101
|
Li L, Qiu H. Asperulosidic Acid Restrains Hepatocellular Carcinoma Development and Enhances Chemosensitivity Through Inactivating the MEKK1/NF-κB Pathway. Appl Biochem Biotechnol 2024; 196:1-17. [PMID: 37097403 DOI: 10.1007/s12010-023-04500-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Asperulosidic acid (ASPA) is a plant-extracted iridoid terpenoid with tumor-suppressive and anti-inflammatory properties. At present, the antitumor function of ASPA and its related mechanisms in hepatocellular carcinoma (HCC) cells were explored. Human normal hepatocytes HL-7702 and HCC cells (Huh7 and HCCLM3) were treated with varying concentrations (0 to 200 μg/mL) of ASPA. Cell viability, proliferation, apoptosis, migration, and invasion were checked. The expression of proteins was detected by Western blot. Furthermore, the effect of ASPA (100 μg/mL) on the sensitivity of HCC cells to chemotherapeutic agents, including doxorubicin and cisplatin, was evaluated. A subcutaneous xenografted tumor model was set up in nude mice, and the antitumor effects of ASPA were evaluated. ASPA hindered HCC cells' proliferation, migration, and invasion, and amplified their apoptosis and sensitivity to chemotherapeutic agents. Additionally, ASPA inactivated the MEKK1/NF-κB pathway. Overexpression of MEKK1 increased HCC proliferation, migration, and invasion and facilitated chemoresistance. ASPA treatment alleviated the carcinogenic effect mediated by MEKK1 overexpression. MEKK1 knockdown slowed down HCC progression. However, ASPA could not exert additional antitumor effects in MEKK1 knockdown cells. In vivo results displayed that ASPA substantially curbed tumor growth and inactivated the MEKK1/NF-κB pathway in mice. All over, ASPA exerts antitumor effects in HCC by suppressing the MEKK1/NF-κB pathway.
Collapse
Affiliation(s)
- Liang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, No.1882 South Zhong Huan Road, Jiaxing City, Zhejiang Province, 314001, China
| | - Huiwen Qiu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, No.1882 South Zhong Huan Road, Jiaxing City, Zhejiang Province, 314001, China.
| |
Collapse
|
102
|
Bruzaite A, Gedvilaite G, Kriauciuniene L, Liutkeviciene R. Association of KDR (rs2071559, rs1870377), CFH (rs1061170, rs1410996) genes variants and serum levels with pituitary adenoma. Mol Genet Genomic Med 2024; 12:e2289. [PMID: 37803932 PMCID: PMC10767405 DOI: 10.1002/mgg3.2289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023] Open
Abstract
INTRODUCTION Pituitary adenomas (PA) are slow-growing, benign tumors that usually do not metastasize to other body organs. Although they are referred to as benign, tumor growth can eventually put pressure on nearby structures, spread to surrounding tissues, and cause symptoms. The exact cause of PA is unknown, and the pathogenesis is multifactorial. METHODS Our study included PA patients and healthy volunteers. Genomic DNA was extracted using the DNA salting-out method. All participants were genotyped for the KDR rs2071559, rs1870377, CFH rs1061170, and rs1410996 polymorphisms. Serum levels of KDR and CFH were examined using the ELISA method. RESULTS The results of the present study showed that KDR rs2071559 A allele was associated with the occurrence of PA, hormonally active PA, invasive PA, and PA without recurrence development. KDR rs1870377 increased the probability of invasive PA and PA recurrence. CFH rs1061170 C allele was associated with hormonally active PA and the T allele was associated with non-invasive PA development. CONCLUSION KDR rs2071559, rs1870377, and CFH rs1061170 could be potential biomarkers associated with PA.
Collapse
Affiliation(s)
- Akvile Bruzaite
- Ophthalmology LaboratoryNeuroscience Institute, Lithuanian University of Health Sciences, Medical AcademyKaunasLithuania
| | - Greta Gedvilaite
- Ophthalmology LaboratoryNeuroscience Institute, Lithuanian University of Health Sciences, Medical AcademyKaunasLithuania
| | - Loresa Kriauciuniene
- Ophthalmology LaboratoryNeuroscience Institute, Lithuanian University of Health Sciences, Medical AcademyKaunasLithuania
| | - Rasa Liutkeviciene
- Ophthalmology LaboratoryNeuroscience Institute, Lithuanian University of Health Sciences, Medical AcademyKaunasLithuania
| |
Collapse
|
103
|
Jiang C, Zhang C, Dai M, Wang F, Xu S, Han D, Wang Y, Cao Y, Liang Y, Zhang Z, Yan L, Shen Y, He K, Shen Y, Liu J. Interplay between SUMO1-related SUMOylation and phosphorylation of p65 promotes hepatocellular carcinoma progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119595. [PMID: 37730133 DOI: 10.1016/j.bbamcr.2023.119595] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
The nuclear factor kappaB (NF-κB) subunit p65, plays an important role in the progression of hepatocellular carcinoma (HCC). Phosphorylation of p65 is considered as an important mechanism for the positive regulation of NF-κB activity. According to our previous data, p65 can be SUMOylated by small ubiquitin-related modifier 1 (SUMO1) protein, and SUMO1 promotes p65 nuclear import and HCC progression. However, the effect of SUMO1-related p65 SUMOylation on NF-κB transcriptional activity and the relationship between phosphorylation and SUMOylation of p65 remain obscure. Here, we found that phosphorylated p65 level was increased in cancer tissues of HCC patients, and similar phenomenon was found for SUMO1 expression but not for SUMO2/3. Further clinical data showed a positive correlation between SUMO1 and phosphorylated p65. We also verified that overexpression of SUMO1 upregulated phosphorylated p65 levels. Next, we verified SUMO1-related p65 SUMOylation with in vitro SUMOylation assay, constructed mutants of p65 SUMOylation and phosphorylation, and found that SUMO1-related p65 SUMOylation promoted p65 nuclear import and increased NF-κB activity. Both SUMO1-related p65 SUMOylation and p65 phosphorylation (especially at S276 site) increased the viability and invasion of hepatoma cells, and decreased the apoptosis of hepatoma cells. At last, we found that the phosphorylation of p65 promoted the level of SUMO1-related p65 SUMOylation, and SUMO1-related p65 SUMOylation upregulated phosphorylated p65 (at S276 site). Our study contributes to the exploration of the oncogenic mechanism of p65, which is the important protein in HCC.
Collapse
Affiliation(s)
- Can Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Chunyang Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Min Dai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Fuyan Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Sa Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Dan Han
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China; Clinical college, Anhui Medical University, Hefei, China
| | - Yanyan Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Yajie Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Yanyan Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Ziyu Zhang
- The First Clinical College, Anhui Medical University, Hefei, China
| | - Lina Yan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Kewu He
- The Third Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China.
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China.
| |
Collapse
|
104
|
Wei Q, Hou YC, Mao FF, Feng JK, Wang X, Cheng SQ. Disulfidptosis-Associated lncRNAs are Potential Biomarkers for Predicting Immune Response and Prognosis Within Individuals Diagnosed with Hepatocellular Carcinoma. Hepat Med 2023; 15:249-264. [PMID: 38162389 PMCID: PMC10757809 DOI: 10.2147/hmer.s435726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is a prevalent form of cancer that is distributed globally. Disulfidptosis, characterized by the fragility of the actin cytoskeleton, represents a distinct type of cell death and holds promise for novel cancer therapies. Nevertheless, the connection among disulfidptosis-associated long non-coding RNAs (lncRNAs) and HCC is still unexplored. This study uses an in silico approach to provide the novel biomarkers of disulfidptosis-associated lncRNAs for predicting the immune response and prognosis with HCC. Methods In order to address this gap, we integrated transcriptomic data of HCC from The Cancer Genome Atlas (TCGA) and identified genes that exhibit differential expression with disulfidptosis and lncRNAs. Through co-expression analysis, we identified disulfidptosis-related lncRNAs. Afterwards, by employing univariate Cox regression analysis and the least absolute shrinkage and selection operator (LASSO), a model for disulfidptosis-associated lncRNA was constructed. The risk model underwent assessment through the utilization of diverse analytical methodologies, including functional enrichment annotation, Kaplan-Meier analysis, principal component analysis (PCA), immune infiltration and immune status analysis, as well as tumor mutation analysis. Furthermore, we discussed the implications of the model in predicting drug sensitivity. Results Our study culminated in the construction of a disulfidptosis-related lncRNA model comprising four prognostic disulfidptosis-related lncRNAs (ACYTOR, NRAV, AL080248.1, and AC069307.1). This model demonstrates exceptional diagnostic value for HCC patients and holds practical implications for guiding clinicians in personalizing immunotherapy and drug selection based on individual variations. Conclusion In summary, our research introduces a novel predictive tool utilizing disulfidptosis-related lncRNAs, offering potential guidance for the therapeutic management of HCC.
Collapse
Affiliation(s)
- Qian Wei
- The First Clinical Medicine School, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Yu-Chao Hou
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Fei-Fei Mao
- Tongji University Cancer Center, Shanghai 10th People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jin-Kai Feng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Xu Wang
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Shu-Qun Cheng
- The First Clinical Medicine School, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
105
|
Caligiuri A, Becatti M, Porro N, Borghi S, Marra F, Pastore M, Taddei N, Fiorillo C, Gentilini A. Oxidative Stress and Redox-Dependent Pathways in Cholangiocarcinoma. Antioxidants (Basel) 2023; 13:28. [PMID: 38247453 PMCID: PMC10812651 DOI: 10.3390/antiox13010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a primary liver tumor that accounts for 2% of all cancer-related deaths worldwide yearly. It can arise from cholangiocytes of biliary tracts, peribiliary glands, and possibly from progenitor cells or even hepatocytes. CCA is characterized by high chemoresistance, aggressiveness, and poor prognosis. Potentially curative surgical therapy is restricted to a small number of patients with early-stage disease (up to 35%). Accumulating evidence indicates that CCA is an oxidative stress-driven carcinoma resulting from chronic inflammation. Oxidative stress, due to enhanced reactive oxygen species (ROS) production and/or decreased antioxidants, has been recently suggested as a key factor in cholangiocyte oncogenesis through gene expression alterations and molecular damage. However, due to different experimental models and conditions, contradictory results regarding oxidative stress in cholangiocarcinoma have been reported. The role of ROS and antioxidants in cancer is controversial due to their context-dependent ability to stimulate tumorigenesis and support cancer cell proliferation or promote cell death. On these bases, the present narrative review is focused on illustrating the role of oxidative stress in cholangiocarcinoma and the main ROS-driven intracellular pathways. Heterogeneous data about antioxidant effects on cancer development are also discussed.
Collapse
Affiliation(s)
- Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Nunzia Porro
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| |
Collapse
|
106
|
Kim B, Yu JE, Yeo IJ, Son DJ, Lee HP, Roh YS, Lim KH, Yun J, Park H, Han SB, Hong JT. (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol alleviates inflammatory responses in LPS-induced mice liver sepsis through inhibition of STAT3 phosphorylation. Int Immunopharmacol 2023; 125:111124. [PMID: 37977740 DOI: 10.1016/j.intimp.2023.111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Sepsis is a life-threatening disease with limited treatment options, and the inflammatory process represents an important factor affecting its progression. Many studies have demonstrated the critical roles of signal transducer and activator of transcription 3 (STAT3) in sepsis pathophysiology and pro-inflammatory responses. Inhibition of STAT3 activity may therefore represent a promising treatment option for sepsis. We here used a mouse model to demonstrate that (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) treatment prevented the liver sepsis-related mortality induced by 30 mg/kg lipopolysaccharide (LPS) treatment and reduced LPS-induced increase in alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels, all of which are markers of liver sepsis progression. These recovery effects were associated with decreased LPS-induced STAT3, p65, and JAK1 phosphorylation and proinflammatory cytokine (interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha) level; expression of cyclooxygenase-2 and induced nitric oxide synthase were also reduced by MMPP. In an in vitro study using the normal liver cell line THLE-2, MMPP treatment prevented the LPS-induced increase of STAT3, p65, and JAK1 phosphorylation and inflammatory protein expression in a dose-dependent manner, and this effect was enhanced by combination treatment with MMPP and STAT3 inhibitor. The results clearly indicate that MMPP treatment prevents LPS-induced mortality by inhibiting the inflammatory response via STAT3 activity inhibition. Thus, MMPP represents a novel agent for alleviating LPS-induced liver sepsis.
Collapse
Affiliation(s)
- Boyoung Kim
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Ji Eun Yu
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - In Jun Yeo
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Dong Ju Son
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Hee Pom Lee
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Yoon Seok Roh
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Key-Hwan Lim
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Jaesuk Yun
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Hanseul Park
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Sang Bae Han
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
107
|
Ma W, Hu J. The linear ANRIL transcript P14AS regulates the NF-κB signaling to promote colon cancer progression. Mol Med 2023; 29:162. [PMID: 38041015 PMCID: PMC10690983 DOI: 10.1186/s10020-023-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The linear long non-coding RNA P14AS has previously been reported to be dysregulated in colon cancer, but the mechanistic role that P14AS plays in colon cancer progression has yet to be clarified. Accordingly, this study was developed to explore the regulatory functions of ANRIL linear transcript-P14AS in cancer. METHODS The expression of P14AS, ANRIL, miR-23a-5p and their target genes were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Cell supernatants of IL6 and IL8 were measured by Enzyme linked immunosorbent (ELISA) assay. Dual-luciferase reporter assays, RNA immunoprecipitation, or pull-down assays were used to confirm the target association between miR-23a-5p and P14AS or UBE2D3. Cell proliferation and chemosensitivity of NF-κB inhibitor BAY 11-7085 were evaluated by cell counting kit 8 (CCK8). RESULTS When P14AS was overexpressed in colon cancer cell lines, enhanced TNF-NF-κB signaling pathway activity was observed together with increases in IL6 and IL8 expression. The Pita, miRanda, and RNA hybrid databases revealed the ability of miR-23a-5p to interact with P14AS, while UBE2D3 was further identified as a miR-23a-5p target gene. The results of dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation experiments confirmed these direct interactions among P14AS/miR-23a-5p/UBE2D3. The degradation of IκBa mediated by UBE2D3 may contribute to enhanced NF-κB signaling in these cells. Moreover, the beneficial impact of P14AS on colon cancer cell growth was eliminated when cells were treated with miR-23a-5p inhibitors or UBE2D3 was silenced. As such, these findings strongly supported a role for the UBE2D3/IκBa/NF-κB signaling axis as a mediator of the ability of P14AS to promote colon cancer progression. CONCLUSIONS These data suggested a mechanism through which the linear ANRIL transcript P14AS can promote inflammation and colon cancer progression through the sequestration of miR-23a-5p and the modulation of NF-κB signaling activity, thus highlighting P14AS as a promising target for therapeutic intervention efforts.
Collapse
Affiliation(s)
- Wanru Ma
- Department of Blood Transfusion, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| | - Junhua Hu
- Department of Blood Transfusion, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China.
| |
Collapse
|
108
|
Tzouanas CN, Sherman MS, Shay JE, Rubin AJ, Mead BE, Dao TT, Butzlaff T, Mana MD, Kolb KE, Walesky C, Pepe-Mooney BJ, Smith CJ, Prakadan SM, Ramseier ML, Tong EY, Joung J, Chi F, McMahon-Skates T, Winston CL, Jeong WJ, Aney KJ, Chen E, Nissim S, Zhang F, Deshpande V, Lauer GM, Yilmaz ÖH, Goessling W, Shalek AK. Chronic metabolic stress drives developmental programs and loss of tissue functions in non-transformed liver that mirror tumor states and stratify survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569407. [PMID: 38077056 PMCID: PMC10705501 DOI: 10.1101/2023.11.30.569407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Under chronic stress, cells must balance competing demands between cellular survival and tissue function. In metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD/NASH), hepatocytes cooperate with structural and immune cells to perform crucial metabolic, synthetic, and detoxification functions despite nutrient imbalances. While prior work has emphasized stress-induced drivers of cell death, the dynamic adaptations of surviving cells and their functional repercussions remain unclear. Namely, we do not know which pathways and programs define cellular responses, what regulatory factors mediate (mal)adaptations, and how this aberrant activity connects to tissue-scale dysfunction and long-term disease outcomes. Here, by applying longitudinal single-cell multi -omics to a mouse model of chronic metabolic stress and extending to human cohorts, we show that stress drives survival-linked tradeoffs and metabolic rewiring, manifesting as shifts towards development-associated states in non-transformed hepatocytes with accompanying decreases in their professional functionality. Diet-induced adaptations occur significantly prior to tumorigenesis but parallel tumorigenesis-induced phenotypes and predict worsened human cancer survival. Through the development of a multi -omic computational gene regulatory inference framework and human in vitro and mouse in vivo genetic perturbations, we validate transcriptional (RELB, SOX4) and metabolic (HMGCS2) mediators that co-regulate and couple the balance between developmental state and hepatocyte functional identity programming. Our work defines cellular features of liver adaptation to chronic stress as well as their links to long-term disease outcomes and cancer hallmarks, unifying diverse axes of cellular dysfunction around core causal mechanisms.
Collapse
Affiliation(s)
- Constantine N. Tzouanas
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These authors contributed equally
| | - Marc S. Sherman
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- These authors contributed equally
| | - Jessica E.S. Shay
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Adam J. Rubin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin E. Mead
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler T. Dao
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Titus Butzlaff
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Miyeko D. Mana
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kellie E. Kolb
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chad Walesky
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian J. Pepe-Mooney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Colton J. Smith
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sanjay M. Prakadan
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle L. Ramseier
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evelyn Y. Tong
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Joung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Fangtao Chi
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Thomas McMahon-Skates
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolyn L. Winston
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Woo-Jeong Jeong
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Katherine J. Aney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ethan Chen
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sahar Nissim
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Gastroenterology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Georg M. Lauer
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ömer H. Yilmaz
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
- These senior authors contributed equally
| | - Wolfram Goessling
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA, USA
- These senior authors contributed equally
| | - Alex K. Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These senior authors contributed equally
| |
Collapse
|
109
|
Qi D, Lu M, Xu P, Yao X, Chen Y, Gan L, Li Y, Cui Y, Tong X, Liu S, Zhao J, Liu N, Ye X. Transcription factor ETV4 promotes the development of hepatocellular carcinoma by driving hepatic TNF-α signaling. Cancer Commun (Lond) 2023; 43:1354-1372. [PMID: 37670477 PMCID: PMC10693303 DOI: 10.1002/cac2.12482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Hepatic inflammation is the major risk factor of hepatocellular carcinoma (HCC). However, the underlying mechanism by which hepatic inflammation progresses to HCC is poorly understood. This study was designed to investigate the role of ETS translocation variant 4 (ETV4) in linking hepatic inflammation to HCC. METHODS Quantitative real-time PCR and immunoblotting were used to detect the expression of ETV4 in HCC tissues and cell lines. RNA sequencing and luciferase reporter assays were performed to identify the target genes of ETV4. Hepatocyte-specific ETV4-knockout (ETV4fl/fl, alb-cre ) and transgenic (ETV4Hep-TG ) mice and diethylnitrosamine-carbon tetrachloride (DEN-CCL4 ) treatment experiments were applied to investigate the function of ETV4 in vivo. The Cancer Genome Atlas (TCGA) database mining and pathological analysis were carried out to determine the correlation of ETV4 with tumor necrosis factor-alpha (TNF-α) and mitogen-activated protein kinase 11 (MAPK11). RESULTS We revealed that ETV4 was highly expressed in HCC. High levels of ETV4 predicted a poor survival rate of HCC patients. Then we identified ETV4 as a transcription activator of TNF-α and MAPK11. ETV4 was positively correlated with TNF-α and MAPK11 in HCC patients. As expected, an increase in hepatic TNF-α secretion and macrophage accumulation were observed in the livers of ETV4Hep-TG mice. The protein levels of TNF-α, MAPK11, and CD68 were significantly higher in the livers of ETV4Hep-TG mice compared with wild type mice but lower in ETV4fl/fl, alb-cre mice compared with ETV4fl/fl mice as treated with DEN-CCL4 , indicating that ETV4 functioned as a driver of TNF-α/MAPK11 expression and macrophage accumulation during hepatic inflammation. Hepatocyte-specific knockout of ETV4 significantly prevented development of DEN-CCL4 -induced HCC, while transgenic expression of ETV4 promoted growth of HCC. CONCLUSIONS ETV4 promoted hepatic inflammation and HCC by activating transcription of TNF-α and MAPK11. Both the ETV4/TNF-α and ETV4/MAPK11 axes represented two potential therapeutic targets for highly associated hepatic inflammation and HCC. ETV4+TNF-α were potential prognostic markers for HCC patients.
Collapse
Affiliation(s)
- Dandan Qi
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
| | - Min Lu
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Pengfei Xu
- The Fifth Medical Center of Chinese People's Liberation Army General HospitalBeijingP. R. China
| | - Xinli Yao
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yongchen Chen
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Lipeng Gan
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yong Li
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yahua Cui
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Xiaomei Tong
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
| | - Shuhong Liu
- The Fifth Medical Center of Chinese People's Liberation Army General HospitalBeijingP. R. China
| | - Jingmin Zhao
- The Fifth Medical Center of Chinese People's Liberation Army General HospitalBeijingP. R. China
| | - Ningning Liu
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
| | - Xin Ye
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
110
|
Bai S, Han X, Lan Y, Wang H, Wang R, Li L, Song Q, Li A. Mechanisms of action underlying Shentong Zhuyu decoction based treatment of rheumatoid arthritis using systems biology and computer-aided drug design. Medicine (Baltimore) 2023; 102:e36287. [PMID: 38013316 PMCID: PMC10681588 DOI: 10.1097/md.0000000000036287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
Rheumatoid arthritis is an autoimmune disease characterized by chronic polyarticular pain, for which no cure currently exists. In Chinese medicine, rheumatoid arthritis (RA) is believed to be caused by phlegm and blood stagnation. Shentong Zhuyu decoction can be used to treat RA, as it promotes blood circulation, resolves blood stasis, and relieves pain. In our study, we used network pharmacology and computer-aided drug design to evaluate the components, active compounds, and targets of Shentong Zhuyu decoction (STZY). Our results suggest that STZY contains active compounds such as quercetin, luteolin, and formononetin that regulate immune network targets. RA associated genes are enriched in pathways including those associated with nuclear factor kappa B, phosphatidylinositol-3-kinase/AKT, and hypoxia inducible factor 1 signaling. The main active compounds in STZY (quercetin and luteolin) were derived from Achyranthis Bidentatae Radix, Carthami Flos, licorice, Cyperi Rhizoma, and Myrrha and targeted the pro-inflammatory cytokines interleukin 2, interleukin 1 alpha, interleukin 1 beta, and interleukin 6. In addition, the compounds quercetin, luteolin, and formononetin in these herbs can target the anti-inflammatory cytokines interleukin 4 and interleukin 10. Our results suggest that STZY can balance the immune network, promote an anti-inflammatory environment, and reduce the clinical symptoms of RA. Based on the close relationship between inflammatory response and osteoclast formation, we hypothesized that STZY may inhibit inflammation and alleviate bone destruction in RA. Our findings indicate that STZY can treat RA through multiple components, targets, and pathways. This study may provide a reference for the clinical application of STZY in RA treatment.
Collapse
Affiliation(s)
- Shujun Bai
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xue Han
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yanchen Lan
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Haodong Wang
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Rui Wang
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Liyuan Li
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiuhang Song
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Aiying Li
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| |
Collapse
|
111
|
Zheng Y, Zhang X, Zhang R, Wang Z, Gan J, Gao Q, Yang L, Xu P, Jiang X. Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). Int J Mol Med 2023; 52:111. [PMID: 37800614 PMCID: PMC10558228 DOI: 10.3892/ijmm.2023.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF‑κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti‑inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.
Collapse
Affiliation(s)
| | | | - Ruifeng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Qing Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
112
|
Salah A, Sleem R, Abd-Elaziz A, Khalil H. Regulation of NF-κB Expression by Thymoquinone; A Role in Regulating Pro-Inflammatory Cytokines and Programmed Cell Death in Hepatic Cancer Cells. Asian Pac J Cancer Prev 2023; 24:3739-3748. [PMID: 38019231 PMCID: PMC10772774 DOI: 10.31557/apjcp.2023.24.11.3739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND The miracle herb Nigella sativa (N. sativa) is a member of the Ranunculaceae family that possesses many properties, such as antioxidant, anticancer, analgesic, antibacterial, and anti-inflammatory. Thymoquinone (TQ) is the primary ingredient that makes up N. sativa, which is responsible for its many properties. So, our research focused on the biological role of TQ and its anticancer activities. METHODS A wide range of TQ concentrations (50µg/µl, 25µg/ µl, and 12.5µg µl) was prepared and evaluated for their potential regulatory role in cell lines of hepatocellular carcinoma (HepG2 cell line) compared with normal hepatocytes cells, untreated and DMSO-treated cells. RESULTS The more significant level of LDH obtained after TQ treatment compared to untreated cells provides evidence of the cytotoxic effects of TQ on HepG2 cells. Notably, the normal hepatocyte cells subjected to the same concentrations of TQ showed neglected influence in cell viability rate, indicating the selective regulatory role of TQ in cancer cell proliferation. Interestingly, as a critical mediator of malignancy transformation, the nuclear factor-kappa B expression level (NF-κB) significantly decreased in a time and dose-dependent manner of TQ treatment. Furthermore, we investigated whether TQ regulates the expression of deleted liver cancer 1 (DLC1) and Caspase 3 (Casp3). Notably, the treatment with TQ showed increased expression levels of DLC1 and Casp3 upon treatment. TQ extract sufficiently mediated the secretion of the released pro-inflammatory cytokines from treated cells. This regulation of released cytokines by TQ may affect the activation of NF-κB in treated cells. CONCLUSION These results indicate that TQ mediates the activation of Casp3, DLC1, and NF-κB, providing a new function of TQ in treating hepatocellular carcinoma (HCC).
Collapse
|
113
|
Qin A, Wen Z, Xiong S. Myocardial Mitochondrial DNA Drives Macrophage Inflammatory Response through STING Signaling in Coxsackievirus B3-Induced Viral Myocarditis. Cells 2023; 12:2555. [PMID: 37947632 PMCID: PMC10648438 DOI: 10.3390/cells12212555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Coxsackievirus B3 (CVB3), a single-stranded positive RNA virus, primarily infects cardiac myocytes and is a major causative pathogen for viral myocarditis (VMC), driving cardiac inflammation and organ dysfunction. However, whether and how myocardial damage is involved in CVB3-induced VMC remains unclear. Herein, we demonstrate that the CVB3 infection of cardiac myocytes results in the release of mitochondrial DNA (mtDNA), which functions as an important driver of cardiac macrophage inflammation through the stimulator of interferon genes (STING) dependent mechanism. More specifically, the CVB3 infection of cardiac myocytes promotes the accumulation of extracellular mtDNA. Such myocardial mtDNA is indispensable for CVB3-infected myocytes in that it induces a macrophage inflammatory response. Mechanistically, a CVB3 infection upregulates the expression of the classical DNA sensor STING, which is predominantly localized within cardiac macrophages in VMC murine models. Myocardial mtDNA efficiently triggers STING signaling in those macrophages, resulting in strong NF-kB activation when inducing the inflammatory response. Accordingly, STING-deficient mice are able to resist CVB3-induced cardiac inflammation, exhibiting minimal inflammation with regard to their functional cardiac capacities, and they exhibit higher survival rates. Moreover, our findings pinpoint myocardial mtDNA as a central element driving the cardiac inflammation of CVB3-induced VMC, and we consider the DNA sensor, STING, to be a promising therapeutic target for protecting against RNA viral infections.
Collapse
Affiliation(s)
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
114
|
Zheng X, Xu YJ, Huang J, Cai S, Wang W. Predictive value of radiomics analysis of enhanced CT for three-tiered microvascular invasion grading in hepatocellular carcinoma. Med Phys 2023; 50:6079-6095. [PMID: 37517073 DOI: 10.1002/mp.16597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Microvascular invasion (MVI) is a major risk factor, for recurrence and metastasis of hepatocellular carcinoma (HCC) after radical surgery and liver transplantation. However, its diagnosis depends on the pathological examination of the resected specimen after surgery; therefore, predicting MVI before surgery is necessary to provide reference value for clinical treatment. Meanwhile, predicting only the existence of MVI is not enough, as it ignores the degree, quantity, and distribution of MVI and may lead to MVI-positive patients suffering due to inappropriate treatment. Although some studies have involved M2 (high risk of MVI), majority have adopted the binary classification method or have not included radiomics. PURPOSE To develop three-class classification models for predicting the grade of MVI of HCC by combining enhanced computed tomography radiomics features with clinical risk factors. METHODS The data of 166 patients with HCC confirmed by surgery and pathology were analyzed retrospectively. The patients were divided into the training (116 cases) and test (50 cases) groups at a ratio of 7:3. Of them, 69 cases were MVI positive in the training group, including 45 cases in the low-risk group (M1) and 24 cases in the high-risk group (M2), and 47 cases were MVI negative (M0). In the training group, the optimal subset features were obtained through feature selection, and the arterial phase radiomics model, portal venous phase radiomics model, delayed phase radiomics model, three-phase radiomics model, clinical imaging model, and combined model were developed using Linear Support Vector Classification. The test group was used for validation, and the efficacy of each model was evaluated through the receiver operating characteristic curve (ROC). RESULTS The clinical imaging features of MVI included alpha-fetoprotein, tumor size, tumor margin, peritumoral enhancement, intratumoral artery, and low-density halo. The area under the curve (AUC) of the ROC values of the clinical imaging model for M0, M1, and M2 were 0.831, 0.701, and 0.847, respectively, in the training group and 0.782, 0.534, and 0.785, respectively, in the test group. After combined radiomics analyis, the AUC values for M0, M1, and M2 in the test group were 0.818, 0.688, and 0.867, respectively. The difference between the clinical imaging model and the combined model was statistically significant (p = 0.029). CONCLUSION The clinical imaging model and radiomics model developed in this study had a specific predictive value for HCC MVI grading, which can provide precise reference value for preoperative clinical diagnosis and treatment. The combined application of the two models had a high predictive efficacy.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Radiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Yun-Jun Xu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingcheng Huang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shengxian Cai
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wanwan Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
115
|
Nenu I, Toadere TM, Topor I, Țichindeleanu A, Bondor DA, Trella ȘE, Sparchez Z, Filip GA. Interleukin-6 in Hepatocellular Carcinoma: A Dualistic Point of View. Biomedicines 2023; 11:2623. [PMID: 37892997 PMCID: PMC10603956 DOI: 10.3390/biomedicines11102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is a pressing health concern, demanding a deep understanding of various mediators' roles in its development for therapeutic progress. Notably, interleukin-6 (IL-6) has taken center stage in investigations due to its intricate and context-dependent functions. This review delves into the dual nature of IL-6 in HCC, exploring its seemingly contradictory roles as both a promoter and an inhibitor of disease progression. We dissect the pro-tumorigenic effects of IL-6, including its impact on tumor growth, angiogenesis, and metastasis. Concurrently, we examine its anti-tumorigenic attributes, such as its role in immune response activation, cellular senescence induction, and tumor surveillance. Through a comprehensive exploration of the intricate interactions between IL-6 and the tumor microenvironment, this review highlights the need for a nuanced comprehension of IL-6 signaling in HCC. It underscores the importance of tailored therapeutic strategies that consider the dynamic stages and diverse surroundings within the tumor microenvironment. Future research directions aimed at unraveling the multifaceted mechanisms of IL-6 in HCC hold promise for developing more effective treatment strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Iuliana Nenu
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
- Department of Gastroenterology, “Prof. Dr. O. Fodor” Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Teodora Maria Toadere
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| | - Ioan Topor
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| | - Andra Țichindeleanu
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| | - Daniela Andreea Bondor
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| | - Șerban Ellias Trella
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| | - Zeno Sparchez
- Department of Gastroenterology, “Prof. Dr. O. Fodor” Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| |
Collapse
|
116
|
Park H, Lee S, Lee J, Moon H, Ro SW. Exploring the JAK/STAT Signaling Pathway in Hepatocellular Carcinoma: Unraveling Signaling Complexity and Therapeutic Implications. Int J Mol Sci 2023; 24:13764. [PMID: 37762066 PMCID: PMC10531214 DOI: 10.3390/ijms241813764] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) continues to pose a substantial global health challenge due to its high incidence and limited therapeutic options. In recent years, the Janus Kinase (JAK) and Signal Transducer and Activator of Transcription (STAT) pathway has emerged as a critical signaling cascade in HCC pathogenesis. The review commences with an overview of the JAK/STAT pathway, delving into the dynamic interplay between the JAK/STAT pathway and its numerous upstream activators, such as cytokines and growth factors enriched in pathogenic livers afflicted with chronic inflammation and cirrhosis. This paper also elucidates how the persistent activation of JAK/STAT signaling leads to diverse oncogenic processes during hepatocarcinogenesis, including uncontrolled cell proliferation, evasion of apoptosis, and immune escape. In the context of therapeutic implications, this review summarizes recent advancements in targeting the JAK/STAT pathway for HCC treatment. Preclinical and clinical studies investigating inhibitors and modulators of JAK/STAT signaling are discussed, highlighting their potential in suppressing the deadly disease. The insights presented herein underscore the necessity for continued research into targeting the JAK/STAT signaling pathway as a promising avenue for HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | - Simon Weonsang Ro
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea; (H.P.); (S.L.); (J.L.); (H.M.)
| |
Collapse
|
117
|
Chen Y, Lei Y, Wang H, Wang L, Xu J, Wang S, Yu M, Peng Z, Xiao F, Tian D, Liu M. Sophoricoside attenuates autoimmune‑mediated liver injury through the regulation of oxidative stress and the NF‑κB signaling pathway. Int J Mol Med 2023; 52:78. [PMID: 37477163 PMCID: PMC10555480 DOI: 10.3892/ijmm.2023.5281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
The prevalence of autoimmune hepatitis (AIH) is increasing, yet specific pharmacotherapies remain to be explored. The present study aimed to investigate the effects of sophoricoside (SOP), a bioactive component of medical herbs, on AIH and to elucidate the underlying mechanisms. Bioinformatic approaches were used to predict the potential targets and underlying regulatory mechanisms of SOP on AIH. The effects of SOP on AIH were evaluated by determining the expression levels of inflammatory cytokines, histological liver injury and hepatic fibrosis in an improved chronic cytochrome P450 2D6 (CYP2D6)‑AIH mouse model and in a model of concanavalin‑A (ConA)‑induced acute immune‑mediated liver injury. The antioxidant activity of SOP was detected in in vivo and in vitro experiments. The selected signal targeted by SOP in AIH was further confirmed using western blot analysis and immunofluorescence staining. The results of bioinformatic analysis revealed that the targets of SOP in AIH were related to oxidative stress and the NF‑κB gene set. The NF‑κB transcription factor family is a key player that controls both innate and adaptive immunity. The activation of the NF‑κB signaling pathway is often associated with autoimmune disorders. In the animal experiments, SOP attenuated CYP2D6/ConA‑induced AIH, as evidenced by a significant reduction in the levels of hepatic enzymes in serum, inflammatory cytokine expression and histological lesions in the liver. The oxidative response in AIH was also significantly inhibited by SOP, as evidenced by a decrease in the levels of hepatic malondialdehyde, and elevations in the total antioxidant capacity and glutathione peroxidase levels. The results of the in vivo and in vitro experiments revealed that SOP significantly reduced the enhanced expression and nuclear translocation of phosphorylated p65 NF‑κB in the livers of mice with AIH and in lipopolysaccharide‑stimulated AML12 cells. On the whole, the present study demonstrates the protective role of SOP in AIH, which may be mediated by limiting the oxidative response and the activation of the NF‑κB signaling pathway in hepatocytes.
Collapse
Affiliation(s)
- Yu Chen
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lijia Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiaxin Xu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Meiping Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhangqi Peng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fang Xiao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
118
|
Talamantes S, Lisjak M, Gilglioni EH, Llamoza-Torres CJ, Ramos-Molina B, Gurzov EN. Non-alcoholic fatty liver disease and diabetes mellitus as growing aetiologies of hepatocellular carcinoma. JHEP Rep 2023; 5:100811. [PMID: 37575883 PMCID: PMC10413159 DOI: 10.1016/j.jhepr.2023.100811] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 08/15/2023] Open
Abstract
Obesity-related complications such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D) are well-established risk factors for the development of hepatocellular carcinoma (HCC). This review provides insights into the molecular mechanisms that underlie the role of steatosis, hyperinsulinemia and hepatic inflammation in HCC development and progression. We focus on recent findings linking intracellular pathways and transcription factors that can trigger the reprogramming of hepatic cells. In addition, we highlight the role of enzymes in dysregulated metabolic activity and consequent dysfunctional signalling. Finally, we discuss the potential uses and challenges of novel therapeutic strategies to prevent and treat NAFLD/T2D-associated HCC.
Collapse
Affiliation(s)
- Stephanie Talamantes
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Michela Lisjak
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Eduardo H. Gilglioni
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Camilo J. Llamoza-Torres
- Department of Hepatology, Virgen de la Arrixaca University Hospital, Murcia, 30120, Spain
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
| | - Esteban N. Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
- WELBIO Department, WEL Research Institute, Avenue Pasteur 6, Wavre, 1300, Belgium
| |
Collapse
|
119
|
Xu W, Zhuang L, Zhu H, Mao A, Zhou J, Wang L. TRIM14 Overexpression Induces Chemoresistance and Malignant Behaviors of Hepatocellular Carcinoma Cells by Activating the STAT3/HIF-1α Pathway. Int J Mol Sci 2023; 24:12589. [PMID: 37628777 PMCID: PMC10454020 DOI: 10.3390/ijms241612589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Members of the tripartite motif (TRIM)-containing protein family have been found to be involved in the progression of hepatocellular carcinoma (HCC). TRIM14 exerts a promotive impact on several cancers. This study aimed to explore the function and mechanism of TRIM14 in HCC. TRIM14 expression in HCC tissues and HCC cell lines was detected. The overexpression or knockdown model of TRIM14 was established in HCC cell lines. Cell Counting Kit-8 (CCK-8) assay, flow cytometry, Transwell assay, RT-PCR, Western blot, and immunofluorescence were performed to verify the influence of TRIM14 on cell proliferation, sensitivity to chemotherapy drugs, apoptosis, migration, invasion, and autophagy. A xenograft tumor model was used to confirm the impact of TRIM14 on tumor cell growth. As shown by the data, TRIM14 level was notably higher in the tumor tissues of HCC patients than in the adjacent tissues. The overall survival rate of patients with a high TRIM14 expression was relatively lower than that of patients with a low TRIM14 expression. TRIM14 upregulation enhanced the proliferation, autophagy, migration, and invasion of HCC cells and chemoresistant HCC cells and decreased apoptosis. TRIM14 knockdown contributed to the opposite effects. In in vivo experiments, TRIM14 upregulation bolstered tumor growth. Western blot analysis revealed that TRIM14 upregulation boosted signal transducer and activator of transcription3 (STAT3) and hypoxia-inducible factor-1alpha (HIF-1α) expression, and TRIM14 knockdown suppressed their expression. Moreover, repressing STAT3 and HIF-1α could mitigate the tumor-promoting role of TRIM14 in HCC cells. Overall, TRIM14 facilitated malignant HCC development and induced chemoresistance in HCC cells by activating the STAT3/HIF-1α axis.
Collapse
Affiliation(s)
- Weiqi Xu
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lihong Zhuang
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Qingdao Institute, Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Qingdao 266500, China
| | - Hongxu Zhu
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Anrong Mao
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiamin Zhou
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lu Wang
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
120
|
Abdalla MMI. Serum resistin and the risk for hepatocellular carcinoma in diabetic patients. World J Gastroenterol 2023; 29:4271-4288. [PMID: 37545641 PMCID: PMC10401662 DOI: 10.3748/wjg.v29.i27.4271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant type of liver cancer, is a major contributor to cancer-related fatalities across the globe. Diabetes has been identified as a significant risk factor for HCC, with recent research indicating that the hormone resistin could be involved in the onset and advancement of HCC in diabetic individuals. Resistin is a hormone that is known to be involved in inflammation and insulin resistance. Patients with HCC have been observed to exhibit increased resistin levels, which could be correlated with more severe disease stages and unfavourable prognoses. Nevertheless, the exact processes through which resistin influences the development and progression of HCC in diabetic patients remain unclear. This article aims to examine the existing literature on the possible use of resistin levels as a biomarker for HCC development and monitoring. Furthermore, it reviews the possible pathways of HCC initiation due to elevated resistin and offers new perspectives on comprehending the fundamental mechanisms of HCC in diabetic patients. Gaining a better understanding of these processes may yield valuable insights into HCC’s development and progression, as well as identify possible avenues for prevention and therapy.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
121
|
Yamada K, Tanaka T, Kai K, Matsufuji S, Ito K, Kitajima Y, Manabe T, Noshiro H. Suppression of NASH-Related HCC by Farnesyltransferase Inhibitor through Inhibition of Inflammation and Hypoxia-Inducible Factor-1α Expression. Int J Mol Sci 2023; 24:11546. [PMID: 37511305 PMCID: PMC10380354 DOI: 10.3390/ijms241411546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammatory processes play major roles in carcinogenesis and the progression of hepatocellular carcinoma (HCC) derived from non-alcoholic steatohepatitis (NASH). But, there are no therapies for NASH-related HCC, especially focusing on these critical steps. Previous studies have reported that farnesyltransferase inhibitors (FTIs) have anti-inflammatory and anti-tumor effects. However, the influence of FTIs on NASH-related HCC has not been elucidated. In hepatoblastoma and HCC cell lines, HepG2, Hep3B, and Huh-7, we confirmed the expression of hypoxia-inducible factor (HIF)-1α, an accelerator of tumor aggressiveness and the inflammatory response. We established NASH-related HCC models under inflammation and free fatty acid burden and confirmed that HIF-1α expression was increased under both conditions. Tipifarnib, which is an FTI, strongly suppressed increased HIF-1α, inhibited cell proliferation, and induced apoptosis. Simultaneously, intracellular interleukin-6 as an inflammation marker was increased under both conditions and significantly suppressed by tipifarnib. Additionally, tipifarnib suppressed the expression of phosphorylated nuclear factor-κB and transforming growth factor-β. Finally, in a NASH-related HCC mouse model burdened with diethylnitrosamine and a high-fat diet, tipifarnib significantly reduced tumor nodule formation in association with decreased serum interleukin-6. In conclusion, tipifarnib has anti-tumor and anti-inflammatory effects in a NASH-related HCC model and may be a promising new agent to treat this disease.
Collapse
Affiliation(s)
- Kohei Yamada
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan; (K.Y.); (S.M.); (K.I.); (Y.K.); (T.M.); (H.N.)
| | - Tomokazu Tanaka
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan; (K.Y.); (S.M.); (K.I.); (Y.K.); (T.M.); (H.N.)
| | - Keita Kai
- Department of Pathology, Saga University Faculty of Medicine, Saga 849-8501, Japan;
| | - Shohei Matsufuji
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan; (K.Y.); (S.M.); (K.I.); (Y.K.); (T.M.); (H.N.)
| | - Kotaro Ito
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan; (K.Y.); (S.M.); (K.I.); (Y.K.); (T.M.); (H.N.)
| | - Yoshihiko Kitajima
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan; (K.Y.); (S.M.); (K.I.); (Y.K.); (T.M.); (H.N.)
- Department of Surgery, National Hospital Organization Higashisaga Hospital, Saga 849-0101, Japan
| | - Tatsuya Manabe
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan; (K.Y.); (S.M.); (K.I.); (Y.K.); (T.M.); (H.N.)
| | - Hirokazu Noshiro
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan; (K.Y.); (S.M.); (K.I.); (Y.K.); (T.M.); (H.N.)
| |
Collapse
|
122
|
Zhang L, Hong J, Chen W, Zhang W, Liu X, Lu J, Tang H, Yang Z, Zhou K, Xie H, Jia C, Jiang D, Zheng S. DBF4 Dependent Kinase Inhibition Suppresses Hepatocellular Carcinoma Progression and Potentiates Anti-Programmed Cell Death-1 Therapy. Int J Biol Sci 2023; 19:3412-3427. [PMID: 37497004 PMCID: PMC10367558 DOI: 10.7150/ijbs.80351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/13/2023] [Indexed: 07/28/2023] Open
Abstract
The progression of hepatocellular carcinoma (HCC) remains a huge clinical challenge, and elucidation of the underlying molecular mechanisms is critical to develop effective therapeutic strategy. Dumbbell former 4 (DBF4) complexes with cell division cycle 7 (CDC7) to form DBF4-dependent kinase (DDK), playing instrumental roles in tumor cell survival, whereas its roles in HCC remain elusive. This study revealed that DBF4 expression was upregulated in HCC and constituted an independent prognostic factor of patient survival. We identified p65 as an upstream inducer which increased DBF4 expression by directly binding to its promoter. DBF4 accelerated HCC cell proliferation and tumorigenesis in vitro and in vivo. Mechanistically, DBF4 complexed with CDC7 to bind to the coiled coil domain of STAT3 and activate STAT3 signaling through XPO1-mediated nuclear exportation. Notably, p65 enhanced the nuclear transport of DDK and DDK-STAT3 interaction by transcriptionally upregulating XPO1. DBF4 expression positively correlated with activated STAT3 and XPO1 in HCC tissues. Furthermore, combining DDK inhibitor XL413 with anti-PD-1 immunotherapy dramatically suppressed HCC growth and prolonged the survival of HCC-bearing mouse. Our findings reveal that DDK activates STAT3 pathway and facilitates HCC progression, and demonstrate the proof of the concept of targeting DDK to improve the efficacy of HCC immunotherapy.
Collapse
Affiliation(s)
- Liang Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Jiawei Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Wei Zhang
- Department of Medical Oncology, Sir Runrun Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xi Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Jiahua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Hong Tang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Zhentao Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Ke Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Changku Jia
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Donghai Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| |
Collapse
|
123
|
Chen X, Zhang L, Wang X, Xu L, Sun J, Liu Y, Liu X, Kalvakolanu DV, Guo B. Stat3 shRNA delivery with folate receptor-modified multi-functionalized graphene oxide particles for combined infrared radiation and gene therapy in hepatocellular carcinoma. Anticancer Drugs 2023; 34:715-724. [PMID: 36729998 DOI: 10.1097/cad.0000000000001461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As a vital oncogene, a variety of inhibitors targeting Stat3 and its various upstream signaling pathways has been explored. Since small molecules, peptidomimetics and other peptide inhibitors usually lead to side effects and difficult administration, gene therapeutics that have characteristics of low toxicity and high targeting, make them an attractive alternative for targeting Stat3. A major challenge to this approach is the lack of safe delivery systems for in-vivo applications. Among the various siRNA delivery systems, nanoparticles emerge as a new tool for gene delivery with high biocompatibility, low cost, and minimal toxicity. In this study, we developed a graphene oxide (GO)-based nanocarrier, GO-polyethyleneimine (PEI)-polyethylene glycol (PEG)-folic acid (FA), as a tool targeting for Stat3-specific shRNA to mouse hepatoma cells in vitro and in vivo . Infrared photothermal therapy was combined in vivo since GO has the characteristic of infrared absorbability. Our results suggest a significant tumor growth inhibition after treatment with GO-PEI-PEG-FA- sh-Stat3 combined with infrared photothermal therapy. Thus, GO-PEI-PEG-FA appears to be a novel nano-transformer that could be used in the clinics in future.
Collapse
Affiliation(s)
- Xuyang Chen
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
- Department of Pathophysiology, Basic Medical College, Jilin University, Changchun 130021, China
| | - Ling Zhang
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology University of Maryland School Medicine, Baltimore, Maryland, USA
| | - Xiaoqin Wang
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Libo Xu
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Jicheng Sun
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Yiran Liu
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Xiaorui Liu
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology University of Maryland School Medicine, Baltimore, Maryland, USA
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| |
Collapse
|
124
|
Bodard S, Liu Y, Guinebert S, Yousra K, Asselah T. Prognostic value of genotyping in hepatocellular carcinoma: A systematic review. J Viral Hepat 2023; 30:582-587. [PMID: 36922710 DOI: 10.1111/jvh.13833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Primary liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer death. Advances in sequencing technology are opening genomics to widespread application for diagnosis and research. The poor prognosis of advanced HCC warrants a personalized approach. The objective was to assess the value of genotyping for risk stratification and prognostication of HCC. We performed a systematic review of manuscripts published on MEDLINE from 1 January 2009 to 1 January 2022, addressing the value of genotyping for HCC risk stratification and prognostication. Publication information for each has been collected using a standardized data extraction form. Twenty-five articles were analysed. This study showed that various genomics approaches (i.e., NGS, SNP, CASP or polymorphisms in circadian genes' association) provided predictive and prognostic information, such as disease control rate, median progression-free survival, and shorter median overall survival. Genotyping, which advances in understanding the molecular origin, could be a solution to predict prognosis or treatment response in patients with HCC.
Collapse
Affiliation(s)
- Sylvain Bodard
- AP-HP-centre, Service d'Imagerie Adulte, Hôpital Necker Enfants Malades, Paris, F-75015, France
- Université de Paris Cité, Paris, F-75006, France
- Sorbonne Université, CNRS UMR, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), Paris, F-75006, France
| | - Yan Liu
- Faculty of Life Science and Medicine, King's College London, London, UK
- Median Technologies, 1800 Route des Crêtes, Valbonne, F-06560, France
| | - Sylvain Guinebert
- AP-HP-centre, Service d'Imagerie Adulte, Hôpital Necker Enfants Malades, Paris, F-75015, France
- Université de Paris Cité, Paris, F-75006, France
| | | | - Tarik Asselah
- Université de Paris Cité, Paris, F-75006, France
- APHP.Nord, Service d'hépatologie, INSERM, Hôpital Beaujon, Clichy, F-92110, France
| |
Collapse
|
125
|
Nigam M, Mishra AP, Deb VK, Dimri DB, Tiwari V, Bungau SG, Bungau AF, Radu AF. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed Pharmacother 2023; 164:115015. [PMID: 37321055 DOI: 10.1016/j.biopha.2023.115015] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Among the most extensively researched processes in the development and treatment of cancer is inflammatory condition. Although acute inflammation is essential for the wound healing and reconstruction of tissues that have been damaged, chronic inflammation may contribute to the onset and growth of a number of diseases, including cancer. By disrupting the signaling processes of cells, which result in cancer induction, invasion, and development, a variety of inflammatory molecules are linked to the development of cancer. The microenvironment surrounding the tumor is greatly influenced by inflammatory cells and their subsequent secretions, which also contribute significantly to the tumor's growth, survivability, and potential migration. These inflammatory variables have been mentioned in several publications as prospective diagnostic tools for anticipating the onset of cancer. Targeting inflammation with various therapies can reduce the inflammatory response and potentially limit or block the proliferation of cancer cells. The scientific medical literature from the past three decades has been studied to determine how inflammatory chemicals and cell signaling pathways related to cancer invasion and metastasis are related. The current narrative review updates the relevant literature while highlighting the specifics of inflammatory signaling pathways in cancer and their possible therapeutic possibilities.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, 9300 Bloemfontein, South Africa.
| | - Vishal Kumar Deb
- Dietetics and Nutrition Technology Division, CSIR Institute of Himalayan Bioresource Technology, 176061 Palampur, Himanchal Pradesh, India
| | - Deen Bandhu Dimri
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi 221005, Uttar Pradesh, India
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Alexa Florina Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
126
|
Luo Y, Xiao JH. Inflammatory auxo-action in the stem cell division theory of cancer. PeerJ 2023; 11:e15444. [PMID: 37309372 PMCID: PMC10257902 DOI: 10.7717/peerj.15444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/01/2023] [Indexed: 06/14/2023] Open
Abstract
Acute inflammation is a beneficial response to the changes caused by pathogens or injuries that can eliminate the source of damage and restore homeostasis in damaged tissues. However, chronic inflammation causes malignant transformation and carcinogenic effects of cells through continuous exposure to pro-inflammatory cytokines and activation of inflammatory signaling pathways. According to the theory of stem cell division, the essential properties of stem cells, including long life span and self-renewal, make them vulnerable to accumulating genetic changes that can lead to cancer. Inflammation drives quiescent stem cells to enter the cell cycle and perform tissue repair functions. However, as cancer likely originates from DNA mutations that accumulate over time via normal stem cell division, inflammation may promote cancer development, even before the stem cells become cancerous. Numerous studies have reported that the mechanisms of inflammation in cancer formation and metastasis are diverse and complex; however, few studies have reviewed how inflammation affects cancer formation from the stem cell source. Based on the stem cell division theory of cancer, this review summarizes how inflammation affects normal stem cells, cancer stem cells, and cancer cells. We conclude that chronic inflammation leads to persistent stem cells activation, which can accumulate DNA damage and ultimately promote cancer. Additionally, inflammation not only facilitates the progression of stem cells into cancer cells, but also plays a positive role in cancer metastasis.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology & Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian-Hui Xiao
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology & Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
127
|
Li L, Ai R, Yuan X, Dong S, Zhao D, Sun X, Miao T, Guan W, Guo P, Yu S, Nan Y. LINC00886 Facilitates Hepatocellular Carcinoma Tumorigenesis by Sequestering microRNA-409-3p and microRNA-214-5p. J Hepatocell Carcinoma 2023; 10:863-881. [PMID: 37313303 PMCID: PMC10259583 DOI: 10.2147/jhc.s410891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
Purpose As the major subtype of liver cancer, hepatocellular carcinoma (HCC) suffers from high mortality and is prone to recurrence. Long non-coding RNAs (lncRNAs) are well characterized to be pivotal players contributing to HCC pathogenesis and progression. Therefore, this study intended to probe the biological functions of LINC00886 in hepatocarcinogenesis. Patients and Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to analysis of LINC00886, microRNA-409-3p (miR-409-3p), microRNA-214-5p (miR-214-5p), RAB10 and E2F2 expression. Subcellular localization of LINC00886 was identified through a fluorescent in situ hybridization (FISH) kit and a subcellular assay. Additionally, proliferated cells were determined with EdU as well as cell counting kit-8 (CCK-8) assays. Scratch and Transwell assays were applied to detect migratory and invasive cells. Apoptotic cells were measured via TUNEL staining assay. Furthermore, targeted binding between LINC00886 and miR-409-3p or miR-214-5p was validated utilizing dual-luciferase reporter assays. RAB10, E2F2 and NF-κB signaling-associated protein levels were evaluated utilizing Western blot. Results LINC00886, RAB10 and E2F2 levels were aberrantly increased, with the abnormal expressed decline of miR-409-3p and miR-214-5p, in HCC tissues, cells and peripheral blood mononuclear cells (PBMCs). Silencing LINC00886 attenuated the proliferative, migratory, invasive, and anti-apoptotic potential of HCC cells, while LINC00886 overexpression proceeded in the contrary direction. Mechanistically, miR-409-3p and miR-214-5p were validated as binding targets for LINC00886 and inverted the biological functions of LINC00886 during HCC progression. Furthermore, the LINC00886-miR-409-3p/miR-214-5p axis could regulate RAB10 and E2F2 expression via mediating NF-κB pathway activation in hepatocarcinogenesis. Conclusion Our findings indicated that LINC00886 facilitated HCC progression via absorbing miR-409-3p or miR-214-5p to upregulate RAB10 and E2F2 through activation of NF-κB pathway, offering a promising novel target for HCC therapy.
Collapse
Affiliation(s)
- Lu Li
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Rong Ai
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Xiwei Yuan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Shiming Dong
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Dandan Zhao
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Xiaoye Sun
- Department of Organ Transplant Center, Tianjin First Central Hospital, Tianjin, 300192, People’s Republic of China
| | - Tongguo Miao
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Weiwei Guan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Peilin Guo
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Songhao Yu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, 050051, People’s Republic of China
| |
Collapse
|
128
|
Anwar F, Naqvi S, Shams S, Sheikh RA, Al-Abbasi FA, Asseri AH, Baig MR, Kumar V. Nanomedicines: intervention in inflammatory pathways of cancer. Inflammopharmacology 2023; 31:1199-1221. [PMID: 37060398 PMCID: PMC10105366 DOI: 10.1007/s10787-023-01217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
Inflammation is a complex defense process that maintains tissue homeostasis. However, this complex cascade, if lasts long, may contribute to pathogenesis of several diseases. Chronic inflammation has been exhaustively studied in the last few decades, for its contribution in development and progression of cancer. The intrinsic limitations of conventional anti-inflammatory and anti-cancer therapies triggered the development of nanomedicines for more effective and safer therapies. Targeting inflammation and tumor cells by nanoparticles, encapsulated with active therapeutic agents, offers a promising outcome with patient survival. Considerable technological success has been achieved in this field through exploitation of tumor microenvironment, and recognition of molecules overexpressed on endothelial cells or macrophages, through enhanced vascular permeability, or by rendering biomimetic approach to nanoparticles. This review focusses on the inflammatory pathways in progression of a tumor, and advancement in nanotechnologies targeting these pathways. We also aim to identify the gaps that hinder the successful clinical translation of nanotherapeutics with further clinical studies that will allow oncologist to precisely identify the patients who may be benefited from nanotherapy at time when promotion or progression of tumor initiates. It is postulated that the nanomedicines, in near future, will shift the paradigm of cancer treatment and improve patient survival.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Saiba Shams
- School of Pharmaceutical Education & Research, (Deemed to be University), New Delhi, 110062, India
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mirza Rafi Baig
- Department of Clinical Pharmacy & Pharmacotherapeutics. Dubai Pharmacy College for Girls, Po Box 19099, Dubai, United Arab Emirates
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
129
|
Sun J, Jin X, Zhang X, Zhang B. HMGA2 knockdown alleviates the progression of nonalcoholic fatty liver disease (NAFLD) by downregulating SNAI2 expression. Cell Signal 2023:110741. [PMID: 37268162 DOI: 10.1016/j.cellsig.2023.110741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex disease that is considered as the next major health epidemic with alarmingly increasing global prevalence. To explore the pathogenesis of NAFLD, data from GSE118892 were analyzed. High mobility group AT-hook 2 (HMGA2), a member of the high mobility group family, is declined in liver tissues of NAFLD rats. However, its role in NAFLD remains unknown. This study attempted to identify the multiple roles of HMGA2 in NAFLD process. NAFLD was induced in rats using a high-fat diet (HFD). In vivo, HMGA2 knockdown using adenovirus system attenuated liver injury and liver lipid deposition, accompanied by decreased NAFLD score, increased liver function, and decreased CD36 and FAS, indicating the deceleration of NAFLD progression. Moreover, HMGA2 knockdown restrained liver inflammation by decreasing the expression of related inflammatory factors. Importantly, HMGA2 knockdown attenuated liver fibrosis via downregulating the expression of fibrous proteins, and inhibiting the activation of TGF-β1/SMAD signaling pathway. In vitro, HMGA2 knockdown relieved palmitic acid (PA)-induced hepatocyte injury and attenuated TGF-β1-induced liver fibrosis, consistent with in vivo findings. Strikingly, HMGA2 activated the transcription of SNAI2, which was evidenced by the dual luciferase assays. Moreover, HMGA2 knockdown largely downregulated SNAI2 levels. Indeed, SNAI2 overexpression effectively blocked the inhibitory effect of HMGA2 knockdown on NAFLD. Totally, our findings reveal that HMGA2 knockdown alleviates the progression of NAFLD by directly regulating the transcription of SNAI2. HMGA2 inhibition may emerge as a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Jing Sun
- Department of Gastroenterology, the First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China.
| | - Xiuli Jin
- Department of Gastroenterology, the First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Xinhe Zhang
- Department of Gastroenterology, the First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Birong Zhang
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
130
|
Kumar GG, Kilari EK, Nelli G, Salleh N. Oral administration of Turnera diffusa willd. ex Schult. extract ameliorates steroidogenesis and spermatogenesis impairment in the testes of rats with type-2 diabetes mellitus. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116638. [PMID: 37187362 DOI: 10.1016/j.jep.2023.116638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Turnera diffusa Willd. ex Schult. (T. diffusa) has traditionally been used to treat male reproductive dysfunction and have aphrodisiac properties. AIMS OF THE STUDY This study aims to investigate the ability of T. diffusa to ameliorate the impairment in testicular steroidogenesis and spermatogenesis in DM that might help to improve testicular function, and subsequently restore male fertility. MATERIALS AND METHODS DM-induced adult male rats were given 100 mg/kg/day and 200 mg/kg/day T. diffusa leaf extract orally for 28 consecutive days. Rats were then sacrificed; sperm and testes were harvested and sperm parameter analysis were performed. Histo-morphological changes in the testes were observed. Biochemical assays were performed to measure testosterone and testicular oxidative stress levels. Immunohistochemistry and double immunofluorescence were used to monitor oxidative stress and inflammation levels in testes as well as Sertoli and steroidogenic marker proteins' expression. RESULTS Treatment with T. diffusa restores sperm count, motility, and viability near normal and reduces sperm morphological abnormalities and sperm DNA fragmentation in diabetic rats. T. diffusa treatment also reduces testicular NOX-2 and lipid peroxidation levels, increases testicular antioxidant enzymes (SOD, CAT, and GPx) activities, ameliorates testicular inflammation via downregulating NF-ΚB, p-Ikkβ and TNF-α and upregulating IκBα expression. In diabetic rats, T. diffusa treatment increases testicular steroidogenic proteins (StAR, CYP11A1, SHBG, and ARA54, 3 and 17β-HSD) and plasma testosterone levels. Furthermore, in diabetic rats treated with T. diffusa, Sertoli cell marker proteins including Connexin 43, N-cadherin, and occludin levels in the testes were elevated. CONCLUSION T. diffusa treatment could help to ameliorate the detrimental effects of DM on the testes, thus this plant has potential to be used to restore male fertility.
Collapse
Affiliation(s)
- Gowri Gopa Kumar
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Eswar Kumar Kilari
- Pharmacology Division, A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, 530 003, India
| | - Giribabu Nelli
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
131
|
Ye C, Ruan X, Zhao Y, Zhu H, Wang C, Cheng Z, Peng H. BP‑1‑102 exerts antitumor effects on T‑cell acute lymphoblastic leukemia cells by suppressing the JAK2/STAT3/c‑Myc signaling pathway. Exp Ther Med 2023; 25:191. [PMID: 37020528 PMCID: PMC10068411 DOI: 10.3892/etm.2023.11890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
Drug resistance and relapse of T-cell acute lymphoblastic leukemia (T-ALL) remain significant concerns for physicians; hence, the development and screening of effective targeted drugs remain important. Considering that STAT3 is emerging as a potential therapeutic target for T-ALL, T-ALL cell lines (MOLT-4 and CUTLL1) were treated with BP-1-102, a small-molecule inhibitor that blocks STAT3 phosphorylation. Cell Counting Kit-8 assay and colony formation assay results showed that BP-1-102 inhibited T-ALL cell proliferation and colony formation. Flow cytometry and morphological results demonstrated that BP-1-102 dramatically induced apoptosis and caused cell cycle arrest at the G0/G1 phase in T-ALL cell lines. Western blotting results indicated that BP-1-102 suppressed the JAK2/STAT3/c-Myc pathway activity in T-ALL cell lines. In conclusion, BP-1-102 suppressed the JAK2/STAT3/c-Myc signaling pathway in T-ALL cells and exerted various antitumor effects, representing a promising targeted antitumor inhibitor.
Collapse
Affiliation(s)
- Can Ye
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan 410000, P.R. China
- Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan 410000, P.R. China
| | - Xueqin Ruan
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan 410000, P.R. China
- Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan 410000, P.R. China
| | - Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan 410000, P.R. China
- Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan 410000, P.R. China
| | - Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan 410000, P.R. China
- Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan 410000, P.R. China
| | - Canfei Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan 410000, P.R. China
- Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan 410000, P.R. China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan 410000, P.R. China
- Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan 410000, P.R. China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan 410000, P.R. China
- Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan 410000, P.R. China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
132
|
Gonzales AL, Huang SKH, Sevilla UTA, Hsieh CY, Tsai PW. In Silico Analysis of Anti-Inflammatory and Antioxidant Properties of Bioactive Compounds from Crescentia cujete L. Molecules 2023; 28:molecules28083547. [PMID: 37110781 PMCID: PMC10145697 DOI: 10.3390/molecules28083547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Crescentia cujete is widely known as a medical plant with broad indigenous ethnomedicinal uses, including anti-inflammatory, and antioxidant. Despite being used for remedies and ethnomedicinal purposes, the benefits obtained from C. cujete still need to be fully utilized. The underwhelming studies on its pharmacological potential, bioactive compounds, and mechanism of action keep the pharmacological and new drug discovery progress of this plant slow. This study focuses on the incorporation of in silico analyses such as ADME prediction and molecular docking simulations on the bioactive compounds identified in the plant to assess their potential for antioxidant and anti-inflammatory applications. A comparison of the ADME properties and molecular docking scores showed that naringenin, pinocembrin, and eriodictyol had the most potential to act as inhibitors of the target proteins involved in inflammation and oxidation pathways against the positive controls.
Collapse
Affiliation(s)
- Alecsanndra L Gonzales
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
| | - Steven Kuan-Hua Huang
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan 711, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ureah Thea A Sevilla
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
| | - Cheng-Yang Hsieh
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Laboratory of Oncology Pharmacy Practice and Science, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai-shi 980-8577, Japan
| | - Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| |
Collapse
|
133
|
Zheng P, Xiao W, Zhang J, Zheng X, Jiang J. The role of AIM2 in human hepatocellular carcinoma and its clinical significance. Pathol Res Pract 2023; 245:154454. [PMID: 37060822 DOI: 10.1016/j.prp.2023.154454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND AIM2 (absent in melanoma 2) was first discovered as the gene which was not expressed in melanoma cells. It is established that the AIM2 inflammasome function as the double-stranded DNA (dsDNA) sensor, and it plays a crucial role in infectious disorders and cancer. Little is known about the AIM2 expression pattern and its clinical significance in human hepatocellular carcinoma (HCC), understating how AIM2 altered the HCC cells is of high clinical interest. METHODS Immunohistochemistry was performed to investigate the AIM2 expression in HCC tissues. Then we constructed the ectopic AIM2-expressed HCC cell line by lentiviral transduction. Biological functional assays were used to analyze the clinical significance of AIM2. RESULTS AIM2 expression was significantly decreased in human HCC tissues compared with adjacent normal tissues, and the overall survival of HCC patients with higher AIM2 expression was significantly better. Ectopic expression of AIM2 in HCC cells significantly inhibited migration and promoted apoptosis. Furthermore, our study revealed that the notch signaling pathway could be involved in the regulation of AIM2 in the cellular network in HCC cells. AIM2 delayed the tumor progression and correlated with immune cell infiltration. CONCLUSION In this study, we suggested AIM2 played an inhibitory role in regulating the growth and metastasis of HCC, which supported the notion that AIM2 could serve as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Panpan Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Wenlu Xiao
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215006, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China.
| |
Collapse
|
134
|
Cong M, Ren X, Song Y, Pang X, Tian X, Liu Y, Guo P, Wang J. Ochrathinols A and B, two pairs of sulfur-containing racemates from an Antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702 inhibit LPS-induced pro-inflammatory cytokines and NO production. PHYTOCHEMISTRY 2023; 208:113593. [PMID: 36709018 DOI: 10.1016/j.phytochem.2023.113593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Ochrathinols A and B ((±)-1 and (±)-2), two undescribed sulfur-containing racemates, and ochracids A and B (3 and 4), two unprecedented pyrrolizidine alkaloids, were isolated from an Antarctic soil-derived fungus Aspergillus ochraceopetaliformis SCSIO 05702. Their structures including absolute configurations were determined through extensive spectroscopic analysis, chiral-phase HPLC analysis, quantum ECD calculations, and X-ray single-crystal diffraction. Ochrathinols A and B are unprecedented sulfur natural products featuring a novel 3-methylhexahydro-2H-cyclopenta [b]thiophene core. Interestingly, ochrathinol A ((±)-1) outstandingly suppressed the release of LPS-induced IL-1β, IL-6, and TNF-α inflammatory cytokines with concentration of 10 μM and alleviated the unbalanced NAD+/NADH ratio caused by LPS in RAW264.7 macrophages.
Collapse
Affiliation(s)
- Mengjing Cong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medical/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xue Ren
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yue Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medical/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medical/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medical/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medical/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| | - Peng Guo
- Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medical/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
135
|
Zhou Y, Jia K, Wang S, Li Z, Li Y, Lu S, Yang Y, Zhang L, Wang M, Dong Y, Zhang L, Zhang W, Li N, Yu Y, Cao X, Hou J. Malignant progression of liver cancer progenitors requires lysine acetyltransferase 7-acetylated and cytoplasm-translocated G protein GαS. Hepatology 2023; 77:1106-1121. [PMID: 35344606 PMCID: PMC10026959 DOI: 10.1002/hep.32487] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Hepatocarcinogenesis goes through HCC progenitor cells (HcPCs) to fully established HCC, and the mechanisms driving the development of HcPCs are still largely unknown. APPROACH AND RESULTS Proteomic analysis in nonaggregated hepatocytes and aggregates containing HcPCs from a diethylnitrosamine-induced HCC mouse model was screened using a quantitative mass spectrometry-based approach to elucidate the dysregulated proteins in HcPCs. The heterotrimeric G stimulating protein α subunit (GαS) protein level was significantly increased in liver cancer progenitor HcPCs, which promotes their response to oncogenic and proinflammatory cytokine IL-6 and drives premalignant HcPCs to fully established HCC. Mechanistically, GαS was located at the membrane inside of hepatocytes and acetylated at K28 by acetyltransferase lysine acetyltransferase 7 (KAT7) under IL-6 in HcPCs, causing the acyl protein thioesterase 1-mediated depalmitoylation of GαS and its cytoplasmic translocation, which were determined by GαS K28A mimicking deacetylation or K28Q mimicking acetylation mutant mice and hepatic Kat7 knockout mouse. Then, cytoplasmic acetylated GαS associated with signal transducer and activator of transcription 3 (STAT3) to impede its interaction with suppressor of cytokine signaling 3, thus promoting in a feedforward manner STAT3 phosphorylation and the response to IL-6 in HcPCs. Clinically, GαS, especially K28-acetylated GαS, was determined to be increased in human hepatic premalignant dysplastic nodules and positively correlated with the enhanced STAT3 phosphorylation, which were in accordance with the data obtained in mouse models. CONCLUSIONS Malignant progression of HcPCs requires increased K28-acetylated and cytoplasm-translocated GαS, causing enhanced response to IL-6 and driving premalignant HcPCs to fully established HCC, which provides mechanistic insight and a potential target for preventing hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ye Zhou
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Kaiwei Jia
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Suyuan Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Zhenyang Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yunhui Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Shan Lu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yingyun Yang
- Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyuan Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Mu Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yue Dong
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Luxin Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Wannian Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Nan Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yizhi Yu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
- Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, China
| | - Jin Hou
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| |
Collapse
|
136
|
Basha NJ. Small Molecules as Anti‐inflammatory Agents: Molecular Mechanisms and Heterocycles as Inhibitors of Signaling Pathways. ChemistrySelect 2023. [DOI: 10.1002/slct.202204723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru Karnataka-560043 India
| |
Collapse
|
137
|
Chen YL, Hsieh CC, Chu PM, Chen JY, Huang YC, Chen CY. Roles of protein tyrosine phosphatases in hepatocellular carcinoma progression (Review). Oncol Rep 2023; 49:48. [PMID: 36660927 PMCID: PMC9887465 DOI: 10.3892/or.2023.8485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/15/2022] [Indexed: 01/20/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents almost 80% of all liver cancers, is the sixth most common cancer and is the second‑highest cause of cancer‑related deaths worldwide. Protein tyrosine phosphatases (PTPs), which are encoded by the largest family of phosphatase genes, play critical roles in cellular responses and are implicated in various signaling pathways. Moreover, PTPs are dysregulated and involved in various cellular processes in numerous cancers, including HCC. Kinases and phosphatases are coordinators that modulate cell activities and regulate signaling responses. There are multiple interacting signaling networks, and coordination of these signaling networks in response to a stimulus determines the physiological outcome. Numerous issues, such as drug resistance and inflammatory reactions in the tumor microenvironment, are implicated in cancer progression, and the role of PTPs in these processes has not been well elucidated. Therefore, the present review focused on discussing the relationship of PTPs with inflammatory cytokines and chemotherapy/targeted drug resistance, providing detailed information on how PTPs can modulate inflammatory reactions and drug resistance to influence progression in HCC.
Collapse
Affiliation(s)
- Yi-Li Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Ching-Chuan Hsieh
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan, R.O.C
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Jing-Yi Chen
- Department of Medical Laboratory Science, College of Medicine, I‑Shou University, Kaohsiung 82445, Taiwan, R.O.C
| | - Yu-Chun Huang
- Aging and Diseases Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan, R.O.C
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| |
Collapse
|
138
|
Si Z, Yang G, Wang X, Yu Z, Pang Q, Zhang S, Qian L, Ruan Y, Huang J, Yu L. An unconventional cancer-promoting function of methamphetamine in hepatocellular carcinoma. Life Sci Alliance 2023; 6:e202201660. [PMID: 36669783 PMCID: PMC9873983 DOI: 10.26508/lsa.202201660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 01/22/2023] Open
Abstract
For the past decade, the prevalence and mortality of methamphetamine (METH) use have doubled, suggesting that METH use could be the next substance use crisis worldwide. Ingested METH is transformed into other products in the liver, a major metabolic organ. Studies have revealed that METH causes deleterious inflammatory response, oxidative stress, and extensive DNA damage. These pathological damages are driving factors of hepatocellular carcinoma (HCC). Nonetheless, the potential role of METH in HCC and the underlying mechanisms remain unknown. Herein, we found a higher HCC incidence in METH abusers. METH promoted cellular proliferation, migration, and invasion in two human-derived HCC cells. Consistently, METH uptake promoted HCC progression in a xenograft mouse model. Mechanistically, METH exposure induced ROS production, which activated the Ras/MEK/ERK signaling pathway. Clearance of ROS by NAC suppressed METH-induced activation of Ras/ERK1/2 pathways, leading to arrest of HCC xenograft formation in nude mice. To the best of our knowledge, this is the first study to substantiate that METH promotes HCC progression and inhibition of ROS may reverse this process.
Collapse
Affiliation(s)
- Zizhen Si
- Department of Pharmacy, The Affiliated Hospital of Ningbo University Medical School, Ningbo, P. R. China
- School of Medicine, Ningbo University, Ningbo, P. R. China
| | - GuanJun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, P. R. China
| | - Xidi Wang
- School of Medicine, Ningbo University, Ningbo, P. R. China
| | - Zhaoying Yu
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Qian Pang
- School of Medicine, Ningbo University, Ningbo, P. R. China
| | | | - Liyin Qian
- School of Medicine, Ningbo University, Ningbo, P. R. China
| | - Yuer Ruan
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Jing Huang
- Department of Pharmacy, The Affiliated Hospital of Ningbo University Medical School, Ningbo, P. R. China
| | - Liu Yu
- School of Medicine, Ningbo University, Ningbo, P. R. China
| |
Collapse
|
139
|
Weng YS, Chiang IT, Tsai JJ, Liu YC, Hsu FT. Lenvatinib Synergistically Promotes Radiation Therapy in Hepatocellular Carcinoma by Inhibiting Src/STAT3/NF-κB-Mediated Epithelial-Mesenchymal Transition and Metastasis. Int J Radiat Oncol Biol Phys 2023; 115:719-732. [PMID: 36245124 DOI: 10.1016/j.ijrobp.2022.09.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE This study suggested that lenvatinib may incapacitate hepatocellular carcinoma (HCC) to radiation treatment by abrogating radiation-induced Src/signal transducer and the activator of transcription 3 signaling (STAT3)/nuclear factor-κB (NF-κB) to escalate radiation-induced extrinsic and intrinsic apoptosis. These findings uncover the role of targeting Src and its arbitrating epithelial-mesenchymal transition (EMT), which could increase the anti-HCC efficacy of radiation therapy (RT). Lenvatinib and sorafenib are multikinase inhibitors used to treat HCC. Lenvatinib is noninferior to sorafenib in the therapeutic response in HCC. However, whether lenvatinib intensifies the anti-HCC efficacy of RT is ambiguous. Several oncogenic kinases and transcription factors, such as Src, STAT3, and NF-κB, enhance the radiosensitivity of cancers. Therefore, we aimed to investigate the roles of the Src/STAT3/NF-κB axis in HCC after RT treatment and assessed whether targeting Src by lenvatinib may enhance the effectiveness of RT. METHODS AND MATERIALS Hep3B, Huh7, HepG2, and SK-Hep1 HCC cells and 2 types of animal models were used to identify the efficacy of RT combined with lenvatinib. Cellular toxicity, apoptosis, DNA damage, EMT/metastasis regulation, and treatment efficacy were validated by colony formation, flow cytometry, Western blotting, and in vivo experiments, respectively. Knockdown of Src by siRNA was also used to validate the role of Src in RT treatment. RESULTS Silencing Src reduced STAT3/NF-κB signaling and sensitized HCC to radiation. Lenvatinib reversed radiation-elicited Src/STAT3/NF-κB signaling while enhancing the anti-HCC efficacy of radiation. Both lenvatinib and siSrc promoted the radiation effect of cell proliferation on suppression, inhibition of the invasion ability, and induction of apoptosis in HCC. Lenvatinib also alleviated radiation-triggered oncogenic and EMT-related protein expression. CONCLUSIONS Our findings uncovered the role of the Src/STAT3/NF-κB regulatory axis in response to radiation-induced toxicity and confirmed Src as the key regulatory molecule for radiosensitization of HCC evoked by lenvatinib.
Collapse
Affiliation(s)
- Yueh-Shan Weng
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan
| | - I-Tsang Chiang
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan; Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan; Department of Medical Imaging and Radiologic Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan; Medical administrative center, Show Chwan Memorial Hospital, Changhua 500, Taiwan, ROC
| | - Jai-Jen Tsai
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Yuan-Shan/Su-Ao Branch, Yi-Lan 260, Taiwan; Department of Medicine/Medical Research and Education, Taipei Veterans General Hospital, Yuan-Shan/Su-Ao Branch, Yi-Lan 260, Taiwan; Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, New Taipei City 231, Taiwan
| | - Yu-Chang Liu
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan; Department of Medical Imaging and Radiologic Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan; Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Changhua 505, Taiwan
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan.
| |
Collapse
|
140
|
Peng L, Ma Z, Chu W, Jiang P, Fu Y, Wang P. Identification and hepatoprotective activity of total glycosides of paeony with high content of paeoniflorin extracted from Paeonia lactiflora Pall. Food Chem Toxicol 2023; 173:113624. [PMID: 36681265 DOI: 10.1016/j.fct.2023.113624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
The aims of this work were to obtain total glucosides of paeony (TGP) with high content of paeoniflorin and evaluate the hepo-protective properties of TGP. After optimization by response surface methodology, optimized conditions were as follows: extraction time 33.0 min, extraction temperature 48 °C, ethanol content 44%, and the yield of TGP was 47.68 mg/g. Moreover, under established macroporous resin purification, paeoniflorin content of TGP achieved 67.6% in 1.5 L scale-up verification experiment. Purified TGP (p-TGP) was further analyzed by UHPLC-Q-Orbitrap-MS/MS, and 35 compouds including paeoniflorin were identified. The obtained p-TGP effectively reduced biochemical indexes and inflammatory cytokines in liver tissue of acute alcoholic liver injury mice model. Depending on this work, TGP with definitive compound composition exhibited great protective effect against acute alcoholic liver injury in vivo. Furthermore, the finding of this work will be helpful to understand the relationship between compound composition and functional properties of Chinese herb extracts.
Collapse
Affiliation(s)
- Lin Peng
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, 318000, China
| | - Zhe Ma
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, 318000, China
| | - Wenhui Chu
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, 318000, China
| | - Peisi Jiang
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, 318000, China
| | - Yongqian Fu
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, 318000, China.
| | - Pan Wang
- Traditional Chinese Medicine Industry Development and Promotion Center of Pan'an County, 89 Guyue Road, Pan'an, 322300, China.
| |
Collapse
|
141
|
Dong J, Chen J, Li Q, Qiu S. Knockdown of FKBP3 suppresses nasopharyngeal carcinoma cell growth, invasion and migration, deactivated NF-κB/IL-6 signaling pathway through inhibiting histone deacetylase 2 expression. CHINESE J PHYSIOL 2023; 66:85-92. [PMID: 37082996 DOI: 10.4103/cjop.cjop-d-22-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a prevalent malignant tumor worldwide. FKBP3 has been reported to participate in tumorigenesis. Nevertheless, the role and mechanism of FKBP3 in NPC remains unclear. In this study, FKBP3 expression was observed to upregulate in NPC patients and cells. Moreover, knockdown of FKBP3 suppressed cell growth, invasion, and migration in HK1 and C666-1 cells. Mechanically, FKBP3 could enhance the p-p65 expression and activated p65 signaling pathway and increased interleukin-6 (IL-6) expression through enhancing histone deacetylase 2 (HDAC2) expression. In rescued experiment, the overexpression of HDAC2 restored diminished cell growth, invasion, and migration caused by FKBP3 depletion. In summary, the knockdown of FKBP3 suppressed NPC cell growth, invasion and migration, deactivated nuclear factor-κB/IL-6 signaling pathway through inhibiting HDAC2 expression, providing a potential therapeutic strategy for NPC treatment.
Collapse
Affiliation(s)
- Jiadi Dong
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, Zhejiang, China
| | - Jingjing Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, Zhejiang, China
| | - Qun Li
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, Zhejiang, China
| | - Shijie Qiu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
142
|
Sudershan A, Younis M, Sudershan S, Kumar P. Migraine as an inflammatory disorder with microglial activation as a prime candidate. Neurol Res 2023; 45:200-215. [PMID: 36197286 DOI: 10.1080/01616412.2022.2129774] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
BACKGROUND The lower threshold of neuronal hyperexcitability has been correlated with migraines for decades but as technology has progressed, it has now become conceivable to learn more about the migraine disease. Apart from the "cortical spreading depression" and "activation of the trigeminovascular system", inflammation has been increasingly recognized as a possible pathogenic process that may have the possibility to regulate the disease severity. Microglial cells, the prime candidate of the innate immune cells of central nervous tissue, has been associated with numerous diseases; including cancer, neurodegenerative disorders, and inflammatory disorders. AIM In this review, we have attempted to link the dot of various microglial activation signaling pathways to enlighten the correlation between microglial involvement and the progression of migraine conditions. METHOD A structured survey of research articles and review of the literature was done in the electronic databases of Google Scholar, PubMed, Springer, and Elsevier until 31 December 2021. RESULT & CONCLUSION Of 1136 articles found initially and screening of 1047 records, 47 studies were included for the final review. This review concluded that inflammation and microglial overexpression as the prime candidate, plays an important role in the modulation of migraine and are responsible for the progression toward chronification. Therefore, this increases the possibility of preventing migraine development and chronification by blocking microglia overexpression.
Collapse
Affiliation(s)
- Amrit Sudershan
- Institute of Human Genetics, University of Jammu, Jammu and Kashmir 180006, India
| | - Mohd Younis
- Department of Human Genetics and Molecular Biology, Bharathair University, Coimbatore, 641046, India
| | - Srishty Sudershan
- Department of Zoology, University of Jammu, Jammu and Kashmir, 180006, India
| | - Parvinder Kumar
- Institute of Human Genetics, University of Jammu, Jammu and Kashmir 180006, India.,Department of Zoology, University of Jammu, Jammu and Kashmir, 180006, India
| |
Collapse
|
143
|
Li C, Zhang W, Chang X, Di X, Xie Q, Lin B, Zhang H, Ye Z, Lan M, Lian J, Zhang H, Qiu X, Zeng J, Huang M. The upregulation of peripheral blood polyamine metabolites spermidine and spermine in children with hand, foot, mouth disease is related to enterovirus 71 capsid protein VP1, but not VP4. Transl Pediatr 2023; 12:194-207. [PMID: 36891375 PMCID: PMC9986783 DOI: 10.21037/tp-23-41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is a common viral childhood illness caused most commonly by enterovirus 71 (EV71) and coxsackievirus A16. The pathogenesis of EV71 has been extensively studied, and the regulation of the host immune response is suspected to aggravate the serious complications induced by EV71. Our previous research showed that EV71 infection significantly increased the release of circulating interleukin (IL)-6, IL-10, IL-13, and IL-27. Notably, these cytokines are related to the EV71 infection risk and clinical stage. Polyamines are compounds that are ubiquitous in mammalian cells and play a key role in various cellular processes. Several studies have shown that targeting polyamine metabolic pathways can reduce infections caused by viruses. However, the significance of polyamine metabolism in EV71 infection remains largely unknown. METHODS Serum samples from 82 children with HFMD and 70 healthy volunteers (HVs) were collected to determine the polyamine metabolites spermidine (SPD) and spermine (SPM), and IL-6 levels. In addition, peripheral blood mononuclear cells (PBMCs) were treated with EV71 viral protein 1 (VP1) and EV71 VP4, and the cells and supernatant were then collected to analyze the expression of polyamine metabolism-related enzymes by western blot. The data were analyzed using GraphPad Prism 7.0 software (USA). RESULTS The serum polyamine metabolites SPD and SPM were elevated in the HFMD patients, especially in the EV71-infected children. Further, a positive correlation was found between serum SPD and IL-6 levels in the EV71-infected children. We also found that the upregulation of peripheral blood polyamine metabolites in the EV71-infected HFMD children was related to EV71 capsid protein VP1, but not VP4. VP1 may promote the expression of polyamine metabolism-related enzymes and promote the production of polyamine metabolites, thereby upregulating the SPD/nuclear factor kappa B/IL-6 signaling pathway. However, VP4 has the opposite effect in this process. CONCLUSIONS Our results suggest that EV71 capsid protein may regulate the polyamine metabolic pathways of infected cells in a variety of ways. This study provides insights into the mechanism of EV71 infection and polyamine metabolism and has good reference value for the development of EV71 vaccine.
Collapse
Affiliation(s)
- Cong Li
- Department of Stomatology, Dongguan Maternal and Child Health Care Hospital, Dongguan, China
| | - Weijian Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Xiaodan Chang
- Department of Neonatology, The Second Central Hospital of Baoding City, Baoding, China
| | - Xiaohua Di
- Department of Pediatrics, Dongguan People's Hospital, Dongguan, China
| | - Qi Xie
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Hui Zhang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China.,Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
| | - Minsheng Lan
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Jiachun Lian
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Hailiang Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Xianxiu Qiu
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Jincheng Zeng
- Department of Stomatology, Dongguan Maternal and Child Health Care Hospital, Dongguan, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China.,Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
| | - Mingyuan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| |
Collapse
|
144
|
Yuan C, Fan J, Jiang L, Ye W, Chen Z, Wu W, Huang Q, Qian L. Integrated Analysis of Gut Microbiome and Liver Metabolome to Evaluate the Effects of Fecal Microbiota Transplantation on Lipopolysaccharide/D-galactosamine-Induced Acute Liver Injury in Mice. Nutrients 2023; 15:nu15051149. [PMID: 36904149 PMCID: PMC10005546 DOI: 10.3390/nu15051149] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Acute liver failure (ALF) refers to the occurrence of massive hepatocyte necrosis in a short time, with multiple complications, including inflammatory response, hepatic encephalopathy, and multiple organ failure. Additionally, effective therapies for ALF are lacking. There exists a relationship between the human intestinal microbiota and liver, so intestinal microbiota modulation may be a strategy for therapy of hepatic diseases. In previous studies, fecal microbiota transplantation (FMT) from fit donors has been used to modulate intestinal microbiota widely. Here, we established a mouse model of lipopolysaccharide (LPS)/D-galactosamine (D-gal) induced ALF to explore the preventive and therapeutic effects of FMT, and its mechanism of action. We found that FMT decreased hepatic aminotransferase activity and serum total bilirubin levels, and decreased hepatic pro-inflammatory cytokines in LPS/D-gal challenged mice (p < 0.05). Moreover, FMT gavage ameliorated LPS/D-gal induced liver apoptosis and markedly reduced cleaved caspase-3 levels, and improved histopathological features of the liver. FMT gavage also restored LPS/D-gal-evoked gut microbiota dysbiosis by modifying the colonic microbial composition, improving the abundance of unclassified_o_Bacteroidales (p < 0.001), norank_f_Muribaculaceae (p < 0.001), and Prevotellaceae_UCG-001 (p < 0.001), while reducing that of Lactobacillus (p < 0.05) and unclassified_f_Lachnospiraceae (p < 0.05). Metabolomics analysis revealed that FMT significantly altered LPS/D-gal induced disordered liver metabolites. Pearson's correlation revealed strong correlations between microbiota composition and liver metabolites. Our findings suggest that FMT ameliorate ALF by modulating gut microbiota and liver metabolism, and can used as a potential preventive and therapeutic strategy for ALF.
Collapse
Affiliation(s)
- Chunchun Yuan
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinghui Fan
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310004, China
| | - Lai Jiang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Ye
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhuo Chen
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Wenzi Wu
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Qixin Huang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lichun Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-88982171
| |
Collapse
|
145
|
van Son KC, Verschuren L, Hanemaaijer R, Reeves H, Takkenberg RB, Drenth JPH, Tushuizen ME, Holleboom AG. Non-Parenchymal Cells and the Extracellular Matrix in Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease. Cancers (Basel) 2023; 15:1308. [PMID: 36831649 PMCID: PMC9954729 DOI: 10.3390/cancers15041308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) in the setting of non-alcoholic fatty liver disease (NAFLD)-related cirrhosis and even in the pre-cirrhotic state is increasing in incidence. NAFLD-related HCC has a poor clinical outcome as it is often advanced at diagnosis due to late diagnosis and systemic treatment response is poor due to reduced immune surveillance. Much of the focus of molecular research has been on the pathological changes in hepatocytes; however, immune cells, hepatic stellate cells, liver sinusoidal endothelial cells and the extracellular matrix may play important roles in the pathogenesis of NAFLD-related HCC as well. Here, we review the role of non-parenchymal cells in the liver in the pathogenesis of HCC in the context of NAFLD-NASH, with a particular focus on the innate and the adaptive immune system, fibrogenesis and angiogenesis. We review the key roles of macrophages, hepatic stellate cells (HSCs), T cells, natural killer (NK) cells, NKT cells and liver sinusoidal endothelial cells (LSECs) and the role of the extracellular matrix in hepatocarcinogenesis within the steatotic milieu.
Collapse
Affiliation(s)
- Koen C. van Son
- Department of Vascular and Internal Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Lars Verschuren
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research, 2333 BE Leiden, The Netherlands
| | - Roeland Hanemaaijer
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research, 2333 BE Leiden, The Netherlands
| | - Helen Reeves
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne NE2 4HH, UK
| | - R. Bart Takkenberg
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Joost P. H. Drenth
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Maarten E. Tushuizen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Adriaan G. Holleboom
- Department of Vascular and Internal Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
146
|
Li X, Wang Z, Jiao C, Zhang Y, Xia N, Yu W, Chen X, Wikana LP, Liu Y, Sun L, Chen M, Xiao Y, Shi Y, Han S, Pu L. Hepatocyte SGK1 activated by hepatic ischemia-reperfusion promotes the recurrence of liver metastasis via IL-6/STAT3. J Transl Med 2023; 21:121. [PMID: 36788538 PMCID: PMC9926712 DOI: 10.1186/s12967-023-03977-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Liver metastasis is the leading cause of death in patients with colorectal cancer (CRC). Surgical resection of the liver metastases increases the incidence of long-term survival in patients with colorectal liver metastasis (CRLM). However, many patients experience CRLM recurrence after the initial liver resection. As an unavoidable pathophysiological process in liver surgery, liver ischemia-reperfusion (IR) injury increases the risk of tumor recurrence and metastasis. METHODS Colorectal liver metastasis (CRLM) mouse models and mouse liver partial warm ischemia models were constructed. The levels of lipid peroxidation were detected in cells or tissues. Western Blot, qPCR, elisa, immunofluorescence, immunohistochemistry, scanning electron microscope, flow cytometry analysis were conducted to evaluate the changes of multiple signaling pathways during CRLM recurrence under liver ischemia-reperfusion (IR) background, including SGK1/IL-6/STAT3, neutrophil extracellular traps (NETs) formation, polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) infiltration. RESULTS Hepatocyte serum/glucocorticoid regulated kinase 1 (SGK1) was activated in response to hepatic ischemia-reperfusion injury to pass hepatocyte STAT3 phosphorylation and serum amyloid A (SAA) hyperactivation signals in CRLM-IR mice, such regulation is dependent on SGK-activated IL-6 autocrine. Administration of the SGK1 inhibitor GSK-650394 further reduced ERK-related neutrophil extracellular traps (NETs) formation and polymorphonucler myeloid-derived suppressor cells (PMN-MDSC) infiltration compared with targeting hepatocyte SGK1 alone, thereby alleviating CRLM in the context of IR. CONCLUSIONS Our study demonstrates that hepatocyte and immune cell SGK1 synergistically promote postoperative CRLM recurrence in response to hepatic IR stress, and identifies SGK1 as a translational target that may improve postoperative CRLM recurrence.
Collapse
Affiliation(s)
- Xiangdong Li
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Ziyi Wang
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Chenyu Jiao
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yu Zhang
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Nan Xia
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Wenjie Yu
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Xuejiao Chen
- grid.89957.3a0000 0000 9255 8984Department of General Surgery, Affiliated Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - Likalamu Pascalia Wikana
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yue Liu
- grid.89957.3a0000 0000 9255 8984Department of General Surgery, Affiliated Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - Linfeng Sun
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Minhao Chen
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yuhao Xiao
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yuhua Shi
- Department of General Surgery, Affiliated Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China.
| | - Sheng Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China. .,NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China. .,NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| |
Collapse
|
147
|
Rohbeck E, Niersmann C, Köhrer K, Wachtmeister T, Roden M, Eckel J, Romacho T. Positive allosteric GABA A receptor modulation counteracts lipotoxicity-induced gene expression changes in hepatocytes in vitro. Front Physiol 2023; 14:1106075. [PMID: 36860523 PMCID: PMC9968943 DOI: 10.3389/fphys.2023.1106075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: We have previously shown that the novel positive allosteric modulator of the GABAA receptor, HK4, exerts hepatoprotective effects against lipotoxicity-induced apoptosis, DNA damage, inflammation and ER stress in vitro. This might be mediated by downregulated phosphorylation of the transcription factors NF-κB and STAT3. The current study aimed to investigate the effect of HK4 on lipotoxicity-induced hepatocyte injury at the transcriptional level. Methods: HepG2 cells were treated with palmitate (200 μM) in the presence or absence of HK4 (10 μM) for 7 h. Total RNA was isolated and the expression profiles of mRNAs were assessed. Differentially expressed genes were identified and subjected to the DAVID database and Ingenuity Pathway Analysis software for functional and pathway analysis, all under appropriate statistical testing. Results: Transcriptomic analysis showed substantial modifications in gene expression in response to palmitate as lipotoxic stimulus with 1,457 differentially expressed genes affecting lipid metabolism, oxidative phosphorylation, apoptosis, oxidative and ER stress among others. HK4 preincubation resulted in the prevention of palmitate-induced dysregulation by restoring initial gene expression pattern of untreated hepatocytes comprising 456 genes. Out of the 456 genes, 342 genes were upregulated and 114 downregulated by HK4. Enriched pathways analysis of those genes by Ingenuity Pathway Analysis, pointed towards oxidative phosphorylation, mitochondrial dysregulation, protein ubiquitination, apoptosis, and cell cycle regulation as affected pathways. These pathways are regulated by the key upstream regulators TP53, KDM5B, DDX5, CAB39 L and SYVN1, which orchestrate the metabolic and oxidative stress responses including modulation of DNA repair and degradation of ER stress-induced misfolded proteins in the presence or absence of HK4. Discussion: We conclude that HK4 specifically targets mitochondrial respiration, protein ubiquitination, apoptosis and cell cycle. This not only helps to counteract lipotoxic hepatocellular injury through modification of gene expression, but - by targeting transcription factors responsible for DNA repair, cell cycle progression and ER stress - might even prevent lipotoxic mechanisms. These findings suggest that HK4 has a great potential for the treatment of non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Elisabeth Rohbeck
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany,CureDiab Metabolic Research GmbH, Düsseldorf, Germany
| | - Corinna Niersmann
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany,CureDiab Metabolic Research GmbH, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Centre (BMFZ), Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Biological and Medical Research Centre (BMFZ), Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany,Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Eckel
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,CureDiab Metabolic Research GmbH, Düsseldorf, Germany
| | - Tania Romacho
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,Chronic Complications of Diabetes Lab (ChroCoDiL), Department of Nursing Sciences, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, Almería, Spain,*Correspondence: Tania Romacho,
| |
Collapse
|
148
|
ZNF385A and ZNF346 Serve as Prognostic Biomarkers Associated with an Inflamed Immunosuppressive Tumor Microenvironment in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24043155. [PMID: 36834567 PMCID: PMC9962939 DOI: 10.3390/ijms24043155] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has a high mortality rate worldwide, and there are still many problems in the early diagnosis, molecular targeted therapy, and immunotherapy. It is necessary to explore valuable diagnostic markers and new therapeutic targets in HCC. Zinc finger protein 385A (ZNF385A) and zinc finger protein 346 (ZNF346) represent a unique class of RNA-binding Cys2 His2 (C2H2) zinc finger proteins that are involved in the regulation of cell cycle and apoptosis, but little is known of their roles in HCC. Based on multiple databases and analysis tools, we explored the expression, clinical relation, prognostic value, possible biological function, and pathways of ZNF385A and ZNF346, and their relationship with immune infiltration. Our results revealed that ZNF385A and ZNF346 were highly expressed and were associated with poor prognosis in HCC. Hepatitis B virus (HBV) infection may lead to the overexpression of ZNF385A and ZNF346, which was accompanied by elevated apoptosis and chronic inflammation. Moreover, ZNF385A and ZNF346 were positively correlated with immune-suppressive cells, inflammatory cytokines, immune checkpoint genes, and poor immunotherapy efficacy. Finally, the knockdown of ZNF385A and ZNF346 was observed to negatively affect the proliferation and migration of HepG2 cells in vitro. In conclusion, ZNF385A and ZNF346 are promising candidate biomarkers for the diagnosis, prognosis, and response to immunotherapy in HCC, and this study may help to understand the tumor microenvironment (TME) of liver cancer, and to develop new therapeutic targets.
Collapse
|
149
|
Alginate Oligosaccharides Repair Liver Injury by Improving Anti-Inflammatory Capacity in a Busulfan-Induced Mouse Model. Int J Mol Sci 2023; 24:ijms24043097. [PMID: 36834506 PMCID: PMC9967464 DOI: 10.3390/ijms24043097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Liver diseases are associated with many factors, including medicines and alcoholics, which have become a global problem. It is crucial to overcome this problem. Liver diseases always come with inflammatory complications, which might be a potential target to deal with this issue. Alginate oligosaccharides (AOS) have been demonstrated to have many beneficial effects, especially anti-inflammation. In this study, 40 mg/kg body weight (BW) of busulfan was intraperitoneally injected once, and then the mice were dosed with ddH2O or AOS 10 mg/kg BW every day by oral gavage for five weeks. We investigated AOS as a potential no-side-effect and low-cost therapy for liver diseases. For the first time, we discovered that AOS 10 mg/kg recovered liver injury by decreasing the inflammation-related factors. Moreover, AOS 10 mg/kg could improve the blood metabolites related to immune and anti-tumor effects, and thus, ameliorated impaired liver function. The results indicate that AOS may be a potential therapy to deal with liver damage, especially in inflammatory conditions.
Collapse
|
150
|
Li R, Zhou Y, Zhang X, Yang L, Liu J, Wightman SM, Lv L, Liu Z, Wang CY, Zhao C. Identification of marine natural product Pretrichodermamide B as a STAT3 inhibitor for efficient anticancer therapy. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:94-101. [PMID: 37073329 PMCID: PMC10077262 DOI: 10.1007/s42995-022-00162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/22/2022] [Indexed: 05/03/2023]
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) regulates the expression of various critical mediators of cancer and is considered as one of the central communication nodes in cell growth and survival. Marine natural products (MNP) represent great resources for discovery of bioactive lead compounds, especially anti-cancer agents. Through the medium-throughput screening of our in-house MNP library, Pretrichodermamide B, an epidithiodiketopiperazine, was identified as a JAK/STAT3 signaling inhibitor. Further studies identified that Pretrichodermamide B directly binds to STAT3, preventing phosphorylation and thus inhibiting JAK/STAT3 signaling. Moreover, it suppressed cancer cell growth, in vitro, at low micromolar concentrations and demonstrated efficacy in vivo by decreasing tumor growth in a xenograft mouse model. In addition, it was shown that Pretrichodermamide B was able to induce cell cycle arrest and promote cell apoptosis. This study demonstrated that Pretrichodermamide B is a novel STAT3 inhibitor, which should be considered for further exploration as a promising anti-cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00162-x.
Collapse
Affiliation(s)
- Rui Li
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yue Zhou
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Xinxin Zhang
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Lujia Yang
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Jieyu Liu
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Samantha M. Wightman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Ling Lv
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Zhiqing Liu
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Chang-Yun Wang
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|