal formation in aged animals and humans. Here we review evidence for hippocampal hyperactivity as a significant contributor to age-dependent cognitive decline and the progressive accumulation of pathology in LOAD. We also describe studies demonstrating the efficacy of reducing hyperactivity with an initial test therapy, levetiracetam (Keppra), an atypical antiepileptic. By targeting excess neural activity, levetiracetam may improve cognition and attenuate the accumulation of pathology contributing to progression to the dementia phase of LOAD.
Collapse
Affiliation(s)
- Rebecca P Haberman
- Department of Psychological and Brain Sciences, The Johns Hopkins University, 3400 North Charles Street, 116 Dunning Hall, Baltimore, MD, 21218, USA.
| | - Audrey Branch
- Department of Psychological and Brain Sciences, The Johns Hopkins University, 3400 North Charles Street, 116 Dunning Hall, Baltimore, MD, 21218, USA
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, The Johns Hopkins University, 3400 North Charles Street, 116 Dunning Hall, Baltimore, MD, 21218, USA
| |
Collapse
|
133
|
Toussay X, Morel JL, Biendon N, Rotureau L, Legeron FP, Boutonnet MC, Cho YH, Macrez N. Presenilin 1 mutation decreases both calcium and contractile responses in cerebral arteries. Neurobiol Aging 2017; 58:201-212. [PMID: 28753475 DOI: 10.1016/j.neurobiolaging.2017.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022]
Abstract
Mutations or upregulation in presenilin 1 (PS1) gene are found in familial early-onset Alzheimer's disease or sporadic late-onset Alzheimer's disease, respectively. PS1 has been essentially studied in neurons and its mutation was shown to alter intracellular calcium (Ca2+) signals. Here, we showed that PS1 is expressed in smooth muscle cells (SMCs) of mouse cerebral arteries, and we assessed the effects of the deletion of exon 9 of PS1 (PS1dE9) on Ca2+ signals and contractile responses of vascular SMC. Agonist-induced contraction of cerebral vessels was significantly decreased in PS1dE9 both in vivo and ex vivo. Spontaneous activity of Ca2+ sparks through ryanodine-sensitive channels (RyR) was unchanged, whereas the RyR-mediated Ca2+-release activated by caffeine was shorter in PS1dE9 SMC when compared with control. Moreover, PS1dE9 mutation decreased the caffeine-activated capacitive Ca2+ entry, and inhibitors of SERCA pumps reversed the effects of PS1dE9 on Ca2+ signals. PS1dE9 mutation also leads to the increased expression of SERCA3, phospholamban, and RyR3. These results show that PS1 plays a crucial role in the cerebrovascular system and the vascular reactivity is decreased through altered Ca2+ signals in PS1dE9 mutant mice.
Collapse
Affiliation(s)
- Xavier Toussay
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Centre de Neurosciences Intégratives et Cognitives, UMR 5228, Bordeaux, France
| | - Jean-Luc Morel
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Nathalie Biendon
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Lolita Rotureau
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Centre de Neurosciences Intégratives et Cognitives, UMR 5228, Bordeaux, France
| | - François-Pierre Legeron
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Marie-Charlotte Boutonnet
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Yoon H Cho
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Nathalie Macrez
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| |
Collapse
|
134
|
|
135
|
The Lesion Analysis of Cholinergic Neurons in 5XFAD Mouse Model in the Three-Dimensional Level of Whole Brain. Mol Neurobiol 2017; 55:4115-4125. [PMID: 28597200 DOI: 10.1007/s12035-017-0621-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
Abstract
Cholinergic system is very important for many higher brain functions, including learning and memory. Cholinergic neurons, especially those in the basal forebrain, are specifically susceptible in some neurodegenerative diseases, such as in Alzheimer's disease (AD). Here, we studied the cholinergic system lesion effects of five familial AD mutations in 5XFAD mice, a transgenic mouse model of AD. Although the cholinergic system has been studied in this mouse model, the cholinergic deficits in AD mice have never been systematically mapped in a whole-brain three-dimensional (3D) reconstruction. Using the 3D reconstruction technology combined with immunohistochemistry (3D-IHC) and design-based stereology, we comprehensively compared the differences of the cholinergic neurons and fibers between the 5XFAD mice and C57BL/6 control mice at different age. Here, we found that the lesion of cholinergic fibers occurred earlier than the cholinergic neuron loss in 5XFAD mice. The cholinergic fiber lesions in the AD mice started sequentially in amygdala, cortex, hippocampus, and then basal forebrain. However, the basal forebrain was the first brain region observed with cholinergic neuron loss at the age of 9 months in 5XFAD mice, whereas such phenomenon first occurred at the age of 15 months in C57BL/6 control mice. Moreover, using 3D reconstruction to compare the lesion of cholinergic system of aged 5XFAD and C57BL/6 control mice, it is intuitive to notice the pathologic regions and severity of lesion. Therefore, the 3D-IHC provides detailed overview of the cholinergic neurons in the whole mouse brain, which will contribute to the study of the developing and pathologic mouse brain.
Collapse
|
136
|
Hussain RZ, Miller-Little WA, Lambracht-Washington D, Jaramillo TC, Takahashi M, Zhang S, Fu M, Cutter GR, Hayardeny L, Powell CM, Rosenberg RN, Stüve O. Laquinimod has no effects on brain volume or cellular CNS composition in the F1 3xTg-AD/C3H mouse model of Alzheimer's disease. J Neuroimmunol 2017; 309:100-110. [PMID: 28601278 DOI: 10.1016/j.jneuroim.2017.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Laquinimod is an anti-inflammatory agent with good central nervous system (CNS) bioavailability, and neuroprotective and myelorestorative properties. A clinical trial in patients with multiple sclerosis demonstrated that laquinimod significantly reduced loss of brain volume. The cellular substrate or molecular events underlying that treatment effect are unknown. In this study, we aimed to explore laquinimod's potential effects on brain volume, animal behavior, cellular numbers and composition of CNS-intrinsic cells and mononuclear cells within the CNS, amyloid beta (Aβ) accumulation and tau phosphorylation in the F1 3xTg-AD/C3H mouse model of Alzheimer's disease. METHODS Utilizing a dose response study design, four months old F1 3xTg-AD/C3H mice were treated for 10months between ages 4 and 14months with laquinimod (5, 10, or 25mg/kg), or PBS administered by oral gavage. Brain volumes were measured in a 7 Tesla magnetic resonance imager (MRI) at ages 4 and 14months. Behavioral testing included locomotor and rearing activity and the Morris water maze task. Cell numbers and immunophenotypes were assessed by multiparameter flow cytometry. Aβ deposition and tau phosphorylation were determined by immunohistochemistry. RESULTS In the F1 3xTg-AD/C3H animal model of AD, there was no detectable reduction of brain volume over a period of 10months of treatment, as there was not brain atrophy in any of the placebo or treatment groups. Laquinimod had no detectable effects on most neurobehavioral outcomes. The number or composition of CNS intrinsic cells and mononuclear subsets isolated from the CNS were not altered by laquinimod. CONCLUSION This is the first demonstration that there are no age-associated brain volume changes in the F1 3xTg-AD/C3H mouse model of Alzheimer's disease. Consequently, laquinimod had no effect on that outcome of this study. Most secondary outcomes on the effects of laquinimod on behavior and the number and composition of CNS-intrinsic cells and mononuclear cells within the CNS were also negative.
Collapse
Affiliation(s)
- Rehana Z Hussain
- Department of Neurology and Neurotherapeutics, the University of Texas Southwestern Medical Center at Dallas, USA
| | - William A Miller-Little
- Department of Neurology and Neurotherapeutics, the University of Texas Southwestern Medical Center at Dallas, USA
| | - Doris Lambracht-Washington
- Department of Neurology and Neurotherapeutics, the University of Texas Southwestern Medical Center at Dallas, USA
| | - Tom C Jaramillo
- Department of Neurology and Neurotherapeutics, the University of Texas Southwestern Medical Center at Dallas, USA
| | - Masaya Takahashi
- Department of Radiology, University of Texas Southwestern Medical Center at Dallas, USA; Advanced Imaging Center, University of Texas Southwestern Medical Center at Dallas, USA
| | - Shanrong Zhang
- Advanced Imaging Center, University of Texas Southwestern Medical Center at Dallas, USA
| | - Min Fu
- Department of Neurology and Neurotherapeutics, the University of Texas Southwestern Medical Center at Dallas, USA
| | - Gary R Cutter
- Department of Biostatistics, University of Alabama at Birmingham, USA
| | | | - Craig M Powell
- Department of Neurology and Neurotherapeutics, the University of Texas Southwestern Medical Center at Dallas, USA
| | - Roger N Rosenberg
- Department of Neurology and Neurotherapeutics, the University of Texas Southwestern Medical Center at Dallas, USA
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, the University of Texas Southwestern Medical Center at Dallas, USA; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Germany; Neurology Section, VA North Texas Health Care System, Medical Service Dallas, VA Medical Center, USA.
| |
Collapse
|
137
|
Campos-Peña V, Toral-Rios D, Becerril-Pérez F, Sánchez-Torres C, Delgado-Namorado Y, Torres-Ossorio E, Franco-Bocanegra D, Carvajal K. Metabolic Syndrome as a Risk Factor for Alzheimer's Disease: Is Aβ a Crucial Factor in Both Pathologies? Antioxid Redox Signal 2017; 26:542-560. [PMID: 27368351 DOI: 10.1089/ars.2016.6768] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Recently, chronic degenerative diseases have become one of the main health problems worldwide. That is the case of Alzheimer's disease (AD) and metabolic syndrome (MetS), whose expression can be influenced by different risk factors. Recent Advances: In recent decades, it has been widely described that MetS increases the risk of cognitive impairment and dementia. MetS pathogenesis involves several vascular risk factors such as diabetes, dyslipidemia, hypertension, and insulin resistance (I/R). CRITICAL ISSUES Reported evidence shows that vascular risk factors are associated with AD, particularly in the development of protein aggregation, inflammation, oxidative stress, neuronal dysfunction, and disturbances in signaling pathways, with insulin receptor signaling being a common alteration between MetS and AD. FUTURE DIRECTIONS Insulin signaling has been involved in tau phosphorylation and amyloid β (Aβ) metabolism. However, it has also been demonstrated that Aβ oligomers can bind to insulin receptors, triggering their internalization, decreasing neuron responsiveness to insulin, and promoting insulin I/R. Thus, it could be argued that Aβ could be a convergent factor in the development of both pathologies. Antioxid. Redox Signal. 26, 542-560.
Collapse
Affiliation(s)
| | - Danira Toral-Rios
- 2 Departamento de Fisiología Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Mexico City, Mexico
| | | | - Carmen Sánchez-Torres
- 4 Departamento of Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Mexico City, Mexico
| | | | - Elimar Torres-Ossorio
- 6 Facultad de Química, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | | | - Karla Carvajal
- 7 Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría , Mexico City, Mexico
| |
Collapse
|
138
|
Shi H, Lee JY. Tautomeric Effect of Histidine on the Monomeric Structure of Amyloid β-Peptide(1-42). ACS Chem Neurosci 2017; 8:669-675. [PMID: 28292182 DOI: 10.1021/acschemneuro.6b00375] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tautomeric state of histidine is one of the factors that influence the structural and aggregation properties of amyloid β (Aβ)-peptide in neutral state. It is worth it to uncover the monomeric properties of Aβ(1-42) peptide in comparison with Aβ(1-40) peptide. Our replica-exchange molecular dynamics simulations results show that the sheet content of each tautomeric isomer in Aβ(1-42) monomer is slightly higher than that in Aβ(1-40) monomer except His6(δ)-His13(δ)-His14(δ) (δδδ) isomer, implying higher aggregation tendency in Aβ(1-42), which is in agreement with previous experimental and theoretical studies. Further analysis indicates that (εεε), (εδε), (εδδ), and (δδε) isomers prefer sheet conformation although they are in nondominating states. Particularly, it is confirmed that antiparallel β-sheets of (εδδ) were formed at K16-E22 (22.0-43.9%), N27-A30 except G29 (21.9-40.2%), and M35-I41 except G37 (24.1-43.4%). Furthermore, (εδδ) may be the easiest one to overcome structural transformation due to nonobstructing interactions between K16 and/or L17 and histidine residues. The current study will help to understand the tautomeric effect of Aβ(1-42) peptide to overcome Alzheimer's disease.
Collapse
Affiliation(s)
- Hu Shi
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
139
|
Dutta M, Mattaparthi VSK. In silico investigation on the inhibition of Aβ 42 aggregation by Aβ 40 peptide by potential of mean force study. J Biomol Struct Dyn 2017; 36:741-752. [PMID: 28278027 DOI: 10.1080/07391102.2017.1296783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent experimental data revealed that small, soluble Amyloid beta (Aβ42) oligomers, especially dimers impair synaptic plasticity and memory leading to Alzheimer's disease. Here, we have studied dimerization of Aβ42/Aβ42 homo-dimer and Aβ40/Aβ42 hetero-dimer in terms of free energy profile by all-atom simulations using the ff99SB force field. We have found that in the presence of Aβ40 peptide, there exists a strong tendency to form a hetero-dimer with Aβ42 peptide, suggesting that a possible co-oligomerization. Furthermore, we have investigated the effects of Aβ40 on the Aβ42 peptide. Our study also shows that in presence of Aβ40, the beta-content of Aβ42 monomer is reduced. Additionally, certain residues important for bending in Aβ42 peptide attained an increased flexibility in the presence of Aβ40. The salt-bridge destabilization also manifested the impact of Aβ40 on Aβ42 peptide as a whole. Based on this, one may expect that Aβ40 inhibits the aggregation propensity of Aβ42. Moreover, the binding free energy obtained by the molecular mechanics-Poisson-Boltzmann surface area method also revealed a strong affinity between the two isoforms thereby suggests that Aβ40 binding induces conformational change in Aβ42. Our results suggest that co-oligomerization of Aβ isoforms may play a substantial role in Alzheimer's disease.
Collapse
Affiliation(s)
- Mary Dutta
- a Department of Molecular Biology and Biotechnology , Tezpur University , Tezpur 784 028 , Assam , India
| | | |
Collapse
|
140
|
Zhu S, Wang J, Zhang Y, He J, Kong J, Wang JF, Li XM. The role of neuroinflammation and amyloid in cognitive impairment in an APP/PS1 transgenic mouse model of Alzheimer's disease. CNS Neurosci Ther 2017; 23:310-320. [PMID: 28191738 DOI: 10.1111/cns.12677] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/31/2016] [Accepted: 01/16/2017] [Indexed: 12/14/2022] Open
Abstract
AIMS Both amyloid deposition and neuroinflammation appear in the early course of Alzheimer's disease (AD). However, the progression of neuroinflammation and its relationship with amyloid deposition and behavioral changes have not been fully elucidated. A better understanding the role of neuroinflammation in AD might extend our current knowledge to therapeutic intervention possibilities. METHODS This study systematically characterized changes in behavioral abnormalities in APP/PS1 transgenic mice. Brain pathology measures were performed in post-mortem brain tissues of mice from 2 to 22 months. RESULTS APP/PS1 mice exhibited significant memory deficits from 5 months old, which were aggravated at the later stage of life. However, the degree of memory impairments reached a plateau at 12 months. An early appearance of amyloid plaques was at 3 months with a linear increase throughout the disease course. CD11b-positive microglia and glial fibrillary acidic protein-(GFAP) positive astrocytes were first detected at 3 months with a close association with amyloid plaques. Yet, the rate of changes in glial activation slowed down from 12 months despite the steady increase in Aβ. CONCLUSION These findings provided evidence that neuroinflammation might be involved in the development and progression of cognitive deficits in APP/PS1 mice, suggesting novel intervention and prevention strategies for AD.
Collapse
Affiliation(s)
- Shenghua Zhu
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB, Canada
| | - Junhui Wang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yanbo Zhang
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jue He
- First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Jiming Kong
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jun-Feng Wang
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB, Canada
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
141
|
Walsh C, Drinkenburg W, Ahnaou A. Neurophysiological assessment of neural network plasticity and connectivity: Progress towards early functional biomarkers for disease interception therapies in Alzheimer’s disease. Neurosci Biobehav Rev 2017; 73:340-358. [DOI: 10.1016/j.neubiorev.2016.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/04/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
|
142
|
Abu-Omar N, Das J, Szeto V, Feng ZP. Neuronal Ryanodine Receptors in Development and Aging. Mol Neurobiol 2017; 55:1183-1192. [DOI: 10.1007/s12035-016-0375-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/28/2016] [Indexed: 01/09/2023]
|
143
|
|
144
|
Natelson Love M, Clark DG, Cochran JN, Den Beste KA, Geldmacher DS, Benzinger TL, Gordon BA, Morris JC, Bateman RJ, Roberson ED. Clinical, imaging, pathological, and biochemical characterization of a novel presenilin 1 mutation (N135Y) causing Alzheimer's disease. Neurobiol Aging 2017; 49:216.e7-216.e13. [PMID: 27793474 PMCID: PMC5154842 DOI: 10.1016/j.neurobiolaging.2016.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/21/2016] [Accepted: 09/24/2016] [Indexed: 01/19/2023]
Abstract
We present 2 cases of early-onset Alzheimer's disease due to a novel N135Y mutation in PSEN1. The proband presented with memory and other cognitive symptoms at age 32. Detailed clinical characterization revealed initial deficits in memory with associated dysarthria, progressing to involve executive dysfunction, spastic gait, and episodic confusion with polyspike discharges on long-term electroencephalography. Amyloid- and FDG-PET scans showed typical results of Alzheimer's disease. By history, the proband's father had developed cognitive symptoms at age 42 and died at age 48. Neuropathological evaluation confirmed Alzheimer's disease, with moderate to severe amyloid angiopathy. Skeletal muscle showed type 2 fiber-predominant atrophy with pale central clearing. Genetic testing of the proband revealed an N135Y missense mutation in PSEN1. This mutation was predicted to be pathogenic by in silico analysis. Biochemical analysis confirmed that the mutation caused an increased Aβ42/Aβ40 ratio, consistent with other PSEN1 mutations and with a loss of presenilin function.
Collapse
Affiliation(s)
- Marissa Natelson Love
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, Birmingham VA Medical Center, Birmingham, AL, USA
| | - David G Clark
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, Birmingham VA Medical Center, Birmingham, AL, USA; Department of Neurology, Ralph H. Johnson VA Medical Center, Medical University of South Carolina, Charleston, SC, USA.
| | - J Nicholas Cochran
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyle A Den Beste
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David S Geldmacher
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tammie L Benzinger
- Dominantly Inherited Alzheimer's Network, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian A Gordon
- Dominantly Inherited Alzheimer's Network, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Dominantly Inherited Alzheimer's Network, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Dominantly Inherited Alzheimer's Network, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erik D Roberson
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA; McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
145
|
γ-Secretase Modulators as Aβ42-Lowering Pharmacological Agents to Treat Alzheimer’s Disease. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2016_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
146
|
Lynn SA, Keeling E, Munday R, Gabha G, Griffiths H, Lotery AJ, Ratnayaka JA. The complexities underlying age-related macular degeneration: could amyloid beta play an important role? Neural Regen Res 2017; 12:538-548. [PMID: 28553324 PMCID: PMC5436342 DOI: 10.4103/1673-5374.205083] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) causes irreversible loss of central vision for which there is no effective treatment. Incipient pathology is thought to occur in the retina for many years before AMD manifests from midlife onwards to affect a large proportion of the elderly. Although genetic as well as non-genetic/environmental risks are recognized, its complex aetiology makes it difficult to identify susceptibility, or indeed what type of AMD develops or how quickly it progresses in different individuals. Here we summarize the literature describing how the Alzheimer's-linked amyloid beta (Aβ) group of misfolding proteins accumulate in the retina. The discovery of this key driver of Alzheimer's disease in the senescent retina was unexpected and surprising, enabling an altogether different perspective of AMD. We argue that Aβ fundamentally differs from other substances which accumulate in the ageing retina, and discuss our latest findings from a mouse model in which physiological amounts of Aβ were subretinally-injected to recapitulate salient features of early AMD within a short period. Our discoveries as well as those of others suggest the pattern of Aβ accumulation and pathology in donor aged/AMD tissues are closely reproduced in mice, including late-stage AMD phenotypes, which makes them highly attractive to study dynamic aspects of Aβ-mediated retinopathy. Furthermore, we discuss our findings revealing how Aβ behaves at single-cell resolution, and consider the long-term implications for neuroretinal function. We propose Aβ as a key element in switching to a diseased retinal phenotype, which is now being used as a biomarker for late-stage AMD.
Collapse
Affiliation(s)
- Savannah A Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Rosie Munday
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Gagandeep Gabha
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Helen Griffiths
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Eye Unit, University Southampton NHS Trust, Southampton, United Kingdom
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
147
|
Kim YH, Beak SH, Charidimou A, Song M. Discovering New Genes in the Pathways of Common Sporadic Neurodegenerative Diseases: A Bioinformatics Approach. J Alzheimers Dis 2016; 51:293-312. [PMID: 26836166 DOI: 10.3233/jad-150769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Late onset Alzheimer's disease (AD) and Parkinson's disease (PD) are mostly "sporadic" age-related neurodegenerative disorders, but with a clear genetic component. However, their genetic architecture is complex and heterogeneous, largely remaining a conundrum, with only a handful of well-established genetic risk factors consistently associated with these diseases. It is possible that numerous, yet undiscovered, AD and PD related genes might exist. We focused on the 'gene' as a mediator to find new potential genes that might have a relationship with both disorders using bio-literature mining techniques. Based on Entrez Gene, we extracted the genes and directional gene-gene relation in the entire MEDLINE records and then constructed a directional gene-gene network. We identified common genes associated with two different but related diseases by performing shortest path analysis on the network. With our approach, we were able to identify and map already known genes that have a direct relationship with PD and AD. In addition, we identified 7 genes previously unknown to be a bridge between these two disorders. We confirmed 4 genes, ROS1, FMN1, ATP8A2, and SNORD12C, by biomedical literature and further checked 3 genes, ERVK-10, PRS, and C7orf49, that might have a high possibility to be related with both diseases. Additional experiments were performed to demonstrate the effectiveness of our proposed method. Comparing to the co-occurrence approach, our approach detected 25% more candidate genes and verified 10% more genes that have the relationship between both diseases than the co-occurrence approach did.
Collapse
Affiliation(s)
- Yong Hwan Kim
- Department of Library and Information Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Seung Han Beak
- Institute of Convergence, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Andreas Charidimou
- Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Min Song
- Department of Library and Information Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
148
|
Abstract
Citrullination and deamidation, which are aging-related posttranslational modifications, increase the number of negative charges on amyloid β-protein (Aβ) at neutral pH. We investigated the effects of these modifications on the fibrillation properties of Aβ. The Arg5→Cit modification of Aβ1-40 did not affect the fibrillation rate, and brought β-sheet structures unlike that in the Aβ1-40 fibril. The Asn27→Asp modification of Aβ1-40 stopped the fibrillation and induced the formation of aggregates that involved an anti-parallel β-sheet. Aβ1-42 with the Arg5→Cit modification showed increased solubility in aqueous media, and its fibril formation became slower than that of Aβ1-42. The modification did not change the parallel β-sheet structure of the fibrils. Aβ1-42 with the Asn27→Asp modification partially formed fibrils that involved the parallel β-sheet structure. Using the thioflavin T (ThT) assay, an increased fraction of the soluble oligomer of each Aβ analog was transiently detected during fibrillation. An increase in the number of negative charges at basic pH affected the aggregation properties of Aβ in a manner different from that with the modifications, suggesting that change in properties of the posttanslationally modified residues rather than the number of charges in the peptide was important.
Collapse
Affiliation(s)
- Dai Osaki
- a Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan
| | - Hirotsugu Hiramatsu
- a Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan
| |
Collapse
|
149
|
Rodríguez Cruz Y, Strehaiano M, Rodríguez Obaya T, García Rodríguez JC, Maurice T. An Intranasal Formulation of Erythropoietin (Neuro-EPO) Prevents Memory Deficits and Amyloid Toxicity in the APPSwe Transgenic Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2016; 55:231-248. [DOI: 10.3233/jad-160500] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yamila Rodríguez Cruz
- Department of Histology, Institute of Preclinical and Basic Sciences, University of Medical Sciences, Havana, Cuba
- Center of Molecular Immunology (CIM), Havana, Cuba
| | - Manon Strehaiano
- Inserm U1198, Montpellier, France
- University of Montpellier, Montpellier, France
- EPHE, Paris, France
| | | | - Julío César García Rodríguez
- Department of Histology, Institute of Preclinical and Basic Sciences, University of Medical Sciences, Havana, Cuba
| | - Tangui Maurice
- Inserm U1198, Montpellier, France
- University of Montpellier, Montpellier, France
- EPHE, Paris, France
| |
Collapse
|
150
|
Wang W, Moerman-Herzog AM, Slaton A, Barger SW. Presenilin 1 mutations influence processing and trafficking of the ApoE receptor apoER2. Neurobiol Aging 2016; 49:145-153. [PMID: 27810638 DOI: 10.1016/j.neurobiolaging.2016.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 12/15/2022]
Abstract
Presenilin (PS)-1 is an intramembrane protease serving as the catalytic component of γ-secretase. Mutations in the PS1 gene are the most common cause of familial Alzheimer's disease (FAD). The low-density lipoprotein (LDL)-receptor family member apoER2 is a γ-secretase substrate that has been associated with AD in several ways, including acting as a receptor for apolipoprotein E (ApoE). ApoER2 is processed by γ-secretase into a C-terminal fragment (γ-CTF) that appears to regulate gene expression. FAD PS1 mutations were tested for effects on apoER2. PS1 mutation R278I showed impaired γ-secretase activity for apoER2 in the basal state or after exposure to Reelin. PS1 M146V mutation permitted accumulation of apoER2 CTFs after Reelin treatment, whereas no difference was seen between wild-type (WT) and M146V in the basal state. PS1 L282V mutation, combined with the γ-secretase inhibitor N-(N-[3,5-Difluorophenacetyl]-L-alanyl)-S-phenylglycine t-butyl ester, greatly reduced the cell-surface levels of apoER2 without affecting total apoER2 levels, suggesting a defect in receptor trafficking. These findings indicate that impaired processing or localization of apoER2 may contribute to the pathogenic effects of FAD mutations in PS1.
Collapse
Affiliation(s)
- Wei Wang
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Arthur Slaton
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Geriatrics Research, Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA.
| |
Collapse
|